1
|
Rezaie J, Chodari L, Mohammadpour-Asl S, Jafari A, Niknam Z. Cell-mediated barriers in cancer immunosurveillance. Life Sci 2024; 342:122528. [PMID: 38408406 DOI: 10.1016/j.lfs.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The immune cells within the tumor microenvironment (TME) exert multifaceted functions ranging from tumor-antagonizing or tumor-promoting activities. During the initial phases of tumor development, the tumor-antagonizing immune cells in the TME combat cancer cells in an immune surveillance process. However, with time, cancer cells can evade detection and impede the immune cells' effectiveness through diverse mechanisms, such as decreasing immunogenic antigen presentation on their surfaces and/or secreting anti-immune factors that cause tolerance in TME. Moreover, some immune cells cause immunosuppressive situations and inhibit antitumoral immune responses. Physical and cellular-mediated barriers in the TME, such as cancer-associated fibroblasts, tumor endothelium, the altered lipid composition of tumor cells, and exosomes secreted from cancer cells, also mediate immunosuppression and prevent extravasation of immune cells. Due to successful clinical outcomes of cancer treatment strategies the potential barriers must be identified and addressed. We need to figure out how to optimize cancer immunotherapy strategies, and how to combine therapeutic approaches for maximum clinical benefit. This review provides a detailed overview of various cells and molecules in the TME, their association with escaping from immune surveillance, therapeutic targets, and future perspectives for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Davodabadi F, Sajjadi SF, Sarhadi M, Mirghasemi S, Nadali Hezaveh M, Khosravi S, Kamali Andani M, Cordani M, Basiri M, Ghavami S. Cancer chemotherapy resistance: Mechanisms and recent breakthrough in targeted drug delivery. Eur J Pharmacol 2023; 958:176013. [PMID: 37633322 DOI: 10.1016/j.ejphar.2023.176013] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Conventional chemotherapy, one of the most widely used cancer treatment methods, has serious side effects, and usually results in cancer treatment failure. Drug resistance is one of the primary reasons for this failure. The most significant drawbacks of systemic chemotherapy are rapid clearance from the circulation, the drug's low concentration in the tumor site, and considerable adverse effects outside the tumor. Several ways have been developed to boost neoplasm treatment efficacy and overcome medication resistance. In recent years, targeted drug delivery has become an essential therapeutic application. As more mechanisms of tumor treatment resistance are discovered, nanoparticles (NPs) are designed to target these pathways. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation. Nano-drugs have been increasingly employed in medicine, incorporating therapeutic applications for more precise and effective tumor diagnosis, therapy, and targeting. Many benefits of NP-based drug delivery systems in cancer treatment have been proven, including good pharmacokinetics, tumor cell-specific targeting, decreased side effects, and lessened drug resistance. As more mechanisms of tumor treatment resistance are discovered, NPs are designed to target these pathways. At the moment, this innovative technology has the potential to bring fresh insights into cancer therapy. Therefore, understanding the limitations and challenges of this technology is critical for nanocarrier evaluation.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Seyedeh Fatemeh Sajjadi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| | - Mohammad Sarhadi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shaghayegh Mirghasemi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Nadali Hezaveh
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Samin Khosravi
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdieh Kamali Andani
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Saeid Ghavami
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555. Katowice, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada.
| |
Collapse
|
3
|
Mlejnek P. What Is the Significance of Lysosomal-Mediated Resistance to Imatinib? Cells 2023; 12:cells12050709. [PMID: 36899844 PMCID: PMC10000661 DOI: 10.3390/cells12050709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The lysosomal sequestration of hydrophobic weak-base anticancer drugs is one proposed mechanism for the reduced availability of these drugs at target sites, resulting in a marked decrease in cytotoxicity and consequent resistance. While this subject is receiving increasing emphasis, it is so far only in laboratory experiments. Imatinib is a targeted anticancer drug used to treat chronic myeloid leukaemia (CML), gastrointestinal stromal tumours (GISTs), and a number of other malignancies. Its physicochemical properties make it a typical hydrophobic weak-base drug that accumulates in the lysosomes of tumour cells. Further laboratory studies suggest that this might significantly reduce its antitumor efficacy. However, a detailed analysis of published laboratory studies shows that lysosomal accumulation cannot be considered a clearly proven mechanism of resistance to imatinib. Second, more than 20 years of clinical experience with imatinib has revealed a number of resistance mechanisms, none of which is related to its accumulation in lysosomes. This review focuses on the analysis of salient evidence and raises a fundamental question about the significance of lysosomal sequestration of weak-base drugs in general as a possible resistance mechanism both in clinical and laboratory settings.
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77515 Olomouc, Czech Republic
| |
Collapse
|
4
|
Musi A, Bongiovanni L. Extracellular Vesicles in Cancer Drug Resistance: Implications on Melanoma Therapy. Cancers (Basel) 2023; 15:1074. [PMID: 36831417 PMCID: PMC9954626 DOI: 10.3390/cancers15041074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in the pathogenesis of neoplastic diseases. Their role in mediating drug resistance has been widely described in several types of cancers, including melanoma. EVs can mediate drug resistance through several different mechanisms, such as drug-sequestration, transfer of pro-survival proteins and RNA, induction of cancer stem cell-like features and interaction with cells of the tumor microenvironment and immune-system. Melanoma is a highly immunogenic tumor originating from the malignant transformation of melanocytes. Several therapeutic strategies currently used in the treatment of melanoma and the combination of BRAF and MEK-inhibitors, as well as immune check-point inhibitors (ICI), have consistently improved the overall survival time of melanoma patients. However, the development of resistance is one of the biggest problems leading to a poor clinical outcome, and EVs can contribute to this. EVs isolated from melanoma cells can contain "sequestered" chemotherapeutic drugs in order to eliminate them, or bioactive molecules (such as miRNA or proteins) that have been proven to play a crucial role in the transmission of resistance to sensitive neoplastic cells. This leads to the hypothesis that EVs could be considered as resistance-mediators in sensitive melanoma cells. These findings are a pivotal starting point for further investigations to better understand EVs' role in drug resistance mechanisms and how to target them. The purpose of this review is to summarize knowledge about EVs in order to develop a deeper understanding of their underlying mechanisms. This could lead to the development of new therapeutic strategies able to bypass EV-mediated drug-resistance in melanoma, such as by the use of combination therapy, including EV release inhibitors.
Collapse
Affiliation(s)
- Alice Musi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Laura Bongiovanni
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CT Utrecht, The Netherlands
| |
Collapse
|
5
|
Liu C, Jin Y, Fan Z. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer. Front Oncol 2021; 11:698023. [PMID: 34540667 PMCID: PMC8446599 DOI: 10.3389/fonc.2021.698023] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Although chemotherapy can improve the overall survival and prognosis of cancer patients, chemoresistance remains an obstacle due to the diversity, heterogeneity, and adaptability to environmental alters in clinic. To determine more possibilities for cancer therapy, recent studies have begun to explore changes in the metabolism, especially glycolysis. The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically, even under normoxia, which contributes to chemoresistance. However, the association between glycolysis and chemoresistance and molecular mechanisms of glycolysis-induced chemoresistance remains unclear. This review describes the mechanism of glycolysis-induced chemoresistance from the aspects of glycolysis process, signaling pathways, tumor microenvironment, and their interactions. The understanding of how glycolysis induces chemoresistance may provide new molecular targets and concepts for cancer therapy.
Collapse
Affiliation(s)
- Chang Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ying Jin
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Lee S, Shanti A. Effect of Exogenous pH on Cell Growth of Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22189910. [PMID: 34576073 PMCID: PMC8464873 DOI: 10.3390/ijms22189910] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common type of cancer in women and the most life-threatening cancer in females worldwide. One key feature of cancer cells, including breast cancer cells, is a reversed pH gradient which causes the extracellular pH of cancer cells to be more acidic than that of normal cells. Growing literature suggests that alkaline therapy could reverse the pH gradient back to normal and treat the cancer; however, evidence remains inconclusive. In this study, we investigated how different exogenous pH levels affected the growth, survival, intracellular reactive oxygen species (ROS) levels and cell cycle of triple-negative breast cancer cells from MDA-MB-231 cancer cell lines. Our results demonstrated that extreme acidic conditions (pH 6.0) and moderate to extreme basic conditions (pH 8.4 and pH 9.2) retarded cellular growth, induced cell death via necrosis and apoptosis, increased ROS levels, and shifted the cell cycle away from the G0/G1 phase. However, slightly acidic conditions (pH 6.7) increased cellular growth, decreased ROS levels, did not cause significant cell death and shifted the cell cycle from the G0/G1 phase to the G2/M phase, thereby explaining why cancer cells favored acidic conditions over neutral ones. Interestingly, our results also showed that cellular pH history did not significantly affect the subsequent growth of cells when the pH of the medium was changed. Based on these results, we suggest that controlling or maintaining an unfavorable pH (such as a slightly alkaline pH) for cancer cells in vivo could retard the growth of cancer cells or potentially treat the cancer.
Collapse
Affiliation(s)
- Sungmun Lee
- Healthcare Engineering Innovation Center, Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
- Khalifa University’s Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Correspondence: ; Tel.: +971-2-312-3945
| | - Aya Shanti
- Healthcare Engineering Innovation Center, Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates;
| |
Collapse
|
7
|
Di Pompo G, Cortini M, Baldini N, Avnet S. Acid Microenvironment in Bone Sarcomas. Cancers (Basel) 2021; 13:cancers13153848. [PMID: 34359749 PMCID: PMC8345667 DOI: 10.3390/cancers13153848] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Although rare, malignant bone sarcomas have devastating clinical implications for the health and survival of young adults and children. To date, efforts to identify the molecular drivers and targets have focused on cancer cells or on the interplay between cancer cells and stromal cells in the tumour microenvironment. On the contrary, in the current literature, the role of the chemical-physical conditions of the tumour microenvironment that may be implicated in sarcoma aggressiveness and progression are poorly reported and discussed. Among these, extracellular acidosis is a well-recognized hallmark of bone sarcomas and promotes cancer growth and dissemination but data presented on this topic are fragmented. Hence, we intended to provide a general and comprehensive overview of the causes and implications of acidosis in bone sarcoma. Abstract In bone sarcomas, extracellular proton accumulation is an intrinsic driver of malignancy. Extracellular acidosis increases stemness, invasion, angiogenesis, metastasis, and resistance to therapy of cancer cells. It reprograms tumour-associated stroma into a protumour phenotype through the release of inflammatory cytokines. It affects bone homeostasis, as extracellular proton accumulation is perceived by acid-sensing ion channels located at the cell membrane of normal bone cells. In bone, acidosis results from the altered glycolytic metabolism of bone cancer cells and the resorption activity of tumour-induced osteoclasts that share the same ecosystem. Proton extrusion activity is mediated by extruders and transporters located at the cell membrane of normal and transformed cells, including vacuolar ATPase and carbonic anhydrase IX, or by the release of highly acidic lysosomes by exocytosis. To date, a number of investigations have focused on the effects of acidosis and its inhibition in bone sarcomas, including studies evaluating the use of photodynamic therapy. In this review, we will discuss the current status of all findings on extracellular acidosis in bone sarcomas, with a specific focus on the characteristics of the bone microenvironment and the acid-targeting therapeutic approaches that are currently being evaluated.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Margherita Cortini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.D.P.); (M.C.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sofia Avnet
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
8
|
Aslanzadeh S, Hedayatipour A, Smalley M, McFarlane N. A Combined pH-Impedance System Suitable for Portable Continuous Sensing. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:390-401. [PMID: 34214043 DOI: 10.1109/tbcas.2021.3094357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, a combined pH and impedance sensing system suitable for portable measurements is presented. The sensor outputs are converted directly to frequency or pulse width. The pH sensor is based on a voltage clamp topology that uses charging and discharging capacitors, voltage window comparators, and an SR-Latch to convert the output to frequency. The impedance to frequency sensor is based on current and voltage comparators and an SR-Latch. The pH system based on ISFET transistors is experimentally verified with on chip electrodes while the impedance sensor is characterized with discrete electronic components. The portable system is implemented with two chips and an external multi-electrode array into a portable system. Resistance, capacitance, and pH are experimentally measured using buffer solutions to simulate a water quality monitoring application. The system is implemented in a portable format and all modules, excluding the commercial microprocessor, consume an average power of 56 μW with an area of 0.006 mm 2 using a 180 nm technology.
Collapse
|
9
|
Wang YY, Jiang CF, Liu X, Li JN, Cai GZ, Gong JY. The study of Raddeanin A cerebrovascular endothelial cell trafficking through P-glycoprotein. Biochem Biophys Res Commun 2021; 559:222-229. [PMID: 33962209 DOI: 10.1016/j.bbrc.2021.04.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
As one of the natural triterpenoids isolated from Anemone Raddeana Regel, Raddeanin A (RA) has been confirmed to possess therapeutic effects against multiple tumorigeneses, especially for the onset of glioblastoma and growth in human brains. However, the mechanism by which this happens remains poorly understood in terms of the vascular endothelium trafficking routine of RA through the brain-blood barrier (BBB). To seek such answers, human brain microenvironment endothelial cells (HBMECs) were used to stimulate the microenvironment in vitro, and to explore the intracellular accumulation of RA. The results of this experiment illustrated that RA has a relative moderate transport affinity for such cells. The kinetic parameter Km was 37.01 ± 2.116 μM and Vmax was 9.412 ± 0.1375 nM/min/mg of protein. Interestingly, protein downregulation of P-glycoprotein (P-gp, ABCB1/MDR1) significantly activated RA transmembrane activity, which proves that P-gp is responsible for RA cellular trafficking. In addition, the selective non-specific inhibitor, LY335979 increased either RA or the classical substrate of P-gp, digoxin, intracellular accumulation by restricting the transporter's function but without jeopardizing cytomembrane proteins. Moreover, a decrease in the expression or activity of P-gp triggered RA drug resistance to HBMECs. In summary, our data showed that both the expression and function of P-gp are all necessary for RA transmembrane trafficking through cerebrovascular endothelial cells. This study provides significant evidence for the presence of a connection between RA transport and P-gp variation during drug BBB penetration. It is also suggesting some vital guidance on the RA pharmacodynamic effect in human brains.
Collapse
Affiliation(s)
- Yue-Yue Wang
- Key Laboratory of Traditional Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Chun-Feng Jiang
- Key Laboratory of Traditional Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Xin Liu
- Key Laboratory of Traditional Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Jian-Nan Li
- Key Laboratory of Traditional Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Guang-Zhi Cai
- Key Laboratory of Traditional Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Traditional Chinese Medicine, Changchun, 130117, China.
| | - Ji-Yu Gong
- Key Laboratory of Traditional Chinese Medicine Analysis, School of Pharmaceutical Sciences, Changchun University of Traditional Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
10
|
Law ZJ, Khoo XH, Lim PT, Goh BH, Ming LC, Lee WL, Goh HP. Extracellular Vesicle-Mediated Chemoresistance in Oral Squamous Cell Carcinoma. Front Mol Biosci 2021; 8:629888. [PMID: 33768115 PMCID: PMC7985159 DOI: 10.3389/fmolb.2021.629888] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) remains a cancer with poor prognosis and high recurrence rate. Even with multimodal treatment options available for OSCC, tumor drug resistance is still a persistent problem, leading to increased tumor invasiveness among OSCC patients. An emerging trend of thought proposes that extracellular vesicles (EVs) play a role in facilitating tumor progression and chemoresistance via signaling between tumor cells. In particular, exosomes and microvesicles are heavily implicated in this process by various studies. Where primary studies into a particular EV-mediated chemoresistance mechanism in OSCC are limited, similar studies on other cancer cell types will be used in the discussion below to provide ideas for a new line of investigation into OSCC chemoresistance. By understanding how EVs are or may be involved in OSCC chemoresistance, novel targeted therapies such as EV inhibition may be an effective alternative to current treatment options in the near future. In this review, the current understandings on OSCC drug mechanisms under the novel context of exosomes and microvesicles were reviewed, including shuttling of miRNA content, drug efflux, alteration of vesicular pH, anti-apoptotic signaling, modulation of DNA damage repair, immunomodulation, epithelial-to-mesenchymal transition and maintenance of tumor by cancer stem cells.
Collapse
Affiliation(s)
- Zhu-Jun Law
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Xin Hui Khoo
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Pei Tee Lim
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Bey Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Selangor, Malaysia
| | - Hui Poh Goh
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| |
Collapse
|
11
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
12
|
Li Z, He P, Luo G, Shi X, Yuan G, Zhang B, Seidl C, Gewies A, Wang Y, Zou Y, Long Y, Yue D, Zhang X. Increased Tumoral Microenvironmental pH Improves Cytotoxic Effect of Pharmacologic Ascorbic Acid in Castration-Resistant Prostate Cancer Cells. Front Pharmacol 2020; 11:570939. [PMID: 33071784 PMCID: PMC7538777 DOI: 10.3389/fphar.2020.570939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/31/2020] [Indexed: 01/23/2023] Open
Abstract
Background The anticancer potential of pharmacologic ascorbic acid (AA) has been detected in a number of cancer cells. However, in vivo study suggested a strongly reduced cytotoxic activity of AA. It was known that pH could be a critical influencing factor for multiple anticancer treatments. In this study, we explored the influence of pH on the cytotoxicity of ascorbic acid. We employed castration-resistant prostate cancer (CRPC) cell lines PC3 and DU145 to observe the therapeutic effect of AA on PCa cells that were cultured with different pH in vitro. We also analyzed the influence of pH and extracellular oxidation on cytotoxicity of AA in cancer cells using reactive oxygen species (ROS) assay, cellular uptake of AA, and NADPH assay. Male BALB/c nude mice bearing prostate carcinoma xenografts (PC3 or DU145) were used to assess treatment response to AA with or without bicarbonate in vivo. The cellular uptake of AA in PCa xenografts was detected using positron emission tomography (PET). Small animal PET/CT scans were performed on mice after the administration of 6-deoxy-6-[18F] fluoro-L-ascorbic acid (18F-DFA). Results Our in vitro studies demonstrate that acidic pH attenuates the cytotoxic activity of pharmacologic ascorbic acid by inhibiting AA uptake in PCa cells. Additionally, we found that the cancer cell-selective toxicity of AA depends on ROS. In vivo, combination of AA and bicarbonate could provide a significant better therapeutic outcome in comparison with controls or AA single treated mice. 18F-DFA PET imaging illustrated that the treatment with NaHCO3 could significantly increase the AA uptake in tumor. Conclusions The alkalinity of tumor microenvironment plays an important role in anticancer efficiency of AA in CRPC. 18F-DFA PET/CT imaging could predict the therapeutic response of PCa animal model through illustration of tumoral uptake of AA. 18F-DFA might be a potential PET tracer in clinical diagnosis and treatment for CRPC.
Collapse
Affiliation(s)
- Zhoulei Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Peng He
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ganhua Luo
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinchong Shi
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Gang Yuan
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Bing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Christof Seidl
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Gewies
- Institute of Molecular Toxicology and Pharmacology, German Research Center for Environmental Health, Munich, Germany
| | - Yue Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan Zou
- Sichuan Key Laboratory of Medical Imaging & Ultrasound Medical Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yali Long
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dianchao Yue
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
13
|
Zhang M, Li T, Zhu J, Tuo B, Liu X. Physiological and pathophysiological role of ion channels and transporters in the colorectum and colorectal cancer. J Cell Mol Med 2020; 24:9486-9494. [PMID: 32662230 PMCID: PMC7520301 DOI: 10.1111/jcmm.15600] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
The incidence of colorectal cancer has increased annually, and the pathogenesis of this disease requires further investigation. In normal colorectal tissues, ion channels and transporters maintain the water-electrolyte balance and acid/base homeostasis. However, dysfunction of these ion channels and transporters leads to the development and progression of colorectal cancer. Therefore, this review focuses on the progress in understanding the roles of ion channels and transporters in the colorectum and in colorectal cancer, including aquaporins (AQPs), Cl- channels, Cl- / HCO 3 - exchangers, Na+ / HCO 3 - transporters and Na+ /H+ exchangers. The goal of this review is to promote the identification of new targets for the treatment and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Digestive Disease Institute of Guizhou ProvinceZunyiChina
| | - Taolang Li
- Department of Thyroid and Breast SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Jiaxing Zhu
- Department of GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Digestive Disease Institute of Guizhou ProvinceZunyiChina
| | - Biguang Tuo
- Department of GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Digestive Disease Institute of Guizhou ProvinceZunyiChina
| | - Xuemei Liu
- Department of GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Digestive Disease Institute of Guizhou ProvinceZunyiChina
| |
Collapse
|
14
|
Collins MP, Forgac M. Regulation and function of V-ATPases in physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183341. [PMID: 32422136 DOI: 10.1016/j.bbamem.2020.183341] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The vacuolar H+-ATPases (V-ATPases) are essential, ATP-dependent proton pumps present in a variety of eukaryotic cellular membranes. Intracellularly, V-ATPase-dependent acidification functions in such processes as membrane traffic, protein degradation, autophagy and the coupled transport of small molecules. V-ATPases at the plasma membrane of certain specialized cells function in such processes as bone resorption, sperm maturation and urinary acidification. V-ATPases also function in disease processes such as pathogen entry and cancer cell invasiveness, while defects in V-ATPase genes are associated with disorders such as osteopetrosis, renal tubular acidosis and neurodegenerative diseases. This review highlights recent advances in our understanding of V-ATPase structure, mechanism, function and regulation, with an emphasis on the signaling pathways controlling V-ATPase assembly in mammalian cells. The role of V-ATPases in cancer and other human pathologies, and the prospects for therapeutic intervention, are also discussed.
Collapse
Affiliation(s)
- Michael P Collins
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America
| | - Michael Forgac
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America; Dept. of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States of America.
| |
Collapse
|
15
|
The Lysosomal Sequestration of Tyrosine Kinase Inhibitors and Drug Resistance. Biomolecules 2019; 9:biom9110675. [PMID: 31683643 PMCID: PMC6921012 DOI: 10.3390/biom9110675] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 01/20/2023] Open
Abstract
The Lysosomal sequestration of weak-base anticancer drugs is one putative mechanism for resistance to chemotherapy but it has never been directly proven. We addressed the question of whether the lysosomal sequestration of tyrosine kinase inhibitors (TKIs) itself contributes to the drug resistance in vitro. Our analysis indicates that lysosomal sequestration of an anticancer drug can significantly reduce the concentration at target sites, only when it simultaneously decreases its extracellular concentration due to equilibrium, since uncharged forms of weak-base drugs freely diffuse across cellular membranes. Even though the studied TKIs, including imatinib, nilotinib, and dasatinib, were extensively accumulated in the lysosomes of cancer cells, their sequestration was insufficient to substantially reduce the extracellular drug concentration. Lysosomal accumulation of TKIs also failed to affect the Bcr-Abl signaling. Cell pre-treatment with sunitinib significantly enhanced the lysosomal accumulation of the TKIs used; however, without apparent lysosomal biogenesis. Importantly, even increased lysosomal sequestration of TKIs neither decreased their extracellular concentrations nor affected the sensitivity of Bcr-Abl to TKIs. In conclusion, our results clearly show that the lysosomal sequestration of TKIs failed to change their concentrations at target sites, and thus, can hardly contribute to drug resistance in vitro.
Collapse
|
16
|
Geeviman K, Babu D, Prakash Babu P. Pantoprazole Induces Mitochondrial Apoptosis and Attenuates NF-κB Signaling in Glioma Cells. Cell Mol Neurobiol 2018; 38:1491-1504. [PMID: 30302629 PMCID: PMC11469912 DOI: 10.1007/s10571-018-0623-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Gastric H+/K+-ATPase or vacuolar-ATPases (V-ATPases) are critical for the cancer cells survival and growth in the ischemic microenvironment by extruding protons from the cell. The drugs which inhibit V-ATPases are known as proton pump inhibitors (PPIs). In the present study, we aimed to evaluate the anticancer efficacy of pantoprazole (PPZ) and its consequences on NF-κB signaling in glioma cells. We have used MTT and clonogenic assay to show PPZ effect on glioma cell growth. Propidium iodide and rhodamine 123 staining were performed to demonstrate cell cycle arrest and mitochondrial depolarization. TUNEL staining was used to evidence apoptosis after PPZ treatment. Immunoblotting and immunofluorescence microscopy were performed to depict protein levels and localization, respectively. Luciferase assay was performed to confirm NF-κB suppression by PPZ. Our results revealed PPZ treatment inhibits cell viability or growth and induced cell death in a dose- and time-dependent manner. PPZ exposure arrested G0/G1 cyclic phase and increased TUNEL positivity, caspase-3 and PARP cleavage with altered pro and anti-apoptotic proteins. PPZ also induced ROS levels and depolarized mitochondria (Δψm) with increased cytosolic cytochrome c level. Further, PPZ suppressed TNF-α stimulated NF-κB signaling by repressing p65 nuclear translocation. NF-κB luciferase reporter assays revealed significant inhibition of NF-κB gene upon PPZ treatment. PPZ exposure also reduced the expression of NF-κB-associated genes, such as cyclin-D1, iNOS, and COX-2, which indicate NF-κB inhibition. Altogether, the present study disclosed that PPZ exerts mitochondrial apoptosis and attenuates NF-κB signaling suggesting PPZ can be an effective and safe anticancer drug for glioma.
Collapse
Affiliation(s)
- Khamushavalli Geeviman
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, F-23/71, Hyderabad, TS, 500 046, India
| | - Deepak Babu
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, F-23/71, Hyderabad, TS, 500 046, India
| | - Phanithi Prakash Babu
- Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, F-23/71, Hyderabad, TS, 500 046, India.
| |
Collapse
|
17
|
Chen Q, Liu X, Luo Z, Wang S, Lin J, Xie Z, Li M, Li C, Cao H, Huang Q, Mao J, Xu B. Chloride channel-3 mediates multidrug resistance of cancer by upregulating P-glycoprotein expression. J Cell Physiol 2018; 234:6611-6623. [PMID: 30230544 DOI: 10.1002/jcp.27402] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 08/17/2018] [Indexed: 12/20/2022]
Abstract
Chloride channel-3 (ClC-3), a member of the ClC family of voltage-gated Cl- channels, is involved in the resistance of tumor cells to chemotherapeutic drugs. Here, we report a new mechanism for ClC-3 in mediating multidrug resistance (MDR). ClC-3 was highly expressed in the P-glycoprotein (P-gp)-dependent human lung adenocarcinoma cell line (A549)/paclitaxel (PTX) and the human breast carcinoma cell line (MCF-7)/doxorubicin (DOX) resistant cells. Changes in the ClC-3 expression resulted in the development of drug resistance in formerly drug-sensitive A549 or MCF-7 cells, and drug sensitivity in formerly drug-resistant A549/Taxol and MCF-7/DOX cells. Double transgenic MMTV-PyMT/CLCN3 mice with spontaneous mammary cancer and ClC-3 overexpression demonstrated drug resistance to PTX and DOX. ClC-3 expression upregulated the expression of MDR1 messenger RNA and P-gp by activating the nuclear factor-κB (NF-κB)-signaling pathway. These data suggest that ClC-3 expression in cancer cells induces MDR by upregulating NF-κB-signaling-dependent P-gp expression involving another new mechanism for ClC-3 in the development of drug resistance of cancers.
Collapse
Affiliation(s)
- Qi Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xueqiang Liu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhesi Luo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shisi Wang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jialin Lin
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zheng Xie
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mengge Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Chunmei Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Qingsong Huang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianwen Mao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China.,Guangdong Province Key Laboratory for Biotechnology Drug Candidates and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
18
|
Harrison MA, Muench SP. The Vacuolar ATPase - A Nano-scale Motor That Drives Cell Biology. Subcell Biochem 2018; 87:409-459. [PMID: 29464568 DOI: 10.1007/978-981-10-7757-9_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a ~1 MDa membrane protein complex that couples the hydrolysis of cytosolic ATP to the transmembrane movement of protons. In essentially all eukaryotic cells, this acid pumping function plays critical roles in the acidification of endosomal/lysosomal compartments and hence in transport, recycling and degradative pathways. It is also important in acid extrusion across the plasma membrane of some cells, contributing to homeostatic control of cytoplasmic pH and maintenance of appropriate extracellular acidity. The complex, assembled from up to 30 individual polypeptides, operates as a molecular motor with rotary mechanics. Historically, structural inferences about the eukaryotic V-ATPase and its subunits have been made by comparison to the structures of bacterial homologues. However, more recently, we have developed a much better understanding of the complete structure of the eukaryotic complex, in particular through advances in cryo-electron microscopy. This chapter explores these recent developments, and examines what they now reveal about the catalytic mechanism of this essential proton pump and how its activity might be regulated in response to cellular signals.
Collapse
Affiliation(s)
- Michael A Harrison
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK.
| | - Steven P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| |
Collapse
|
19
|
Avnet S, Lemma S, Cortini M, Pellegrini P, Perut F, Zini N, Kusuzaki K, Chano T, Grisendi G, Dominici M, De Milito A, Baldini N. Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance. Oncotarget 2018; 7:63408-63423. [PMID: 27566564 PMCID: PMC5325373 DOI: 10.18632/oncotarget.11503] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
Current therapy of osteosarcoma (OS), the most common primary bone malignancy, is based on a combination of surgery and chemotherapy. Multidrug resistance mediated by P-glycoprotein (P-gp) overexpression has been previously associated with treatment failure and progression of OS, although other mechanisms may also play a role. We considered the typical acidic extracellular pH (pHe) of sarcomas, and found that doxorubicin (DXR) cytotoxicity is reduced in P-gp negative OS cells cultured at pHe 6.5 compared to standard 7.4. Short-time (24-48 hours) exposure to low pHe significantly increased the number and acidity of lysosomes, and the combination of DXR with omeprazole, a proton pump inhibitor targeting lysosomal acidity, significantly enhanced DXR cytotoxicity. In OS xenografts, the combination treatment of DXR and omeprazole significantly reduced tumor volume and body weight loss. The impaired toxicity of DXR at low pHe was not associated with increased autophagy or lysosomal acidification, but rather, as shown by SNARF staining, with a reversal of the pH gradient at the plasma membrane (ΔpHcm), eventually leading to a reduced DXR intracellular accumulation. Finally, the reversal of ΔpHcm in OS cells promoted resistance not only to DXR, but also to cisplatin and methotrexate, and, to a lesser extent, to vincristine. Altogether, our findings show that, in OS cells, short-term acidosis induces resistance to different chemotherapeutic drugs by a reversal of ΔpHcm, suggesting that buffer therapies or regimens including proton pump inhibitors in combination to low concentrations of conventional anticancer agents may offer novel solutions to overcome drug resistance.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paola Pellegrini
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Francesca Perut
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicoletta Zini
- CNR - National Research Council of Italy, Institute of Molecular Genetics, Bologna, Italy.,Laboratory of Musculoskeletal Cell Biology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children and Adults, University-hospital of Modena e Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University-hospital of Modena e Reggio Emilia, Modena, Italy
| | - Angelo De Milito
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm, Sweden
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
20
|
Rethinking the Combination of Proton Exchanger Inhibitors in Cancer Therapy. Metabolites 2017; 8:metabo8010002. [PMID: 29295495 PMCID: PMC5875992 DOI: 10.3390/metabo8010002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Microenvironmental acidity is becoming a key target for the new age of cancer treatment. In fact, while cancer is characterized by genetic heterogeneity, extracellular acidity is a common phenotype of almost all cancers. To survive and proliferate under acidic conditions, tumor cells up-regulate proton exchangers and transporters (mainly V-ATPase, Na+/H+ exchanger (NHE), monocarboxylate transporters (MCTs), and carbonic anhydrases (CAs)), that actively extrude excess protons, avoiding intracellular accumulation of toxic molecules, thus becoming a sort of survival option with many similarities compared with unicellular microorganisms. These systems are also involved in the unresponsiveness or resistance to chemotherapy, leading to the protection of cancer cells from the vast majority of drugs, that when protonated in the acidic tumor microenvironment, do not enter into cancer cells. Indeed, as usually occurs in the progression versus malignancy, resistant tumor clones emerge and proliferate, following a transient initial response to a therapy, thus giving rise to more malignant behavior and rapid tumor progression. Recent studies are supporting the use of a cocktail of proton exchanger inhibitors as a new strategy against cancer.
Collapse
|
21
|
Ikemura K, Hiramatsu S, Okuda M. Drug Repositioning of Proton Pump Inhibitors for Enhanced Efficacy and Safety of Cancer Chemotherapy. Front Pharmacol 2017; 8:911. [PMID: 29311921 PMCID: PMC5732944 DOI: 10.3389/fphar.2017.00911] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/29/2017] [Indexed: 11/18/2022] Open
Abstract
Proton pump inhibitors (PPIs), H+/K+-ATPase inhibitors, are the most commonly prescribed drugs for the treatment of gastroesophageal reflux and peptic ulcer diseases; they are highly safe and tolerable. Since PPIs are frequently used in cancer patients, studies investigating interactions between PPIs and anticancer agents are of particular importance to achieving effective and safe cancer chemotherapy. Several studies have revealed that PPIs inhibit not only the H+/K+-ATPase in gastric parietal cells, but also the vacuolar H+-ATPase (V-ATPase) overexpressed in tumor cells, as well as the renal basolateral organic cation transporter 2 (OCT2) associated with pharmacokinetics and/or renal accumulation of various drugs, including anticancer agents. In this mini-review, we summarize the current knowledge regarding the impact of PPIs on the efficacy and safety of cancer chemotherapeutics via inhibition of targets other than the H+/K+-ATPase. Co-administration of clinical doses of PPIs protected kidney function in patients receiving cisplatin and fluorouracil, presumably by decreasing accumulation of cisplatin in the kidney via OCT2 inhibition. In addition, co-administration or pretreatment with PPIs could inhibit H+ transport via the V-ATPase in tumor cells, resulting in lower extracellular acidification and intracellular acidic vesicles to enhance the sensitivity of the tumor cells to the anticancer agents. In the present mini-review, we suggest that PPIs enhance the efficacy and safety of anticancer agents via off-target inhibition (e.g., of OCT2 and V-ATPase), rather than on-target inhibition of the H+/K+-ATPase. The present findings should provide important information to establish novel supportive therapy with PPIs during cancer chemotherapy.
Collapse
Affiliation(s)
- Kenji Ikemura
- Department of Pharmacy, Mie University Hospital, Tsu, Japan.,Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Shunichi Hiramatsu
- Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masahiro Okuda
- Department of Pharmacy, Mie University Hospital, Tsu, Japan.,Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
22
|
Wang J, Yeung BZ, Cui M, Peer CJ, Lu Z, Figg WD, Guillaume Wientjes M, Woo S, Au JLS. Exosome is a mechanism of intercellular drug transfer: Application of quantitative pharmacology. J Control Release 2017; 268:147-158. [PMID: 29054369 DOI: 10.1016/j.jconrel.2017.10.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/02/2017] [Accepted: 10/13/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Exosomes are small membrane vesicles (30-100nm in diameter) secreted by cells into extracellular space. The present study evaluated the effect of chemotherapeutic agents on exosome production and/or release, and quantified the contribution of exosomes to intercellular drug transfer and pharmacodynamics. METHODS Human cancer cells (breast MCF7, breast-to-lung metastatic LM2, ovarian A2780 and OVCAR4) were treated with paclitaxel (PTX, 2-1000nM) or doxorubicin (DOX, 20-1000nM) for 24-48h. Exosomes were isolated from the culture medium of drug-treated donor cells (Donor cells) using ultra-centrifugation, and analyzed for acetylcholinesterase activity, total proteins, drug concentrations, and biological effects (cytotoxicity and anti-migration) on drug-naïve recipient cells (Recipient cells). These results were used to develop computational predictive quantitative pharmacology models. RESULTS Cells in exponential growth phase released ~220 exosomes/cell in culture medium. PTX and DOX significantly promoted exosome production and/or release in a dose- and time-dependent manner, with greater effects in ovarian cancer cells than in breast cancer cells. Exosomes isolated from Donor cells contained appreciable drug levels (2-7pmole/106 cells after 24h treatment with 100-1000nM PTX), and caused cytotoxicity and inhibited migration of Recipient cells. Quantitative pharmacology models that integrated cellular PTX pharmacokinetics with PTX pharmacodynamics successfully predicted effects of exosomes on intercellular drug transfer, cytotoxicity of PTX on Donor cells and cytotoxicity of PTX-containing exosomes on Recipient cells. Additional model simulations indicate that within clinically achievable PTX concentrations, the contribution of exosomes to active drug efflux increased with drug concentration and exceeded the p-glycoprotein efflux when the latter was saturated. CONCLUSIONS Our results indicate (a) chemotherapeutic agents stimulate exosome production or release, and (b) exosome is a mechanism of intercellular drug transfer that contributes to pharmacodynamics of neighboring cells.
Collapse
Affiliation(s)
- Jin Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA
| | - Bertrand Z Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Optimum Therapeutics LLC, Carlsbad, CA 92008, USA
| | - Minjian Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Optimum Therapeutics LLC, Carlsbad, CA 92008, USA
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ze Lu
- Optimum Therapeutics LLC, Carlsbad, CA 92008, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - M Guillaume Wientjes
- Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Optimum Therapeutics LLC, Carlsbad, CA 92008, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Jessie L-S Au
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Institute of Quantitative Systems Pharmacology, Carlsbad, CA 92008, USA; Optimum Therapeutics LLC, Carlsbad, CA 92008, USA; College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
23
|
Singh MS, Tammam SN, Shetab Boushehri MA, Lamprecht A. MDR in cancer: Addressing the underlying cellular alterations with the use of nanocarriers. Pharmacol Res 2017; 126:2-30. [PMID: 28760489 DOI: 10.1016/j.phrs.2017.07.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/29/2017] [Accepted: 07/26/2017] [Indexed: 01/02/2023]
Abstract
Multidrug resistance (MDR) is associated with a wide range of pathological changes at different cellular and intracellular levels. Nanoparticles (NPs) have been extensively exploited as the carriers of MDR reversing payloads to resistant tumor cells. However, when properly formulated in terms of chemical composition and physicochemical properties, NPs can serve as beyond delivery systems and help overcome MDR even without carrying a load of chemosensitizers or MDR reversing molecular cargos. Whether serving as drug carriers or beyond, a wise design of the nanoparticulate systems to overcome the cellular and intracellular alterations underlying the resistance is imperative. Within the current review, we will initially discuss the cellular changes occurring in resistant cells and how such changes lead to chemotherapy failure and cancer cell survival. We will then focus on different mechanisms through which nanosystems with appropriate chemical composition and physicochemical properties can serve as MDR reversing units at different cellular and intracellular levels according to the changes that underlie the resistance. Finally, we will conclude by discussing logical grounds for a wise and rational design of MDR reversing nanoparticulate systems to improve the cancer therapeutic approaches.
Collapse
Affiliation(s)
- Manu S Singh
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany
| | - Salma N Tammam
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Department of Pharmaceutical Technology, German University of Cairo, Egypt
| | | | - Alf Lamprecht
- Department of Pharmaceutical Technology and Biopharmceutics, University of Bonn, Germany; Laboratory of Pharmaceutical Engineering (EA4267), University of Franche-Comté, Besançon, France.
| |
Collapse
|
24
|
Abstract
The vacuolar ATPases (V-ATPases) are a family of proton pumps that couple ATP hydrolysis to proton transport into intracellular compartments and across the plasma membrane. They function in a wide array of normal cellular processes, including membrane traffic, protein processing and degradation, and the coupled transport of small molecules, as well as such physiological processes as urinary acidification and bone resorption. The V-ATPases have also been implicated in a number of disease processes, including viral infection, renal disease, and bone resorption defects. This review is focused on the growing evidence for the important role of V-ATPases in cancer. This includes functions in cellular signaling (particularly Wnt, Notch, and mTOR signaling), cancer cell survival in the highly acidic environment of tumors, aiding the development of drug resistance, as well as crucial roles in tumor cell invasion, migration, and metastasis. Of greatest excitement is evidence that at least some tumors express isoforms of V-ATPase subunits whose disruption is not lethal, leading to the possibility of developing anti-cancer therapeutics that selectively target V-ATPases that function in cancer cells.
Collapse
Affiliation(s)
- Laura Stransky
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Program in Cellular and Molecular Physiology, Program in Biochemistry, and Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Kristina Cotter
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Program in Cellular and Molecular Physiology, Program in Biochemistry, and Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Michael Forgac
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Program in Cellular and Molecular Physiology, Program in Biochemistry, and Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| |
Collapse
|
25
|
Spugnini E, Fais S. Proton pump inhibition and cancer therapeutics: A specific tumor targeting or it is a phenomenon secondary to a systemic buffering? Semin Cancer Biol 2017; 43:111-118. [PMID: 28088584 DOI: 10.1016/j.semcancer.2017.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Abstract
One of the unsolved mysteries in oncology includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg's discovery that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to the development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. In the last decades a primordial role for proton exchangers has been supported as a key tumor advantage in facing off the acidic milieu. Proton exchangers do not allow intracellular acidification through a continuous elimination of H+ either outside the cells or within the internal vacuoles. This article wants to comment a translational process through that led to the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed powerful chemosensitizers as well. In this process we achieved the clinical proof of concept that PPI may well be included in new anti-cancer strategies with a solid background and rationale.
Collapse
Affiliation(s)
- Enrico Spugnini
- SAFU, Regina Elena Cancer Institute, Via Chianesi 53, 00134 Rome, Italy
| | - Stefano Fais
- Dept. of Therapeutic Research and Medicines Evaluation Istituto Superiore di Sanità (National Institute of Health), Viale Regina Elena 299, Rome Italy.
| |
Collapse
|
26
|
YILMAZTEPE ORAL A, ORAL HB, SARIMAHMUT M, CEVATEMRE B, ÖZKAYA G, KORKMAZ Ş, ULUKAYA E. Combination of esomeprazole with chemotherapeutics results in more pronounced cytotoxic effect via apoptosis on A549 nonsmall-cell lung cancer cell line. Turk J Biol 2017. [DOI: 10.3906/biy-1606-46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
27
|
Sullivan R, Maresh G, Zhang X, Salomon C, Hooper J, Margolin D, Li L. The Emerging Roles of Extracellular Vesicles As Communication Vehicles within the Tumor Microenvironment and Beyond. Front Endocrinol (Lausanne) 2017; 8:194. [PMID: 28848498 PMCID: PMC5550719 DOI: 10.3389/fendo.2017.00194] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Tumors evolve in complex and dynamic microenvironments that they rely on for sustained growth, invasion, and metastasis. Within this space, tumor cells and non-malignant cells are in frequent communication. One specific mode of communication that has gained recent attention is the release of extracellular vesicles (EVs). EVs are lipid bilayer-bound vehicles that are released from the cell membrane and carry nucleic acids, proteins, and lipids to neighboring or distant cells. EVs have been demonstrated to influence a multitude of processes that aid in tumor progression including cellular proliferation, angiogenesis, migration, invasion, metastasis, immunoediting, and drug resistance. The ubiquitous involvement of EVs on cancer progression makes them very suitable targets for novel therapeutics. Furthermore, they are being studied as specific markers for cancer diagnostics, prognosis, and even as chemotherapy drug-delivery systems. This review focuses on the most recent advances in EV knowledge, some current and potential problems with their use, and some proposed solutions to consider for the future.
Collapse
Affiliation(s)
- Ryan Sullivan
- Laboratory of Translational Cancer Research, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Grace Maresh
- Laboratory of Translational Cancer Research, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Xin Zhang
- Laboratory of Translational Cancer Research, Ochsner Clinic Foundation, New Orleans, LA, United States
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane, QLD, Australia
- Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, LA, United States
- Faculty of Pharmacy, Department of Clinical Biochemistry and Immunology, University of Concepción, Concepción, Chile
| | - John Hooper
- Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - David Margolin
- Department of Colon and Rectal Surgery, Ochsner Clinic Foundation, New Orleans, LA, United States
- Ochsner Clinical School, School of Medicine, University Queensland, New Orleans, LA, United States
| | - Li Li
- Laboratory of Translational Cancer Research, Ochsner Clinic Foundation, New Orleans, LA, United States
- Ochsner Clinical School, School of Medicine, University Queensland, New Orleans, LA, United States
- *Correspondence: Li Li,
| |
Collapse
|
28
|
Kamal A, Nekkanti S, Shankaraiah N, Sathish M. Future of Drug Discovery. DRUG RESISTANCE IN BACTERIA, FUNGI, MALARIA, AND CANCER 2017:609-629. [DOI: 10.1007/978-3-319-48683-3_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
29
|
Zhang X, De Milito A, Demiroglu-Zergeroglu A, Gullbo J, D'Arcy P, Linder S. Eradicating Quiescent Tumor Cells by Targeting Mitochondrial Bioenergetics. Trends Cancer 2016; 2:657-663. [PMID: 28741504 DOI: 10.1016/j.trecan.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 01/08/2023]
Abstract
The presence of quiescent cell populations in solid tumors represents a major challenge for disease eradication. Such cells are generally present in poorly vascularized tumor areas, show limited sensitivity to traditional chemotherapeutical drugs, and tend to resume proliferation, resulting in tumor reseeding and growth. There is growing recognition of the importance of developing therapies that target these quiescent cell populations to achieve long-lasting remission. Recent studies have shown that the combination of hypoxia and reduced nutrient availability in poorly vascularized areas results in limited tumor metabolic plasticity coupled with an increased sensitivity to perturbations in mitochondrial flux. Targeting of mitochondrial bioenergetics in these quiescent cell tumor populations may enable tumor eradication and improve the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Department of Medical and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden; Department of Oncology-Pathology, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | - Angelo De Milito
- Department of Oncology-Pathology, Karolinska Institute, SE-171 76 Stockholm, Sweden
| | | | - Joachim Gullbo
- Department of Immunology, Genetics and Pathology, Section of Oncology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Padraig D'Arcy
- Department of Medical and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden
| | - Stig Linder
- Department of Medical and Health Sciences, Linköping University, SE-581 83 Linköping, Sweden; Department of Oncology-Pathology, Karolinska Institute, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
30
|
Li Y, Sun Y, Jing L, Wang J, Yan Y, Feng Y, Zhang Y, Liu Z, Ma L, Diao A. Lysosome Inhibitors Enhance the Chemotherapeutic Activity of Doxorubicin in HepG2 Cells. Chemotherapy 2016; 62:85-93. [PMID: 27764836 DOI: 10.1159/000448802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/29/2016] [Indexed: 11/19/2022]
Abstract
The lysosome inhibitors bafilomycin A1 and chloroquine have both lysosomotropic properties and autophagy inhibition ability, and are promising clinical agents to be used in combination with anticancer drugs. In order to investigate this combination effect, HepG2 cells were treated with bafilomycin A1, chloroquine, or/and doxorubicin, and their proliferative ability, induction of apoptosis, and the changes of lysosomal membrane permeabilization and mitochondrial membrane potential were studied. The results demonstrate that treatment with bafilomycin A1 or chloroquine alone at a relatively low concentration promotes the inhibitory effect of doxorubicin on cell growth and apoptosis. Further studies reveal that bafilomycin A1 and chloroquine promote lysosomal membrane permeabilization and the reduction of mitochondrial membrane potential induced by doxorubicin. Our findings suggest that bafilomycin A1 and chloroquine potentiate the anticancer effect of doxorubicin in hepatic cancer cells and that supplementation of conventional chemotherapy with lysosome inhibitors may provide a more efficient anticancer therapy.
Collapse
Affiliation(s)
- Yuyin Li
- School of Biotechnology, Tianjin University of Science and Technology, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Santos JM, Martínez-Zaguilán R, Facanha AR, Hussain F, Sennoune SR. Vacuolar H+-ATPase in the nuclear membranes regulates nucleo-cytosolic proton gradients. Am J Physiol Cell Physiol 2016; 311:C547-C558. [PMID: 27510904 DOI: 10.1152/ajpcell.00019.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/26/2016] [Indexed: 01/01/2023]
Abstract
The regulation of the luminal pH of each organelle is crucial for its function and must be controlled tightly. Nevertheless, it has been assumed that the nuclear pH is regulated by the cytoplasmic proton transporters via the diffusion of H+ across the nuclear pores because of their large diameter. However, it has been demonstrated that ion gradients exist between cytosol and nucleus, suggesting that the permeability of ions across the nuclear pores is restricted. Vacuolar H+-ATPase (V-H+-ATPase) is responsible for the creation and maintenance of trans-membrane electrochemical gradient. We hypothesize that V-H+-ATPase located in the nuclear membranes functions as the primary mechanism to regulate nuclear pH and generate H+ gradients across the nuclear envelope. We studied the subcellular heterogeneity of H+ concentration in the nucleus and cytosol using ratio imaging microscopy and SNARF-1, a pH indicator, in prostate cells. Our results indicate that there are proton gradients across the nuclear membranes that are generated by V-H+-ATPase located in the outer and inner nuclear membranes. We demonstrated that these gradients are mostly dissipated by inhibiting V-H+-ATPase. Immunoblots and V-H+-ATPase activity corroborated the existence of V-H+-ATPase in the nuclear membranes. This study demonstrates that V-H+-ATPase is functionally expressed in nuclear membranes and is responsible for nuclear H+ gradients that may promote not only the coupled transport of substrates, but also most electrochemically driven events across the nuclear membranes. This study represents a paradigm shift that the nucleus can regulate its own pH microenvironment, providing new insights into nuclear ion homeostasis and signaling.
Collapse
Affiliation(s)
- Julianna Maria Santos
- Cell Physiology and Molecular Biophysics Department, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Raul Martínez-Zaguilán
- Cell Physiology and Molecular Biophysics Department, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Arnoldo Rocha Facanha
- Biosciences and Biotechnology Center, Cell Biology and Tissue Laboratory, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil; and
| | - Fazle Hussain
- Mechanical Engineering Department, Texas Tech University, Lubbock, Texas
| | - Souad R Sennoune
- Cell Physiology and Molecular Biophysics Department, Texas Tech University Health Sciences Center, Lubbock, Texas;
| |
Collapse
|
32
|
Federici C, Lugini L, Marino ML, Carta F, Iessi E, Azzarito T, Supuran CT, Fais S. Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells. J Enzyme Inhib Med Chem 2016; 31:119-125. [PMID: 27142956 DOI: 10.1080/14756366.2016.1177525] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
CONTEXT Proton Pump Inhibitors (PPIs) reduce tumor acidity and therefore resistance of tumors to drugs. Carbonic Anhydrase IX (CA IX) inhibitors have proven to be effective against tumors, while tumor acidity might impair their full effectiveness. OBJECTIVE To analyze the effect of PPI/CA IX inhibitors combined treatment against human melanoma cells. METHODS The combination of Lansoprazole (LAN) and CA IX inhibitors (FC9-399A and S4) has been investigated in terms of cell proliferation inhibition and cell death in human melanoma cells. RESULTS The combination of these inhibitors was more effective than the single treatments in both inhibiting cell proliferation and in inducing cell death in human melanoma cells. DISCUSSION These results represent the first successful attempt in combining two different proton exchanger inhibitors. CONCLUSION This is the first evidence on the effectiveness of a new approach against tumors based on the combination of PPI and CA IX inhibitors, thus providing an alternative strategy against tumors.
Collapse
Affiliation(s)
- Cristina Federici
- a Department of Therapeutic Research and Medicine Evaluation , National Institute of Health , Rome , Italy and
| | - Luana Lugini
- a Department of Therapeutic Research and Medicine Evaluation , National Institute of Health , Rome , Italy and
| | - Maria Lucia Marino
- a Department of Therapeutic Research and Medicine Evaluation , National Institute of Health , Rome , Italy and
| | - Fabrizio Carta
- b NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Elisabetta Iessi
- a Department of Therapeutic Research and Medicine Evaluation , National Institute of Health , Rome , Italy and
| | - Tommaso Azzarito
- a Department of Therapeutic Research and Medicine Evaluation , National Institute of Health , Rome , Italy and
| | - Claudiu T Supuran
- b NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Stefano Fais
- a Department of Therapeutic Research and Medicine Evaluation , National Institute of Health , Rome , Italy and
| |
Collapse
|
33
|
Alfarouk KO. Tumor metabolism, cancer cell transporters, and microenvironmental resistance. J Enzyme Inhib Med Chem 2016; 31:859-66. [PMID: 26864256 DOI: 10.3109/14756366.2016.1140753] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cancer cells reprogram their metabolic machineries to enter into permanent glycolytic pathways. The full reason for such reprogramming takes place is unclear. However, this metabolic switch is not made in vain for the lactate that is generated and exported outside cells is reused by other cells. This results in the generation of a pH gradient between the low extracellular pH that is acidic (pHe) and the higher cytosolic alkaline or near neutral pH (pHi) environments that are tightly regulated by the overexpression of several pumps and ion channels (e.g. NHE-1, MCT-1, V-ATPase, CA9, and CA12). The generation of this unique pH gradient serves as a determining factor in defining "tumor fitness". Tumor fitness is the capacity of the tumor to invade and metastasize due to its ability to reduce the efficiency of the immune system and confer resistance to chemotherapy. In this article, we highlight the importance of tumor microenvironment in mediating the failure of chemotherapeutic agents.
Collapse
Affiliation(s)
- Khalid O Alfarouk
- a Department of Pharmacology , Faculty of Pharmacy, AL-Neelain University , Khartoum , Sudan
| |
Collapse
|
34
|
Martínez-Guerrero LJ, Evans KK, Dantzler WH, Wright SH. The multidrug transporter MATE1 sequesters OCs within an intracellular compartment that has no influence on OC secretion in renal proximal tubules. Am J Physiol Renal Physiol 2016; 310:F57-67. [PMID: 26538438 DOI: 10.1152/ajprenal.00318.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/29/2015] [Indexed: 01/21/2023] Open
Abstract
Secretion of organic cations (OCs) across renal proximal tubules (RPTs) involves basolateral OC transporter (OCT)2-mediated uptake from the blood followed by apical multidrug and toxin extruder (MATE)1/2-mediated efflux into the tubule filtrate. Whereas OCT2 supports electrogenic OC uniport, MATE is an OC/H(+) exchanger. As assessed by epifluorescence microscopy, cultured Chinese hamster ovary (CHO) cells that stably expressed human MATE1 accumulated the fluorescent OC N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][l,2,5]oxadiazol-4-yl)amino]ethanaminium (NBD-MTMA) in the cytoplasm and in a smaller, punctate compartment; accumulation in human OCT2-expressing cells was largely restricted to the cytoplasm. A second intracellular compartment was also evident in the multicompartmental kinetics of efflux of the prototypic OC [(3)H]1-methyl-4-phenylpyridinium (MPP) from MATE1-expressing CHO cells. Punctate accumulation of NBD-MTMA was markedly reduced by coexposure of MATE1-expressing cells with 5 μM bafilomycin (BAF), an inhibitor of V-type H(+)-ATPase, and accumulation of [(3)H]MPP and [(3)H]NBD-MTMA was reduced by >30% by coexposure with 5 μM BAF. BAF had no effect on the initial rate of MATE1-mediated uptake of NBD-MTMA, suggesting that the influence of BAF was a secondary effect involving inhibition of V-type H(+)-ATPase. The accumulation of [(3)H]MPP by isolated single nonperfused rabbit RPTs was also reduced >30% by coexposure to 5 μM BAF, suggesting that the native expression in RPTs of MATE protein within endosomes can increase steady-state OC accumulation. However, the rate of [(3)H]MPP secretion by isolated single perfused rabbit RPTs was not affected by 5 μM BAF, suggesting that vesicles loaded with OCs(+) are not likely to recycle into the apical plasma membrane at a rate sufficient to provide a parallel pathway for OC secretion.
Collapse
Affiliation(s)
- L J Martínez-Guerrero
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - K K Evans
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - W H Dantzler
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - S H Wright
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
35
|
Machado E, White-Gilbertson S, van de Vlekkert D, Janke L, Moshiach S, Campos Y, Finkelstein D, Gomero E, Mosca R, Qiu X, Morton CL, Annunziata I, d’Azzo A. Regulated lysosomal exocytosis mediates cancer progression. SCIENCE ADVANCES 2015; 1:e1500603. [PMID: 26824057 PMCID: PMC4730843 DOI: 10.1126/sciadv.1500603] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/29/2015] [Indexed: 05/25/2023]
Abstract
Understanding how tumor cells transition to an invasive and drug-resistant phenotype is central to cancer biology, but the mechanisms underlying this transition remain unclear. We show that sarcomas gain these malignant traits by inducing lysosomal exocytosis, a ubiquitous physiological process. During lysosomal exocytosis, the movement of exocytic lysosomes along the cytoskeleton and their docking at the plasma membrane involve LAMP1, a sialylated membrane glycoprotein and target of the sialidase NEU1. Cleavage of LAMP1 sialic acids by NEU1 limits the extent of lysosomal exocytosis. We found that by down-regulation of NEU1 and accumulation of oversialylated LAMP1, tumor cells exacerbate lysosomal exocytosis of soluble hydrolases and exosomes. This facilitates matrix invasion and propagation of invasive signals, and purging of lysosomotropic chemotherapeutics. In Arf (-⁄-) mice, Neu1 haploinsufficiency fostered the development of invasive, pleomorphic sarcomas, expressing epithelial and mesenchymal markers, and lysosomal exocytosis effectors, LAMP1 and Myosin-11. These features are analogous to those of metastatic, pleomorphic human sarcomas, where low NEU1 levels correlate with high expression of lysosomal exocytosis markers. In a therapeutic proof of principle, we demonstrate that inhibiting lysosomal exocytosis reversed invasiveness and chemoresistance in aggressive sarcoma cells. Thus, we reveal that this unconventional, lysosome-regulated pathway plays a primary role in tumor progression and chemoresistance.
Collapse
Affiliation(s)
- Eda Machado
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Shai White-Gilbertson
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Diantha van de Vlekkert
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Laura Janke
- Department of Veterinary Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Simon Moshiach
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yvan Campos
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Elida Gomero
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rosario Mosca
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Xiaohui Qiu
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Christopher L. Morton
- Department of Surgery, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
36
|
Fais S. Evidence-based support for the use of proton pump inhibitors in cancer therapy. J Transl Med 2015; 13:368. [PMID: 26597250 PMCID: PMC4657328 DOI: 10.1186/s12967-015-0735-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/18/2015] [Indexed: 01/06/2023] Open
Abstract
‘We can only cure what we can understand first’, said Otto H. Warburg, the 1931 Nobel laureate for his discovery on tumor metabolism. Unfortunately, we still don’t know too much the mechanisms underlying of cancer development and progression. One of the unsolved mystery includes the strategies that cancer cells adopt to cope with an adverse microenvironment. However, we knew, from the Warburg’s discovery, that through their metabolism based on sugar fermentation, cancer cells acidify their microenvironment and this progressive acidification induces a selective pressure, leading to development of very malignant cells entirely armed to survive in the hostile microenvironment generated by their own metabolism. One of the most mechanism to survive to the acidic tumor microenvironment are proton exchangers not allowing intracellular acidification through a continuous elimination of H+ either outside the cells or within the internal vacuoles. This article wants to comment a translational process through which from the preclinical demonstration that a class of proton pump inhibitors (PPI) exploited worldwide for peptic ulcer treatment and gastroprotection are indeed chemosensitizers as well, we have got to the clinical proof of concept that PPI may well be included in new anti-cancer strategies, and with a solid background and rationale.
Collapse
Affiliation(s)
- Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health (Istituto Superiore di Sanità), Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
37
|
Wang BY, Zhang J, Wang JL, Sun S, Wang ZH, Wang LP, Zhang QL, Lv FF, Cao EY, Shao ZM, Fais S, Hu XC. Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. J Exp Clin Cancer Res 2015; 34:85. [PMID: 26297142 PMCID: PMC4546346 DOI: 10.1186/s13046-015-0194-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/20/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Acidity is a hallmark of malignant tumor, representing a very efficient mechanism of chemoresistance. Proton pump inhibitors (PPI) at high dosage have been shown to sensitize chemoresistant human tumor cells and tumors to cytotoxic molecules. The aim of this pilot study was to investigate the efficacy of PPI in improving the clinical outcome of docetaxel + cisplatin regimen in patients with metastatic breast cancer (MBC). METHODS Patients enrolled were randomly assigned to three arms: Arm A, docetaxel 75 mg/m(2) followed by cisplatin 75 mg/m(2) on d4, repeated every 21 days with a maximum of 6 cycles; Arm B, the same chemotherapy preceded by three days esomeprazole (ESOM) 80 mg p.o. bid, beginning on d1 repeated weekly. Weekly intermittent administration of ESOM (3 days on 4 days off) was maintained up to maximum 66 weeks; Arm C, the same as Arm B with the only difference being dose of ESOM at 100 mg p.o. bid. The primary endpoint was response rate. RESULTS Ninety-four patients were randomly assigned and underwent at least one injection of chemotherapy. Response rates for arm A, B and C were 46.9, 71.0, and 64.5 %, respectively. Median TTP for arm A (n = 32), B (n = 31), C (n = 31) were 8.7, 9.4, and 9.7 months, respectively. A significant difference was observed between patients who had taken PPI and who not with ORR (67.7 % vs. 46.9 %, p = 0.049) and median TTP (9.7 months vs. 8.7 months, p = 0.045) [corrected]. Exploratory analysis showed that among 15 patients with triple negative breast cancer (TNBC), this difference was bigger with median TTP of 10.7 and 5.8 months, respectively (p = 0.011). PPI combination showed a marked effect on OS as well, while with a borderline significance (29.9 vs. 19.2 months, p = 0.090). No additional toxicity was observed with PPI. CONCLUSIONS The results of this pilot clinical trial showed that intermittent high dose PPI enhance the antitumor effects of chemotherapy in MBC patients without evidence of additional toxicity, which requires urgent validation in a multicenter, randomized, phase III trial. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT01069081 .
Collapse
Affiliation(s)
- Bi-Yun Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia-Lei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Si Sun
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong-Hua Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei-Ping Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qun-Ling Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang-Fang Lv
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - En-Ying Cao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Min Shao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Stefano Fais
- Anti-Tumour Drugs Section, Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Rome, Italy.
| | - Xi-Chun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Papagerakis S, Bellile E, Peterson LA, Pliakas M, Balaskas K, Selman S, Hanauer D, Taylor JMG, Duffy S, Wolf G. Proton pump inhibitors and histamine 2 blockers are associated with improved overall survival in patients with head and neck squamous carcinoma. Cancer Prev Res (Phila) 2015; 7:1258-69. [PMID: 25468899 DOI: 10.1158/1940-6207.capr-14-0002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It has been postulated that gastroesophageal reflux plays a role in the etiology of head and neck squamous cell carcinomas (HNSCC) and contributes to complications after surgery or during radiotherapy. Antacid medications are commonly used in patients with HNSCC for the management of acid reflux; however, their relationship with outcomes has not been well studied. Associations between histamine receptor-2 antagonists (H2RA) and proton pump inhibitors (PPI) use and treatment outcomes were determined in 596 patients with previously untreated HNSCC enrolled in our SPORE epidemiology program from 2003 to 2008 (median follow-up 55 months). Comprehensive clinical information was entered prospectively in our database. Risk strata were created on the basis of possible confounding prognostic variables (age, demographics, socioeconomics, tumor stage, primary site, smoking status, HPV16 status, and treatment modality); correlations within risk strata were analyzed in a multivariable model. Patients taking antacid medications had significantly better overall survival (OS; PPI alone: P < 0.001; H2RA alone, P = 0.0479; both PPI + H2RA, P = 0.0133). Using multivariable Cox models and adjusting for significant prognostic covariates, both PPIs and H2RAs used were significant prognostic factors for OS, but only H2RAs use for recurrence-free survival in HPV16-positive oropharyngeal patients. We found significant associations between the use of H2RAs and PPIs, alone or in combination, and various clinical characteristics. The findings in this large cohort study indicate that routine use of antacid medications may have significant therapeutic benefit in patients with HNSCC. The reasons for this association remain an active area of investigation and could lead to identification of new treatment and prevention approaches with agents that have minimal toxicities.
Collapse
Affiliation(s)
- Silvana Papagerakis
- Department of Otolaryngology-Head and Neck Surgery University of Michigan Medical School, Ann Arbor, Michigan. Department of Periodontics-Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan.
| | - Emily Bellile
- Center for Cancer Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Lisa A Peterson
- Department of Otolaryngology-Head and Neck Surgery University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria Pliakas
- Department of Otolaryngology-Head and Neck Surgery University of Michigan Medical School, Ann Arbor, Michigan
| | - Katherine Balaskas
- Department of Otolaryngology-Head and Neck Surgery University of Michigan Medical School, Ann Arbor, Michigan
| | - Sara Selman
- Department of Otolaryngology-Head and Neck Surgery University of Michigan Medical School, Ann Arbor, Michigan
| | - David Hanauer
- Clinical Informatics, Comprehensive Cancer Center Bioinformatics Core, University of Michigan, Ann Arbor, Michigan. Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jeremy M G Taylor
- Center for Cancer Biostatistics, University of Michigan, Ann Arbor, Michigan. Department of Biostatistics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Sonia Duffy
- Department of Otolaryngology-Head and Neck Surgery University of Michigan Medical School, Ann Arbor, Michigan. School of Nursing, University of Michigan, Ann Arbor, Michigan. Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan. VA Ann Arbor Healthcare System, University of Michigan, Ann Arbor, Michigan
| | - Gregory Wolf
- Department of Otolaryngology-Head and Neck Surgery University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
39
|
Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir AHH, Mohammed OY, Elhassan GO, Harguindey S, Reshkin SJ, Ibrahim ME, Rauch C. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int 2015; 15:71. [PMID: 26180516 PMCID: PMC4502609 DOI: 10.1186/s12935-015-0221-1] [Citation(s) in RCA: 423] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Cancer chemotherapy resistance (MDR) is the innate and/or acquired ability of cancer cells to evade the effects of chemotherapeutics and is one of the most pressing major dilemmas in cancer therapy. Chemotherapy resistance can arise due to several host or tumor-related factors. However, most current research is focused on tumor-specific factors and specifically genes that handle expression of pumps that efflux accumulated drugs inside malignantly transformed types of cells. In this work, we suggest a wider and alternative perspective that sets the stage for a future platform in modifying drug resistance with respect to the treatment of cancer.
Collapse
Affiliation(s)
- Khalid O Alfarouk
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Sophie Taylor
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Megan Walsh
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | | | - Adil H H Bashir
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | | | - Gamal O Elhassan
- Uneizah Pharmacy College, Qassim University, AL-Qassim, Kingdom of Saudi Arabia ; Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | | | - Stephan J Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
40
|
Bhuiyan MPI, Aryal MP, Janic B, Karki K, Varma NRS, Ewing JR, Arbab AS, Ali MM. Concentration-independent MRI of pH with a dendrimer-based pH-responsive nanoprobe. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:481-6. [PMID: 26173742 DOI: 10.1002/cmmi.1651] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 03/15/2015] [Accepted: 05/04/2015] [Indexed: 12/27/2022]
Abstract
The measurement of extracellular pH (pHe ) has significant clinical value for pathological diagnoses and for monitoring the effects of pH-altering therapies. One of the major problems of measuring pHe with a relaxation-based MRI contrast agent is that the longitudinal relaxivity depends on both pH and the concentration of the agent, requiring the use of a second pH-unresponsive agent to measure the concentration. Here we tested the feasibility of measuring pH with a relaxation-based dendritic MRI contrast agent in a concentration-independent manner at clinically relevant field strengths. The transverse and longitudinal relaxation times in solutions of the contrast agent (GdDOTA-4AmP)44 -G5, a G5-PAMAM dendrimer-based MRI contrast agent in water, were measured at 3 T and 7 T magnetic field strengths as a function of pH. At 3 T, longitudinal relaxivity (r1 ) increased from 7.91 to 9.65 mM(-1) s(-1) (on a per Gd(3+) basis) on changing pH from 8.84 to 6.35. At 7 T, r1 relaxivity showed pH response, albeit at lower mean values; transverse relaxivity (r2 ) remained independent of pH and magnetic field strengths. The longitudinal relaxivity of (GdDOTA-4AmP)44 -G5 exhibited a strong and reversible pH dependence. The ratio of relaxation rates R2 /R1 also showed a linear relationship in a pH-responsive manner, and this pH response was independent of the absolute concentration of (GdDOTA-4AmP)44 -G5 agent. Importantly, the nanoprobe (GdDOTA-4AmP)44 -G5 shows pH response in the range commonly found in the microenvironment of solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ali S Arbab
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
| | | |
Collapse
|
41
|
Chen LQ, Pagel MD. Evaluating pH in the Extracellular Tumor Microenvironment Using CEST MRI and Other Imaging Methods. ADVANCES IN RADIOLOGY 2015; 2015:206405. [PMID: 27761517 PMCID: PMC5066878 DOI: 10.1155/2015/206405] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor acidosis is a consequence of altered metabolism, which can lead to chemoresistance and can be a target of alkalinizing therapies. Noninvasive measurements of the extracellular pH (pHe) of the tumor microenvironment can improve diagnoses and treatment decisions. A variety of noninvasive imaging methods have been developed for measuring tumor pHe. This review provides a detailed description of the advantages and limitations of each method, providing many examples from previous research reports. A substantial emphasis is placed on methods that use MR spectroscopy and MR imaging, including recently developed methods that use chemical exchange saturation transfer MRI that combines some advantages of MR spectroscopy and imaging. Together, this review provides a comprehensive overview of methods for measuring tumor pHe, which may facilitate additional creative approaches in this research field.
Collapse
Affiliation(s)
- Liu Qi Chen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Mark D. Pagel
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Medical Imaging, University of Arizona, Tucson, AZ 85724, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
42
|
Hong S, Bi M, Wang L, Kang Z, Ling L, Zhao C. CLC-3 channels in cancer (review). Oncol Rep 2014; 33:507-14. [PMID: 25421907 DOI: 10.3892/or.2014.3615] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/30/2014] [Indexed: 11/06/2022] Open
Abstract
Ion channels are involved in regulating cell proliferation and apoptosis (programed cell death). Since increased cellular proliferation and inhibition of apoptosis are characteristic features of tumorigenesis, targeting ion channels is a promising strategy for treating cancer. CLC-3 is a member of the voltage-gated chloride channel superfamily and is expressed in many cancer cells. In the plasma membrane, CLC-3 functions as a chloride channel and is associated with cell proliferation and apoptosis. CLC-3 is also located in intracellular compartments, contributing to their acidity, which increases sequestration of drugs and leads to chemotherapy drug resistance. In this review, we summarize the recent findings concerning the involvement of CLC-3 in cancer and explore its potential in cancer therapy.
Collapse
Affiliation(s)
- Sen Hong
- Department of Physiology, The Basic Medical College, Jilin University, Changchun 130021, P.R. China
| | - Miaomiao Bi
- Department of Ophthalmology, The China‑Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, P.R. China
| | - Lei Wang
- Department of Colon and Anal Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Zhenhua Kang
- Department of Colon and Anal Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Limian Ling
- Department of Colon and Anal Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, P.R. China
| | - Chunyan Zhao
- Department of Physiology, The Basic Medical College, Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
43
|
Impairment of lysosomal activity as a therapeutic modality targeting cancer stem cells of embryonal rhabdomyosarcoma cell line RD. PLoS One 2014; 9:e110340. [PMID: 25329465 PMCID: PMC4203792 DOI: 10.1371/journal.pone.0110340] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/21/2014] [Indexed: 12/23/2022] Open
Abstract
Rhabdomyosarcoma is the most frequent soft tissue sarcoma in children and adolescents, with a high rate of relapse that dramatically affects the clinical outcome. Multiagent chemotherapy, in combination with surgery and/or radiation therapy, is the treatment of choice. However, the relapse rate is disappointingly high and identification of new therapeutic tools is urgently needed. Under this respect, the selective block of key features of cancer stem cells (CSC) appears particularly promising. In this study, we isolated rhabdomyosarcoma CSC with stem-like features (high expression of NANOG and OCT3/4, self-renewal ability, multipotency). Rhabdomyosarcoma CSC showed higher invasive ability and a reduced cytotoxicity to doxorubicin in comparison to native cells, through a mechanism unrelated to the classical multidrug resistance process. This was dependent on a high level of lysosome acidity mediated by a high expression of vacuolar ATPase (V-ATPase). Since it was not associated with other paediatric cancers, like Ewing’s sarcoma and neuroblastoma, V-ATPase higher expression in CSC was rhabdomyosarcoma specific. Inhibition of lysosomal acidification by the V-ATPase inhibitor omeprazole, or by specific siRNA silencing, significantly enhanced doxorubicin cytoxicity. Unexpectedly, lysosomal targeting also blocked cell growth and reduced the invasive potential of rhabdomyosarcoma CSC, even at very low doses of omeprazole (10 and 50 µM, respectively). Based on these observations, we propose lysosome acidity as a valuable target to enhance chemosensitivity of rhabdomyosarcoma CSC, and suggest the use of anti-V-ATPase agents in combination with standard regimens as a promising tool for the eradication of minimal residual disease or the prevention of metastatic disease.
Collapse
|
44
|
Spugnini EP, Sonveaux P, Stock C, Perez-Sayans M, De Milito A, Avnet S, Garcìa AG, Harguindey S, Fais S. Proton channels and exchangers in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2715-26. [PMID: 25449995 DOI: 10.1016/j.bbamem.2014.10.015] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 12/18/2022]
Abstract
Although cancer is characterized by an intratumoral genetic heterogeneity, a totally deranged pH control is a common feature of most cancer histotypes. Major determinants of aberrant pH gradient in cancer are proton exchangers and transporters, including V-ATPase, Na+/H+ exchanger (NHE), monocarboxylate transporters (MCTs) and carbonic anhydrases (CAs). Thanks to the activity of these proton transporters and exchangers, cancer becomes isolated and/or protected not only from the body reaction against the growing tumor, but also from the vast majority of drugs that when protonated into the acidic tumor microenvironment do not enter into cancer cells. Proton transporters and exchangers represent a key feature tumor cells use to survive in the very hostile microenvironmental conditions that they create and maintain. Detoxifying mechanisms may thus represent both a key survival option and a selection outcome for cells that behave as unicellular microorganisms rather than belonging to an organ, compartment or body. It is, in fact, typical of malignant tumors that, after a clinically measurable yet transient initial response to a therapy, resistant tumor clones emerge and proliferate, thus bursting a more malignant behavior and rapid tumor progression. This review critically presents the background of a novel and efficient approach that aims to fight cancer through blocking or inhibiting well characterized proton exchangers and transporters active in human cancer cells. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Enrico Pierluigi Spugnini
- Anti-Cancer Drug Section, Department of Drug Research and Medicine Evaluation, Istituto Superiore di Sanità (National Institute of Health), Rome, Italy
| | - Pierre Sonveaux
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Christian Stock
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - Mario Perez-Sayans
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Angelo De Milito
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Sofia Avnet
- Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Abel Garcìa Garcìa
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | | | - Stefano Fais
- Anti-Cancer Drug Section, Department of Drug Research and Medicine Evaluation, Istituto Superiore di Sanità (National Institute of Health), Rome, Italy.
| |
Collapse
|
45
|
Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PLoS One 2014; 9:e88193. [PMID: 24516610 PMCID: PMC3916404 DOI: 10.1371/journal.pone.0088193] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/05/2014] [Indexed: 12/02/2022] Open
Abstract
Intrinsic resistance to cytotoxic drugs has been a main issue in cancer therapy for decades. Microenvironmental acidity is a simple while highly efficient mechanism of chemoresistance, exploited through impairment of drug delivery. The latter is achieved by extracellular protonation and/or sequestration into acidic vesicles. This study investigates the importance of extracellular acidosis and nanovesicle (exosome) release in the resistance of human tumour cell to cisplatin (CisPt); in parallel to proton pump inhibitors (PPI) ability of interfering with these tumour cell features. The results showed that CisPt uptake by human tumour cells was markedly impaired by low pH conditions. Moreover, exosomes purified from supernatants of these cell cultures contained various amounts of CisPt, which correlated to the pH conditions of the culture medium. HPLC-Q-ICP-MS analysis revealed that exosome purified from tumour cell culture supernatants contained CisPt in its native form. PPI pre-treatment increased cellular uptake of CisPt, as compared to untreated cells, in an acidic-depend manner. Furthermore, it induced a clear inhibition of exosome release by tumour cells. Human tumours obtained from xenografts pretreated with PPI contained more CisPt as compared to tumours from xenografts treated with CisPt alone. Further analysis showed that in vivo PPI treatment induced a clear reduction in the plasmatic levels of tumour-derived exosomes which also contained lower level of CisPt. Altogether, these findings point to the identification of a double mechanism that human malignant melanoma use in resisting to a dreadful cellular poison such as cisplatin. This framework of resistance includes both low pH-dependent extracellular sequestration and an exosome-mediated elimination. Both mechanisms are markedly impaired by proton pump inhibition, leading to an increased CisPt-dependent cytotoxicity.
Collapse
|
46
|
Harguindey S, Arranz JL, Polo Orozco JD, Rauch C, Fais S, Cardone RA, Reshkin SJ. Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs--an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. J Transl Med 2013; 11:282. [PMID: 24195657 PMCID: PMC3826530 DOI: 10.1186/1479-5876-11-282] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/25/2013] [Indexed: 02/04/2023] Open
Abstract
In recent years an increasing number of publications have emphasized the growing importance of hydrogen ion dynamics in modern cancer research, from etiopathogenesis and treatment. A proton [H+]-related mechanism underlying the initiation and progression of the neoplastic process has been recently described by different research groups as a new paradigm in which all cancer cells and tissues, regardless of their origin and genetic background, have a pivotal energetic and homeostatic disturbance of their metabolism that is completely different from all normal tissues: an aberrant regulation of hydrogen ion dynamics leading to a reversal of the pH gradient in cancer cells and tissues (↑pHi/↓pHe, or “proton reversal”). Tumor cells survive their hostile microenvironment due to membrane-bound proton pumps and transporters, and their main defensive strategy is to never allow internal acidification because that could lead to their death through apoptosis. In this context, one of the primary and best studied regulators of both pHi and pHe in tumors is the Na+/H+ exchanger isoform 1 (NHE1). An elevated NHE1 activity can be correlated with both an increase in cell pH and a decrease in the extracellular pH of tumors, and such proton reversal is associated with the origin, local growth, activation and further progression of the metastatic process. Consequently, NHE1 pharmaceutical inhibition by new and potent NHE1 inhibitors represents a potential and highly selective target in anticancer therapy. Cariporide, being one of the better studied specific and powerful NHE1 inhibitors, has proven to be well tolerated by humans in the cardiological context, however some side-effects, mainly related to drug accumulation and cerebrovascular complications were reported. Thus, cariporide could become a new, slightly toxic and effective anticancer agent in different human malignancies.
Collapse
Affiliation(s)
- Salvador Harguindey
- Instituto de Biología Clínica y Metabolismo (IBCM), Postas 13-01004, Vitoria, Spain.
| | | | | | | | | | | | | |
Collapse
|
47
|
Peetla C, Vijayaraghavalu S, Labhasetwar V. Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles. Adv Drug Deliv Rev 2013; 65:1686-98. [PMID: 24055719 DOI: 10.1016/j.addr.2013.09.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 01/08/2023]
Abstract
In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcome drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance.
Collapse
Affiliation(s)
- Chiranjeevi Peetla
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
48
|
Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Adv Drug Deliv Rev 2013; 65:1731-47. [PMID: 24036273 DOI: 10.1016/j.addr.2013.09.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/15/2013] [Accepted: 09/03/2013] [Indexed: 02/06/2023]
Abstract
Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors.
Collapse
|
49
|
Liu XM, Tuo BG. Role of ion channels in the development and progression of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2013; 21:3041-3046. [DOI: 10.11569/wcjd.v21.i29.3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ion channels are pore-forming membrane proteins which play regulatory roles in a variety of biological processes. Their abnormality in expression or activity has a close relationship with the proliferation and apoptosis of cancer cells. This article will describe the role of four ion channels in the development and progression of hepatocellular carcinoma. Our review suggests that ion channels might be a new therapeutic target for hepatocellular carcinoma.
Collapse
|
50
|
Ellegaard AM, Groth-Pedersen L, Oorschot V, Klumperman J, Kirkegaard T, Nylandsted J, Jäättelä M. Sunitinib and SU11652 inhibit acid sphingomyelinase, destabilize lysosomes, and inhibit multidrug resistance. Mol Cancer Ther 2013; 12:2018-30. [PMID: 23920274 DOI: 10.1158/1535-7163.mct-13-0084] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Defective apoptosis signaling and multidrug resistance are major barriers for successful cancer treatment. To identify drugs capable of targeting treatment-resistant cancer cells, we screened small-molecule kinase inhibitor libraries for compounds that decrease the viability of apoptosis-resistant human MCF7-Bcl-2 breast cancer cells. SU11652, a multitargeting receptor tyrosine kinase inhibitor, emerged as the most potent compound in the screen. In addition to MCF7-Bcl-2 cells, it effectively killed HeLa cervix carcinoma, U-2-OS osteosarcoma, Du145 prostate carcinoma, and WEHI-S fibrosarcoma cells at low micromolar concentration. SU11652 accumulated rapidly in lysosomes and disturbed their pH regulation and ultrastructure, eventually leading to the leakage of lysosomal proteases into the cytosol. Lysosomal destabilization was preceded by an early inhibition of acid sphingomyelinase, a lysosomal lipase that promotes lysosomal membrane stability. Accordingly, Hsp70, which supports cancer cell survival by increasing lysosomal acid sphingomyelinase activity, conferred partial protection against SU11652-induced cytotoxicity. Remarkably, SU11652 killed multidrug-resistant Du145 prostate cancer cells as effectively as the drug-sensitive parental cells, and subtoxic concentrations of SU11652 effectively inhibited multidrug-resistant phenotype in Du145 prostate cancer cells. Notably, sunitinib, a structurally almost identical and widely used antiangiogenic cancer drug, exhibited similar lysosome-dependent cytotoxic activity, albeit with significantly lower efficacy. The significantly stronger lysosome-targeting activity of SU11652 suggests that it may display better efficacy in cancer treatment than sunitinib, encouraging further evaluation of its anticancer activity in vivo. Furthermore, our data provide a rationale for novel approaches to target drug-resistant cancers by combining classic chemotherapy with sunitinib or SU11652.
Collapse
Affiliation(s)
- Anne-Marie Ellegaard
- Corresponding Author: Marja Jäättelä, Cell Death and Metabolism, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, DK-2100, Denmark.
| | | | | | | | | | | | | |
Collapse
|