1
|
Szkudelski T, Szkudelska K. The relevance of the heme oxygenase system in alleviating diabetes-related hormonal and metabolic disorders. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167552. [PMID: 39490940 DOI: 10.1016/j.bbadis.2024.167552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Heme oxygenase (HO) is an enzyme that catalyzes heme degradation. HO dysfunction is linked to various pathological conditions, including diabetes. Results of animal studies indicate that HO expression and activity are downregulated in experimentally induced diabetes. This is associated with severe hormonal and metabolic disturbances. However, these pathological changes have been shown to be reversed by therapy with HO activators. In animals with experimentally induced diabetes, HO was upregulated by genetic manipulation or by pharmacological activators such as hemin and cobalt protoporphyrin. Induction of HO alleviated elevated blood glucose levels and improved insulin action, among other effects. This effect resulted from beneficial changes in the main insulin-sensitive tissues, i.e., the skeletal muscle, the liver, and the adipose tissue. The action of HO activators was due to positive alterations in pivotal signaling molecules and regulatory enzymes. Furthermore, diabetes-related oxidative and inflammatory stress was reduced due to HO induction. HO upregulation was effective in various animal models of type 1 and type 2 diabetes. These data suggest the possibility of testing HO activators as a potential tool for alleviating hormonal and metabolic disorders in people with diabetes.
Collapse
Affiliation(s)
- Tomasz Szkudelski
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| | - Katarzyna Szkudelska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland.
| |
Collapse
|
2
|
Lin YC, Ho YJ, Lin YY, Liao AH, Kuo CY, Chen HK, Chen HC, Wang CH, Shih CP. Notoginsenoside R1 Attenuates Cisplatin-Induced Ototoxicity by Inducing Heme Oxygenase-1 Expression and Suppressing Oxidative Stress. Int J Mol Sci 2024; 25:11444. [PMID: 39518996 PMCID: PMC11546915 DOI: 10.3390/ijms252111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cisplatin-induced ototoxicity occurs in approximately half of patients treated with cisplatin, and pediatric patients are more likely to be affected than adults. The oxidative stress elicited by cisplatin is a key contributor to the pathogenesis of ototoxicity. Notoginsenoside R1 (NGR1), the main bioactive compound of Panax notoginseng saponins, has antioxidant and antiapoptotic effects. This study investigated the ability of NGR1 to protect against cisplatin-induced damage in auditory HEI-OC1 cells and neonatal murine cochlear explants. The viability of HEI-OC1 cells treated with NGR1 and cisplatin was greater than that of cells treated with cisplatin alone. The results of Western blots and immunostaining for cleaved caspase-3 revealed that the level of cleaved caspase-3 in the cells treated with cisplatin was repressed by NGR1. NGR1 attenuated cisplatin-induced cytotoxicity in HEI-OC1 cells. Intracellular reactive oxygen species (ROS) were detected with a DCFDA assay and immunostaining for 4-HNE. The result revealed that its expression was induced by cisplatin and was significantly reduced by NGR1. Moreover, NGR1 can promote heme oxygenase-1 (HO-1) expression at both the mRNA and protein levels. ZNPPIX, an HO-1 inhibitor, was administered to cisplatin-treated cells to investigate the role of HO-1 in the protective effect of NGR1. The suppression of HO-1 activity by ZNPPIX markedly abolished the protective effect of NGR1 on cisplatin-treated cells. Therefore, NGR1 protects cells from cisplatin-induced damage by activating HO-1 and its antioxidative activity. In cochlear explants, NGR1 protects cochlear hair cells and attenuates cisplatin-induced ototoxicity by inhibiting ROS generation. In the group treated with cisplatin alone, prominent loss of outer hair cells and severe damage to the structure of the stereociliary bundles of inner and outer hair cells were observed. Compared with the group treated with cisplatin alone, less loss of outer hair cells (p = 0.009) and better preservation of the stereociliary bundles of hair cells were observed in the group treated with cisplatin and NGR1. In conclusion, these findings indicate that NGR1 can protect against cisplatin-induced ototoxicity by inducing HO-1 expression and suppressing oxidative stress.
Collapse
Affiliation(s)
- Yi-Chun Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan;
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yuan-Yung Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
- Department of Otolaryngology, Taipei City Hospital, Taipei 103212, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| |
Collapse
|
3
|
Zheng C, Li S, Lyu H, Chen C, Mueller J, Dropmann A, Hammad S, Dooley S, He S, Mueller S. Direct Ingestion of Oxidized Red Blood Cells (Efferocytosis) by Hepatocytes. Hepat Med 2024; 16:65-77. [PMID: 39247515 PMCID: PMC11380495 DOI: 10.2147/hmer.s469990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose Both hepatic iron accumulation and hemolysis have been identified as independent prognostic factor in alcohol-related liver disease (ALD); however, the mechanisms still remain poorly understood. We here demonstrate that hepatocytes are able to directly ingest aged and ethanol-primed red blood cells (RBCs), a process termed efferocytosis. Methods Efferocytosis of RBCs was directly studied in vitro and observed by live microscopy for real-time visualization. RBCs pretreated with either CuSO4 or ethanol following co-incubation with Huh7 cells and murine primary hepatocytes. Heme oxygenase-1 (HO-1) and other targets were measured by q-PCR. Results As shown by live microscopy, oxidized RBCs, but not intact RBCs, are rapidly ingested by both Huh7 cells and murine primary hepatocytes within 10 minutes. In some cases, more than 10 RBCs were seen within hepatocytes, surrounding the nucleus. RBC efferocytosis also rapidly induces HO1, its upstream regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and ferritin, indicating efficient heme degradation. Preliminary data further suggest that hepatocyte efferocytosis of oxidized RBCs is, at least in part, mediated by scavenging receptors such as ASGPR1. Of note, pretreatment of RBCs with ethanol but also heme and bilirubin also initiated efferocytosis. In a cohort of heavy human drinkers, a significant correlation of hepatic ASGPR1 with the heme degradation pathway was observed. Conclusion We here demonstrate that hepatocytes can directly ingest and degrade oxidized RBCs through efferocytosis, a process that can be also triggered by ethanol, heme and bilirubin. Our findings are highly suggestive for a novel mechanism of hepatic iron overload in ALD patients.
Collapse
Affiliation(s)
- Chaowen Zheng
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Siyuan Li
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Huanran Lyu
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Cheng Chen
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Johannes Mueller
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
| | - Anne Dropmann
- Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Seddik Hammad
- Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Quena, Egypt
| | - Steven Dooley
- Molecular Hepatology Section, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Songqing He
- Division of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Sebastian Mueller
- Center for Alcohol Research, University of Heidelberg, Heidelberg, Germany
- Viscera AG Bauchmedizin, Bern, Switzerland
| |
Collapse
|
4
|
Zurawska G, Jończy A, Niklewicz M, Sas Z, Rumieńczyk I, Kulecka M, Piwocka K, Rygiel TP, Mikula M, Mleczko-Sanecka K. Iron-triggered signaling via ETS1 and the p38/JNK MAPK pathway regulates Bmp6 expression. Am J Hematol 2024; 99:543-554. [PMID: 38293789 DOI: 10.1002/ajh.27223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024]
Abstract
BMP6 is an iron-sensing cytokine whose transcription in liver sinusoidal endothelial cells (LSECs) is enhanced by high iron levels, a step that precedes the induction of the iron-regulatory hormone hepcidin. While several reports suggested a cell-autonomous induction of Bmp6 by iron-triggered signals, likely via sensing of oxidative stress by the transcription factor NRF2, other studies proposed the dominant role of a paracrine yet unidentified signal released by iron-loaded hepatocytes. To further explore the mechanisms of Bmp6 transcriptional regulation, we used female mice aged 10-11 months, which are characterized by hepatocytic but not LSEC iron accumulation, and no evidence of systemic iron overload. We found that LSECs of aged mice exhibit increased Bmp6 mRNA levels as compared to young controls, but do not show a transcriptional signature characteristic of activated NFR2-mediated signaling in FACS-sorted LSECs. We further observed that primary murine LSECs derived from both wild-type and NRF2 knock-out mice induce Bmp6 expression in response to iron exposure. By analyzing transcriptomic data of FACS-sorted LSECs from aged versus young mice, as well as early after iron citrate injections, we identified ETS1 as a candidate transcription factor involved in Bmp6 transcriptional regulation. By performing siRNA-mediated knockdown, small-molecule treatments, and chromatin immunoprecipitation in primary LSECs, we show that Bmp6 transcription is regulated by iron via ETS1 and p38/JNK MAP kinase-mediated signaling, at least in part independently of NRF2. Thereby, these findings identify the new components of LSEC iron sensing machinery broadly associated with cellular stress responses.
Collapse
Affiliation(s)
- Gabriela Zurawska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Aneta Jończy
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Marta Niklewicz
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Zuzanna Sas
- Medical University of Warsaw, Warsaw, Poland
| | - Izabela Rumieńczyk
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Tomasz P Rygiel
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Mikula
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | |
Collapse
|
5
|
Lee IT, Yang CC, Yang CM. Harnessing peroxisome proliferator-activated receptor γ agonists to induce Heme Oxygenase-1: a promising approach for pulmonary inflammatory disorders. Cell Commun Signal 2024; 22:125. [PMID: 38360670 PMCID: PMC10868008 DOI: 10.1186/s12964-024-01501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024] Open
Abstract
The activation of peroxisome proliferator-activated receptor (PPAR)-γ has been extensively shown to attenuate inflammatory responses in conditions such as asthma, acute lung injury, and acute respiratory distress syndrome, as demonstrated in animal studies. However, the precise molecular mechanisms underlying these inhibitory effects remain largely unknown. The upregulation of heme oxygenase-1 (HO-1) has been shown to confer protective effects, including antioxidant, antiapoptotic, and immunomodulatory effects in vitro and in vivo. PPARγ is highly expressed not only in adipose tissues but also in various other tissues, including the pulmonary system. Thiazolidinediones (TZDs) are highly selective agonists for PPARγ and are used as antihyperglycemic medications. These observations suggest that PPARγ agonists could modulate metabolism and inflammation. Several studies have indicated that PPARγ agonists may serve as potential therapeutic candidates in inflammation-related diseases by upregulating HO-1, which in turn modulates inflammatory responses. In the respiratory system, exposure to external insults triggers the expression of inflammatory molecules, such as cytokines, chemokines, adhesion molecules, matrix metalloproteinases, and reactive oxygen species, leading to the development of pulmonary inflammatory diseases. Previous studies have demonstrated that the upregulation of HO-1 protects tissues and cells from external insults, indicating that the induction of HO-1 by PPARγ agonists could exert protective effects by inhibiting inflammatory signaling pathways and attenuating the development of pulmonary inflammatory diseases. However, the mechanisms underlying TZD-induced HO-1 expression are not well understood. This review aimed to elucidate the molecular mechanisms through which PPARγ agonists induce the expression of HO-1 and explore how they protect against inflammatory and oxidative responses.
Collapse
Affiliation(s)
- I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan, 333008, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, 333323, Taiwan
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City, 242062, Taiwan.
| |
Collapse
|
6
|
Lim JS, Lee SH, Yun H, Lee DY, Cho N, Yoo G, Choi JU, Lee KY, Bach TT, Park SJ, Cho YC. Inhibitory Effects of Ehretia tinifolia Extract on the Excessive Oxidative and Inflammatory Responses in Lipopolysaccharide-Stimulated Mouse Kupffer Cells. Antioxidants (Basel) 2023; 12:1792. [PMID: 37891872 PMCID: PMC10604099 DOI: 10.3390/antiox12101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Ehretia tinifolia (E. tinifolia) L., an evergreen tree with substantial biological activity, including antioxidant and anti-inflammatory effects, has been used in many herbal and traditional medicines. To elucidate its antioxidant and anti-inflammatory activity and the underlying mechanisms, we applied a methanol extract of E. tinifolia (ETME) to lipopolysaccharide (LPS)-stimulated mouse immortalized Kupffer cells. ETME suppressed the LPS-induced increase in nitric oxide, a mediator for oxidative stress and inflammation, and restored LPS-mediated depletion of total glutathione level by stabilizing antioxidative nuclear factor erythroid 2-related factor 2 (Nrf2) and the subsequent increase in heme oxygenase-1 levels. Furthermore, ETME inhibited the LPS-induced production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. The inhibitory effects of ETME on pro-inflammatory responses were regulated by ETME-mediated dephosphorylation of mitogen-activated protein kinases (MAPKs: p38, p44/p42, and stress-associated protein kinase/c-Jun N-terminal kinase) and inhibition of nuclear localization of nuclear factor kappa B (NF-κB). These results suggest that ETME is a possible candidate for protecting Kupffer cells from LPS-mediated oxidative stress and excessive inflammatory responses by activating antioxidant Nrf2/HO-1 and inhibiting pro-inflammatory NF-κB and MAPKs, respectively.
Collapse
Affiliation(s)
- Jae Sung Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Sung Ho Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Hyosuk Yun
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea;
| | - Da Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Namki Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun 55365, Republic of Korea;
| | - Jeong Uk Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Ha Noi 122000, Vietnam;
| | - Su-Jin Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea; (J.S.L.); (S.H.L.); (D.Y.L.); (N.C.); (J.U.C.); (K.Y.L.)
| |
Collapse
|
7
|
Falco L, Tessitore V, Ciccarelli G, Malvezzi M, D’Andrea A, Imbalzano E, Golino P, Russo V. Antioxidant Properties of Oral Antithrombotic Therapies in Atherosclerotic Disease and Atrial Fibrillation. Antioxidants (Basel) 2023; 12:1185. [PMID: 37371915 PMCID: PMC10294911 DOI: 10.3390/antiox12061185] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The thrombosis-related diseases are one of the leading causes of illness and death in the general population, and despite significant improvements in long-term survival due to remarkable advances in pharmacologic therapy, they continue to pose a tremendous burden on healthcare systems. The oxidative stress plays a role of pivotal importance in thrombosis pathophysiology. The anticoagulant and antiplatelet drugs commonly used in the management of thrombosis-related diseases show several pleiotropic effects, beyond the antithrombotic effects. The present review aims to describe the current evidence about the antioxidant effects of the oral antithrombotic therapies in patients with atherosclerotic disease and atrial fibrillation.
Collapse
Affiliation(s)
- Luigi Falco
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, Italy; (L.F.); (V.T.); (G.C.); (M.M.); (P.G.)
| | - Viviana Tessitore
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, Italy; (L.F.); (V.T.); (G.C.); (M.M.); (P.G.)
| | - Giovanni Ciccarelli
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, Italy; (L.F.); (V.T.); (G.C.); (M.M.); (P.G.)
| | - Marco Malvezzi
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, Italy; (L.F.); (V.T.); (G.C.); (M.M.); (P.G.)
| | | | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Paolo Golino
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, Italy; (L.F.); (V.T.); (G.C.); (M.M.); (P.G.)
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, Italy; (L.F.); (V.T.); (G.C.); (M.M.); (P.G.)
| |
Collapse
|
8
|
Hamann B, Klimova A, Klotz F, Frank F, Jänichen C, Kapalla M, Sabarstinski P, Wolk S, Morawietz H, Poitz DM, Hofmann A, Reeps C. Regulation of CD163 Receptor in Patients with Abdominal Aortic Aneurysm and Associations with Antioxidant Enzymes HO-1 and NQO1. Antioxidants (Basel) 2023; 12:antiox12040947. [PMID: 37107322 PMCID: PMC10135987 DOI: 10.3390/antiox12040947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Red blood cells are found within the abdominal aortic aneurysm (AAA), in the intraluminal thrombus (ILT), and in neovessels. Hemolysis promotes aortic degeneration, e.g., by heme-induced reactive oxygen species formation. To reduce its toxicity, hemoglobin is endocytosed by the CD163 receptor and heme is degraded by heme oxygenase-1 (HO-1). A soluble form (sCD163) is discussed as an inflammatory biomarker representing the activation of monocytes and macrophages. HO-1 and NAD(P)H quinone dehydrogenase 1 (NQO1) are antioxidant genes that are induced by the Nrf2 transcription factor, but their regulation in AAA is only poorly understood. The aim of the present study was to analyze linkages between CD163, Nrf2, HO-1, and NQO1 and to clarify if plasma sCD163 has diagnostic and risk stratification potential. Soluble CD163 was 1.3-fold (p = 0.015) higher in AAA compared to patients without arterial disease. The difference remained significant after adjusting for age and sex. sCD163 correlated with the thickness of the ILT (rs = 0.26; p = 0.02) but not with the AAA diameter or volume. A high aneurysmal CD163 mRNA was connected to increases in NQO1, HMOX1, and Nrf2 mRNA. Further studies are needed to analyze the modulation of the CD163/HO-1/NQO1 pathway with the overall goal of minimizing the detrimental effects of hemolysis.
Collapse
Affiliation(s)
- Bianca Hamann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Anna Klimova
- Core Unit Data Management and Analytics, National Center for Tumor Diseases Dresden (NCT/UCC), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Felicia Klotz
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Frieda Frank
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christian Jänichen
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Marvin Kapalla
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Pamela Sabarstinski
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Anja Hofmann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
9
|
Srinivasan R, Han HS, Subramanian P, Mageswari A, Kim SH, Tirumani S, Maurya VK, Muthukaliannan GK, Ramya M. Lipid ROS- and Iron-Dependent Ferroptotic Cell Death in Unicellular Algae Chlamydomonas reinhardtii. Cells 2023; 12:cells12040553. [PMID: 36831220 PMCID: PMC9953829 DOI: 10.3390/cells12040553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The phenomenon of heat stress leading to ferroptosis-like cell death has recently been observed in bacteria as well as plant cells. Despite recent findings, the evidence of ferroptosis, an iron-dependent cell death remains unknown in microalgae. The present study aimed to investigate if heat shock could induce reactive oxygen species (ROS) and iron-dependent ferroptotic cell death in Chlamydomonas reinhardtii in comparison with RSL3-induced ferroptosis. After RSL3 and heat shock (50 °C) treatments with or without inhibitors, Chlamydomonas cells were evaluated for cell viability and the induction of ferroptotic biomarkers. Both the heat shock and RSL3 treatment were found to trigger ferroptotic cell death, with hallmarks of glutathione-ascorbic acid depletion, GPX5 downregulation, mitochondrial dysfunction, an increase in cytosolic calcium, ROS production, lipid peroxidation, and intracellular iron accumulation via heme oxygenase-1 activation (HO-1). Interestingly, the cells preincubated with ferroptosis inhibitors (ferrostatin-1 and ciclopirox) significantly reduced RSL3- and heat-induced cell death by preventing the accumulation of Fe2+ and lipid ROS. These findings reveal that ferroptotic cell death affects the iron homeostasis and lipid peroxidation metabolism of Chlamydomonas, indicating that cell death pathways are evolutionarily conserved among eukaryotes.
Collapse
Affiliation(s)
- Ramachandran Srinivasan
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science and Technology Cell (Marine Biotechnological Studies), Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Hyo-Shim Han
- Department of Biotechnology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Parthiban Subramanian
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
- Department of Physiology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India
| | - Anbazhagan Mageswari
- PG and Research, Department of Microbiology, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, Chennai 600 106, Tamil Nadu, India
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Srikanth Tirumani
- Department of Biology, Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Vaibhav Kumar Maurya
- Division of Food Technology, Cytogene Research & Development, Lucknow 226 021, Uttar Pradesh, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Mohandass Ramya
- Molecular Genetics Laboratory, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Tamil Nadu, India
- Correspondence: ; Tel.: +91-9442044277
| |
Collapse
|
10
|
Hofmann A, Hamann B, Klimova A, Müglich M, Wolk S, Busch A, Frank F, Sabarstinski P, Kapalla M, Nees JA, Brunssen C, Poitz DM, Morawietz H, Reeps C. Pharmacotherapies and Aortic Heme Oxygenase-1 Expression in Patients with Abdominal Aortic Aneurysm. Antioxidants (Basel) 2022; 11:antiox11091753. [PMID: 36139827 PMCID: PMC9495607 DOI: 10.3390/antiox11091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Treatment of cardiovascular risk factors slows the progression of small abdominal aortic aneurysms (AAA). Heme oxygenase-1 (HO-1) is a stress- and hemin-induced enzyme providing cytoprotection against oxidative stress when overexpressed. However, nothing is known about the effects of cardiometabolic standard therapies on HO-1 expression in aortic walls in patients with end-stage AAA. Methods: The effects of statins, angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARBs), calcium channel blockers (CCBs), beta-blockers, diuretics, acetylsalicylic acid (ASA), and therapeutic anticoagulation on HO-1 mRNA and protein expressions were analyzed in AAA patients using multivariate logistic regression analysis and comparison of monotherapy. Results: Analysis of monotherapy revealed that HO-1 mRNA and protein expressions were higher in patients on diuretics and lower in patients on statin therapy. Tests on combinations of antihypertensive medications demonstrated that ACE inhibitors and diuretics, ARBs and diuretics, and beta-blockers and diuretics were associated with increase in HO-1 mRNA expression. ASA and therapeutic anticoagulation were not linked to HO-1 expression. Conclusion: Diuretics showed the strongest association with HO-1 expression, persisting even in combination with other antihypertensive medications. Hence, changes in aortic HO-1 expression in response to different medical therapies and their effects on vessel wall degeneration should be analyzed in future studies.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
- Correspondence: ; Tel.: +49-351-458-16607
| | - Bianca Hamann
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Anna Klimova
- National Center for Tumor Diseases, Partner Site Dresden, Institute for Medical Informatics and Biometry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Margarete Müglich
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Albert Busch
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Frieda Frank
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Pamela Sabarstinski
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Marvin Kapalla
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Josef Albin Nees
- Clinic for Internal Medicine, Asklepios-ASB Klinik Radeberg, D-01454 Radeberg, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, D-01307 Dresden, Germany
| | - David M. Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| |
Collapse
|
11
|
Abstract
The liver is the major target organ of continued alcohol consumption at risk and resulting alcoholic liver disease (ALD) is the most common liver disease worldwide. The underlying molecular mechanisms are still poorly understood despite decades of scientific effort limiting our abilities to identify those individuals who are at risk to develop the disease, to develop appropriate screening strategies and, in addition, to develop targeted therapeutic approaches. ALD is predestined for the newly evolving translational medicine, as conventional clinical and health care structures seem to be constrained to fully appreciate this disease. This concept paper aims at summarizing the 15 years translational experience at the Center of Alcohol Research in Heidelberg, namely based on the long-term prospective and detailed characterization of heavy drinkers with mortality data. In addition, novel experimental findings will be presented. A special focus will be the long-known hepatic iron accumulation, the somewhat overlooked role of the hematopoietic system and novel insights into iron sensing and the role of hepcidin. Our preliminary work indicates that enhanced red blood cell (RBC) turnover is critical for survival in ALD patients. RBC turnover is not primarily due to vitamin deficiency but rather to ethanol toxicity directly targeted to erythrocytes but also to the bone marrow stem cell compartment. These novel insights also help to explain long-known aspects of ALD such as mean corpuscular volume of erythrocytes (MCV) and elevated aspartate transaminase (GOT/AST) levels. This work also aims at identifying future projects, naming unresolved observations, and presenting novel hypothetical concepts still requiring future validation.
Collapse
|
12
|
Manzoor S, Khalid M, Idrees M. P2X4 receptors mediate induction of antioxidants, fibrogenic cytokines and ECM transcripts; in presence of replicating HCV in in vitro setting: An insight into role of P2X4 in fibrosis. PLoS One 2022; 17:e0259727. [PMID: 35594248 PMCID: PMC9122194 DOI: 10.1371/journal.pone.0259727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Background & aims
Major HCV infections lead to chronic hepatitis, which results in progressive liver disease including fibrosis, cirrhosis and eventually hepatocellular carcinoma (HCC). P2X4 and P2X7 are most widely distributed receptors on hepatocytes.
Methods
Full length P2X4 (1.7kb) (Rattus norvegicus) was sub cloned in mammalian expression vector pcDNA3.1+. Two stable cell lines 293T/P2X4 (experimental) and 293T/ NV or null vector (control) were established. Both cell lines were inoculated with high viral titers human HCV sera and control human sera. Successfully infected cells harvested on day 5 and day 9 of post infection were used for further studies.
Results
The results revealed a significant increase in gene expression of P2X4 on day 5 and day 9 Post -infection in cells infected with HCV sera compared with cells inoculated with control sera. Quantitative real time PCR analysis revealed that HO-1 was significantly upregulated in presence of P2X4 in HCV infected cells (P2X4/HCV) when compared with control NV/HCV cells. A significant decrease was observed in expression of Cu/ZnSOD in presence of P2X4 in HCV infected cells compared to control NV/HCV cells. However, expression of both antioxidants was observed unaltered in cells harvested on day 9 post infection. Gene expression of angiotensin II significantly increased in HCV infected cells in presence of P2X4 on day 5 and day 9 of post infection when compared with control NV/HCV cells. A significant increase in gene expression of TNF-α and TGF-β was observed in HCV infected cells in presence of P2X4 on day 9 post infection in comparison with control (NV/HCV cells). However, gene expression of adipokine leptin was not affected in both experimental (P2X4/HCV) and control (NV/HCV) groups on day 5 and day 9 of post infection. Extracellular matrix proteins, laminin and elastin genes expression also significantly increased in presence of P2X4 (HCV/P2X4) on day 9 of post-infection compared to control group NV/HCV cells.
Conclusion
In conclusion, these findings constitute the evidence that P2X4 receptors in the presence of HCV play a significant role in the regulation of key antioxidant enzymes (HO-1, Cu/ZnSOD), in the induction of proinflammatory. cytokine (TNF-α), profibrotic cytokine (TGF-β) vasoactive cytokine (angiotensin II). P2X4 also increases the expression of extracellular matrix proteins (laminin and elastin) in the presence of HCV.
Collapse
Affiliation(s)
- Sobia Manzoor
- Center of Excellence in Molecular Biology (CEMB), University of Punjab, Lahore, Pakistan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
- * E-mail: ,
| | - Madiha Khalid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Idrees
- Center of Excellence in Molecular Biology (CEMB), University of Punjab, Lahore, Pakistan
| |
Collapse
|
13
|
Heme oxygenase-1, carbon monoxide, and malaria – The interplay of chemistry and biology. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Effects of Tolvaptan on Oxidative Stress in ADPKD: A Molecular Biological Approach. J Clin Med 2022; 11:jcm11020402. [PMID: 35054096 PMCID: PMC8777601 DOI: 10.3390/jcm11020402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Autosomal dominant polycystic disease (ADPKD) is the most frequent monogenic kidney disease. It causes progressive renal failure, endothelial dysfunction, and hypertension, all of which are strictly linked to oxidative stress (OxSt). Treatment with tolvaptan is known to slow the renal deterioration rate, but not all the molecular mechanisms involved in this effect are well-established. We evaluated the OxSt state in untreated ADPKD patients compared to that in tolvaptan-treated ADPKD patients and healthy subjects. OxSt was assessed in nine patients for each group in terms of mononuclear cell p22phox protein expression, NADPH oxidase key subunit, MYPT-1 phosphorylation state, marker of Rho kinase activity (Western blot) and heme oxygenase (HO)-1, induced and protective against OxSt (ELISA). p22phox protein expression was higher in untreated ADPKD patients compared to treated patients and controls: 1.42 ± 0.11 vs. 0.86 ± 0.15 d.u., p = 0.015, vs. 0.53 ± 0.11 d.u., p < 0.001, respectively. The same was observed for phosphorylated MYPT-1: 0.96 ± 0.28 vs. 0.68 ± 0.09 d.u., p = 0.013 and vs. 0.47 ± 0.13 d.u., p < 0.001, respectively, while the HO-1 expression of untreated patients was significantly lower compared to that of treated patients and controls: 5.33 ± 3.34 vs. 2.08 ± 0.79 ng/mL, p = 0.012, vs. 1.97 ± 1.22 ng/mL, p = 0.012, respectively. Tolvaptan-treated ADPKD patients have reduced OxSt levels compared to untreated patients. This effect may contribute to the slowing of renal function loss observed with tolvaptan treatment.
Collapse
|
15
|
Induction of HOXA3 by PRRSV inhibits IFN-I response through negatively regulation of HO-1 transcription. J Virol 2021; 96:e0186321. [PMID: 34851144 DOI: 10.1128/jvi.01863-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type I interferons (IFN-I) play a key role in the host defense against virus infection, but porcine reproductive and respiratory syndrome virus (PRRSV) infection does not effectively activate IFN-I response, and the underlying molecular mechanisms are poorly characterized. In this study, a novel transcription factor of the heme oxygenase-1 (HO-1) gene, homeobox A3 (HOXA3), was screened and identified. Here, we found that HOXA3 was significantly increased during PRRSV infection. We demonstrated that HOXA3 promotes PRRSV replication by negatively regulating the HO-1 gene transcription, which is achieved by regulating type I interferons (IFN-I) production. A detailed analysis showed that PRRSV exploits HOXA3 to suppress beta interferon (IFN-β) and IFN-stimulated gene (ISG) expression in host cells. We also provide direct evidence that the activation of IFN-I by HO-1 depends on its interaction with IRF3. Then we further proved that deficiency of HOXA3 promoted the HO-1-IRF3 interaction, and subsequently enhanced IRF3 phosphorylation and nuclear translocation in PRRSV-infected cells. These data suggest that PRRSV uses HOXA3 to negatively regulate the transcription of the HO-1 gene to suppress the IFN-I response for immune evasion. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS), caused by PRRSV, leads the pork industry worldwide to significant economic losses. HOXA3 is generally considered to be an important molecule in the process of body development and cell differentiation. Here, we found a novel transcription factor of the HO-1 gene, HOXA3, can negatively regulate the transcription of the HO-1 gene and play an important role in the suppression of IFN-I response by PRRSV. PRRSV induces the upregulation of HOXA3, which can negatively regulate HO-1 gene transcription, thereby weakening the interaction between HO-1 and IRF3 for inhibiting the type I IFN response. This study extends the function of HOXA3 to the virus field for the first time and provides new insights into PRRSV immune evasion mechanism.
Collapse
|
16
|
Hofmann A, Müglich M, Wolk S, Khorzom Y, Sabarstinski P, Kopaliani I, Egorov D, Horn F, Brunssen C, Giebe S, Hamann B, Deussen A, Morawietz H, Poitz DM, Reeps C. Induction of Heme Oxygenase-1 Is Linked to the Severity of Disease in Human Abdominal Aortic Aneurysm. J Am Heart Assoc 2021; 10:e022747. [PMID: 34622673 PMCID: PMC8751892 DOI: 10.1161/jaha.121.022747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Rupture of abdominal aortic aneurysm (rAAA) is associated with high case fatality rates, and risk of rupture increases with the AAA diameter. Heme oxygenase‐1 (gene HMOX1, protein HO‐1) is a stress‐induced protein and induction has protective effects in the vessel wall. HMOX1−/− mice are more susceptible to angiotensin II‐induced AAA formation, but the regulation in human nonruptured and ruptured AAA is only poorly understood. Our hypothesis proposed that HO‐1 is reduced in AAA and lowering is inversely associated with the AAA diameter. Methods and Results AAA walls from patients undergoing elective open repair (eAAA) or surgery because of rupture (rAAA) were analyzed for aortic HMOX1/HO‐1 expression by quantitative real‐time polymerase chain reaction and Western blot. Aortas from patients with aortic occlusive disease served as controls. HMOX1/HO‐1 expression was 1.1‐ to 7.6‐fold upregulated in eAAA and rAAA. HO‐1 expression was 3‐fold higher in eAAA specimen with a diameter >84.4 mm, whereas HO‐1 was not different in rAAA. Other variables that are known for associations with AAA and HO‐1 induction were tested. In eAAA, HO‐1 expression was negatively correlated with aortic collagen content and oxidative stress parameters H2O2 release, oxidized proteins, and thiobarbituric acid reactive substances. Serum HO‐1 concentrations were analyzed in patients with eAAA, and maximum values were found in an aortic diameter of 55 to 70 mm with no further increase >70 mm, compared with <55 mm. Conclusions Aortic HO‐1 expression was increased in eAAA and rAAA. HO‐1 increased with the severity of disease but was additionally connected to less oxidative stress and vasoprotective mechanisms.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Margarete Müglich
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Steffen Wolk
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Yazan Khorzom
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Pamela Sabarstinski
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Irakli Kopaliani
- Department of Physiology Medical Faculty Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Dmitry Egorov
- Department of Physiology Medical Faculty Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Franziska Horn
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Sindy Giebe
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Bianca Hamann
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Andreas Deussen
- Department of Physiology Medical Faculty Carl Gustav Carus Dresden Technische Universität Dresden Dresden Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation Department of Medicine III University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| | - Christian Reeps
- Division of Vascular and Endovascular Surgery Department of Visceral, Thoracic and Vascular Surgery University Hospital and Medical Faculty Carl Gustav Carus Technische Universität Dresden Dresden Germany
| |
Collapse
|
17
|
Anti-Inflammatory Effects of the Fraction from the Leaves of Pyrus pyrifolia on LPS-Stimulated THP-1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4946241. [PMID: 34484392 PMCID: PMC8413047 DOI: 10.1155/2021/4946241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 01/22/2023]
Abstract
Pyrus pyrifolia Nakai (P. pyrifolia) has been traditionally used in East Asia to treat diseases such as phlegm, cough, hangover, and fever. However, there is no investigation that evaluates the biological activities of the leaves of P. pyrifolia. This study aims at describing the anti-inflammatory effects of PP, a bioactive fraction from the leaves of P. pyrifolia, in lipopolysaccharide (LPS)-stimulated THP-1 cells. Initially, PP decreased the protein and RNA expression of TNF-α, MCP-1, IL-8, and IL-6 induced by LPS. Moreover, PP attenuated the phosphorylation of p38, JNK, and ERK. In addition, after stimulation with LPS, the degradation of IκB-α was suppressed by PP, and the phosphorylation of IκB-α and p65 was suppressed by PP. Additionally, PP increased HO-1, which controls the production of inflammatory molecules, by activating Nrf2. These results indicated that PP could be used as an anti-inflammatory drug to promote wellness.
Collapse
|
18
|
Wen X, Kozlosky D, Zhang R, Doherty C, Buckley B, Barrett E, Aleksunes LM. BCRP/ ABCG2 Transporter Regulates Accumulation of Cadmium in Kidney Cells: Role of the Q141K Variant in Modulating Nephrotoxicity. Drug Metab Dispos 2021; 49:629-637. [PMID: 34074729 PMCID: PMC8382159 DOI: 10.1124/dmd.121.000446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Exposure to the environmental pollutant cadmium is ubiquitous, as it is present in cigarette smoke and the food supply. Over time, cadmium enters and accumulates in the kidneys, where it causes tubular injury. The breast cancer resistance protein (BCRP, ATP-Binding Cassette G2 ABCG2) is an efflux transporter that mediates the urinary secretion of pharmaceuticals and toxins. The ABCG2 genetic variant Q141K exhibits altered membrane trafficking that results in reduced efflux of BCRP substrates. Here, we sought to 1) evaluate the in vitro and in vivo ability of BCRP to transport cadmium and protect kidney cells from toxicity and 2) determine whether this protection is impaired by the Q141K variant. Cadmium concentrations, cellular stress, and toxicity were quantified in human embryonic kidney 293 cells expressing an empty vector (EV), BCRP wild-type (WT), or variant (Q141K) gene. Treatment with CdCl2 resulted in greater accumulation of cadmium and apoptosis in EV cells relative to WT cells. Exposure to CdCl2 induced expression of stress-related genes and proteins including MT-1A/MT-2A, NAD(P)H quinone dehydrogenase 1, and heme oxygenase-1 to a higher extent in EV cells compared with WT cells. Notably, the Q141K variant protected against CdCl2-induced activation of stress genes and cytotoxicity, but this protection was to a lesser magnitude than observed with WT BCRP. Lastly, concentrations of cadmium in the kidneys of Bcrp knockout mice were 40% higher than in WT mice, confirming that cadmium is an in vivo substrate of BCRP. In conclusion, BCRP prevents the accumulation of cadmium and protects against toxicity, a response that is impaired by the Q141K variant. SIGNIFICANCE STATEMENT: The breast cancer resistance protein transporter lowers cellular accumulation of the toxic heavy metal cadmium. This protective function is partially attenuated by the Q141K genetic variant in the ABCG2 gene.
Collapse
Affiliation(s)
- Xia Wen
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| | - Danielle Kozlosky
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| | - Ranran Zhang
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| | - Cathleen Doherty
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| | - Brian Buckley
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| | - Emily Barrett
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, New Jersey (X.W., D.K., L.M.A.); Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey (X.W., R.Z., C.D., B.B., E.B., L.M.A.); and Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey (R.Z., E.B.)
| |
Collapse
|
19
|
Santhakumar P, Prathap L, Roy A, Jayaraman S, Jeevitha M. Molecular docking analysis of furfural and isoginkgetin with heme oxygenase I and PPARγ. Bioinformation 2021; 17:356-362. [PMID: 34234396 PMCID: PMC8225605 DOI: 10.6026/97320630017356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 11/23/2022] Open
Abstract
It is of interest to document the molecular docking analysis based binding data of furfural and isoginkgetin with heme oxygenase I and PPARγ in the context of inflammation for further consideration in drug design and development.
Collapse
Affiliation(s)
- Preetha Santhakumar
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India
| | - M Jeevitha
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai - 600 077, Tamil Nadu, India
| |
Collapse
|
20
|
Campbell NK, Fitzgerald HK, Dunne A. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol 2021; 21:411-425. [PMID: 33514947 DOI: 10.1038/s41577-020-00491-x] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 01/30/2023]
Abstract
Haem oxygenase 1 (HO-1), an inducible enzyme responsible for the breakdown of haem, is primarily considered an antioxidant, and has long been overlooked by immunologists. However, research over the past two decades in particular has demonstrated that HO-1 also exhibits numerous anti-inflammatory properties. These emerging immunomodulatory functions have made HO-1 an appealing target for treatment of diseases characterized by high levels of chronic inflammation. In this Review, we present an introduction to HO-1 for immunologists, including an overview of its roles in iron metabolism and antioxidant defence, and the factors which regulate its expression. We discuss the impact of HO-1 induction in specific immune cell populations and provide new insights into the immunomodulation that accompanies haem catabolism, including its relationship to immunometabolism. Furthermore, we highlight the therapeutic potential of HO-1 induction to treat chronic inflammatory and autoimmune diseases, and the issues faced when trying to translate such therapies to the clinic. Finally, we examine a number of alternative, safer strategies that are under investigation to harness the therapeutic potential of HO-1, including the use of phytochemicals, novel HO-1 inducers and carbon monoxide-based therapies.
Collapse
Affiliation(s)
- Nicole K Campbell
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland. .,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia.
| | - Hannah K Fitzgerald
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Salerno L, Vanella L, Sorrenti V, Consoli V, Ciaffaglione V, Fallica AN, Canale V, Zajdel P, Pignatello R, Intagliata S. Novel mutual prodrug of 5-fluorouracil and heme oxygenase-1 inhibitor (5-FU/HO-1 hybrid): design and preliminary in vitro evaluation. J Enzyme Inhib Med Chem 2021; 36:1378-1386. [PMID: 34167427 PMCID: PMC8231349 DOI: 10.1080/14756366.2021.1928111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In this work, the first mutual prodrug of 5-fluorouracil and heme oxygenase1 inhibitor (5-FU/HO-1 hybrid) has been designed, synthesised, and evaluated for its in vitro chemical and enzymatic hydrolysis stability. Predicted in silico physicochemical properties of the newly synthesised hybrid (3) demonstrated a drug-like profile with suitable Absorption, Distribution, Metabolism, and Excretion (ADME) properties and low toxic liabilities. Preliminary cytotoxicity evaluation towards human prostate (DU145) and lung (A549) cancer cell lines demonstrated that 3 exerted a similar effect on cell viability to that produced by the reference drug 5-FU. Among the two tested cancer cell lines, the A549 cells were more susceptible for 3. Of note, hybrid 3 also had a significantly lower cytotoxic effect on healthy human lung epithelial cells (BEAS-2B) than 5-FU. Altogether our results served as an initial proof-of-concept to develop 5-FU/HO-1 mutual prodrugs as potential novel anticancer agents.
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Antonino N Fallica
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Vittorio Canale
- Department of Organic Chemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Zajdel
- Department of Organic Chemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Rosario Pignatello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | |
Collapse
|
22
|
Tomas-Hernandez S, Blanco J, Garcia-Vallvé S, Pujadas G, Ojeda-Montes MJ, Gimeno A, Arola L, Minghetti L, Beltrán-Debón R, Mulero M. Anti-Inflammatory and Immunomodulatory Effects of the Grifola frondosa Natural Compound o-Orsellinaldehyde on LPS-Challenged Murine Primary Glial Cells. Roles of NF-κβ and MAPK. Pharmaceutics 2021; 13:806. [PMID: 34071571 PMCID: PMC8229786 DOI: 10.3390/pharmaceutics13060806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022] Open
Abstract
In response to foreign or endogenous stimuli, both microglia and astrocytes adopt an activated phenotype that promotes the release of pro-inflammatory mediators. This inflammatory mechanism, known as neuroinflammation, is essential in the defense against foreign invasion and in normal tissue repair; nevertheless, when constantly activated, this process can become detrimental through the release of neurotoxic factors that amplify underlying disease. In consequence, this study presents the anti-inflammatory and immunomodulatory properties of o-orsellinaldehyde, a natural compound found by an in silico approach in the Grifola frondosa mushroom, in astrocytes and microglia cells. For this purpose, primary microglia and astrocytes were isolated from mice brain and cultured in vitro. Subsequently, cells were exposed to LPS in the absence or presence of increasing concentrations of this natural compound. Specifically, the results shown that o-orsellinaldehyde strongly inhibits the LPS-induced inflammatory response in astrocytes and microglia by decreasing nitrite formation and downregulating iNOS and HO-1 expression. Furthermore, in microglia cells o-orsellinaldehyde inhibits NF-κB activation; and potently counteracts LPS-mediated p38 kinase and JNK phosphorylation (MAPK). In this regard, o-orsellinaldehyde treatment also induces a significant cell immunomodulation by repolarizing microglia toward the M2 anti-inflammatory phenotype. Altogether, these results could partially explain the reported beneficial effects of G. frondosa extracts on inflammatory conditions.
Collapse
Affiliation(s)
- Sarah Tomas-Hernandez
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
| | - Jordi Blanco
- Physiology Unit, Laboratory of Toxicology and Environmental Health, Research in Neurobehavior and Health (NEUROLAB), School of Medicine, IISPV, Universitat Rovira i Virgili (URV), 43202 Tarragona, Catalonia, Spain;
| | - Santiago Garcia-Vallvé
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
| | - Gerard Pujadas
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
| | - María José Ojeda-Montes
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Aleix Gimeno
- Cheminformatics and Nutrition Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain; (S.T.-H.); (S.G.-V.); (G.P.); (M.J.O.-M.); (A.G.)
- Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), Baldiri Reixac 10-12, 08020 Barcelona, Catalonia, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain;
| | - Luisa Minghetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Catalonia, Spain;
| | - Miquel Mulero
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Campus Sescelades, Universitat Rovira i Virgili (URV), 43007 Tarragona, Catalonia, Spain;
| |
Collapse
|
23
|
Brea R, Valdecantos P, Rada P, Alen R, García-Monzón C, Boscá L, Fuertes-Agudo M, Casado M, Martín-Sanz P, Valverde ÁM. Chronic treatment with acetaminophen protects against liver aging by targeting inflammation and oxidative stress. Aging (Albany NY) 2021; 13:7800-7827. [PMID: 33780353 PMCID: PMC8034963 DOI: 10.18632/aging.202884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The liver exhibits a variety of functions that are well-preserved during aging. However, the cellular hallmarks of aging increase the risk of hepatic alterations and development of chronic liver diseases. Acetaminophen (APAP) is a first choice for relieving mild-to-moderate pain. Most of the knowledge about APAP-mediated hepatotoxicity arises from acute overdose studies due to massive oxidative stress and inflammation, but little is known about its effect in age-related liver inflammation after chronic exposure. Our results show that chronic treatment of wild-type mice on the B6D2JRcc/Hsd genetic background with APAP at an infratherapeutic dose reduces liver alterations during aging without affecting body weight. This intervention attenuates age-induced mild oxidative stress by increasing HO-1, MnSOD and NQO1 protein levels and reducing ERK1/2 and p38 MAPK phosphorylation. More importantly, APAP treatment counteracts the increase in Cd8+ and the reduction in Cd4+ T lymphocytes observed in the liver with age. This response was also found in peripheral blood mononuclear cells. In conclusion, chronic infratherapeutic APAP treatment protects mice from age-related liver alterations by attenuating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Rocío Brea
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
| | - Pilar Valdecantos
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem) ISCIII, Madrid 28029, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem) ISCIII, Madrid 28029, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem) ISCIII, Madrid 28029, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid 28009, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) ISCIII, Madrid 28029, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv) ISCIII, Madrid 28029, Spain
| | - Marina Fuertes-Agudo
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) ISCIII, Madrid 28029, Spain
| | - Marta Casado
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia 46010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) ISCIII, Madrid 28029, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) ISCIII, Madrid 28029, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas “Alberto Sols”, (CSIC-UAM), Department of Metabolism and Cellular Signaling, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem) ISCIII, Madrid 28029, Spain
| |
Collapse
|
24
|
Yang CC, Yang CM. Chinese Herbs and Repurposing Old Drugs as Therapeutic Agents in the Regulation of Oxidative Stress and Inflammation in Pulmonary Diseases. J Inflamm Res 2021; 14:657-687. [PMID: 33707963 PMCID: PMC7940992 DOI: 10.2147/jir.s293135] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Several pro-inflammatory factors and proteins have been characterized that are involved in the pathogenesis of inflammatory diseases, including acute respiratory distress syndrome, chronic obstructive pulmonary disease, and asthma, induced by oxidative stress, cytokines, bacterial toxins, and viruses. Reactive oxygen species (ROS) act as secondary messengers and are products of normal cellular metabolism. Under physiological conditions, ROS protect cells against oxidative stress through the maintenance of cellular redox homeostasis, which is important for proliferation, viability, cell activation, and organ function. However, overproduction of ROS is most frequently due to excessive stimulation of either the mitochondrial electron transport chain and xanthine oxidase or reduced nicotinamide adenine dinucleotide phosphate (NADPH) by pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor α. NADPH oxidase activation and ROS overproduction could further induce numerous inflammatory target proteins that are potentially mediated via Nox/ROS-related transcription factors triggered by various intracellular signaling pathways. Thus, oxidative stress is considered important in pulmonary inflammatory processes. Previous studies have demonstrated that redox signals can induce pulmonary inflammatory diseases. Thus, therapeutic strategies directly targeting oxidative stress may be effective for pulmonary inflammatory diseases. Therefore, drugs with anti-inflammatory and anti-oxidative properties may be beneficial to these diseases. Recent studies have suggested that traditional Chinese medicines, statins, and peroxisome proliferation-activated receptor agonists could modulate inflammation-related signaling processes and may be beneficial for pulmonary inflammatory diseases. In particular, several herbal medicines have attracted attention for the management of pulmonary inflammatory diseases. Therefore, we reviewed the pharmacological effects of these drugs to dissect how they induce host defense mechanisms against oxidative injury to combat pulmonary inflammation. Moreover, the cytotoxicity of oxidative stress and apoptotic cell death can be protected via the induction of HO-1 by these drugs. The main objective of this review is to focus on Chinese herbs and old drugs to develop anti-inflammatory drugs able to induce HO-1 expression for the management of pulmonary inflammatory diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Taichung, 41354, Taiwan
| |
Collapse
|
25
|
Anti-Inflammatory Activity of Kurarinone Involves Induction of HO-1 via the KEAP1/Nrf2 Pathway. Antioxidants (Basel) 2020; 9:antiox9090842. [PMID: 32916869 PMCID: PMC7554885 DOI: 10.3390/antiox9090842] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Kurarinone, a flavonoid isolated from the roots of Sophora flavescens, was suggested to exert potent antioxidant and immunosuppressive effects. However, the underlying mechanisms remain unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor that regulates the antioxidant defense system with anti-inflammatory activity. In the present study, we demonstrated that kurarinone activated Nrf2 and increased the expression of antioxidant enzymes, including heme oxygenase-1 (HO-1). Mechanistically, kurarinone downregulated the expression of kelch-like ECH-associated protein 1 (KEAP1), subsequently leading to the activation of Nrf2. Kurarinone also inhibited the expression of the inflammatory cytokine, interleukin (IL)-1β, and inducible nitric oxide synthase (iNos) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The overexpression of HO-1 suppressed the LPS-induced production of inflammatory mediators in RAW264.7 cells, and the immunosuppressive effects of kurarinone were partially inhibited by a treatment with Tin Protomorphyrin IX (TinPPIX), an inhibitor of HO-1. These results indicate that kurarinone activates the KEAP1/Nrf2 pathway to induce HO-1 expression, thereby exerting immunosuppressive effects.
Collapse
|
26
|
Hirao H, Dery KJ, Kageyama S, Nakamura K, Kupiec-Weglinski JW. Heme Oxygenase-1 in liver transplant ischemia-reperfusion injury: From bench-to-bedside. Free Radic Biol Med 2020; 157:75-82. [PMID: 32084514 PMCID: PMC7434658 DOI: 10.1016/j.freeradbiomed.2020.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/02/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022]
Abstract
Hepatic ischemia-reperfusion injury (IRI), a major risk factor for early allograft dysfunction (EAD) and acute or chronic graft rejection, contributes to donor organ shortage for life-saving orthotopic liver transplantation (OLT). The graft injury caused by local ischemia (warm and/or cold) leads to parenchymal cell death and release of danger-associated molecular patterns (DAMPs), followed by reperfusion-triggered production of reactive oxygen species (ROS), activation of inflammatory cells, hepatocellular damage and ultimate organ failure. Heme oxygenase 1 (HO-1), a heat shock protein-32 induced under IR-stress, is an essential component of the cytoprotective mechanism in stressed livers. HO-1 regulates anti-inflammatory responses and may be crucial in the pathogenesis of chronic diseases, such as arteriosclerosis, hypertension, diabetes and steatosis. An emerging area of study is macrophage-derived HO-1 and its pivotal intrahepatic homeostatic function played in IRI-OLT. Indeed, ectopic hepatic HO-1 overexpression activates intracellular SIRT1/autophagy axis to serve as a key cellular self-defense mechanism in both mouse and human OLT recipients. Recent translational studies in rodents and human liver transplant patients provide novel insights into HO-1 mediated cytoprotection against sterile hepatic inflammation. In this review, we summarize the current bench-to-bedside knowledge on HO-1 molecular signaling and discuss their future therapeutic potential to mitigate IRI in OLT.
Collapse
Affiliation(s)
- Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Kenneth J Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Shoichi Kageyama
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Kojiro Nakamura
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Department of Surgery, Nishi-Kobe Medical Center, 5-7-1 Koji-dai, Nishi-ku, Kobe, Hyogo, 651-2273, Japan
| | - Jerzy W Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
27
|
Activation of the Nrf2/HO-1 Pathway by Amomum villosum Extract Suppresses LPS-Induced Oxidative Stress In Vitro and Ex Vivo. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2837853. [PMID: 32454852 PMCID: PMC7218974 DOI: 10.1155/2020/2837853] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
Despite its deleterious effects on living cells, oxidative stress plays essential roles in normal physiological processes and provides signaling molecules for cell growth, differentiation, and inflammation. Macrophages are equipped with antioxidant mechanisms to cope with intracellular ROS produced during immune response, and Nrf2 (NF-E2-related factor 2)/HO-1 (heme oxygenase-1) pathway is an attractive target due to its protective effect against ROS-induced cell damage in inflamed macrophages. We investigated the effects of ethanol extract of A. villosum (AVEE) on lipopolysaccharide- (LPS-) stimulated inflammatory responses generated via the Nrf2/HO-1 signaling pathway in murine peritoneal macrophages and RAW 264.7 cells. AVEE was found to suppress the NF-κB signaling pathway, thus, to reduce proinflammatory cytokine, nitric oxide, and prostaglandin levels in peritoneal macrophages and Raw 264.7 cells treated with LPS, and to enhance HO-1 expression by activating Nrf2 signaling. Furthermore, these anti-inflammatory effects of AVEE were diminished when cells were pretreated with SnPP (a HO-1 inhibitor). HPLC analysis revealed AVEE contained quercetin, a possible activator of the Nrf2/HO-1 pathway. These results show A. villosum ethanol extract exerts anti-inflammatory effects by activating the Nrf2/HO-1 pathway in LPS-stimulated macrophages.
Collapse
|
28
|
Lim JS, Lee SH, Lee SR, Lim HJ, Roh YS, Won EJ, Cho N, Chun C, Cho YC. Inhibitory Effects of Aucklandia lappa Decne. Extract on Inflammatory and Oxidative Responses in LPS-Treated Macrophages. Molecules 2020; 25:molecules25061336. [PMID: 32183436 PMCID: PMC7144571 DOI: 10.3390/molecules25061336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023] Open
Abstract
Aucklandia lappa Decne., known as “Mok-hyang” in Korea, has been used for the alleviation of abdominal pain, vomiting, diarrhea, and stress gastric ulcers in traditional oriental medicine. We investigated the anti-inflammatory and antioxidative effects of the ethanol extract of Aucklandia lappa Decne. (ALDE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. ALDE significantly inhibited the LPS-induced nitric oxide (NO) production and reduced inducible nitric oxide synthase (iNOS) expression in RAW 264.7 cells. The production of other proinflammatory mediators, including COX-2, interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, was reduced by ALDE in LPS-stimulated RAW 264.7 cells. The mechanism underlying the anti-inflammatory effects of ALDE was elucidated to be the suppression of LPS-induced nuclear translocation of p65, followed by the degradation of IκB and the inhibition of the phosphorylation of mitogen-activated protein kinases (MAPK). In addition, ALDE showed enhanced radical scavenging activity. The antioxidant effect of ALDE was caused by the enhanced expression of heme oxygenase (HO-1) via stabilization of the expression of the nuclear transcription factor E2-related factor 2 (Nrf2) pathway. Collectively, these results indicated that ALDE not only exerts anti-inflammatory effects via the suppression of the NF-κB and MAPK pathways but also has an antioxidative effect through the activation of the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Jae Sung Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeonnam-do 58128, Korea;
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun, Jeonnam-do 58128, Korea;
| | - Sung Ho Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Sang Rok Lee
- ROK-Biotech, Jeollanamdo Biopharmaceutical Research Center, Hwasun, Jeollanam-do 58141, Korea;
| | - Hyung-Ju Lim
- Combinatorial Tumor Immunotherapy Medical Research Center, Chonnam National University Medical School, Hwasun, Jeonnam-do 58128, Korea;
- Department of Microbiology, Chonnam National University Medical School, Hwasun, Jeonnam-do 58128, Korea
| | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Korea;
| | - Eun Jeong Won
- Department of Parasitology and Tropical Medicine, Chonnam National University Medical School, Hwasun, Jeonnam-do 58128, Korea;
| | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea;
| | - Changju Chun
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: (C.C.); (Y.-C.C.); Tel.: +82-62-530-2944 (C.C.); +82-62-530-2925 (Y.-C.C.)
| | - Young-Chang Cho
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea;
- Correspondence: (C.C.); (Y.-C.C.); Tel.: +82-62-530-2944 (C.C.); +82-62-530-2925 (Y.-C.C.)
| |
Collapse
|
29
|
Shahid M, Idrees M, Butt AM, Raza SM, Amin I, Rasul A, Afzal S. Blood-based gene expression profile of oxidative stress and antioxidant genes for identifying surrogate markers of liver tissue injury in chronic hepatitis C patients. Arch Virol 2020; 165:809-822. [PMID: 32103340 DOI: 10.1007/s00705-020-04564-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Oxidative stress is the process by which reactive molecules and free radicals are formed in cells. In this study, we report the blood-based gene expression profile of oxidative stress and antioxidant genes for identifying surrogate markers of liver tissue in chronic hepatitis C (CHC) patients by using real-time PCR. A total of 144 untreated patients diagnosed with CHC having genotype 3a and 20 healthy controls were selected for the present study. Liver biopsy staging and grading of CHC patients were performed using the METAVIR score. Total RNA was extracted from liver tissue and blood samples, followed by cDNA synthesis and real-time PCR. The relative expression of genes was calculated using the ΔΔCt method. The expression profile of 84 genes associated with oxidative stress and antioxidants was determined in liver tissue and blood samples. In liver tissue, 46 differentially expressed genes (upregulated, 27; downregulated, 19) were identified in CHC patients compared to normal samples. In blood, 61 genes (upregulated, 51; downregulated; 10) were significantly expressed in CHC patients. A comparison of gene expression in liver and whole blood showed that 20 genes were expressed in a similar manner in the liver and blood. The expression levels of commonly expressed liver and blood-based genes were also correlated with clinical factors in CHC patients. A receiver operating curve (ROC) analysis of oxidative stress genes (ALB, CAT, DHCR24, GPX7, PRDX5, and MBL2) showed that infections in patients with CHC can be distinguished from healthy controls. In conclusion, blood-based gene expression can reflect the behavior of oxidative stress genes in liver tissue, and this blood-based gene expression study in CHC patients explores new blood-based non-invasive biomarkers that represent liver damage.
Collapse
Affiliation(s)
- Muhammad Shahid
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.
| | - Muhammad Idrees
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Azeem Mehmood Butt
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.,Department of Bioscience, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed Mohsin Raza
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.,Institute of Biomedical and Allied Health Sciences, University of Health Science, Lahore, Pakistan
| | - Iram Amin
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Afza Rasul
- Department of Statistic, Lahore College for Women University, Lahore, Pakistan
| | - Samia Afzal
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
30
|
Hemoglobin oxidation generates globin-derived peptides in atherosclerotic lesions and intraventricular hemorrhage of the brain, provoking endothelial dysfunction. J Transl Med 2020; 100:986-1002. [PMID: 32054994 PMCID: PMC7311325 DOI: 10.1038/s41374-020-0403-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/08/2023] Open
Abstract
The lysis of red blood cells was shown to occur in human ruptured atherosclerotic lesions and intraventricular hemorrhage (IVH) of the brain. Liberated cell-free hemoglobin was found to undergo oxidation in both pathologies. We hypothesize that hemoglobin-derived peptides are generated during hemoglobin oxidation both in complicated atherosclerotic lesions and IVH of the brain, triggering endothelial cell dysfunction. Oxidized hemoglobin and its products were followed with spectrophotometry, LC-MS/MS analysis and detection of the cross-linking of globin chains in complicated atherosclerotic lesions of the human carotid artery and the hemorrhaged cerebrospinal liquid of preterm infants. The vascular pathophysiologic role of oxidized hemoglobin and the resultant peptides was assessed by measuring endothelial integrity, the activation of endothelial cells and the induction of proinflammatory genes. Peptide fragments of hemoglobin (VNVDEVGGEALGRLLVVYPWTQR, LLVVYPWTQR, MFLSFPTTK, VGAHAGEYGAELERMFLSFPTTK, and FLASVSTVLTSKYR) were identified in ruptured atherosclerotic lesions and in IVH of the human brain. Fragments resulting from the oxidation of hemoglobin were accompanied by the accumulation of ferryl hemoglobin. Similar to complicated atherosclerotic lesions of the human carotid artery, a high level of oxidized and cross-linked hemoglobin was observed in the cerebrospinal fluid after IVH. Haptoglobin inhibited hemoglobin fragmentation provoked by peroxide. The resultant peptides failed to bind haptoglobin or albumin. Peptides derived from hemoglobin oxidation and ferryl hemoglobin induced intercellular gap formation, decreased junctional resistance in the endothelium, and enhanced monocyte adhesion to endothelial cells. Enhanced expression of TNF and the activation of NLRP3 and CASP1 followed by the increased generation of IL-1β and nuclear translocation of the NF-κβ transcription factor occurred in response to hemoglobin-derived peptides, and ferryl hemoglobin in endothelium was upregulated in both pathologies. We conclude that the oxidation of hemoglobin in complicated atherosclerotic lesions and intraventricular hemorrhage of the brain generates peptide fragments and ferryl hemoglobin with the potential to trigger endothelial cell dysfunction.
Collapse
|
31
|
Petry ÉR, Dresch DDF, Carvalho C, Medeiros PC, Rosa TG, de Oliveira CM, Martins LAM, Schemitt E, Bona S, Guma FCR, Marroni NP, Wannmacher CMD. Oral glutamine supplementation attenuates inflammation and oxidative stress-mediated skeletal muscle protein content degradation in immobilized rats: Role of 70 kDa heat shock protein. Free Radic Biol Med 2019; 145:87-102. [PMID: 31505269 DOI: 10.1016/j.freeradbiomed.2019.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022]
Abstract
Skeletal muscle disuse results in myofibrillar atrophy and protein degradation, via inflammatory and oxidative stress-mediated NF-kB signaling pathway activation. Nutritional interventions, such as l-glutamine (GLN) supplementation have shown antioxidant properties and cytoprotective effects through the modulation on the 70-kDa heat shock protein (HSP70) expression. However, these GLN-mediated effects on cell signaling pathways and biochemical mechanisms that control the myofibrillar protein content degradation in muscle disuse situations are poorly known yet. This study investigated the effects of oral GLN plus l-alanine (ALA; GLN + ALA-solution) supplementation, either in their free or dipeptide (L-alanyl-l-glutamine-DIP) form, on GLN-glutathione (GSH) axis and cytoprotection mediated by HSP70 protein expression in the slow-twitch soleus and fast-twitch gastrocnemius skeletal muscle of rats submitted to 14-days of hindlimb immobilization-induced disuse muscle atrophy. Forty-eight Wistar rats were distributed into 6 groups: hindlimb immobilized (IMOB group) and hindlimb immobilized orally supplemented with either GLN (1 g kg-1) plus ALA (0.61 g kg-1) (GLN + ALA-IMOB group) or 1.49 g kg-1 of DIP (DIP-IMOB group) and; no-immobilized (CTRL) and no-immobilized supplemented GLN + ALA and DIP baselines groups. All animals, including CTRL and IMOB rats (water), were supplemented via intragastric gavage for 14 days, concomitantly to immobilization period. Plasma and muscle GLN levels, lipid (thiobarbituric acid reactive substances-TBARS) and protein (carbonyl) peroxidation, erythrocyte concentration of reduced GSH and GSH disulfide (GSSG), plasma and muscle pro-inflammatory TNF-α levels, muscle IKKα/β-NF-kB signaling pathway and, the myofibrillar protein content (MPC) were measured. The MPC was significantly lower in IMOB rats, compared to CTRL, GLN + ALA, and DIP animals (p < 0.05). This finding was associated with reduced plasma and muscle GLN concentration, equally in IMOB animals. Conversely, both GLN + ALA and DIP supplementation restored plasma and muscle GLN levels, which equilibrated GSH and intracellular redox status (GSSG/GSH ratio) in erythrocytes and skeletal muscle even as, increased muscle HSP70 protein expression; attenuating oxidative stress and TNF-α-mediated NF-kB pathway activation, fact that reverberated on reduction of MPC degradation in GLN + ALA-IMOB and DIP-IMOB animals (p < 0.05). In conclusion, the findings shown herein support the oral GLN + ALA and DIP supplementations as a therapeutic and effective nutritional alternative to attenuate the deleterious effects of the skeletal muscle protein degradation induced by muscle disuse.
Collapse
Affiliation(s)
- Éder Ricardo Petry
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | - Clarice Carvalho
- Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Tatiana Gomes Rosa
- Famaqui - Mario Quintana Faculty, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cleverson Morais de Oliveira
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Leo Anderson Meira Martins
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Elizangêla Schemitt
- Post-Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Experimental Hepatology and Gastroenterology, Experimental Research Center, Clinical Hospital of Porto Alegre (HCPA), UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Silvia Bona
- Post-Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Experimental Hepatology and Gastroenterology, Experimental Research Center, Clinical Hospital of Porto Alegre (HCPA), UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fátima Costa Rodrigues Guma
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Norma Possas Marroni
- Post-Graduate Program in Medicine: Medical Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil; Laboratory of Experimental Hepatology and Gastroenterology, Experimental Research Center, Clinical Hospital of Porto Alegre (HCPA), UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clóvis Milton Duval Wannmacher
- Post-Graduate Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Department of Biochemistry, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
32
|
Costa CCC, Pereira NG, Machado ALM, Dórea MA, Cruz RMMD, Silva RC, Domingues RJDS, Yasojima EY. Splenic ischemic preconditioning attenuates oxidative stress induced by hepatic ischemia-reperfusion in rats. Acta Cir Bras 2019; 34:e201900707. [PMID: 31531528 PMCID: PMC6756009 DOI: 10.1590/s0102-865020190070000007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/11/2019] [Indexed: 01/24/2023] Open
Abstract
Purpose: To evaluate the effects of splenic ischemic preconditioning (sIPC) on oxidative stress induced by hepatic ischemia-reperfusion in rats. Methods: Fifteen male Wistar rats were equally divided into 3 groups: SHAM, IRI and sIPC. Animals from IRI group were subjected to 45 minutes of partial liver ischemia (70%). In the sIPC group, splenic artery was clamped in 2 cycles of 5 min of ischemia and 5 min of reperfusion (20 min total) prior to hepatic ischemia. SHAM group underwent the same surgical procedures as in the remaining groups, but no liver ischemia or sIPC were induced. After 1h, hepatic and splenic tissue samples were harvested for TBARS, CAT, GPx and GSH-Rd measurement. Results: sIPC treatment significantly decreased both hepatic and splenic levels of TBARS when compared to IRI group (p<0.01). Furthermore, the hepatic and splenic activities of CAT, GPx and GSH- Rd were significantly higher in sIPC group than in IRI group. Conclusion: sIPC was able to attenuate hepatic and splenic IRI-induced oxidative stress.
Collapse
Affiliation(s)
- Caio César Chaves Costa
- Graduate student, Faculty of Medicine, UEPA, Belem-PA, Brazil. Technical procedures, analysis and interpretation of data, manuscript preparation
| | - Nathalia Gabay Pereira
- Graduate student, Faculty of Medicine, UEPA, Belem-PA, Brazil. Technical procedures, analysis and interpretation of data, manuscript preparation
| | - Anna Luiza Melo Machado
- Graduate student, Faculty of Medicine, UEPA, Belem-PA, Brazil. Technical procedures, analysis and interpretation of data, manuscript preparation
| | - Mariana Albuquerque Dórea
- Graduate student, Faculty of Medicine, UEPA, Belem-PA, Brazil. Technical procedures, analysis and interpretation of data, manuscript preparation
| | - Rafaella Macêdo Monteiro da Cruz
- Graduate student, Faculty of Medicine, UEPA, Belem-PA, Brazil. Technical procedures, analysis and interpretation of data, manuscript preparation
| | - Renata Cunha Silva
- Fellow, Postgraduate Program in Surgery and Experimental Research, UEPA, Belem-PA, Brazil. Technical procedures, analysis and interpretation of data, manuscript preparation
| | - Robson José de Souza Domingues
- PhD, Full Professor, Department of Morphology and Physiological Sciences, UEPA, Belem-PA, Brazil. Scientific and intellectual content of the study, critical revision, final approval
| | - Edson Yuzur Yasojima
- PhD, Full Professor, Postgraduate Program in Surgery and Experimental Research, Universidade do Estado do Pará (UEPA), Belem-PA, Brazil. Conception, design, scientific and intellectual content of the study; critical revision; final approval
| |
Collapse
|
33
|
Koshibu M, Mori Y, Saito T, Kushima H, Hiromura M, Terasaki M, Takada M, Fukui T, Hirano T. Antiatherogenic effects of liraglutide in hyperglycemic apolipoprotein E-null mice via AMP-activated protein kinase-independent mechanisms. Am J Physiol Endocrinol Metab 2019; 316:E895-E907. [PMID: 30860874 DOI: 10.1152/ajpendo.00511.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert potent glucose-lowering effects without increasing risks for hypoglycemia and weight gain. Preclinical studies have demonstrated direct antiatherogenic effects of GLP-1RAs in normoglycemic animal models; however, the underlying mechanisms in hyperglycemic conditions have not been fully clarified. Here we aimed to elucidate the role of AMP-activated protein kinase (AMPK) in antiatherogenic effects of GLP-1RAs in hyperglycemic mice. Streptozotocin-induced hyperglycemic apolipoprotein E-null mice were treated with vehicle, low-dose liraglutide (17 nmol·kg-1·day-1), or high-dose liraglutide (107 nmol·kg-1·day-1) in experiment 1 and the AMPK inhibitor dorsomorphin, dorsomorphin + low-dose liraglutide, or dorsomorphin + high-dose liraglutide in experiment 2. Four weeks after treatment, aortas were collected to assess atherosclerosis. In experiment 1, metabolic parameters were similar among the groups. Assessment of atherosclerosis revealed that high-dose liraglutide treatments reduced lipid deposition on the aortic surface and plaque volume and intraplaque macrophage accumulation at the aortic sinus. In experiment 2, liraglutide-induced AMPK phosphorylation in the aorta was abolished by dorsomorphin; however, the antiatherogenic effects of high-dose liraglutide were preserved. In cultured human umbilical vein endothelial cells, liraglutide suppressed tumor necrosis factor-induced expression of proatherogenic molecules; these effects were maintained under small interfering RNA-mediated knockdown of AMPKα1 and in the presence of dorsomorphin. Conversely, in human monocytic U937 cells, the anti-inflammatory effects of liraglutide were abolished by dorsomorphin. In conclusion, liraglutide exerted AMPK-independent antiatherogenic effects in hyperlipidemic mice with streptozotocin-induced hyperglycemia, with the possible involvement of AMPK-independent suppression of proatherogenic molecules in vascular endothelial cells.
Collapse
Affiliation(s)
- Masakazu Koshibu
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Yusaku Mori
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Tomomi Saito
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Hideki Kushima
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Munenori Hiromura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Michishige Terasaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Michiya Takada
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Tomoyasu Fukui
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Showa University School of Medicine, Shinagawa, Tokyo , Japan
| |
Collapse
|
34
|
Floresta G, Amata E, Gentile D, Romeo G, Marrazzo A, Pittalà V, Salerno L, Rescifina A. Fourfold Filtered Statistical/Computational Approach for the Identification of Imidazole Compounds as HO-1 Inhibitors from Natural Products. Mar Drugs 2019; 17:md17020113. [PMID: 30759842 PMCID: PMC6409521 DOI: 10.3390/md17020113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 12/16/2022] Open
Abstract
Over-regulation of Heme oxygenase 1 (HO-1) has been recently identified in many types of human cancer, and in these cases, poor clinical outcomes are normally reported. Indeed, the inhibition of HO-1 is being considered as an anticancer approach. Imidazole scaffold is normally present in most of the classical HO-1 inhibitors and seems indispensable to the inhibitory activity due to its strong interaction with the Fe(II) of the heme group. In this paper, we searched for new potentially HO-1 inhibitors among three different databases: Marine Natural Products (MNP), ZINC Natural Products (ZNP) and Super Natural II (SN2). 484,527 compounds were retrieved from the databases and filtered through four statistical/computational filters (2D descriptors, 2D-QSAR pharmacophoric model, 3D-QSAR pharmacophoric model, and docking). Different imidazole-based compounds were suggested by our methodology to be potentially active in inhibiting the HO-1, and the results have been rationalized by the bioactivity of the filtered molecules reported in the literature.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Emanuele Amata
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Giuseppe Romeo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Agostino Marrazzo
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria, 95125 Catania, Italy.
- Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
35
|
Salerno L, Floresta G, Ciaffaglione V, Gentile D, Margani F, Turnaturi R, Rescifina A, Pittalà V. Progress in the development of selective heme oxygenase-1 inhibitors and their potential therapeutic application. Eur J Med Chem 2019; 167:439-453. [PMID: 30784878 DOI: 10.1016/j.ejmech.2019.02.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 10/27/2022]
Abstract
Heme oxygenases (HOs) are a family of enzymes involved in the selective catabolism of free circulating heme. While HO-2 is constitutively expressed, HO-1 is strongly overexpressed under stressful stimuli (e.g., oxidative stress). Under these conditions, HO-1 exerts its strong cytoprotective activities and plays a crucial role in stimulating cell survival by removing the pro-oxidant heme and by producing carbon monoxide and biliverdin (promptly reduced to bilirubin). Unfortunately, the broad spectrum of HO-1 cytoprotective effects has been well experimentally documented both in normal and tumor cells, where the enzyme can be overexpressed, making it an exciting target in the management of some type of tumors. Development of non-competitive HO-1 inhibitors dates back in 2002 with the discovery of Azalanstat. Since then, many efforts have been devoted to the identification of selective HO-1 and HO-2 inhibitors and to unravel the molecular determinants responsible for selectivity. Molecular modeling studies supported the identification of chemical features involved in the recognition and inhibition of these enzymes. Herein, medicinal chemistry aspects and in silico studies related to the development of HO inhibitors will be discussed. The purpose of this review is to highlight recent advances in the development of new selective HO-1 and HO-2 inhibitors and covers the last six years (2013-2018).
Collapse
Affiliation(s)
- Loredana Salerno
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Valeria Ciaffaglione
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Davide Gentile
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Department of Chemical Sciences, University of Catania, V.le A. Doria, 95125, Catania, Italy
| | - Fatima Margani
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy; Consorzio Interuniversitario Nazionale di ricerca in Metodologie e Processi Innovativi di Sintesi (C.I.N.M.P.S.), Via E. Orabona, 4, Bari, 70125, Italy.
| | - Valeria Pittalà
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
36
|
Lee HJ, Pyo MC, Shin HS, Ryu D, Lee KW. Renal toxicity through AhR, PXR, and Nrf2 signaling pathway activation of ochratoxin A-induced oxidative stress in kidney cells. Food Chem Toxicol 2018; 122:59-68. [DOI: 10.1016/j.fct.2018.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/22/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023]
|
37
|
Oxidative stress - chronic kidney disease - cardiovascular disease: A vicious circle. Life Sci 2018; 210:125-131. [PMID: 30172705 DOI: 10.1016/j.lfs.2018.08.067] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease patient's progression to end-stage renal disease as well as their high mortality are linked to cardiovascular disease. However, the high incidence rate of cardiovascular morbidity and mortality in these patients is not fully accounted for by traditional cardiovascular risk factors such as diabetes, hypertension and obesity. Renal disease and CVD are associated with endothelial dysfunction, inflammation and oxidative stress and in this review we will examine what is known regarding their similar roles in both CVD and chronic kidney disease, specifically focusing on the interconnections between oxidative stress, inflammation and endothelial dysfunction. These interconnections are best visualized as a vicious circle wherein these entities coexist and communicate with each other, thereby exacerbating the processes underpinning these different entities with the end result of the high morbidity and mortality that characterize CKD patients. By exploring this vicious circle i.e. the mode and extent of the interrelationships as well as some of the underlying mechanisms involved, this review aims at outlining our current understanding as well as highlighting future avenues for research and potential targets for therapeutic intervention.
Collapse
|
38
|
Huang S, Meng N, Chang B, Quan X, Yuan R, Li B. Anti-Inflammatory Activity of Epimedium brevicornu Maxim Ethanol Extract. J Med Food 2018; 21:726-733. [DOI: 10.1089/jmf.2017.4088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shan Huang
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Ning Meng
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Bingquan Chang
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| | - Xianghua Quan
- Department of Medicament, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - RuiYing Yuan
- Department of Medicament, College of Medicine, Tibet University, Lhasa, China
| | - Bin Li
- Department of Pharmacy, Qingdao University of Science & Technology, Qingdao, China
| |
Collapse
|
39
|
Funes SC, Rios M, Escobar‐Vera J, Kalergis AM. Implications of macrophage polarization in autoimmunity. Immunology 2018; 154:186-195. [PMID: 29455468 PMCID: PMC5980179 DOI: 10.1111/imm.12910] [Citation(s) in RCA: 701] [Impact Index Per Article: 100.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 12/12/2022] Open
Abstract
Macrophages are extremely heterogeneous and plastic cells with an important role not only in physiological conditions, but also during inflammation (both for initiation and resolution). In the early 1990s, two different phenotypes of macrophages were described: one of them called classically activated (or inflammatory) macrophages (M1) and the other alternatively activated (or wound-healing) macrophages (M2). Currently, it is known that functional polarization of macrophages into only two groups is an over-simplified description of macrophage heterogeneity and plasticity; indeed, it is necessary to consider a continuum of functional states. Overall, the current available data indicate that macrophage polarization is a multifactorial process in which a huge number of factors can be involved producing different activation scenarios. Once a macrophage adopts a phenotype, it still retains the ability to continue changing in response to new environmental influences. The reversibility of polarization has a critical therapeutic value, especially in diseases in which an M1/M2 imbalance plays a pathogenic role. In this review, we assess the high plasticity of macrophages and their potential to be exploited to reduce chronic/detrimental inflammation. On the whole, the evidence detailed in this review underscores macrophage polarization as a target of interest for immunotherapy.
Collapse
Affiliation(s)
- Samanta C. Funes
- Facultad de Ciencias BiológicasDepartamento de Genética Molecular y MicrobiologíaMillennium Institute on Immunology and ImmunotherapyPontificia Universidad Católica de ChileSantiagoChile
| | - Mariana Rios
- Facultad de Ciencias BiológicasDepartamento de Genética Molecular y MicrobiologíaMillennium Institute on Immunology and ImmunotherapyPontificia Universidad Católica de ChileSantiagoChile
| | - Jorge Escobar‐Vera
- Facultad de Ciencias de la SaludDepartamento BiomédicoLaboratorio de GenéticaUniversidad de AntofagastaAntofagastaChile
| | - Alexis M. Kalergis
- Facultad de Ciencias BiológicasDepartamento de Genética Molecular y MicrobiologíaMillennium Institute on Immunology and ImmunotherapyPontificia Universidad Católica de ChileSantiagoChile
- Facultad de MedicinaDepartamento de EndocrinologíaEscuela de MedicinaPontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
40
|
Waza AA, Hamid Z, Ali S, Bhat SA, Bhat MA. A review on heme oxygenase-1 induction: is it a necessary evil. Inflamm Res 2018; 67:579-588. [PMID: 29693710 DOI: 10.1007/s00011-018-1151-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is considered to be the main protein in diseases arising as a result of oxidative and inflammatory insults. Tremendous research has been carried out on HO-1 since years, pertaining its cytoprotective effect against oxidative injury and other cellular stresses. HO-1, by regulating intracellular levels of pro-oxidant heme, or by other benefits of its by-products such as carbon monoxide (CO) and biliverdin (BV) had become an important candidate protein to be up-regulated to combat diverse stressful events. Although the beneficial effects of HO-1 induction have been reported in a number of cells and tissues, a growing body of evidence indicates that this increased HO-1 expression may lead to the progression of several diseases such as neurodegeneration, carcinogenesis. But it is not clear, what accounts for the increased expression of HO-1 in cells and tissues. The observed friendly role of HO-1 in a wide range of stress conditions since times is now doubtful. Therefore, more studies are needed to elucidate the exact role of HO-1 in various stressful events. Being more concise, elucidating the effect of HO-1 up-regulation on critical genes involved in particular diseases such as cancer will help to a larger extent to comprehend the exact role of HO-1. This review will assist in understanding the dual role (protective and detrimental) of HO-1 and the signaling pathway involved and will help in unraveling the doubtful role of HO-1 induction.
Collapse
Affiliation(s)
- Ajaz Ahmad Waza
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, India.
| | - Zeenat Hamid
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sajad Ali
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Shabir Ahmad Bhat
- Centre of Research for Development (CORD), University of Kashmir, Srinagar, Jammu and Kashmir, India
| | | |
Collapse
|
41
|
Parmar T, Parmar VM, Perusek L, Georges A, Takahashi M, Crabb JW, Maeda A. Lipocalin 2 Plays an Important Role in Regulating Inflammation in Retinal Degeneration. THE JOURNAL OF IMMUNOLOGY 2018; 200:3128-3141. [PMID: 29602770 DOI: 10.4049/jimmunol.1701573] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2022]
Abstract
It has become increasingly important to understand how retinal inflammation is regulated because inflammation plays a role in retinal degenerative diseases. Lipocalin 2 (LCN2), an acute stress response protein with multiple innate immune functions, is increased in ATP-binding cassette subfamily A member 4 (Abca4) -/- retinol dehydrogenase 8 (Rdh8) -/- double-knockout mice, an animal model for Stargardt disease and age-related macular degeneration (AMD). To examine roles of LCN2 in retinal inflammation and degeneration, Lcn2-/-Abca4-/-Rdh8-/- triple-knockout mice were generated. Exacerbated inflammation following light exposure was observed in Lcn2-/-Abca4-/-Rdh8-/- mice as compared with Abca4-/-Rdh8-/- mice, with upregulation of proinflammatory genes and microglial activation. RNA array analyses revealed an increase in immune response molecules such as Ccl8, Ccl2, and Cxcl10 To further probe a possible regulatory role for LCN2 in retinal inflammation, we examined the in vitro effects of LCN2 on NF-κB signaling in human retinal pigmented epithelial (RPE) cells differentiated from induced pluripotent stem cells derived from healthy donors. We found that LCN2 induced expression of antioxidant enzymes heme oxygenase 1 and superoxide dismutase 2 in these RPE cells and could inhibit the cytotoxic effects of H2O2 and LPS. ELISA revealed increased LCN2 levels in plasma of patients with Stargardt disease, retinitis pigmentosa, and age-related macular degeneration as compared with healthy controls. Finally, overexpression of LCN2 in RPE cells displayed protection from cell death. Overall these results suggest that LCN2 is involved in prosurvival responses during cell stress and plays an important role in regulating inflammation during retinal degeneration.
Collapse
Affiliation(s)
- Tanu Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Vipul M Parmar
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Lindsay Perusek
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Anouk Georges
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - John W Crabb
- Cole Eye Institute, Cleveland Clinic, OH 44195; and
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106; .,Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.,Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
42
|
Meroni E, Papini N, Criscuoli F, Casiraghi MC, Massaccesi L, Basilico N, Erba D. Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies. Nutrients 2018; 10:E250. [PMID: 29470430 PMCID: PMC5852826 DOI: 10.3390/nu10020250] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/17/2022] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate diet based on the induction of the synthesis of ketone bodies (KB). Despite its widespread use, the systemic impact of KD is not completely understood. The purpose of this study was to evaluate the effects of physiological levels of KB on HMEC-1 endothelial cells. To this aim, DNA oxidative damage and the activation of Nrf2, a known transcriptional factor involved in cell responses to oxidative stress, were assessed. The exposure of cells to KB exerted a moderate genotoxic effect, measured by a significant increase in DNA oxidative damage. However, cells pre-treated with KB for 48 h and subjected to a secondary oxidative insult (H₂O₂), significantly decreased DNA damage compared to control oxidized cells. This protection occurred by the activation of Nrf2 pathway. In KB-treated cells, we found increased levels of Nrf2 in nuclear extracts and higher gene expression of HO-1, a target gene of Nrf2, compared to control cells. These results suggest that KB, by inducing moderate oxidative stress, activate the transcription factor Nrf2, which induces the transcription of target genes involved in the cellular antioxidant defense system.
Collapse
Affiliation(s)
- Erika Meroni
- Human Nutrition Unit, Department of Food, Environmental and Nutritional Sciences DeFENS, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy.
| | - Nadia Papini
- Department of Medical Biotechnology and Translational Medicine, L.I.T.A., Università degli Studi di Milano, Via F.lli Cervi, 93, 20090 Segrate, Milan, Italy.
| | - Franca Criscuoli
- Human Nutrition Unit, Department of Food, Environmental and Nutritional Sciences DeFENS, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy.
| | - Maria C Casiraghi
- Human Nutrition Unit, Department of Food, Environmental and Nutritional Sciences DeFENS, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy.
| | - Luca Massaccesi
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Saldini, 50, 20133 Milan, Italy.
| | - Nicoletta Basilico
- Department of Biomedical Sciences, Surgical and Dental Sciences, Università degli Studi di Milano, Via C. Pascal, 36, 20133 Milan, Italy.
| | - Daniela Erba
- Human Nutrition Unit, Department of Food, Environmental and Nutritional Sciences DeFENS, Università degli Studi di Milano, Via Celoria, 2, 20133 Milan, Italy.
| |
Collapse
|
43
|
The macrophage heme-heme oxygenase-1 system and its role in inflammation. Biochem Pharmacol 2018; 153:159-167. [PMID: 29452096 DOI: 10.1016/j.bcp.2018.02.010] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023]
Abstract
Heme oxygenase (HO)-1, the inducible isoform of the heme-degrading enzyme HO, plays a critical role in inflammation and iron homeostasis. Regulatory functions of HO-1 are mediated via the catalytic breakdown of heme, which is an iron-containing tetrapyrrole complex with potential pro-oxidant and pro-inflammatory effects. In addition, the HO reaction produces the antioxidant and anti-inflammatory compounds carbon monoxide (CO) and biliverdin, subsequently converted into bilirubin, along with iron, which is reutilized for erythropoiesis. HO-1 is up-regulated by a plethora of stimuli and injuries in most cell types and tissues and provides salutary effects by restoring physiological homeostasis. Notably, HO-1 exhibits critical immuno-modulatory functions in macrophages, which are a major cell population of the mononuclear phagocyte system. Macrophages play key roles as sentinels and regulators of the immune system and HO-1 in these cells appears to be of critical importance for driving resolution of inflammatory responses. In this review, the complex functions and regulatory mechanisms of HO-1 in macrophages will be high-lighted. A particular focus will be the intricate interactions of HO-1 with its substrate heme, which play a contradictory role in distinct physiological and pathophysiological settings. The therapeutic potential of targeted modulation of the macrophage heme-HO-1 system will be discussed in the context of inflammatory disorders.
Collapse
|
44
|
Kim KW, Kim HJ, Sohn JH, Yim JH, Kim YC, Oh H. Anti-neuroinflammatory effect of 6,8,1'-tri-O-methylaverantin, a metabolite from a marine-derived fungal strain Aspergillus sp., via upregulation of heme oxygenase-1 in lipopolysaccharide-activated microglia. Neurochem Int 2017; 113:8-22. [PMID: 29174381 DOI: 10.1016/j.neuint.2017.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/06/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022]
Abstract
In the course of searching for anti-neuroinflammatory metabolites from marine-derived fungi, three fungal metabolites, 6,8,1'-tri-O-methylaverantin, 6,8-di-O-methylaverufin, and 5-methoxysterigmatocystin were isolated from a marine-derived fungal strain Aspergillus sp. SF-6796. Among these, 6,8,1'-tri-O-methylaverantin induced the expression of heme oxygenase (HO)-1 protein in BV2 microglial cells. The induction of HO-1 protein was mediated by the activation of nuclear transcription factor erythroid-2 related factor 2 (Nrf2), and was regulated by the p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase/protein kinase B signaling pathways. Furthermore, 6,8,1'-tri-O-methylaverantin suppressed the overproduction of pro-inflammatory mediators, such as nitric oxide, prostaglandin E2, inducible nitric oxide synthase, and cyclooxygenase-2 in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. These anti-neuroinflammatory effects were mediated through the negative regulation of the nuclear factor kappa B pathway, repressing the phosphorylation and degradation of inhibitor kappa B-α, translocation into the nucleus of p65/p50 heterodimer, and DNA-binding activity of p65 subunit. The anti-neuroinflammatory effect of 6,8,1'-tri-O-methylaverantin was partially blocked by a selective HO-1 inhibitor, suggesting that its anti-neuroinflammatory effect is at least partly mediated by HO-1 induction. In this study, 6,8,1'-tri-O-methylaverantin also induced HO-1 protein expression in primary microglial cells, and this correlated with anti-neuroinflammatory effects observed in LPS-stimulated primary microglial cells. In conclusion, 6,8,1'-tri-O-methylaverantin represents a potential candidate for use in the development of therapeutic agents for the regulation of neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Kwan-Woo Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hye Jin Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Jae Hak Sohn
- College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Joung Han Yim
- Korea Polar Research Institute, KORDI, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Youn-Chul Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea.
| |
Collapse
|
45
|
Liu F, Du Y, Feng WH. New perspective of host microRNAs in the control of PRRSV infection. Vet Microbiol 2017; 209:48-56. [DOI: 10.1016/j.vetmic.2017.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 02/09/2023]
|
46
|
Is there an increased heme oxygenase-1 behind the antioxidant effects of green tea on blood pressure and sympathoexcitation reduction? J Hypertens 2017; 35:1718-1719. [PMID: 28657979 DOI: 10.1097/hjh.0000000000001388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Cardioprotective effect of KR-33889, a novel PARP inhibitor, against oxidative stress-induced apoptosis in H9c2 cells and isolated rat hearts. Arch Pharm Res 2017; 40:640-654. [PMID: 28378219 DOI: 10.1007/s12272-017-0912-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/27/2017] [Indexed: 01/29/2023]
Abstract
Oxidative stress plays a critical role in cardiac injury during ischemia/reperfusion (I/R). Despite a potent cardioprotective activity of KR-33889, a novel poly (ADP-ribose) polymerase inhibitor, its underlying mechanism remains unresolved. This study was designed to investigate the protective effects of KR-33889 against oxidative stress-induced apoptosis in rat cardiomyocytes H9c2 cells and isolated rat hearts. H2O2 caused severe injury to H9c2 cells, mainly due to apoptosis, as revealed by TUNEL assay. However, KR-33889 pretreatment significantly attenuated H2O2-induced apoptosis of H9c2 cells, which was accompanied by decrease in expression of both cleaved caspase-3 and Bax and increase in Bcl-2 expression and the ratio of Bcl-2/Bax. KR-33889 also significantly enhanced the expression of anti-oxidant enzymes including heme oxygenase-1, Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and catalase, thereby inhibiting production of intracellular ROS. Furthermore, KR-33889 reversed H2O2-induced decrease in phosphorylation of Akt, GSK-3β, ERK1/2, p38 MAPK, and SAPK/JNK during most H2O2 exposure time. In globally ischemic rat hearts, KR-33889 inhibited both I/R-induced decrease in cardiac contractility and apoptosis by increasing Bcl-2, decreasing both cleaved caspase-3 and Bax expression, and enhancing expression of anti-oxidant enzymes. Taken together, these results suggest that KR-33889 may have therapeutic potential to prevent I/R-induced heart injury in ischemic heart diseases mainly by reducing oxidative stress-mediated myocardial apoptosis.
Collapse
|
48
|
Immenschuh S, Vijayan V, Janciauskiene S, Gueler F. Heme as a Target for Therapeutic Interventions. Front Pharmacol 2017; 8:146. [PMID: 28420988 PMCID: PMC5378770 DOI: 10.3389/fphar.2017.00146] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/07/2017] [Indexed: 12/30/2022] Open
Abstract
Heme is a complex of iron and the tetrapyrrole protoporphyrin IX with essential functions in aerobic organisms. Heme is the prosthetic group of hemoproteins such as hemoglobin and myoglobin, which are crucial for reversible oxygen binding and transport. By contrast, high levels of free heme, which may occur in various pathophysiological conditions, are toxic via pro-oxidant, pro-inflammatory and cytotoxic effects. The toxicity of heme plays a major role for the pathogenesis of prototypical hemolytic disorders including sickle cell disease and malaria. Moreover, there is increasing appreciation that detrimental effects of heme may also be critically involved in diseases, which usually are not associated with hemolysis such as severe sepsis and atherosclerosis. In mammalians homeostasis of heme and its potential toxicity are primarily controlled by two physiological systems. First, the scavenger protein hemopexin (Hx) non-covalently binds extracellular free heme with high affinity and attenuates toxicity of heme in plasma. Second, heme oxygenases (HOs), in particular the inducible HO isozyme, HO-1, can provide antioxidant cytoprotection via enzymatic degradation of intracellular heme. This review summarizes current knowledge on the pathophysiological role of heme for various diseases as demonstrated in experimental animal models and in humans. The functional significance of Hx and HOs for the regulation of heme homeostasis is highlighted. Finally, the therapeutic potential of pharmacological strategies that apply Hx and HO-1 in various clinical settings is discussed.
Collapse
Affiliation(s)
- Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | | | - Faikah Gueler
- Department of Nephrology, Hannover Medical SchoolHannover, Germany
| |
Collapse
|
49
|
Li W, Guo Y, Zhang C, Wu R, Yang AY, Gaspar J, Kong ANT. Dietary Phytochemicals and Cancer Chemoprevention: A Perspective on Oxidative Stress, Inflammation, and Epigenetics. Chem Res Toxicol 2016; 29:2071-2095. [PMID: 27989132 DOI: 10.1021/acs.chemrestox.6b00413] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress occurs when cellular reactive oxygen species levels exceed the self-antioxidant capacity of the body. Oxidative stress induces many pathological changes, including inflammation and cancer. Chronic inflammation is believed to be strongly associated with the major stages of carcinogenesis. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway plays a crucial role in regulating oxidative stress and inflammation by manipulating key antioxidant and detoxification enzyme genes via the antioxidant response element. Many dietary phytochemicals with cancer chemopreventive properties, such as polyphenols, isothiocyanates, and triterpenoids, exert antioxidant and anti-inflammatory functions by activating the Nrf2 pathway. Furthermore, epigenetic changes, including DNA methylation, histone post-translational modifications, and miRNA-mediated post-transcriptional alterations, also lead to various carcinogenesis processes by suppressing cancer repressor gene transcription. Using epigenetic research tools, including next-generation sequencing technologies, many dietary phytochemicals are shown to modify and reverse aberrant epigenetic/epigenome changes, potentially leading to cancer prevention/treatment. Thus, the beneficial effects of dietary phytochemicals on cancer development warrant further investigation to provide additional impetus for clinical translational studies.
Collapse
Affiliation(s)
- Wenji Li
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Yue Guo
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Chengyue Zhang
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Renyi Wu
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Anne Yuqing Yang
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - John Gaspar
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Ah-Ng Tony Kong
- Center for Cancer Prevention Research, ‡Department of Pharmaceutics, §Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| |
Collapse
|
50
|
Steiger C, Hermann C, Meinel L. Localized delivery of carbon monoxide. Eur J Pharm Biopharm 2016; 118:3-12. [PMID: 27836646 DOI: 10.1016/j.ejpb.2016.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/18/2016] [Accepted: 11/07/2016] [Indexed: 01/18/2023]
Abstract
The heme oxygenase (HO)/carbon monoxide (CO) system is a physiological feedback loop orchestrating various cell-protective effects in response to cellular stress. The therapeutic use of CO is impeded by safety challenges as a result of high CO-Hemoglobin formation following non-targeted, systemic administration jeopardizing successful CO therapies as of this biological barrier. Another caveat is the use of CO-Releasing Molecules containing toxicologically critical transition metals. An emerging number of local delivery approaches addressing these issues have recently been introduced and provide exciting new starting points for translating the fascinating preclinical potential of CO into a clinical setting. This review will discuss these approaches and link to future delivery strategies aiming at establishing CO as a safe and effective medication of tomorrow.
Collapse
Affiliation(s)
- Christoph Steiger
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Cornelius Hermann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany.
| |
Collapse
|