1
|
Han HH, Ge PX, Li WJ, Hu XL, He XP. Recent Advancement in Fluorescent Probes for Peroxynitrite (ONOO -). SENSORS (BASEL, SWITZERLAND) 2025; 25:3018. [PMID: 40431815 PMCID: PMC12114855 DOI: 10.3390/s25103018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/27/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Peroxynitrite (ONOO-) is a reactive nitrogen species (RNS) that plays pivotal roles in various physiological and pathological processes. The recent literature has seen significant progress in the development of highly sensitive and selective fluorescent probes applicable for monitoring ONOO- dynamics in live cells and a variety of animal models of human diseases. However, the clinical applications of those probes remain much less explored. This review delves into the biological roles of ONOO- and summarizes the design strategies, sensing mechanisms, and bioimaging applications of near-infrared (NIR), long-wavelength, two-photon, and ratiometric fluorescent probes modified with a diverse range of functional groups responsive to ONOO-. Furthermore, we will discuss the remaining problems that prevent the currently developed ONOO- probes from translating into clinical practice.
Collapse
Affiliation(s)
- Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China; (H.-H.H.); (X.-L.H.)
- Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; (P.-X.G.); (W.-J.L.)
- Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Pan-Xin Ge
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; (P.-X.G.); (W.-J.L.)
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Wen-Jia Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China; (P.-X.G.); (W.-J.L.)
- Molecular Imaging Center, National Center for Drug Screening, Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China; (H.-H.H.); (X.-L.H.)
- Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China; (H.-H.H.); (X.-L.H.)
- Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- Frontiers Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China
- The International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| |
Collapse
|
2
|
Zhang Q, Wang Y, Zhu J, Zou M, Zhang Y, Wu H, Jin T. Specialized pro-resolving lipid mediators: a key player in resolving inflammation in autoimmune diseases. Sci Bull (Beijing) 2025; 70:778-794. [PMID: 39837719 DOI: 10.1016/j.scib.2024.07.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 07/16/2024] [Indexed: 01/23/2025]
Abstract
Uncontrolled hyperactivation of the immune system is the central mechanism underlying the pathogenesis of autoimmune diseases. Timely control of the inflammatory response is essential to prevent inflammation progression and organ damage. Specialized pro-resolving lipid mediators (SPMs) are autacoid molecules derived from essential polyunsaturated fatty acids during acute inflammatory responses. They promote the resolution of inflammation and orchestrate endogenous reparative responses. The SPM superfamily includes lipoxins, resolvins, protectins, and maresins, as well as novel conjugates involved in tissue regeneration. Much work has been done focusing on the actions of SPMs in autoimmunity and has identified their deficiencies and therapeutic effects in autoimmune diseases. In this review, we provide a brief introduction of SPMs, summarize their effects on key cells involved in innate and adaptive immunity, and highlight their role and therapeutic potential in autoimmune diseases.
Collapse
Affiliation(s)
- Qingxiang Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Ying Wang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm 17176, Sweden
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
3
|
Deng M, Zhao R, Zou H, Guan R, Wang J, Lee C, He B, Zhou J, Li S, Wei W, Cai H, Guo R. Oxaliplatin induces pyroptosis in hepatoma cells and enhances antitumor immunity against hepatocellular carcinoma. Br J Cancer 2025; 132:371-383. [PMID: 39748129 PMCID: PMC11832738 DOI: 10.1038/s41416-024-02908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Pyroptosis is closely associated with chemotherapeutic drugs and immune response. Here, we investigated whether oxaliplatin, a key drug in FOLFOX-hepatic artery infusion chemotherapy (FOLFOX-HAIC), induces pyroptosis in hepatoma cells and enhances antitumor immunity after tumor cell death. METHODS Hepatoma cells were treated with oxaliplatin. Pyroptosis and immunoreactivity were evaluated in vitro and in vivo. RESULTS Oxaliplatin activated caspase-3-mediated gasdermin E (GSDME) cleavage and induced pyroptosis in Hep G2 and SK-Hep-1 cells in vitro. Liver cancer cells with high levels of GSDME expression are prone to pyroptosis. Bioinformatic analysis revealed that pyrolysis-related genes are closely related to immunity. In vivo experiments revealed that oxaliplatin exhibited superior antitumor efficacy in mice with normal immune function and more pronounced inhibitory effect on hepatocellular carcinoma with high GSDME levels. Higher levels of cytokines and greater CD8+ T cell infiltration were observed in tumor tissues with better efficacy. Furthermore, an in vitro coculture assay confirmed that oxaliplatin-induced pyroptosis in Hep G2 cells overexpressing GSDME and activated the p38/MAPK signaling pathway to improve the cytotoxicity of CD8+ T cells. Analysis of clinical samples of HCC suggested that the efficacy of FOLFOX-HAIC in patients with high GSDME expression was better than that in patients with low GSDME expression. CONCLUSIONS Oxaliplatin induced pyroptosis in hepatoma cells by activating caspase-3-mediated cleavage of GSDME, which enhanced the cytotoxicity of CD8+ T cells by regulating the p38/MAPK signaling pathway. These results suggest that GSDME level may be used as a marker to predict the efficacy of FOLFOX-HAIC.
Collapse
Affiliation(s)
- Min Deng
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Rongce Zhao
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hao Zou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Renguo Guan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiongliang Wang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Carol Lee
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Benyi He
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jing Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shaohua Li
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wei Wei
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hao Cai
- Department of General Surgery, Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rongping Guo
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Álvarez-López AI, Cruz-Chamorro I, Lardone PJ, Bejarano I, Aspiazu-Hinostroza K, Ponce-España E, Santos-Sánchez G, Álvarez-Sánchez N, Carrillo-Vico A. Melatonin, an Antitumor Necrosis Factor Therapy. J Pineal Res 2025; 77:e70025. [PMID: 39740227 DOI: 10.1111/jpi.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/22/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Tumor necrosis factor (TNF) is a biomarker of inflammation whose levels are elevated in patients with several diseases associated with dysregulation of the immune response. The main limitations of currently used anti-TNF therapies are the induction of immunodepression, which in many cases leads to serious adverse effects such as infection and cancer, and the inability to cross the blood-brain barrier in neuroinflammatory conditions. Melatonin, in addition to being a chronobiotic compound, is widely known for its antioxidant and immunomodulatory capacity to control inflammatory processes in different pathological contexts. The aim of the present review is to address human-based studies that describe the effect of melatonin on TNF production. The review includes all the articles published in PubMed databases until April 15, 2024. After depuration, 45 studies were finally included in the review, 23 related to the in vitro action of melatonin in human cells and 22 in vivo studies in humans. Most of the data reviewed support the idea that melatonin has an immunosuppressive effect on TNF levels, which, together with its low toxicity profile, low cost, and ability to cross the blood-brain barrier, points to melatonin as a potential anti-TNF therapy. Therefore, improving our knowledge of the action of melatonin in regulating TNF through appropriate clinical trials would reveal the true potential of this molecule as a possible anti-TNF therapy.
Collapse
Grants
- This work was supported by the Andalusian Government Ministry of Health PC-0019-2017, PI-0015-2018 and PEMP-0085-2020 (co-financed with FEDER funds, call Resolution of 7 July 2021 of the General Secretary for Research, Development and Innovation in Health, which calls for grants to finance research, development and innovation in biomedicine and health sciences in Andalusia by 2021), the PAIDI Program from the Andalusian Government (CTS160) and Regional Ministry of Economy and Knowledge of Andalusia (US-1263804) into the European Regional Development Fund Operational Programme 2014 to 2020. A.I.A.L. was supported by grants US-1263804 and PEMP-0085-2020. I.C.C. was supported by a postdoctoral fellowship from the Andalusian Government Ministry of Economy, Knowledge, Business, and University (DOC_00587/2020). I.B. and E.P.E were supported by the VI Program of Inner Initiative for Research and Transfer of the University of Seville [VI PPIT-US]. G.S.S. was supported by a FPU grant from the Spanish Ministerio de Educación, Cultura y Deporte (FPU16/02339). N.A.-S. was supported by a fellowship from the Andalusian Regional Ministry of Health (PC-0111-2016-0111).
Collapse
Affiliation(s)
- Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Ignacio Bejarano
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Karla Aspiazu-Hinostroza
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Universidad Católica de Cuenca, Research Department, Cuenca-Azuay, Ecuador
| | - Eduardo Ponce-España
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Nuria Álvarez-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
5
|
Xie X, Lin M, Xiao G, Liu H, Wang F, Liu D, Ma L, Wang Q, Li Z. Phenolic amides (avenanthramides) in oats - an update review. Bioengineered 2024; 15:2305029. [PMID: 38258524 PMCID: PMC10807472 DOI: 10.1080/21655979.2024.2305029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Oats (Avena sativa L.) are one of the worldwide cereal crops. Avenanthramides (AVNs), the unique plant alkaloids of secondary metabolites found in oats, are nutritionally important for humans and animals. Numerous bioactivities of AVNs have been investigated and demonstrated in vivo and in vitro. Despite all these, researchers from all over the world are taking efforts to learn more knowledge about AVNs. In this work, we highlighted the recent updated findings that have increased our understanding of AVNs bioactivity, distribution, and especially the AVNs biosynthesis. Since the limits content of AVNs in oats strictly hinders the demand, understanding the mechanisms underlying AVN biosynthesis is important not only for developing a renewable, sustainable, and environmentally friendly source in both plants and microorganisms but also for designing effective strategies for enhancing their production via induction and metabolic engineering. Future directions for improving AVN production in native producers and heterologous systems for food and feed use are also discussed. This summary will provide a broad view of these specific natural products from oats.
Collapse
Affiliation(s)
- Xi Xie
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Miaoyan Lin
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Gengsheng Xiao
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Huifan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Feng Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Dongjie Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lukai Ma
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Qin Wang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zhiyong Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Gholipourshahraki T, Bai Z, Shrestha M, Hjelholt A, Hu S, Kjolby M, Rohde PD, Sørensen P. Evaluation of Bayesian Linear Regression models for gene set prioritization in complex diseases. PLoS Genet 2024; 20:e1011463. [PMID: 39495786 PMCID: PMC11563439 DOI: 10.1371/journal.pgen.1011463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/14/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Genome-wide association studies (GWAS) provide valuable insights into the genetic architecture of complex traits, yet interpreting their results remains challenging due to the polygenic nature of most traits. Gene set analysis offers a solution by aggregating genetic variants into biologically relevant pathways, enhancing the detection of coordinated effects across multiple genes. In this study, we present and evaluate a gene set prioritization approach utilizing Bayesian Linear Regression (BLR) models to uncover shared genetic components among different phenotypes and facilitate biological interpretation. Through extensive simulations and analyses of real traits, we demonstrate the efficacy of the BLR model in prioritizing pathways for complex traits. Simulation studies reveal insights into the model's performance under various scenarios, highlighting the impact of factors such as the number of causal genes, proportions of causal variants, heritability, and disease prevalence. Comparative analyses with MAGMA (Multi-marker Analysis of GenoMic Annotation) demonstrate BLR's superior performance, especially in highly overlapped gene sets. Application of both single-trait and multi-trait BLR models to real data, specifically GWAS summary data for type 2 diabetes (T2D) and related phenotypes, identifies significant associations with T2D-related pathways. Furthermore, comparison between single- and multi-trait BLR analyses highlights the superior performance of the multi-trait approach in identifying associated pathways, showcasing increased statistical power when analyzing multiple traits jointly. Additionally, enrichment analysis with integrated data from various public resources supports our results, confirming significant enrichment of diabetes-related genes within the top T2D pathways resulting from the multi-trait analysis. The BLR model's ability to handle diverse genomic features, perform regularization, conduct variable selection, and integrate information from multiple traits, genders, and ancestries demonstrates its utility in understanding the genetic architecture of complex traits. Our study provides insights into the potential of the BLR model to prioritize gene sets, offering a flexible framework applicable to various datasets. This model presents opportunities for advancing personalized medicine by exploring the genetic underpinnings of multifactorial traits.
Collapse
Affiliation(s)
| | - Zhonghao Bai
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Merina Shrestha
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Astrid Hjelholt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Sile Hu
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford, United Kingdom
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Palle Duun Rohde
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Deng J, Luo K, Xia C, Zhu Y, Xiang Z, Zhu B, Tang X, Zhang T, Shi L, Lyu X, Chen J. Phytochemical composition of Tibetan tea fermented by Eurotium cristatum and its effects on type 1 diabetes mice and gut microbiota. Heliyon 2024; 10:e27145. [PMID: 38468973 PMCID: PMC10926077 DOI: 10.1016/j.heliyon.2024.e27145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/14/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024] Open
Abstract
"Golden-flower" Tibetan tea (GTT) is an innovative dark tea fermented via fungus Eurotium cristatum. To study GTT effects on alleviating the symptoms of type 1 diabetes mellitus (T1DM), GTT's extract (GTTE) was prepared. GTTE chemical compositions were analyzed via HPLC, pyrolysis-gas chromatography-mass (Py-GC-MS) spectrometry analysis, and chemistry analyses. GTTE effects on T1DM were explored on T1DM mice model induced by streptozotocin (STZ). GTTE was composed mainly of tea pigment theabrownin (TB) (49.18%), with high percentages of polysaccharide (16.93%), protein (10.15%), polyphenols (13.90%), amino acids (5.89%), caffeine (1.83%), and flavonoids (0.67%). Py-GC-MS results exhibited that GTTE constituted of phenols, lipids, sugars, and proteins. GTTE attenuated T1DM conditions of mice, relieved their liver and pancreatic injury, restored damaged islet cells, decreased oxidative stress by increasing superoxide dismutase (SOD) and catalase (CAT) levels, modulated cytokine expression leading to the decreasing pro-inflammatory cytokines TNF-α and IL-6, increased anti-inflammatory cytokines IL-4 to improve inflammatory responses, and optimized gut microbiota composition and structure based on high-throughput 16S rDNA sequencing, suggesting multi-channel anti-diabetes mechanisms.
Collapse
Affiliation(s)
- Junlin Deng
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Kebin Luo
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Yongqing Zhu
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Zhuoya Xiang
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Boyu Zhu
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xiaobo Tang
- Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ting Zhang
- Tea Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Liugang Shi
- Yazhou Hengtai Tea Industry Co. LTD, Sichuan, Ya'an, 625100, China
| | - Xiaohua Lyu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Chen
- Institute of Agro-Products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| |
Collapse
|
8
|
Ahmadzadeh F, Esmaili M, Ehsan Enderami S, Ghasemi M, Azadeh H, Abediankenari S. Epigallocatechin-3-gallate maintains Th1/Th2 response balance and mitigates type-1 autoimmune diabetes induced by streptozotocin through promoting the effect of bone-marrow-derived mesenchymal stem cells. Gene 2024; 894:148003. [PMID: 37977318 DOI: 10.1016/j.gene.2023.148003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Stem-cell-based therapy is one of the most promising therapeutic strategies owing to its regenerative and immunomodulatory properties. Epigallocatechin-3-gallate (EGCG), a known antioxidant and anti-inflammatory agent, has beneficial effects on cellular protection. We aimed to elucidate the feasibility of using EGCG, along with bone marrow-derived mesenchymal stem cells (BM-MSCs), to improve pancreatic damage through their immune regulatory functions in an experimental model of type 1 diabetes mellitus (T1DM) induced by multiple injections of streptozotocin (STZ). BM-MSCs were isolated from C57BL/6 mice and characterized. The diabetic groups were treated intraperitoneally with PBS, MSCs, EGCG, and a combination of MSCs and EGCG. Real-time PCR assays showed that MSCs with EGCG modulated T-bet and GATA-3 expression and upregulated the mRNA levels of Foxp-3 more efficiently. Analyses of spleen-isolated lymphocytes revealed that combinational treatment pronouncedly increased regulatory cytokines and decreased pro-inflammatory cytokines and splenocyte proliferation. The histopathological assessment demonstrated that co-treatment significantly reduced insulitis and recovered pancreatic islet morphology. Furthermore, the combination of MSCs and EGCG is associated with downregulated blood glucose and enhanced insulin levels. Therefore, combined therapy with EGCG and MSCs holds clinical potential for treating T1DM through synergetic effects in maintaining the Th1/Th2 response balance and promoting the regeneration of damaged pancreatic tissues.
Collapse
Affiliation(s)
- Fatemeh Ahmadzadeh
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Esmaili
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi
- Department of Pathology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Azadeh
- Department of Internal Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Miller G, Pareek O, Penman SL, Thanos PK. The Effects of Nicotine and Cannabinoids on Cytokines. Curr Pharm Des 2024; 30:2468-2484. [PMID: 38859790 DOI: 10.2174/0113816128293077240529111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND The usage of nicotine and cannabinoids has rapidly grown in popularity, leading to increased research into how they can affect people's health, both positively and negatively. Nicotine, Cannabidiol (CBD), and Δ9-tetrahydrocannabinol (THC) have been shown to have significant effects on cytokine function and inflammatory response. OBJECTIVE This study aimed to review and summarize the current literature on the effects of nicotine and cannabinoids on cytokines, including interleukins, TNF, IFN, and TGF-β. METHODS Literature search was conducted on Medline/PubMed electronic databases utilizing the search terms "nicotine" OR "cannabis" OR "cannabinoids" AND "cytokine" AND "inflammation" AND "stress" AND "immune" from 11/1973 to 02/2024. RESULTS THC and CBD usage have been associated with conflicting impacts on immune response, and observed to both exacerbate and inhibit inflammation. Nicotine has been shown to be generally proinflammatory with regards to cytokines. These responses have been reported to have significant effects on bodily response to inflammation-related diseases. Nicotine usage is associated with worsened outcomes for some conditions, like chronic pain, but improved outcomes for others, like arthritis. The impacts of cannabinoid usage tend to be more positive, exerting anti-inflammatory effects across a wide range of diseases. Given the widespread usage of these substances, it is important to understand the nature of their consequences on immune functions and the underlying mechanisms by which they act. CONCLUSION This review has covered how cannabinoids and nicotine affect inflammation directly and how these effects can be attributed to the treatment of inflammatory diseases. In summary, the existing research studying the effects of cannabinoids and nicotine supports the major relationship between nicotine and cannabis use and inflammatory diseases.
Collapse
Affiliation(s)
- Grace Miller
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Ojas Pareek
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Samantha L Penman
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| | - Panayotis K Thanos
- Department of Pharmacology Toxicology, University at Buffalo, State University of New York, Buffalo, NY 14068, United States
| |
Collapse
|
10
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
11
|
Pugliese LA, De Lorenzi V, Bernardi M, Ghignoli S, Tesi M, Marchetti P, Pesce L, Cardarelli F. Unveiling nanoscale optical signatures of cytokine-induced β-cell dysfunction. Sci Rep 2023; 13:13342. [PMID: 37587148 PMCID: PMC10432522 DOI: 10.1038/s41598-023-40272-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
Pro-inflammatory cytokines contribute to β-cell failure in both Type-1 and Type-2 Diabetes. Data collected so far allowed to dissect the genomic, transcriptomic, proteomic and biochemical landscape underlying cytokine-induced β-cell progression through dysfunction. Yet, no report thus far complemented such molecular information with the direct optical nanoscopy of the β-cell subcellular environment. Here we tackle this issue in Insulinoma 1E (INS-1E) β-cells by label-free fluorescence lifetime imaging microscopy (FLIM) and fluorescence-based super resolution imaging by expansion microscopy (ExM). It is found that 24-h exposure to IL-1β and IFN-γ is associated with a neat modification of the FLIM signature of cell autofluorescence due to the increase of either enzyme-bound NAD(P)H molecules and of oxidized lipid species. At the same time, ExM-based direct imaging unveils neat alteration of mitochondrial morphology (i.e. ~ 80% increase of mitochondrial circularity), marked degranulation (i.e. ~ 40% loss of insulin granules, with mis-localization of the surviving pool), appearance of F-actin-positive membrane blebs and an hitherto unknown extensive fragmentation of the microtubules network (e.g. ~ 37% reduction in the number of branches). Reported observations provide an optical-microscopy framework to interpret the amount of molecular information collected so far on β-cell dysfunction and pave the way to future ex-vivo and in-vivo investigations.
Collapse
Affiliation(s)
- Licia Anna Pugliese
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy.
| | - Valentina De Lorenzi
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Mario Bernardi
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Samuele Ghignoli
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Luca Pesce
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy.
| | - Francesco Cardarelli
- NEST Laboratory - Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy.
| |
Collapse
|
12
|
Benaglio P, Zhu H, Okino ML, Yan J, Elgamal R, Nariai N, Beebe E, Korgaonkar K, Qiu Y, Donovan MK, Chiou J, Wang G, Newsome J, Kaur J, Miller M, Preissl S, Corban S, Aylward A, Taipale J, Ren B, Frazer KA, Sander M, Gaulton KJ. Type 1 diabetes risk genes mediate pancreatic beta cell survival in response to proinflammatory cytokines. CELL GENOMICS 2022; 2:100214. [PMID: 36778047 PMCID: PMC9903835 DOI: 10.1016/j.xgen.2022.100214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/17/2022] [Accepted: 10/15/2022] [Indexed: 11/13/2022]
Abstract
We combined functional genomics and human genetics to investigate processes that affect type 1 diabetes (T1D) risk by mediating beta cell survival in response to proinflammatory cytokines. We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) in beta cells using ATAC-seq and snATAC-seq and linked them to target genes using co-accessibility and HiChIP. Using a genome-wide CRISPR screen in EndoC-βH1 cells, we identified 867 genes affecting cytokine-induced survival, and genes promoting survival and up-regulated in cytokines were enriched at T1D risk loci. Using SNP-SELEX, we identified 2,229 variants in cytokine-responsive cCREs altering transcription factor (TF) binding, and variants altering binding of TFs regulating stress, inflammation, and apoptosis were enriched for T1D risk. At the 16p13 locus, a fine-mapped T1D variant altering TF binding in a cytokine-induced cCRE interacted with SOCS1, which promoted survival in cytokine exposure. Our findings reveal processes and genes acting in beta cells during inflammation that modulate T1D risk.
Collapse
Affiliation(s)
- Paola Benaglio
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Han Zhu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mei-Lin Okino
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jian Yan
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- School of Medicine, Northwest University, Xi’an, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Ruth Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Naoki Nariai
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Elisha Beebe
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Katha Korgaonkar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Yunjiang Qiu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Joshua Chiou
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jacklyn Newsome
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jaspreet Kaur
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Michael Miller
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Sierra Corban
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Aylward
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Jussi Taipale
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Genome-Scale Biology Program, University of Helsinki, Helsinki, Finland
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
| | - Kelly A. Frazer
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Maike Sander
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle J. Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Boscaro V, Rivoira M, Sgorbini B, Bordano V, Dadone F, Gallicchio M, Pons A, Benetti E, Rosa AC. Evidence-Based Anti-Diabetic Properties of Plant from the Occitan Valleys of the Piedmont Alps. Pharmaceutics 2022; 14:2371. [PMID: 36365189 PMCID: PMC9693256 DOI: 10.3390/pharmaceutics14112371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Data on urban and rural diabetes prevalence ratios show a significantly lower presence of diabetes in rural areas. Several bioactive compounds of plant origin are known to exert anti-diabetic properties. Interestingly, most of them naturally occur in different plants present in mountainous areas and are linked to traditions of herbal use. This review will aim to evaluate the last 10 years of evidence-based data on the potential anti-diabetic properties of 9 plants used in the Piedmont Alps (North-Western Italy) and identified through an ethnobotanical approach, based on the Occitan language minority of the Cuneo province (Sambucus nigra L., Achillea millefolium L., Cornus mas L., Vaccinium myrtillus L., Fragaria vesca L., Rosa canina L., Rubus idaeus L., Rubus fruticosus/ulmifolius L., Urtica dioica L.), where there is a long history of herbal remedies. The mechanism underlying the anti-hyperglycemic effects and the clinical evidence available are discussed. Overall, this review points to the possible use of these plants as preventive or add-on therapy in treating diabetes. However, studies of a single variety grown in the geographical area, with strict standardization and titration of all the active ingredients, are warranted before applying the WHO strategy 2014-2023.
Collapse
Affiliation(s)
- Valentina Boscaro
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Matteo Rivoira
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
- Atlante Linguistico Italiano (ALI), Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Barbara Sgorbini
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Francesca Dadone
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Margherita Gallicchio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Aline Pons
- Dipartimento di Studi Umanistici, University of Turin, Via Sant’Ottavio 20, 10124 Turin, Italy
| | - Elisa Benetti
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| | - Arianna Carolina Rosa
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
14
|
Bronczek GA, Soares GM, Marmentini C, Boschero AC, Costa-Júnior JM. Resistance Training Improves Beta Cell Glucose Sensing and Survival in Diabetic Models. Int J Mol Sci 2022; 23:ijms23169427. [PMID: 36012692 PMCID: PMC9409046 DOI: 10.3390/ijms23169427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Resistance training increases insulin secretion and beta cell function in healthy mice. Here, we explored the effects of resistance training on beta cell glucose sensing and survival by using in vitro and in vivo diabetic models. A pancreatic beta cell line (INS-1E), incubated with serum from trained mice, displayed increased insulin secretion, which could be linked with increased expression of glucose transporter 2 (GLUT2) and glucokinase (GCK). When cells were exposed to pro-inflammatory cytokines (in vitro type 1 diabetes), trained serum preserved both insulin secretion and GCK expression, reduced expression of proteins related to apoptotic pathways, and also protected cells from cytokine-induced apoptosis. Using 8-week-old C57BL/6 mice, turned diabetic by multiple low doses of streptozotocin, we observed that resistance training increased muscle mass and fat deposition, reduced fasting and fed glycemia, and improved glucose tolerance. These findings may be explained by the increased fasting and fed insulinemia, along with increased beta cell mass and beta cell number per islet, observed in diabetic-trained mice compared to diabetic sedentary mice. In conclusion, we believe that resistance training stimulates the release of humoral factors which can turn beta cells more resistant to harmful conditions and improve their response to a glucose stimulus.
Collapse
Affiliation(s)
- Gabriela Alves Bronczek
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - Gabriela Moreira Soares
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - Carine Marmentini
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - Antonio Carlos Boschero
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
| | - José Maria Costa-Júnior
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-864, Brazil
- Center for Diabetes Research, Division of Endocrinology, Erasmus Hospital, Universite Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-455-11-02-04
| |
Collapse
|
15
|
Luo Z, Soläng C, Larsson R, Singh K. Interleukin-35 Prevents the Elevation of the M1/M2 Ratio of Macrophages in Experimental Type 1 Diabetes. Int J Mol Sci 2022; 23:ijms23147970. [PMID: 35887317 PMCID: PMC9320761 DOI: 10.3390/ijms23147970] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/03/2023] Open
Abstract
Macrophages play an important role in the early development of type 1 diabetes (T1D). Based on the phenotype, macrophages can be classified into pro-inflammatory (M1) and anti-inflammatory (M2) macrophages. Despite intensive research in the field of macrophages and T1D, the kinetic response of M1/M2 ratio has not been studied in T1D. Thus, herein, we studied the M1 and M2 macrophages in the early development of T1D using the multiple low dose streptozotocin (MLDSTZ) mouse model. We determined the proportions of M1 and M2 macrophages in thymic glands, pancreatic lymph nodes and spleens on days 3, 7 and 10 after the first injection of STZ. In addition, we investigated the effect of IL-35 in vivo on the M1/M2 ratio and IL-35+ plasmacytoid dendritic cells in diabetic mice and in vitro on the sorted macrophages. Our results revealed that the M1/M2 ratio is higher in STZ-treated mice but this was lowered upon the treatment with IL-35. Furthermore, IL-35 treated mice had lower blood glucose levels and a higher proportion of IL-35+ cells among pDCs. Macrophages treated with IL-35 in vitro also had a higher proportion of M2 macrophages. Together, our data indicate that, under diabetic conditions, pro-inflammatory macrophages increased, but IL-35 treatment decreased the pro-inflammatory macrophages and increased anti-inflammatory macrophages, further suggesting that IL-35 prevents hyperglycemia by maintaining the anti-inflammatory phenotype of macrophages and other immune cells. Thus, IL-35 should be further investigated for the treatment of T1D and other autoimmune disorders.
Collapse
|
16
|
Yan LS, Cheng BCY, Zhang SF, Luo G, Zhang C, Wang QG, Fu XQ, Wang YW, Zhang Y. Tibetan Medicine for Diabetes Mellitus: Overview of Pharmacological Perspectives. Front Pharmacol 2021; 12:748500. [PMID: 34744728 PMCID: PMC8566911 DOI: 10.3389/fphar.2021.748500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) and its complications pose a major public health threat which is approaching epidemic proportions globally. Current drug options may not provide good efficacy and even cause serious adverse effects. Seeking safe and effective agents for DM treatment has been an area of intensive interest. As a healing system originating in Tibet, Traditional Tibetan Medicine (TTM) has been widely used by Tibetan people for the prevention and treatment of DM and its complications for hundreds of years. Tibetan Materia Medica (TMM) including the flower of Edgeworthia gardneri (Wall.) Meisn., Phyllanthi Fructus, Chebulae Fructus, Huidouba, and Berberidis Cortex are most frequently used and studied. These TMMs possess hypoglycemic, anti-insulin resistant, anti-glycation, lipid lowering, anti-inflammatory, and anti-oxidative effects. The underlying mechanisms of these actions may be related to their α-glucosidase inhibitory, insulin signaling promoting, PPARs-activating, gut microbiota modulation, islet β cell-preserving, and TNF-α signaling suppressive properties. This review presents a comprehensive overview of the mode and mechanisms of action of various active constituents, extracts, preparations, and formulas from TMM. The dynamic beneficial effects of the products prepared from TMM for the management of DM and its complications are summarized. These TMMs are valuable materia medica which have the potential to be developed as safe and effective anti-DM agents.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University, Hong Kong, China
| | - Shuo-Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Gao Wang
- First Affiliated Hospital, Guangxi University of Chinese Medicine, Guangxi, China
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Yeo HJ, Shin MJ, Kim DW, Kwon HY, Eum WS, Choi SY. Tat-CIAPIN1 protein prevents against cytokine-induced cytotoxicity in pancreatic RINm5F β-cells. BMB Rep 2021. [PMID: 34120676 PMCID: PMC8505229 DOI: 10.5483/bmbrep.2021.54.9.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytokines activate inflammatory signals and are major mediators in progressive β-cell damage, which leads to type 1 diabetes mellitus. We recently showed that the cell-permeable Tat-CIAPIN1 fusion protein inhibits neuronal cell death induced by oxidative stress. However, how the Tat-CIAPIN1 protein affects cytokine-induced β-cell damage has not been investigated yet. Thus, we assessed whether the Tat-CIAPIN1 protein can protect RINm5F β-cells against cytokine-induced cytotoxicity. In cytokine-exposed RINm5F β-cells, the transduced Tat-CIAPIN1 protein elevated cell survivals and reduced reactive oxygen species (ROS) and DNA fragmentation levels. The Tat-CIAPIN1 protein reduced mitogen-activated protein kinases (MAPKs) and NF-κB activation levels and elevated Bcl-2 protein, whereas Bax and cleaved Caspase-3 proteins were decreased by this fusion protein. Thus, the protection of RINm5F β-cells by the Tat-CIAPIN1 protein against cytokine-induced cytotoxicity can suggest that the Tat-CIAPIN1 protein might be used as a therapeutic inhibitor against RINm5F β-cell damage.
Collapse
Affiliation(s)
- Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Hyeok Yil Kwon
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
18
|
Cutaș A, Drugan C, Roman G, Rusu A, Cătană CS, Achimaș-Cadariu A, Drugan T. Evaluation of Chitotriosidase and Neopterin as Biomarkers of Microvascular Complications in Patients with Type 1 Diabetes Mellitus. Diagnostics (Basel) 2021; 11:263. [PMID: 33567717 PMCID: PMC7916086 DOI: 10.3390/diagnostics11020263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
The chronic complications of diabetes mellitus (DM) are accompanied by inflammatory manifestations. Our study aimed to evaluate a possible association between the inflammatory status (reflected by serum chitotriosidase and neopterin) and the timely evolution and occurrence of chronic microvascular complications in patients with type 1 DM. This observational, cross-sectional study included 82 type 1 DM patients from the Centre for Diabetes, Nutrition and Metabolic Diseases, Cluj-Napoca, Romania. Our results demonstrated a link between the extent of inflammation, evaluated by the enzymatic activity of circulating chitotriosidase, and the onset of microvascular complications, especially diabetic neuropathy and retinopathy. Chitotriosidase enzymatic activity showed an ascending evolution over time. In non-smoking patients, the increase in chitotriosidase activity was correlated with the extent of microalbuminuria and the decline of glomerular filtration rate, while in smokers, only the presence of a positive correlation between chitotriosidase activity and disease progression was noticed. According to our results, the time span between the moment of diagnosis and the onset of microvascular complications was longer in non-smokers than in smokers. These results also imply that increased chitotriosidase activity may be a predictor of endothelial dysfunction in type 1 DM.
Collapse
Affiliation(s)
- Ancuța Cutaș
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.C.); (A.A.-C.); (T.D.)
| | - Cristina Drugan
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Gabriela Roman
- Department of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (G.R.); (A.R.)
| | - Adriana Rusu
- Department of Diabetes, Nutrition and Metabolic Diseases, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (G.R.); (A.R.)
| | - Cristina Sorina Cătană
- Department of Medical Biochemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Andrei Achimaș-Cadariu
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.C.); (A.A.-C.); (T.D.)
| | - Tudor Drugan
- Department of Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.C.); (A.A.-C.); (T.D.)
| |
Collapse
|
19
|
Amirshahrokhi K, Zohouri A. Carvedilol prevents pancreatic β-cell damage and the development of type 1 diabetes in mice by the inhibition of proinflammatory cytokines, NF-κB, COX-2, iNOS and oxidative stress. Cytokine 2020; 138:155394. [PMID: 33310423 DOI: 10.1016/j.cyto.2020.155394] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
Inflammation is one of the main mechanisms of pancreatic β-cell damage and the development of type 1 diabetes (T1D). Carvedilol, a beta-adrenergic receptor blocker, has been demonstrated to have anti-inflammatory and antioxidant effects. The aim of this study was to investigate the protective effect of carvedilol against pancreatic β-cell damage and the development of T1D in an experimental model. T1D was induced in mice by multiple low-dose streptozotocin (STZ) injections. Diabetic mice were treated with carvedilol (15 and 20 mg/kg/day, orally) for 14 days. Results showed that blood glucose levels, diabetes incidence, body weight loss and insulitis in the pancreatic tissue were significantly reduced in mice treated with carvedilol. Treatment of mice with carvedilol significantly increased the levels of antioxidants glutathione (GSH), superoxide dismutase (SOD), and catalase and decreased the levels of malondialdehyde (MDA), nitric oxide (NO) and myeloperoxidase (MPO) in the pancreatic tissue as compared with those in the STZ-induced diabetic mice. Carvedilol decreased the expression of nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as important modulators of inflammation and β-cell damage in the pancreatic tissue. In addition, carvedilol significantly reduced the levels of proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 IL-12, IL-17, interferon (IFN)-γ and chemokine MCP-1, while increased the anti-inflammatory cytokine IL-10 in the pancreatic tissue. In conclusion, these findings suggest that carvedilol is able to prevent pancreatic β-cell damage and the development of T1D in mice by the inhibition of inflammatory and oxidative mediators.
Collapse
Affiliation(s)
- Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali Zohouri
- Division of Pathology, Fatemi Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
20
|
Oxidative Stress in Cytokine-Induced Dysfunction of the Pancreatic Beta Cell: Known Knowns and Known Unknowns. Metabolites 2020; 10:metabo10120480. [PMID: 33255484 PMCID: PMC7759861 DOI: 10.3390/metabo10120480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Compelling evidence from earlier studies suggests that the pancreatic beta cell is inherently weak in its antioxidant defense mechanisms to face the burden of protecting itself against the increased intracellular oxidative stress following exposure to proinflammatory cytokines. Recent evidence implicates novel roles for nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Noxs) as contributors to the excessive intracellular oxidative stress and damage under metabolic stress conditions. This review highlights the existing evidence on the regulatory roles of at least three forms of Noxs, namely Nox1, Nox2, and Nox4, in the cascade of events leading to islet beta cell dysfunction, specifically under the duress of chronic exposure to cytokines. Potential crosstalk between key signaling pathways (e.g., inducible nitric oxide synthase [iNOS] and Noxs) in the generation and propagation of reactive molecules and metabolites leading to mitochondrial damage and cell apoptosis is discussed. Available data accrued in investigations involving small-molecule inhibitors and antioxidant protein expression methods as tools toward the prevention of cytokine-induced oxidative damage are reviewed. Lastly, current knowledge gaps in this field, and possible avenues for future research are highlighted.
Collapse
|
21
|
Liu M, Shang M, Wang Y, Li Q, Liu X, Yang L, Zhang Q, Zhang K, Liu S, Nie F, Zeng F, Wen Y, Liu W. Effects of TNF-α-308G/A Polymorphism on the Risk of Diabetic Nephropathy and Diabetic Retinopathy: An Updated Meta-Analysis. Horm Metab Res 2020; 52:724-731. [PMID: 32369834 DOI: 10.1055/a-1161-0088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR) are the major factors of morbidity and mortality in the patients with diabetes mellitus (DM). Growing studies have investigated the relationship between the TNF-α-308G/A polymorphism and the susceptibility to DN and DR, without achieving consensus. Thus, we conducted this meta-analysis to reach more comprehensive conclusions for these issues. Eligible studies were retrieved through electronic databases such as PubMed, Embase, Web of Science and China National Knowledge Infrastructure. Summary of odds ratios (OR) and 95% confidence intervals (CIs) were generated to evaluate the intensity of the associations. Statistical analyses were performed by STATA 11.0 and RevMan 5.2. There are fourteen eligible publications involving nineteen studies in this meta-analysis. TNF-α-308G/A polymorphism was significantly related to increasing risk of DN under recessive model (OR=1.37, 95% CI=1.03-1.83) and homozygous model (OR=1.54, 95% CI=1.15-2.06). Moreover, the similar results were also obtained in Asian groups for DN (recessive: OR=1.69, 95% CI=1.18-2.42; homozygous: OR=1.99, 95% CI=1.38-2.86; respectively), and significant association was also detected between TNF-α-308G/A and DN susceptibility in type 2 DM in recessive model (OR=1.39, 95% CI=1.02-1.89). No significant association was observed between TNF-α-308G/A and DR susceptibility in total analyses and subgroup analyses by ethnicity and type of DM. TNF-α-308G/A polymorphism may enhance the susceptibility to diabetic nephropathy, especially in Asian population and in T2DM patients, but not diabetic retinopathy.
Collapse
Affiliation(s)
- Mengwei Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Mengke Shang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Yue Wang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Qian Li
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Xiuping Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Luping Yang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Qian Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Kaili Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Shan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Fangfang Nie
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Fanxin Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Youhan Wen
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Wanyang Liu
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Zhao B, Wu F, Han X, Zhou W, Shi Q, Wang H. Protective effects of acarbose against insulitis in multiple low-dose streptozotocin-induced diabetic mice. Life Sci 2020; 263:118490. [PMID: 32979357 DOI: 10.1016/j.lfs.2020.118490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
AIMS The development of type 1 diabetes is associated with inflammatory lesion of the pancreatic islets, known as insulitis. In this study, we focused on the protective effects of acarbose against insulitis in streptozotocin (STZ)-induced diabetic mice and the underlying mechanisms. MAIN METHODS The mouse models were established via intraperitoneal injection of multiple low-dose STZ. Blood glucose level and body weight were measured. The severity of insulitis and inflammatory parameters in pancreatic tissues were evaluated. Insulin levels in pancreas and serum were also assessed. In vitro, MIN6 β cells were exposed to pro-inflammatory cytokines to assess the protective effects of acarbose. Cell function and apoptosis were evaluated. KEY FINDINGS We found that acarbose administration by gavage reduced the severity of insulitis and improved insulin levels in the experimental diabetic mice. ELISA revealed decreased levels of the inflammatory response markers IL-1β and TNF-α in mouse pancreatic tissues following acarbose treatment. In vitro, acarbose increased cell viability, decreased cell apoptosis, and improved GSIS in MIN6 β cells exposed to pro-inflammatory cytokines. In addition, caspase-3 level and p-p53/p53 ratio in β cells were reduced by acarbose treatment. SIGNIFICANCE Taken together, these results revealed a novel function of acarbose in attenuating insulitis. The protective effects of acarbose elicited in vitro and in vivo were shown to be mediated, at least in part, through its anti-inflammatory action.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
| | - Feifei Wu
- Department of Cardiology, Zhejiang Xiaoshan Hospital, Hangzhou 311200, PR China; School of Medicine, Hangzhou Normal University, Hangzhou 311123, PR China
| | - Xue Han
- Laboratory Animal Centre, Hangzhou Medical College, Hangzhou 310053, PR China; Department of Cardiology, Zhejiang Xiaoshan Hospital, Hangzhou 311200, PR China
| | - Wenwei Zhou
- Laboratory Animal Centre, Hangzhou Medical College, Hangzhou 310053, PR China
| | - Qiaojuan Shi
- Laboratory Animal Centre, Hangzhou Medical College, Hangzhou 310053, PR China
| | - Hao Wang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, PR China.
| |
Collapse
|
23
|
Harms RZ, Ostlund KR, Cabrera MS, Edwards E, Fisher M, Sarvetnick N. Confirmation and Identification of Biomarkers Implicating Environmental Triggers in the Pathogenesis of Type 1 Diabetes. Front Immunol 2020; 11:1922. [PMID: 33042112 PMCID: PMC7523316 DOI: 10.3389/fimmu.2020.01922] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Multiple environmental triggers have been proposed to explain the increased incidence of type 1 diabetes (T1D). These include viral infections, microbiome disturbances, metabolic disorders, and vitamin D deficiency. Here, we used ELISA to examine blood plasma from juvenile T1D subjects and age-matched controls for the abundance of several circulating factors relevant to these hypotheses. We screened plasma for sCD14, mannose binding lectin (MBL), lipopolysaccharide binding protein (LBP), c-reactive protein (CRP), fatty acid binding protein 2 (FABP2), human growth hormone, leptin, total adiponectin, high molecular weight (HMW) adiponectin, total IgG, total IgA, total IgM, endotoxin core antibodies (EndoCAbs), 25(OH) vitamin D, vitamin D binding protein, IL-7, IL-10, IFN-γ, TNF-α, IL-17A, IL-18, and IL-18BPa. Subjects also were tested for prevalence of antibodies targeting adenovirus, parainfluenza 1/2/3, Coxsackievirus, cytomegalovirus, Epstein-Barr virus viral capsid antigen (EBV VCA), herpes simplex virus 1, and Saccharomyces cerevisiae. Finally, all subjects were screened for presence and abundance of autoantibodies targeting islet cell cytoplasmic proteins (ICA), glutamate decarboxylase 2 (GAD65), zinc transporter 8 (ZNT8), insulinoma antigen 2 (IA-2), tissue transglutaminase, and thyroid peroxidase, while β cell function was gauged by measuring c-peptide levels. We observed few differences between control and T1D subjects. Of these, we found elevated sCD14, IL-18BPa, and FABP2, and reduced total IgM. Female T1D subjects were notably elevated in CRP levels compared to control, while males were similar. T1D subjects also had significantly lower prevalence of EBV VCA antibodies compared to control. Lastly, we observed that c-peptide levels were significantly correlated with leptin levels among controls, but this relationship was not significant among T1D subjects. Alternatively, adiponectin levels were significantly correlated with c-peptide levels among T1D subjects, while controls showed no relationship between these two factors. Among T1D subjects, the highest c-peptide levels were associated with the lowest adiponectin levels, an indication of insulin resistance. In total, from our examination we found limited data that strongly support any of the hypotheses investigated. Rather, we observed an indication of unexplained monocyte/macrophage activation in T1D subjects judging from elevated levels of sCD14 and IL-18BPa. These observations were partnered with unique associations between adipokines and c-peptide levels among T1D subjects.
Collapse
Affiliation(s)
- Robert Z Harms
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katie R Ostlund
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
| | - Monina S Cabrera
- Endocrine Clinic, Children's Hospital and Medical Center, Omaha, NE, United States
| | - Earline Edwards
- Endocrine Clinic, Children's Hospital and Medical Center, Omaha, NE, United States
| | - Marisa Fisher
- Endocrine Clinic, Children's Hospital and Medical Center, Omaha, NE, United States
| | - Nora Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States.,Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
24
|
Mussa BM, Srivastava A, Mohammed AK, Verberne AJM. Nitric oxide interacts with cholinoceptors to modulate insulin secretion by pancreatic β cells. Pflugers Arch 2020; 472:1469-1480. [PMID: 32803305 PMCID: PMC7476970 DOI: 10.1007/s00424-020-02443-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/17/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023]
Abstract
Dysfunction of the pancreatic β cells leads to several chronic disorders including diabetes mellitus. Several mediators and mechanisms are known to be involved in the regulation of β cell secretory function. In this study, we propose that cytokine-induced nitric oxide (NO) production interacts with cholinergic mechanisms to modulate insulin secretion from pancreatic β cells. Using a rat insulinoma cell line INS-1, we demonstrated that β cell viability decreases significantly in the presence of SNAP (NO donor) in a concentration- and time-dependent manner. Cell viability was also found to be decreased in the presence of a combined treatment of SNAP with SMN (muscarinic receptor antagonist). We then investigated the impact of these findings on insulin secretion and found a significant reduction in glucose uptake by INS-1 cells in the presence of SNAP and SMN as compared with control. Nitric oxide synthase 3 gene expression was found to be significantly reduced in response to combined treatment with SNAP and SMN suggesting an interaction between the cholinergic and nitrergic systems. The analysis of gene and protein expression further pin-pointed the involvement of M3 muscarinic receptors in the cholinergic pathway. Upon treatment with cytokines, reduced cell viability was observed in the presence of TNF-α and IFN-γ. A significant reduction in insulin secretion was also noted after treatment with TNF-α and IFN-γ and IL1-β. The findings of the present study have shown for the first time that the inhibition of the excitatory effects of cholinergic pathways on glucose-induced insulin secretion may cause β cell injury and dysfunction of insulin secretion in response to cytokine-induced NO production.
Collapse
Affiliation(s)
- Bashair M Mussa
- Basic Medical Science Department, College of Medicine, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
| | - Ankita Srivastava
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Anthony J M Verberne
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, 3084, Australia
| |
Collapse
|
25
|
Mobasseri M, Ostadrahimi A, Tajaddini A, Asghari S, Barati M, Akbarzadeh M, Nikpayam O, Houshyar J, Roshanravan N, Alamdari NM. Effects of saffron supplementation on glycemia and inflammation in patients with type 2 diabetes mellitus: A randomized double-blind, placebo-controlled clinical trial study. Diabetes Metab Syndr 2020; 14:527-534. [PMID: 32408117 DOI: 10.1016/j.dsx.2020.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND New evidence indicates that overproduction of pro-inflammatory cytokines is responsible for the development of diabetes difficulties. Some herbals such as saffron, may control inflammation and improve the hyperglycemic states in diabetic patients. Therefore, this investigation aimed to assess the effects of saffron supplementation on fasting glucose and inflammatory markers levels in patients with type2 diabetes mellitus (T2DM). METHODS In this randomized double-blind, placebo-controlled clinical trial, 60 T2DM patients were randomly assigned into two groups as saffron and placebo (n = 30) receiving 100 mg/day saffron powder or starch capsules (1 capsule) for a duration of 8 weeks. Fasting blood sample was collected at baseline and at the end of the intervention. Fasting blood glucose (FBG) was immediately analyzed by the auto-analyzer. The serum level of Interleukin -6 (IL-6), Tumor necrosis factor-alpha (TNF-α), and Interleukin-10 (IL-10) were measured using ELISA assay by laboratory kits. Also, Real-time quantitative reverse transcription (RT-PCR) assay measured the expression level of TNF-α, IL-6, and IL-10 at the mRNA level. RESULTS Saffron supplementation significantly decreased the FBG levels within 8 weeks compared to placebo (130.93 ± 21.21 vs 135.13 ± 23.03 mg/dl, P = 0.012). Moreover, the serum level of TNF-α notably reduced in the saffron group compared to the placebo group (114.40 ± 24.28 vs 140.90 ± 25.49 pg/ml, P < 0.001). Also, saffron supplementation significantly down-regulated the expressions of TNF-α (P = 0.035) and IL-6 mRNA levels (P = 0.014). CONCLUSION In our study, it was indicated that saffron modulates glucose levels as well as inflammation status in T2DM patients through decreasing the expressions levels of some inflammatory mediators. Also, further investigations are necessary to confirm the positive effects of saffron as a complementary therapy for T2DM patients.
Collapse
Affiliation(s)
- Majid Mobasseri
- Department of Medicine, Endocrine Section, Endocrine Research Center, Tabriz University of Medical Sciences, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aynaz Tajaddini
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmacology School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Samira Asghari
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moloud Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Nikpayam
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalil Houshyar
- Department of Medicine, Endocrine Section, Endocrine Research Center, Tabriz University of Medical Sciences, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Naimeh Mesri Alamdari
- Student Research Committee, Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Ozaki Tan SJ, Floriano JF, Nicastro L, Emanueli C, Catapano F. Novel Applications of Mesenchymal Stem Cell-derived Exosomes for Myocardial Infarction Therapeutics. Biomolecules 2020; 10:E707. [PMID: 32370160 PMCID: PMC7277090 DOI: 10.3390/biom10050707] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity globally, representing approximately a third of all deaths every year. The greater part of these cases is represented by myocardial infarction (MI), or heart attack as it is better known, which occurs when declining blood flow to the heart causes injury to cardiac tissue. Mesenchymal stem cells (MSCs) are multipotent stem cells that represent a promising vector for cell therapies that aim to treat MI due to their potent regenerative effects. However, it remains unclear the extent to which MSC-based therapies are able to induce regeneration in the heart and even less clear the degree to which clinical outcomes could be improved. Exosomes, which are small extracellular vesicles (EVs) known to have implications in intracellular communication, derived from MSCs (MSC-Exos), have recently emerged as a novel cell-free vector that is capable of conferring cardio-protection and regeneration in target cardiac cells. In this review, we assess the current state of research of MSC-Exos in the context of MI. In particular, we place emphasis on the mechanisms of action by which MSC-Exos accomplish their therapeutic effects, along with commentary on the current difficulties faced with exosome research and the ongoing clinical applications of stem-cell derived exosomes in different medical contexts.
Collapse
Affiliation(s)
- Sho Joseph Ozaki Tan
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Juliana Ferreria Floriano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
- Botucatu Medical School, Sao Paulo State University, Botucatu 18618687, Brazil
| | - Laura Nicastro
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Francesco Catapano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| |
Collapse
|
27
|
Potential Benefits of Nrf2/Keap1 Targeting in Pancreatic Islet Cell Transplantation. Antioxidants (Basel) 2020; 9:antiox9040321. [PMID: 32316115 PMCID: PMC7222398 DOI: 10.3390/antiox9040321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Permanent pancreatic islet cell destruction occurs in type 1 diabetes mellitus (T1DM) through the infiltration of inflammatory cells and cytokines. Loss of β-cell integrity secondary to oxidation leads to an inability to appropriately synthesize and secrete insulin. Allogenic islet cell transplantation (ICT) has risen as a therapeutic option to mitigate problematic hypoglycemia. Nevertheless, during the process of transplantation, islet cells are exposed to oxidatively caustic conditions that severely decrease the islet cell yield. Islet cells are at a baseline disadvantage to sustain themselves during times of metabolic stress as they lack a robust anti-oxidant defense system, glycogen stores, and vascularity. The Nrf2/Keap1 system is a master regulator of antioxidant genes that has garnered attention as pharmacologic activators have shown a protective response and a low side effect profile. Herein, we present the most recently studied Nrf2/Keap1 activators in pancreas for application in ICT: Dh404, dimethyl fumarate (DMF), and epigallocatechin gallate (EGCG). Furthermore, we discuss that Nrf2/Keap1 is a potential target to ameliorate oxidative stress at every step of the Edmonton Protocol.
Collapse
|
28
|
Yao Q, Huang ZW, Zhai YY, Yue M, Luo LZ, Xue PP, Han YH, Xu HL, Kou L, Zhao YZ. Localized Controlled Release of Bilirubin from β-Cyclodextrin-Conjugated ε-Polylysine To Attenuate Oxidative Stress and Inflammation in Transplanted Islets. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5462-5475. [PMID: 31927945 DOI: 10.1021/acsami.9b18986] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Islet transplantation has been considered the most promising therapeutic option with the potential to restore the physiological regulation of blood glucose concentrations in type 1 diabetes treatment. However, islets suffer from oxidative stress and nonspecific inflammation in the early stage of transplantation, which attributed to the leading cause of islet graft failure. Our previous study reported that bilirubin exerted antioxidative and anti-inflammatory effects on hypothermic preserved islets, which inspire us to utilize bilirubin to address the survival issue of grafted islets. However, the application of bilirubin for islet transplantation is limited by its poor solubility and fast clearance. In this study, we designed a supramolecular carrier (PLCD) that could improve the solubility of bilirubin and slowly release bilirubin to protect islets after cotransplantation. PLCD was synthesized by conjugating activated β-cyclodextrin (β-CD) to the side chain of ε-polylysine (PLL) and acted as a carrier to load bilirubin via host-guest interactions. The constructed bilirubin supramolecular system (PLCD-BR) significantly improved the solubility and prolonged the action time of bilirubin. In vitro results confirmed that PLCD-BR coculture substantially enhanced the resistance of islets to excessive oxidative stress and proinflammatory stimulation and maximumly maintained the islet function. In vivo, PLCD could prolong drug duration at the transplant site, and the localized released bilirubin could protect the islets from oxidative stress and suppress the production of inflammatory cytokines. Crucially, islet transplantation with PLCD-BR significantly extended the stable blood glucose time of diabetic mice and produced a faster glucose clearance compared to those cotransplanted with free bilirubin. Additionally, immunohistochemical analysis showed that PLCD-BR had superior antioxidative and anti-inflammatory abilities and beneficial effects on angiogenesis. These findings demonstrate that the PLCD-BR has great potentials to support successful islet transplantation.
Collapse
Affiliation(s)
- Qing Yao
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - Zhi-Wei Huang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - Yuan-Yuan Zhai
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - Meng Yue
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - Lan-Zi Luo
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - Peng-Peng Xue
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - Yong-Hui Han
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - He-Lin Xu
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| | - Longfa Kou
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325027 , China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , China
| |
Collapse
|
29
|
Dinda B, Dinda M, Roy A, Dinda S. Dietary plant flavonoids in prevention of obesity and diabetes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 120:159-235. [PMID: 32085882 DOI: 10.1016/bs.apcsb.2019.08.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes are the most prevailing chronic metabolic diseases worldwide from mainly lipid and glucose metabolic dysfunctions and their incidence is increasing at an alarming high rate. Obesity is characterized by excess fat accumulation in WAT and liver and is the central player of insulin resistance in the peripheral tissues from chronic inflammation, lipotoxicity and gut dysbiosis, and plays a key role for development of type 2 diabetes (T2DM) and vascular diseases. Diabetes mellitus, known as diabetes, is chiefly characterized by hyperglycaemia from impaired insulin secretion and insulin resistance. Several identified mutant genes in insulin secretion and resistance and various environmental factors are considered responsible for the onset of this disease. Currently available oral synthetic drugs, biguanides, incretin mimetic, GLP-1R and PPAR agonists and DPP-4 inhibitors for management of obesity and diabetes have several adverse effects in patients on long-term use. Emerging evidence supports the efficacy of dietary plant flavonoids in prevention and attenuation of obesity and diabetes by the protection and proliferation of pancreatic beta-cells and improvement of their insulin secretory function via activation of cAMP/PKA signaling pathway as well as in the improvement of insulin sensitivity in the peripheral metabolic tisssues for glucose uptake and utilization via inhibition of inflammation, lipotoxicity and oxidative stress. These flavonoids improve GLUT-4 expression and translocation to plasma membrane by activation of insulin-sensitive PI3K/Akt signaling and insulin-independent AMPK, SIRT-1 and MOR activation pathways for regulation of glucose homeostasis, and improve fat oxidation and reduce lipid synthesis by regulation of related genes for lipid homeostasis in the body of obese diabetic animals. In this chapter, we have highlighted all these beneficial anti-obesity and antidiabetic potentials of some dietary plant flavonoids along with their molecular actions, bioavailability and pharmacokinetics. In addition, the present understanding and management of obesity and diabetes are also focused.
Collapse
Affiliation(s)
- Biswanath Dinda
- Department of Chemistry, Tripura University, Agartala, Tripura, India
| | - Manikarna Dinda
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Arup Roy
- Chemical Science & Technology Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, India
| | - Subhajit Dinda
- Department of Chemistry, Dasaratha Deb Memorial College, Khowai, Tripura, India
| |
Collapse
|
30
|
Bulboacă AE, Boarescu PM, Bolboacă SD, Blidaru M, Feștilă D, Dogaru G, Nicula CA. Comparative Effect Of Curcumin Versus Liposomal Curcumin On Systemic Pro-Inflammatory Cytokines Profile, MCP-1 And RANTES In Experimental Diabetes Mellitus. Int J Nanomedicine 2019; 14:8961-8972. [PMID: 31819412 PMCID: PMC6873975 DOI: 10.2147/ijn.s226790] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
Purpose Anti-inflammatory proprieties of curcumin were proved to be useful in various diseases, including diabetes mellitus. The aim of this study was to assess the anti-inflammatory comparative effect of curcumin solution with liposomal curcumin formula, regarding the improvement of serum levels of TNF-α (tumor necrosis factor-alpha), IL-6 (interleukin), IL-1α, IL-1β, MCP-1 (monocyte chemoattractant protein-1) and RANTES in experimental diabetes, induced by streptozotocin (STZ), in rats. Materials and methods Six groups of 7 rats were investigated regarding the effect of i.p. (intraperitoneal) administration of two concentrations of curcumin solution (CC1 and CC2) and two concentrations of liposomal curcumin (LCC1 and LCC2): group 1 – control group with i.p. administration of 1 mL saline solution, group 2 – i.p. STZ administration (60mg/kg bw, bw=body weight), group 3 – STZ+CC1 administration, group 4 – STZ+CC2 administration, group 5 – STZ+ LCC1 administration and group 6 – STZ+ LCC2 administration. The concentrations of curcumin formulas were 1 mg/0.1 kg bw for CC1 and LCC1 and 2 mg/0.1 kg bw for CC2 and LCC2, respectively. Serum levels of C-peptide (as an indicator of pancreatic function) and TNF-α, IL-6, IL-1α, IL-1β, MCP-1, and RANTES (as biomarkers for systemic inflammation) were assessed for each group. Results The plasma level of C-peptide showed significant improvements when LCC was administrated, with better results for LCC2 when compared to LCC1 (P<0.003). LCC2 pretreatment proved to be more efficient in reducing the level of TNF-α (P<0.003) and RANTES (P<0.003) than CC2 pretreatment. Upon comparing LCC2 with LCC1 formulas, the differences were significant for TNF-α (P=0.004), IL-1β (P=0.022), and RANTES (P=0.003) levels. Conclusion Liposomal curcumin in a dose of 2 mg/0.1 kg bw proved to have an optimum therapeutic effect as a pretreatment in DM induced by STZ. This result can constitute a base for clinical studies for curcumin efficiency as adjuvant therapy in type 1 DM.
Collapse
Affiliation(s)
- Adriana Elena Bulboacă
- Pathophysiology Department, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Paul Mihai Boarescu
- Pathophysiology Department, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Sorana D Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine And Pharmacy, Cluj-Napoca, Romania
| | - Mihai Blidaru
- Pathophysiology Department, Iuliu Hațieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Dana Feștilă
- Department of Maxillofacial Surgery and Radiology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela Dogaru
- Department of Physical Medicine and Rehabilitation, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Ariadna Nicula
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
31
|
Bae GD, Park EY, Kim K, Jang SE, Jun HS, Oh YS. Upregulation of caveolin-1 and its colocalization with cytokine receptors contributes to beta cell apoptosis. Sci Rep 2019; 9:16785. [PMID: 31728004 PMCID: PMC6856349 DOI: 10.1038/s41598-019-53278-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 (cav-1), the principal structural and signalling protein of caveolae, is implicated in various signalling events, including apoptotic cell death in type 2 diabetes. However, the precise role of beta cells in apoptosis has not been clearly defined. In this study, we investigated the involvement of cav-1 in cytokine-induced beta cell apoptosis and its underlying mechanisms in the rat beta cell line, INS-1 and isolated islets. Treatment of cytokine mixture (CM, TNFα + IL-1β) significantly increased the mRNA and protein expression of cav-1, and resulting in increased formation of caveolae. We found that IL-1 receptor 1 and TNF receptor localized to plasma membrane lipid rafts in the control cells and CM treatment recruited these receptors to the caveolae domain. After cav-1 siRNA transfection, CM-dependent NF-κB activation was reduced and consequently downregulated the mRNA expression of iNOS and IL-1β. Finally, decreased cell viability by CM treatment was ameliorated in both INS-1 cells and isolated islets treated with cav-1 siRNA. These results suggest that increased cav-1 expression and recruitment of cytokine receptors into caveolae contribute to CM-induced beta cell apoptosis.
Collapse
Affiliation(s)
- Gong Deuk Bae
- Lee Gil Ya Cancer and Diabetes Institute, Department of Molecular Medicine, Gachon University, Incheon, South Korea
| | - Eun-Young Park
- College of Pharmacy, Mokpo National University, Jeonnam, South Korea
| | - Kyong Kim
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea
| | - Se-Eun Jang
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Department of Molecular Medicine, Gachon University, Incheon, South Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon, South Korea
| | - Yoon Sin Oh
- Department of Food and Nutrition, Eulji University, Seongnam, South Korea.
| |
Collapse
|
32
|
Rodriguez S, Lau H, Corrales N, Heng J, Lee S, Stiner R, Alexander M, Lakey JRT. Characterization of chelator-mediated recovery of pancreatic islets from barium-stabilized alginate microcapsules. Xenotransplantation 2019; 27:e12554. [PMID: 31495985 DOI: 10.1111/xen.12554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Islet recovery from within alginate-based microcapsules is necessary for certain analytical assays like flow cytometry; however, this technology has not been widely characterized. In this study, we explore the ability of EDTA, EGTA, and sodium citrate to induce reverse alginate polymerization via chelation and assess the toxicity of each chelator on pancreatic islets. METHODS EDTA, EGTA, and sodium citrate were used to dissolve single-layered Ba2+ alginate encapsulated islets and the rate of capsule breakdown calculated from analysis of imaging data. The effect of chelator exposure on islet viability and recovery was assessed using flow cytometry, while glucose-stimulated insulin release (GSIR) assay was used to measure effects on islet function. RESULTS EGTA demonstrated the most rapid microcapsule dissolving rate followed by EDTA and sodium citrate. Islet recovery was significantly better when encapsulated islets were treated with EDTA than EGTA and Na+ citrate. A decrease in viability and increase in apoptotic cells were observed when encapsulated islets were treated with Na+ citrate compared to islets treated with EDTA and EGTA. Islets treated with EDTA and EGTA demonstrated comparable stimulation index values to non-treated control. Conversely, islets treated with Na+ citrate exhibited significantly decreased SI values compared to control. All chelator groups showed significantly lower insulin secretion than non-treated islets. CONCLUSION Islet recovery from alginate microcapsule is possible using common chelators like Na+ citrate, EDTA, and EGTA. Chelation of encapsulated islets using EDTA demonstrated the most efficient dissolving capabilities with the least toxicity toward islet recovery and health.
Collapse
Affiliation(s)
- Samuel Rodriguez
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Hien Lau
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jennifer Heng
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Sarah Lee
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Rachel Stiner
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Orange, CA, USA
| |
Collapse
|
33
|
Miranda MCG, Oliveira RP, Torres L, Aguiar SLF, Pinheiro-Rosa N, Lemos L, Guimarães MA, Reis D, Silveira T, Ferreira Ê, Moreira TG, Cara DC, Maioli TU, Kelsall BL, Carlos D, Faria AMC. Frontline Science: Abnormalities in the gut mucosa of non-obese diabetic mice precede the onset of type 1 diabetes. J Leukoc Biol 2019; 106:513-529. [PMID: 31313381 DOI: 10.1002/jlb.3hi0119-024rr] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations in the composition of the intestinal microbiota have been associated with development of type 1 diabetes (T1D), but little is known about changes in intestinal homeostasis that contribute to disease pathogenesis. Here, we analyzed oral tolerance induction, components of the intestinal barrier, fecal microbiota, and immune cell phenotypes in non-obese diabetic (NOD) mice during disease progression compared to non-obese diabetes resistant (NOR) mice. NOD mice failed to develop oral tolerance and had defective protective/regulatory mechanisms in the intestinal mucosa, including decreased numbers of goblet cells, diminished mucus production, and lower levels of total and bacteria-bound secretory IgA, as well as an altered IEL profile. These disturbances correlated with bacteria translocation to the pancreatic lymph node possibly contributing to T1D onset. The composition of the fecal microbiota was altered in pre-diabetic NOD mice, and cross-fostering of NOD mice by NOR mothers corrected their defect in mucus production, indicating a role for NOD microbiota in gut barrier dysfunction. NOD mice had a reduction of CD103+ dendritic cells (DCs) in the MLNs, together with an increase of effector Th17 cells and ILC3, as well as a decrease of Th2 cells, ILC2, and Treg cells in the small intestine. Importantly, most of these gut alterations precede the onset of insulitis. Disorders in the intestinal mucosa of NOD mice can potentially interfere with the development of T1D due the close relationship between the gut and the pancreas. Understanding these early alterations is important for the design of novel therapeutic strategies for T1D prevention.
Collapse
Affiliation(s)
- Mariana Camila Gonçalves Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sarah Leão Fiorini Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natalia Pinheiro-Rosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luísa Lemos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Andrade Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Reis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiany Silveira
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ênio Ferreira
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thaís Garcias Moreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denise Carmona Cara
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Brian L Kelsall
- Laboratory of Molecular Immunology, NIAID, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniela Carlos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Investigação em Imunologia (iii), São Paulo, Brazil
| |
Collapse
|
34
|
Hironaka JY, Kitahama S, Sato H, Inoue M, Takahashi T, Tamori Y. Sleeve Gastrectomy Induced Remission of Slowly Progressive Type 1 Diabetes in a Morbidly Obese Japanese Patient. Intern Med 2019; 58:675-678. [PMID: 30333397 PMCID: PMC6443562 DOI: 10.2169/internalmedicine.1217-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The effects of bariatric/metabolic surgery on glycemic control in obese type 1 diabetic patients are controversial. We herein report a case of a morbidly obese 35-year-old woman who completely recovered from slowly progressive type 1 diabetes (SPIDDM) following laparoscopic sleeve gastrectomy. Preoperatively, her body mass index (BMI) was 49.8 kg/m2 and hemoglobin A1c was 5.7% with intensive insulin therapy. Six months after bariatric/metabolic surgery, her BMI decreased to 33.2 kg/m2 and her glycemic control was normal despite the discontinuation of all diabetic medicine. This case demonstrates the usefulness of bariatric/metabolic surgery for achieving glycemic control in morbidly obese patients with SPIDDM in Japan.
Collapse
Affiliation(s)
- Jun-Ya Hironaka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Chibune General Hospital, Japan
| | - Seiichi Kitahama
- Department of Bariatric and Metabolic Surgery, Chibune General Hospital, Japan
| | - Hiroyuki Sato
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Chibune General Hospital, Japan
| | - Maki Inoue
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Chibune General Hospital, Japan
| | - Tetsuya Takahashi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Chibune General Hospital, Japan
| | - Yoshikazu Tamori
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Chibune General Hospital, Japan
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan
| |
Collapse
|
35
|
Javeed N. Shedding Perspective on Extracellular Vesicle Biology in Diabetes and Associated Metabolic Syndromes. Endocrinology 2019; 160:399-408. [PMID: 30624638 PMCID: PMC6349001 DOI: 10.1210/en.2018-01010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022]
Abstract
The etiology of diabetes and associated metabolic derailments is a complex process that relies on crosstalk between metabolically active tissues. Dysregulation of secreted factors and metabolites from islets, adipose tissue, liver, and skeletal muscle contributes to the overall progression of diabetes and metabolic syndrome. Extracellular vesicles (EVs) are circulating nanovesicles secreted by most cell types and are comprised of bioactive cargoes that are horizontally transferred to targeted cells/tissues. Accumulating evidence from the past decade implicates the role of EVs as mediators of islet cell dysfunction, inflammation, insulin resistance, and other metabolic consequences associated with diabetes. This review covers a broad spectrum of basic EV biology (i.e., biogenesis, secretion, and uptake), including a comprehensive investigation of the emerging role of EVs in β-cell autocrine/paracrine interactions and the multidirectional crosstalk in metabolically active tissues. Understanding the utility of this novel means of intercellular communication could impart insight into the development of new treatment regimens and biomarker detection to treat diabetes.
Collapse
Affiliation(s)
- Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Correspondence: Naureen Javeed, PhD, Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905. E-mail:
| |
Collapse
|
36
|
Huang PJ, Qu J, Saha P, Muliana A, Kameoka J. Microencapsulation of beta cells in collagen micro-disks via circular pneumatically actuated soft micro-mold (cPASMO) device. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aae55e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Yeo H, Yeo EJ, Shin MJ, Choi YJ, Lee CH, Kwon HY, Kim DW, Eum WS, Choi SY. Protective effects of Tat-DJ-1 protein against streptozotocin-induced diabetes in a mice model. BMB Rep 2018; 51:362-367. [PMID: 29936932 PMCID: PMC6089872 DOI: 10.5483/bmbrep.2018.51.7.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 11/20/2022] Open
Abstract
A major feature of type 1 diabetes mellitus (T1DM) is hyperglycemia and dysfunction of pancreatic β-cells. In a previous study, we have shown that Tat-DJ-1 protein inhibits pancreatic RINm5F β-cell death caused by oxidative stress. In this study, we examined effects of Tat-DJ-1 protein on streptozotocin (STZ)-induced diabetic mice. Wild type (WT) Tat-DJ-1 protein transduced into pancreas where it markedly inhibited pancreatic β-cell destruction and regulated levels of serum parameters including insulin, alkaline phosphatase (ALP), and free fatty acid (FFA) secretion. In addition, transduced WT Tat-DJ-1 protein significantly inhibited the activation of NF-κB and MAPK (ERK and p38) expression as well as expression of COX-2 and iNOS in STZ exposed pancreas. In contrast, treatment with C106A mutant Tat-DJ-1 protein showed no protective effects. Collectively, our results indicate that WT Tat-DJ-1 protein can significantly ameliorate pancreatic tissues in STZ-induced diabetes in mice. [BMB Reports 2018; 51(7): 362-367].
Collapse
Affiliation(s)
- Hyeon Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Hyeok Yil Kwon
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
38
|
Tekula S, Khurana A, Anchi P, Godugu C. Withaferin-A attenuates multiple low doses of Streptozotocin (MLD-STZ) induced type 1 diabetes. Biomed Pharmacother 2018; 106:1428-1440. [DOI: 10.1016/j.biopha.2018.07.090] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
|
39
|
Miki A, Ricordi C, Sakuma Y, Yamamoto T, Misawa R, Mita A, Molano RD, Vaziri ND, Pileggi A, Ichii H. Divergent antioxidant capacity of human islet cell subsets: A potential cause of beta-cell vulnerability in diabetes and islet transplantation. PLoS One 2018; 13:e0196570. [PMID: 29723228 PMCID: PMC5933778 DOI: 10.1371/journal.pone.0196570] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
Background Type 1 and Type 2 diabetes mellitus (T1DM and T2DM) are caused by beta(β)-cell loss and functional impairment. Identification of mechanisms of β-cell death and therapeutic interventions to enhance β-cell survival are essential for prevention and treatment of diabetes. Oxidative stress is a common feature of both T1DM and T2DM; elevated biomarkers of oxidative stress are detected in blood, urine and tissues including pancreas of patients with DM. Islet transplantation is a promising treatment for diabetes. However, exposure to stress (chemical and mechanical) and ischemia-reperfusion during isolation and transplantation causes islet loss by generation of reactive oxygen species (ROS). Human intracellular antioxidant enzymes and related molecules are essential defenses against ROS. Antioxidant enzyme levels including superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) have been shown to be low in islet cells. However, little is known about the expression and function of antioxidant enzymes within islet cell subsets. We evaluated the expression of the key antioxidant enzymes in β- and alpha(α)-cell and accessed effects of oxidative stress, islet isolation and transplantation on β/α-cell ratio and viability in human islets. Methods Human pancreata from T1DM, T2DM and non-diabetic deceased donors were obtained and analyzed by confocal microscopy. Isolated islets were (I) transplanted in the renal sub-capsular space of streptozotocin-induced diabetic nude mice (in vivo bioassay), or (II) exposed to oxidative (H2O2) and nitrosative (NO donor) stress for 24 hrs in vitro. The ratio, % viability and death of β- and α-cells, and DNA damage (8OHdG) were measured. Results and conclusions Catalase and GPX expression was much lower in β- than α-cells. The β/α-cell ratio fells significantly following islet isolation and transplantation. Exposure to oxidative stress caused a significantly lower survival and viability, with higher DNA damage in β- than α-cells. These findings identified the weakness of β-cell antioxidant capacity as a main cause of vulnerability to oxidative stress. Potential strategies to enhance β-cell antioxidant capacity might be effective in prevention/treatment of diabetes.
Collapse
Affiliation(s)
- Atsushi Miki
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Camillo Ricordi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Yasunaru Sakuma
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Toshiyuki Yamamoto
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Ryosuke Misawa
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Atsuyoshi Mita
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Ruth D Molano
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Nosratola D Vaziri
- Department of Medicine, University of California, Irvine, United States of America
| | - Antonello Pileggi
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America
| | - Hirohito Ichii
- Cell Transplant Center, Diabetes Research Institute, University of Miami, Miami, Florida, United States of America.,Department of Surgery, University of California, Irvine, United States of America
| |
Collapse
|
40
|
Effect of Supplementation with n-3 Fatty Acids Extracted from Microalgae on Inflammation Biomarkers from Two Different Strains of Mice. J Lipids 2018; 2018:4765358. [PMID: 29805810 PMCID: PMC5899849 DOI: 10.1155/2018/4765358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
Background Diabetes mellitus is considered a chronic noncommunicable disease in which inflammation plays a main role in the progression of the disease and it is known that n-3 fatty acids have anti-inflammatory properties. One of the most recent approaches is the study of the fatty acids of microalgae as a substitute for fish oil and a source rich in fatty acids EPA and DHA. Objective To analyze the effect of supplementation with n-3 fatty acids extracted from microalgae on the inflammatory markers from two different strains of mice. Methods Mice of two strains, db/db and CD1, were supplemented with n-3 fatty acids extracted from microalgae in lyophilized form and added to food; the experiment was carried out from week 8 to 16 of life. Flow cytometry was performed to determine the percentage of TCD4+ cells producing Th1 and Th2 cytokines. Results Supplementation with microalgae fatty acids decreased the percentage of TCD4+ cells producing IFN-γ and TNF-α and increased the ones producing IL-17A and IL-12 in both strains; on the other hand, supplementation decreased percentage of TCD4+ cells producing IL-4 and increased the ones producing TGF-β. Conclusions Microalgae n-3 fatty acids could be a useful tool in the treatment of diabetes as well as in the prevention of the appearance of health complications caused by inflammatory states.
Collapse
|
41
|
Gomes JP, Watad A, Shoenfeld Y. Nicotine and autoimmunity: The lotus' flower in tobacco. Pharmacol Res 2018; 128:101-109. [PMID: 29051105 DOI: 10.1016/j.phrs.2017.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/14/2022]
Abstract
Nicotine, the major component of cigarettes, has demonstrated conflicting impact on the immune system: some authors suggest that increases pro-inflammatory cytokines and provokes cellular apoptosis of neutrophils, releasing intracellular components that act as auto-antigens; others claimed that nicotine has a protective and anti-inflammatory effects, especially by binding to α7 subunit of nicotinic acetylcholine receptors. The cholinergic pathway contributes to an anti-inflammatory environment characterized by increasing T regulatory cells response, down-regulating of pro-inflammatory cytokines and a pro-inflammatory cells apoptosis. The effects of nicotine were studied in different autoimmune disease, as multiple sclerosis, type 1 diabetes, rheumatoid arthritis, sarcoidosis, Behçet's disease and inflammatory bowel diseases. The major problems about nicotine are the addiction and the adverse effects of related to each commercialized formulation. We sought in this review to summarize the knowledge accumulated to date concerning the relationship between nicotine and autoimmunity.
Collapse
Affiliation(s)
- João Pedro Gomes
- Department A of Internal Medicine, Hospital and University Centre of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal
| | - Abdulla Watad
- Zabludowicz Center for Autoimmune Disease, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Disease, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel.
| |
Collapse
|
42
|
Vistnes M, Tapia G, Mårild K, Midttun Ø, Ueland PM, Viken MK, Magnus P, Berg JP, Gillespie KM, Skrivarhaug T, Njølstad PR, Joner G, Størdal K, Stene LC. Plasma immunological markers in pregnancy and cord blood: A possible link between macrophage chemo-attractants and risk of childhood type 1 diabetes. Am J Reprod Immunol 2017; 79. [PMID: 29266506 DOI: 10.1111/aji.12802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/24/2017] [Indexed: 12/18/2022] Open
Abstract
PROBLEM Previous studies have suggested that immune perturbations during pregnancy can affect offspring type 1 diabetes (T1D) risk. We aimed to identify immunological markers that could predict offspring T1D or that were linked to T1D risk factors. METHOD OF STUDY We quantified selected circulating immunological markers in mid-pregnancy (interleukin [IL]-1β, IL-1ra, IL-2Rα, IL-2, -4, -5, -6, -10, -12p70, 13, -17A, GM-CSF, IFN-γ, CXCL10, CCL 2, CCL3, CCL4, TNF) and cord blood plasma (neopterin and kynurenine/tryptophan ratio) in a case-control study with 175 mother/child T1D cases (median age 5.8, range 0.7-13.0 years) and 552 controls. RESULTS Pre-pregnancy obesity was positively associated with CCL4, CXCL10, kynurenine/tryptophan ratio and neopterin (P < .01). The established T1D SNPs rs1159465 (near IL2RA) and rs75352297 (near CCR2 and CCR3) were positively associated with IL-2Rα and CCL4, respectively (P < .01). There was a borderline association of CCL4 and offspring T1D risk, independent of maternal obesity and genotype. When grouping the immunological markers, there was a borderline association (P = .05) with M1 phenotype and no association between M2-, Th1-, Th2- or Th17 phenotypes and offspring T1D risk. CONCLUSION Increased mid-pregnancy CCL4 levels showed borderline associations with increased offspring T1D risk, which may indicate a link between environmental factors in pregnancy and offspring T1D risk.
Collapse
Affiliation(s)
- Maria Vistnes
- Department of Internal Medicine, Diakonhjemmet Hospital, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - German Tapia
- Norwegian Institute of Public Health, Oslo, Norway
| | - Karl Mårild
- Norwegian Institute of Public Health, Oslo, Norway.,Barbara Davis Center, University of Colorado, Aurora, CO, USA
| | | | - Per M Ueland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Marte K Viken
- Department of Immunology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Per Magnus
- Norwegian Institute of Public Health, Oslo, Norway
| | - Jens P Berg
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kathleen M Gillespie
- Diabetes and Metabolism, School of Clinical Sciences, Southmead Hospital, University of Bristol, Bristol, UK
| | - Torild Skrivarhaug
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Geir Joner
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Ketil Størdal
- Norwegian Institute of Public Health, Oslo, Norway.,Pediatric Department, Østfold Hospital Trust, Grålum, Norway
| | - Lars C Stene
- Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
43
|
Lee M, Kim MJ, Oh J, Piao C, Park YW, Lee DY. Gene delivery to pancreatic islets for effective transplantation in diabetic animal. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Tissue adhesive FK506-loaded polymeric nanoparticles for multi-layered nano-shielding of pancreatic islets to enhance xenograft survival in a diabetic mouse model. Biomaterials 2017; 154:182-196. [PMID: 29128846 DOI: 10.1016/j.biomaterials.2017.10.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022]
Abstract
This study aims to develop a novel surface modification technology to prolong the survival time of pancreatic islets in a xenogenic transplantation model, using 3,4-dihydroxyphenethylamine (DOPA) conjugated poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) nanoparticles (DOPA-NPs) carrying immunosuppressant FK506 (FK506/DOPA-NPs). The functionalized DOPA-NPs formed a versatile coating layer for antigen camouflage without interfering the viability and functionality of islets. The coating layer effectively preserved the morphology and viability of islets in a co-culture condition with xenogenic lymphocytes for 7 days. Interestingly, the mean survival time of islets coated with FK506/DOPA-NPs was significantly higher as compared with that of islets coated with DOPA-NPs (without FK506) and control. This study demonstrated that the combination of surface camouflage and localized low dose of immunosuppressant could be an effective approach in prolonging the survival of transplanted islets. This newly developed platform might be useful for immobilizing various types of small molecules on therapeutic cells and biomaterial surface to improve the therapeutic efficacy in cell therapy and regenerative medicine.
Collapse
|
45
|
Das UN. Is There a Role for Bioactive Lipids in the Pathobiology of Diabetes Mellitus? Front Endocrinol (Lausanne) 2017; 8:182. [PMID: 28824543 PMCID: PMC5539435 DOI: 10.3389/fendo.2017.00182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Inflammation, decreased levels of circulating endothelial nitric oxide (eNO) and brain-derived neurotrophic factor (BDNF), altered activity of hypothalamic neurotransmitters (including serotonin and vagal tone) and gut hormones, increased concentrations of free radicals, and imbalance in the levels of bioactive lipids and their pro- and anti-inflammatory metabolites have been suggested to play a role in diabetes mellitus (DM). Type 1 diabetes mellitus (type 1 DM) is due to autoimmune destruction of pancreatic β cells because of enhanced production of IL-6 and tumor necrosis factor-α (TNF-α) and other pro-inflammatory cytokines released by immunocytes infiltrating the pancreas in response to unknown exogenous and endogenous toxin(s). On the other hand, type 2 DM is due to increased peripheral insulin resistance secondary to enhanced production of IL-6 and TNF-α in response to high-fat and/or calorie-rich diet (rich in saturated and trans fats). Type 2 DM is also associated with significant alterations in the production and action of hypothalamic neurotransmitters, eNO, BDNF, free radicals, gut hormones, and vagus nerve activity. Thus, type 1 DM is because of excess production of pro-inflammatory cytokines close to β cells, whereas type 2 DM is due to excess of pro-inflammatory cytokines in the systemic circulation. Hence, methods designed to suppress excess production of pro-inflammatory cytokines may form a new approach to prevent both type 1 and type 2 DM. Roux-en-Y gastric bypass and similar surgeries ameliorate type 2 DM, partly by restoring to normal: gut hormones, hypothalamic neurotransmitters, eNO, vagal activity, gut microbiota, bioactive lipids, BDNF production in the gut and hypothalamus, concentrations of cytokines and free radicals that results in resetting glucose-stimulated insulin production by pancreatic β cells. Our recent studies suggested that bioactive lipids, such as arachidonic acid, eicosapentaneoic acid, and docosahexaenoic acid (which are unsaturated fatty acids) and their anti-inflammatory metabolites: lipoxin A4, resolvins, protectins, and maresins, may have antidiabetic actions. These bioactive lipids have anti-inflammatory actions, enhance eNO, BDNF production, restore hypothalamic dysfunction, enhance vagal tone, modulate production and action of ghrelin, leptin and adiponectin, and influence gut microbiota that may explain their antidiabetic action. These pieces of evidence suggest that methods designed to selectively deliver bioactive lipids to pancreatic β cells, gut, liver, and muscle may prevent type 1 and type 2 DM.
Collapse
Affiliation(s)
- Undurti N. Das
- BioScience Research Centre, Department of Medicine, Gayatri Vidya Parishad Hospital, GVP College of Engineering Campus, Visakhapatnam, India
- UND Life Sciences, Battle Ground, WA, United States
| |
Collapse
|
46
|
Börjesson A, Andersson AK, Sandler S. Survival of an Islet Allograft Deficient in iNOS after Implantation into Diabetic NOD Mice. Cell Transplant 2017; 15:769-75. [PMID: 17269447 DOI: 10.3727/000000006783981495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Proinflammatory cytokines play a major role in rejection of pancreatic islet allografts and in type 1 diabetes (T1D). In rodent islets, exposure to IL-1β alone or combined with IFN-γ induces expression of inducible nitric oxide synthase (iNOS). Inhibition of iNOS or a deletion of the iNOS gene has been shown to be protective in animal models of T1D. In the present study we tested the hypothesis that transplantation of pancreatic islets deficient in iNOS (iNOS–/–) would permit increased graft survival. Pancreatic islets isolated from wild-type (wt) mice and iNOS–/– mice were allogeneically transplanted beneath the kidney capsule of spontaneously diabetic NOD mice. When blood glucose increased above 12.0 mM after preceding normalization of hyperglycemia, animals were sacrificed. Histological examinations of grafts were performed and graft gene expression was analyzed by real-time PCR. Transplantations of the two types of islets could reverse hyperglycemia and the grafts functioned for on average 1 week posttransplantation. Morphological examination of both types of islet grafts showed immune cell infiltration around and within the grafts. Remaining endocrine cells could be observed in wt and iNOS–/– islet grafts. In the removed grafts iNOS-/islet tissue contained higher mRNA levels of insulin, proinsulin convertases (PC-1 and PC-2), and IL-1β compared to transplanted wt islets. The assessments of insulin, PC-1 and PC-2 mRNAs of the grafts suggest that the iNOS–/– islets may be more resistant to destruction in the transplantation model used; however, this was not sufficient to prolong the period of normoglycemia posttransplantation.
Collapse
Affiliation(s)
- Andreas Börjesson
- Department of Medical Cell Biology, Uppsala University Uppsala, Sweden.
| | | | | |
Collapse
|
47
|
Kim MJ, Lee Y, Jon S, Lee DY. PEGylated bilirubin nanoparticle as an anti-oxidative and anti-inflammatory demulcent in pancreatic islet xenotransplantation. Biomaterials 2017; 133:242-252. [DOI: 10.1016/j.biomaterials.2017.04.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/06/2023]
|
48
|
Haque MR, Kim J, Park H, Lee HS, Lee KW, Al-Hilal TA, Jeong JH, Ahn CH, Lee DS, Kim SJ, Byun Y. Xenotransplantation of layer-by-layer encapsulated non-human primate islets with a specified immunosuppressive drug protocol. J Control Release 2017; 258:10-21. [DOI: 10.1016/j.jconrel.2017.04.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/14/2017] [Indexed: 12/21/2022]
|
49
|
Jo HS, Yeo HJ, Cha HJ, Kim SJ, Cho SB, Park JH, Lee CH, Yeo EJ, Choi YJ, Eum WS, Choi SY. Transduced Tat-DJ-1 protein inhibits cytokines-induced pancreatic RINm5F cell death. BMB Rep 2017; 49:297-302. [PMID: 26996344 PMCID: PMC5070711 DOI: 10.5483/bmbrep.2016.49.5.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 01/10/2023] Open
Abstract
Loss of pancreatic β-cells by oxidative stress or cytokines is associated with diabetes mellitus (DM). DJ-1 is known to as a multifunctional protein, which plays an important role in cell survival. We prepared cell permeable wild type (WT) and mutant type (M26I) Tat-DJ-1 proteins to investigate the effects of DJ-1 against combined cytokines (IL-1β, IFN-γ and TNF-α)-induced RINm5F cell death. Both Tat-DJ-1 proteins were transduced into RINm5F cells. WT Tat-DJ-1 proteins significantly protected against cell death from cytokines by reducing intracellular toxicities. Also, WT Tat-DJ-1 proteins markedly regulated cytokines-induced pro- and anti-apoptosis proteins. However, M26I Tat-DJ-1 protein showed relatively low protective effects, as compared to WT Tat-DJ-1 protein. Our experiments demonstrated that WT Tat-DJ-1 protein protects against cytokine-induced RINm5F cell death by suppressing intracellular toxicities and regulating apoptosisrelated protein expression. Thus, WT Tat-DJ-1 protein could potentially serve as a therapeutic agent for DM and cytokine related diseases. [BMB Reports 2016; 49(5): 297-302]
Collapse
Affiliation(s)
- Hyo Sang Jo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Sang Jin Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Su Bin Cho
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Chi Hern Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 24252, Korea
| |
Collapse
|
50
|
Epigenetics in type 1 diabetes: TNFa gene promoter methylation status in Chilean patients with type 1 diabetes mellitus. Br J Nutr 2016; 116:1861-1868. [PMID: 27890035 DOI: 10.1017/s0007114516003846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
TNF-α is a pro-inflammatory cytokine that is involved in type 1 diabetes (T1D) pathogenesis. The TNFa gene is subject of epigenetic regulation in which folate and homocysteine are important molecules because they participate in the methionine cycle where the most important methyl group donor (S-adenosylmethionine) is formed. We investigated whether TNFa gene promoter methylation status in T1D patients was related to blood folate, homocysteine and TNF-α in a transversal case-control study. We studied T1D patients (n 25, mean=13·7 years) and healthy control subjects (n 25, mean=31·1 years), without T1D and/or other autoimmune diseases or direct family history of these diseases. A blood sample was obtained for determination of serum folate, plasma homocysteine and TNF-α concentrations. Whole blood was used for the extraction of DNA to determine the percentage of methylation by real-time PCR and melting-curve analysis. Results are expressed as means and standard deviations for parametric variables and as median (interquartile range) for non-parametric variables. T1D patients showed a higher TNFa gene promoter methylation (39·2 (sd 19·5) %) when compared with control subjects (25·4 (sd 13·7) %) (P=0·008). TNFa gene promoter methylation was positively associated only with homocysteine levels in T1D patients (r 0·55, P=0·007), but not in control subjects (r -0·122, P=0·872). To our knowledge, this is the first work that reports the methylation status of the TNFa gene promoter and its relationship with homocysteine metabolism in Chilean T1D patients without disease complications.
Collapse
|