1
|
Xiong Y, Libby KA, Su X. The physical landscape of CAR-T synapse. Biophys J 2024; 123:2199-2210. [PMID: 37715447 PMCID: PMC11331049 DOI: 10.1016/j.bpj.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells form dynamic immunological synapses with their cancer cell targets. After a CAR-antigen engagement, the CAR-T synapse forms, matures, and finally disassembles, accompanied by substantial remodeling of cell surface proteins, lipids, and glycans. In this review, we provide perspectives for understanding protein distribution, membrane topology, and force transmission across the CAR-T synapse. We highlight the features of CAR-T synapses that differ from T cell receptor synapses, including the disorganized protein pattern, adjustable synapse width, diverse mechano-responding properties, and resulting signaling consequences. Through a range of examples, we illustrate how revealing the biophysical nature of the CAR-T synapse could guide the design of CAR-Ts with improved anti-tumor function.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Kendra A Libby
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Yale Cancer Center, Yale University, New Haven, Connecticut; Yale Stem Cell Center, Yale University, New Haven, Connecticut.
| |
Collapse
|
2
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Kim S, Lam PY, Richardson LS, Menon R, Han A. A dynamic flow fetal membrane organ-on-a-chip system for modeling the effects of amniotic fluid motion. Biomed Microdevices 2024; 26:32. [PMID: 38963644 PMCID: PMC11624963 DOI: 10.1007/s10544-024-00714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Fetal membrane (amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. A previously developed amnion membrane (AM) organ-on-chip (OOC) was utilized but with dynamic flow to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 h to mimic fluid motion. A static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control representing pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to cytokeratin 18 (CK-18) ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a dynamic flow environment is not necessary to mimic in utero physiologic cellular conditions of an amnion membrane.
Collapse
Affiliation(s)
- Sungjin Kim
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Po Yi Lam
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Lauren S Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Kim S, Lam PY, Richardson L, Menon R, Han A. A Dynamic Flow Fetal Membrane Organ-on-a-Chip System for Modeling the Effects of Amniotic Fluid Motion. RESEARCH SQUARE 2024:rs.3.rs-4372328. [PMID: 38798515 PMCID: PMC11118697 DOI: 10.21203/rs.3.rs-4372328/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Fetal membrane(amniochorion), the innermost lining of the intrauterine cavity, surround the fetus and enclose amniotic fluid. Unlike unidirectional blood flow, amniotic fluid subtly rocks back and forth, and thus, the innermost amnion epithelial cells are continuously exposed to low levels of shear stress from fluid undulation. Here, we tested the impact of fluid motion on amnion epithelial cells (AECs) as a bearer of force impact and their potential vulnerability to cytopathologic changes that can destabilize fetal membrane functions. An amnion membrane (AM) organ-on-chip (OOC) was utilized to culture human fetal amnion membrane cells. The applied flow was modulated to perfuse culture media back and forth for 48 hours flow culture to mimic fluid motion. Static culture condition was used as a negative control, and oxidative stress (OS) condition was used as a positive control for pathophysiological changes. The impacts of fluidic motion were evaluated by measuring cell viability, cellular transition, and inflammation. Additionally, scanning electron microscopy (SEM) imaging was performed to observe microvilli formation. The results show that regardless of the applied flow rate, AECs and AMCs maintained their viability, morphology, innate meta-state, and low production of pro-inflammatory cytokines. E-cadherin expression and microvilli formation in the AECs were upregulated in a flow rate-dependent fashion; however, this did not impact cellular morphology or cellular transition or inflammation. OS treatment induced a mesenchymal morphology, significantly higher vimentin to CK-18 ratio, and pro-inflammatory cytokine production in AECs, whereas AMCs did not respond in any significant manner. Fluid motion and shear stress, if any, did not impact AEC cell function and did not cause inflammation. Thus, when using an amnion membrane OOC model, the inclusion of a flow culture environment is not necessary to mimic any in utero physiologic cellular conditions of fetal membrane-derived cells.
Collapse
|
5
|
Zhao Y, Wu Y, Islam K, Paul R, Zhou Y, Qin X, Li Q, Liu Y. Microphysiologically Engineered Vessel-Tumor Model to Investigate Vascular Transport Dynamics of Immune Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22839-22849. [PMID: 38652824 PMCID: PMC11082852 DOI: 10.1021/acsami.4c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Cancer immunotherapy has emerged as a promising therapeutic strategy to combat cancer effectively. However, it is hard to observe and quantify how this in vivo process happens. Three-dimensional (3D) microfluidic vessel-tumor models offer valuable capability to study how immune cells transport during cancer progression. We presented an advanced 3D vessel-supported tumor model consisting of the endothelial lumen and vessel network for the study of T cells' transportation. The process of T cell transport through the vessel network and interaction with tumor spheroids was represented and monitored in vitro. Specifically, we demonstrate that the endothelial glycocalyx serving in the T cells' transport can influence the endothelium-immune interaction. Furthermore, after vascular transport, how programmed cell death protein 1 (PD-1) immune checkpoint inhibition influences the delivered activated-T cells on tumor killing was evaluated. Our in vitro vessel-tumor model provides a microphysiologically engineered platform to represent T cell vascular transportation during tumor immunotherapy. The reported innovative vessel-tumor platform is believed to have the potential to explore the tumor-induced immune response mechanism and preclinically evaluate immunotherapy's effectiveness.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yue Wu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Khayrul Islam
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Ratul Paul
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuyuan Zhou
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Xiaochen Qin
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Qiying Li
- Department
of Electrical and Computer Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yaling Liu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
6
|
Kabedev A, Lobaskin V. Endothelial glycocalyx permeability for nanoscale solutes. Nanomedicine (Lond) 2022; 17:979-996. [PMID: 35815713 DOI: 10.2217/nnm-2021-0367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glycocalyx has a great impact on the accessibility of the endothelial cell membranes. Although the specific interactions play a crucial role in cross-membrane solute transport, nonspecific interactions cannot be neglected. In this work, we used computational modeling to quantify the nonspecific interactions that control the distribution of nanosized solutes across the endothelial glycocalyx. We evaluated the probabilities of various nanoparticles' passage through the luminal layer to the membrane. The calculations demonstrate that excluded volume and electrostatic interactions are decisive for the solute transport as compared with van der Waals and hydrodynamic interactions. Damaged glycocalyx models showed a relatively weak efficiency in sieving plasma solutes. We estimated the energy barriers and corresponding mean first passage times for nanoscale solute transport through the model glycocalyx.
Collapse
Affiliation(s)
- Aleksei Kabedev
- School of Physics, University College Dublin, Dublin 4, Ireland.,Department of Pharmacy, Uppsala University, Husargatan 3, Uppsala, 75 123, Sweden
| | | |
Collapse
|
7
|
Göhring J, Schrangl L, Schütz GJ, Huppa JB. Mechanosurveillance: Tiptoeing T Cells. Front Immunol 2022; 13:886328. [PMID: 35693808 PMCID: PMC9178122 DOI: 10.3389/fimmu.2022.886328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022] Open
Abstract
Efficient scanning of tissue that T cells encounter during their migratory life is pivotal to protective adaptive immunity. In fact, T cells can detect even a single antigenic peptide/MHC complex (pMHC) among thousands of structurally similar yet non-stimulatory endogenous pMHCs on the surface of antigen-presenting cells (APCs) or target cells. Of note, the glycocalyx of target cells, being composed of proteoglycans and bulky proteins, is bound to affect and even modulate antigen recognition by posing as a physical barrier. T cell-resident microvilli are actin-rich membrane protrusions that puncture through such barriers and thereby actively place the considerably smaller T-cell antigen receptors (TCRs) in close enough proximity to APC-presented pMHCs so that productive interactions may occur efficiently yet under force. We here review our current understanding of how the plasticity of T-cell microvilli and physicochemical properties of the glycocalyx may affect early events in T-cell activation. We assess insights gained from studies on T-cell plasma membrane ultrastructure and provide an update on current efforts to integrate biophysical aspects such as the amplitude and directionality of TCR-imposed mechanical forces and the distribution and lateral mobility of plasma membrane-resident signaling molecules into a more comprehensive view on sensitized T-cell antigen recognition.
Collapse
Affiliation(s)
- Janett Göhring
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Institute of Applied Physics, TU Wien, Vienna, Austria
- *Correspondence: Janett Göhring,
| | | | | | - Johannes B. Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Mechanical forces on trophoblast motility and its potential role in spiral artery remodeling during pregnancy. Placenta 2022; 123:46-53. [DOI: 10.1016/j.placenta.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/13/2022] [Indexed: 11/22/2022]
|
9
|
Ghosh S, Feigelson SW, Montresor A, Shimoni E, Roncato F, Legler DF, Laudanna C, Haran G, Alon R. CCR7 signalosomes are preassembled on tips of lymphocyte microvilli in proximity to LFA-1. Biophys J 2021; 120:4002-4012. [PMID: 34411577 DOI: 10.1016/j.bpj.2021.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022] Open
Abstract
Leukocyte microvilli are elastic actin-rich projections implicated in rapid sensing and penetration across glycocalyx barriers. Microvilli are critical for the capture and arrest of flowing lymphocytes by high endothelial venules, the main lymph node portal vessels. T lymphocyte arrest involves subsecond activation of the integrin LFA-1 by the G-protein-coupled receptor CCR7 and its endothelial-displayed ligands, the chemokines CCL21 and CCL19. The topographical distribution of CCR7 and of LFA-1 in relation to lymphocyte microvilli has never been elucidated. We applied the recently developed microvillar cartography imaging technique to determine the topographical distribution of CCR7 and LFA-1 with respect to microvilli on peripheral blood T lymphocytes. We found that CCR7 is clustered on the tips of T cell microvilli. The vast majority of LFA-1 molecules were found on the cell body, likely assembled in macroclusters, but a subset of LFA-1, 5% of the total, were found scattered within 20 nm from the CCR7 clusters, implicating these LFA-1 molecules as targets for inside-out activation signals transmitted within a fraction of a second by chemokine-bound CCR7. Indeed, RhoA, the key GTPase involved in rapid LFA-1 affinity triggering by CCR7, was also found to be clustered near CCR7. In addition, we observed that the tyrosine kinase JAK2 controls CCR7-mediated LFA-1 affinity triggering and is also highly enriched on tips of microvilli. We propose that tips of lymphocyte microvilli are novel signalosomes for subsecond CCR7-mediated inside-out signaling to neighboring LFA-1 molecules, a critical checkpoint in LFA-1-mediated lymphocyte arrest on high endothelial venules.
Collapse
Affiliation(s)
- Shirsendu Ghosh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Sara W Feigelson
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Eyal Shimoni
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Roncato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel F Legler
- Biotechnology Institute Thurgau, University of Konstanz, Kreuzlingen, Switzerland
| | - Carlo Laudanna
- Department of Medicine, University of Verona, Verona, Italy
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Mylvaganam S, Riedl M, Vega A, Collins RF, Jaqaman K, Grinstein S, Freeman SA. Stabilization of Endothelial Receptor Arrays by a Polarized Spectrin Cytoskeleton Facilitates Rolling and Adhesion of Leukocytes. Cell Rep 2021; 31:107798. [PMID: 32579925 PMCID: PMC7548125 DOI: 10.1016/j.celrep.2020.107798] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Multivalent complexes of endothelial adhesion receptors (e.g., selectins) engage leukocytes to orchestrate their migration to inflamed tissues. Proper anchorage and sufficient density (clustering) of endothelial receptors are required for efficient leukocyte capture and rolling. We demonstrate that a polarized spectrin network dictates the stability of the endothelial cytoskeleton, which is attached to the apical membrane, at least in part, by the abundant transmembrane protein CD44. Single-particle tracking revealed that CD44 undergoes prolonged periods of immobilization as it tethers to the cytoskeleton. The CD44-spectrin "picket fence" alters the behavior of bystander molecules-notably, selectins-curtailing their mobility, inducing their apical accumulation, and favoring their clustering within caveolae. Accordingly, depletion of either spectrin or CD44 virtually eliminated leukocyte rolling and adhesion to the endothelium. Our results indicate that a unique spectrin-based apical cytoskeleton tethered to transmembrane pickets-notably, CD44-is essential for proper extravasation of leukocytes in response to inflammation.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Magdalena Riedl
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Anthony Vega
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard F Collins
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
11
|
Delgadillo LF, Marsh GA, Waugh RE. Endothelial Glycocalyx Layer Properties and Its Ability to Limit Leukocyte Adhesion. Biophys J 2020; 118:1564-1575. [PMID: 32135082 DOI: 10.1016/j.bpj.2020.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/20/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
The endothelial glycocalyx layer (EGL), which consists of long proteoglycans protruding from the endothelium, acts as a regulator of inflammation by preventing leukocyte engagement with adhesion molecules on the endothelial surface. The amount of resistance to adhesive events the EGL provides is the result of two properties: EGL thickness and stiffness. To determine these, we used an atomic force microscope to indent the surfaces of cultured endothelial cells with a glass bead and evaluated two different approaches for interpreting the resulting force-indentation curves. In one, we treat the EGL as a molecular brush, and in the other, we treat it as a thin elastic layer on an elastic half-space. The latter approach proved more robust in our hands and yielded a thickness of 110 nm and a modulus of 0.025 kPa. Neither value showed significant dependence on indentation rate. The brush model indicated a larger layer thickness (∼350 nm) but tended to result in larger uncertainties in the fitted parameters. The modulus of the endothelial cell was determined to be 3.0-6.5 kPa (1.5-2.5 kPa for the brush model), with a significant increase in modulus with increasing indentation rates. For forces and leukocyte properties in the physiological range, a model of a leukocyte interacting with the endothelium predicts that the number of molecules within bonding range should decrease by an order of magnitude because of the presence of a 110-nm-thick layer and even further for a glycocalyx with larger thickness. Consistent with these predictions, neutrophil adhesion increased for endothelial cells with reduced EGL thickness because they were grown in the absence of fluid shear stress. These studies establish a framework for understanding how glycocalyx layers with different thickness and stiffness limit adhesive events under homeostatic conditions and how glycocalyx damage or removal will increase leukocyte adhesion potential during inflammation.
Collapse
Affiliation(s)
- Luis F Delgadillo
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Graham A Marsh
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, New York.
| |
Collapse
|
12
|
Lipowsky HH. Relative shedding of glycosaminoglycans from the endothelial glycocalyx during inflammation and their contribution to stiffness of the glycocalyx. Biorheology 2019; 56:191-205. [DOI: 10.3233/bir-190225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
A Lifetime Achievement in Bioengineering: Professor Shu Chien. Ann Biomed Eng 2019; 47:2147-2150. [PMID: 31650299 PMCID: PMC6838045 DOI: 10.1007/s10439-019-02390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Voerman D, Schluck M, Weiden J, Joosten B, Eggermont LJ, van den Eijnde T, Ignacio B, Cambi A, Figdor CG, Kouwer PHJ, Verdoes M, Hammink R, Rowan AE. Synthetic Semiflexible and Bioactive Brushes. Biomacromolecules 2019; 20:2587-2597. [PMID: 31150222 PMCID: PMC6620732 DOI: 10.1021/acs.biomac.9b00385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Indexed: 11/29/2022]
Abstract
Polymer brushes are extensively used for the preparation of bioactive surfaces. They form a platform to attach functional (bio)molecules and control the physicochemical properties of the surface. These brushes are nearly exclusively prepared from flexible polymers, even though much stiffer brushes from semiflexible polymers are frequently found in nature, which exert bioactive functions that are out of reach for flexible brushes. Synthetic semiflexible polymers, however, are very rare. Here, we use polyisocyanopeptides (PICs) to prepare high-density semiflexible brushes on different substrate geometries. For bioconjugation, we developed routes with two orthogonal click reactions, based on the strain-promoted azide-alkyne cycloaddition reaction and the (photoactivated) tetrazole-ene cycloaddition reaction. We found that for high brush densities, multiple bonds between the polymer and the substrate are necessary, which was achieved in a block copolymer strategy. Whether the desired biomolecules are conjugated to the PIC polymer before or after brush formation depends on the dimensions and required densities of the biomolecules and the curvature of the substrate. In either case, we provide mild, aqueous, and highly modular reaction strategies, which make PICs a versatile addition to the toolbox for generating semiflexible bioactive polymer brush surfaces.
Collapse
Affiliation(s)
- Dion Voerman
- Department
of Tumor Immunology, Department of Cell Biology, and Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud
University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - Marjolein Schluck
- Department
of Tumor Immunology, Department of Cell Biology, and Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud
University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - Jorieke Weiden
- Department
of Tumor Immunology, Department of Cell Biology, and Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud
University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - Ben Joosten
- Department
of Tumor Immunology, Department of Cell Biology, and Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud
University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - Loek J. Eggermont
- Department
of Tumor Immunology, Department of Cell Biology, and Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud
University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - Tuur van den Eijnde
- Department
of Molecular Materials, Institute for Molecules
and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Bob Ignacio
- Department
of Molecular Materials, Institute for Molecules
and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department
of Tumor Immunology, Department of Cell Biology, and Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud
University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - Carl G. Figdor
- Department
of Tumor Immunology, Department of Cell Biology, and Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud
University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - Paul H. J. Kouwer
- Department
of Molecular Materials, Institute for Molecules
and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Martijn Verdoes
- Department
of Tumor Immunology, Department of Cell Biology, and Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud
University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - Roel Hammink
- Department
of Tumor Immunology, Department of Cell Biology, and Microscopic Imaging Center, Radboud Institute for Molecular Life Sciences, Radboud
University Medical Center, Geert Grooteplein 26, 6525 GA Nijmegen, The Netherlands
| | - Alan E. Rowan
- Department
of Molecular Materials, Institute for Molecules
and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Fels J, Kusche-Vihrog K. Endothelial Nanomechanics in the Context of Endothelial (Dys)function and Inflammation. Antioxid Redox Signal 2019; 30:945-959. [PMID: 29433330 PMCID: PMC6354603 DOI: 10.1089/ars.2017.7327] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Stiffness of endothelial cells is closely linked to the function of the vasculature as it regulates the release of vasoactive substances such as nitric oxide (NO) and reactive oxygen species. The outer layer of endothelial cells, consisting of the glycocalyx above and the cortical zone beneath the plasma membrane, is a vulnerable compartment able to adapt its nanomechanical properties to any changes of forces exerted by the adjacent blood stream. Sustained stiffening of this layer contributes to the development of endothelial dysfunction and vascular pathologies. Recent Advances: The development of specific techniques to quantify the mechanical properties of cells enables the detailed investigation of the mechanistic link between structure and function of cells. CRITICAL ISSUES Challenging the mechanical stiffness of cells, for instance, by inflammatory mediators can lead to the development of endothelial dysfunction. Prevention of sustained stiffening of the outer layer of endothelial cells in turn improves endothelial function. FUTURE DIRECTIONS The mechanical properties of cells can be used as critical marker and test system for the proper function of the vascular system. Pharmacological substances, which are able to improve endothelial nanomechanics and function, could take a new importance in the prevention and treatment of vascular diseases. Thus, detailed knowledge acquisition about the structure/function relationship of endothelial cells and the underlying signaling pathways should be promoted.
Collapse
Affiliation(s)
- Johannes Fels
- Institute of Cell Dynamics and Imaging, University of Münster, Münster, Germany
| | | |
Collapse
|
16
|
Santler B, Goerge T. Die chronische venöse Insuffizienz - Eine Zusammenfassung der Pathophysiologie, Diagnostik und Therapie. J Dtsch Dermatol Ges 2018; 15:538-557. [PMID: 28485867 DOI: 10.1111/ddg.13242_g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/11/2017] [Indexed: 01/06/2023]
Abstract
Die chronische Venenerkrankung ist eine weit verbreitete Krankheit, die in späteren Stadien mit einer Vielzahl an Symptomen, aber auch Komplikationen wie dem Ulcus cruris, einhergeht. Dies wiederum hat weitreichende Auswirkungen auf die Lebensqualität der Patienten wie auch auf das Gesundheitssystem. Für die Diagnostik der chronischen Venenerkrankungen steht eine Auswahl an Verfahren zur Verfügung, wobei sich die farbkodierte Duplexsonographie als Goldstandard etabliert hat. Im Bereich der Therapie kam es in den letzten Jahrzehnten zu großen Fortschritten, sodass heute auch Alternativen zum klassischen Stripping durch die endoluminalen Verfahren zur Verfügung stehen. Die Wahl der Therapieoption ist jedoch weiterhin stark abhängig von mehreren Faktoren, unter anderem von den anatomischen Gegebenheiten und dem Krankheitsstadium. Im folgenden Artikel werden die Anatomie und Pathophysiologie, sowie die aktuellen Standards der Diagnostik und Therapie zusammengefasst.
Collapse
Affiliation(s)
- Bettina Santler
- Klinik für Hautkrankheiten - Allgemeine Dermatologie und Venerologie, Universitätsklinikum Münster
| | - Tobias Goerge
- Klinik für Hautkrankheiten - Allgemeine Dermatologie und Venerologie, Universitätsklinikum Münster
| |
Collapse
|
17
|
Santler B, Goerge T. Chronic venous insufficiency - a review of pathophysiology, diagnosis, and treatment. J Dtsch Dermatol Ges 2018; 15:538-556. [PMID: 28485865 DOI: 10.1111/ddg.13242] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/11/2017] [Indexed: 01/20/2023]
Abstract
Chronic venous disease is a common disorder associated with a variety of symptoms in later disease stages but also with complications such as venous leg ulcer. This, in turn, has substantial socioeconomic effects and significantly impacts patients' quality of life. While there are a number of diagnostic procedures available, color-flow duplex ultrasound has become the gold standard. As regards therapeutic options, major advances have been made in recent decades. Today, there are alternatives to saphenofemoral ligation and stripping of the great saphenous vein, including endovenous thermal ablation techniques. However, treatment selection continues to depend on many factors such as individual anatomical circumstances and disease stage. The following article provides an overview of the anatomy and pathophysiology as well as current diagnostic and therapeutic standards.
Collapse
Affiliation(s)
- Bettina Santler
- Department of Dermatology and Venereology, University Hospital Münster, Münster, Germany
| | - Tobias Goerge
- Department of Dermatology and Venereology, University Hospital Münster, Münster, Germany
| |
Collapse
|
18
|
Role of the Glycocalyx as a Barrier to Leukocyte-Endothelium Adhesion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:51-68. [PMID: 30315539 DOI: 10.1007/978-3-319-96445-4_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leukocyte (WBC) to endothelial cell (EC) adhesion is a receptor-mediated process governed by the avidity and affinity of selectins, which modulate adhesive forces during WBC rolling, and integrins, which determine the strength of firm adhesion. Adhesion receptors on the EC surface lie below an endothelial surface layer (ESL) comprised of the EC glycocalyx and adsorbed proteins which, in vivo, have a thickness on the order 500 nm. The glycocalyx consists of a matrix of the glycosaminoglycans heparan sulfate and chondroitin sulfate, bound to proteoglycans and encased in hyaluronan. Together, these carbohydrates form a layer that varies in glycan content along the length of post-capillary venules where WBC-EC adhesion occurs. Thickness and porosity of the glycocalyx can vary dramatically during the inflammatory response as observed by increased infiltration and diffusion of macromolecules within the layer following activation of the EC by cytokines and chemoattractants. In models of inflammation in the living animal, the shedding of glycans and diminished thickness of the glycocalyx rapidly occur to facilitate penetration by the WBCs and adhesion to the EC. The primary effectors of glycan shedding appear to be metalloproteases and heparanase released by the EC. Retardation of glycan shedding and WBC-EC adhesion has been demonstrated in vivo using MMP inhibitors and low-molecular-weight heparin (LMWH), where the latter competitively binds to heparanase liberated by the EC. Together, these agents may serve to stabilize the ESL and provide a useful strategy for treatment of inflammatory disorders.
Collapse
|
19
|
Dyer DP, Migliorini E, Salanga CL, Thakar D, Handel TM, Richter RP. Differential structural remodelling of heparan sulfate by chemokines: the role of chemokine oligomerization. Open Biol 2017; 7:rsob.160286. [PMID: 28123055 PMCID: PMC5303277 DOI: 10.1098/rsob.160286] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/16/2016] [Indexed: 12/02/2022] Open
Abstract
Chemokines control the migration of cells in normal physiological processes and in the context of disease such as inflammation, autoimmunity and cancer. Two major interactions are involved: (i) binding of chemokines to chemokine receptors, which activates the cellular machinery required for movement; and (ii) binding of chemokines to glycosaminoglycans (GAGs), which facilitates the organization of chemokines into haptotactic gradients that direct cell movement. Chemokines can bind and activate their receptors as monomers; however, the ability to oligomerize is critical for the function of many chemokines in vivo. Chemokine oligomerization is thought to enhance their affinity for GAGs, and here we show that it significantly affects the ability of chemokines to accumulate on and be retained by heparan sulfate (HS). We also demonstrate that several chemokines differentially rigidify and cross-link HS, thereby affecting HS rigidity and mobility, and that HS cross-linking is significantly enhanced by chemokine oligomerization. These findings suggest that chemokine–GAG interactions may play more diverse biological roles than the traditional paradigms of physical immobilization and establishment of chemokine gradients; we hypothesize that they may promote receptor-independent events such as physical re-organization of the endothelial glycocalyx and extracellular matrix, as well as signalling through proteoglycans to facilitate leukocyte adhesion and transmigration.
Collapse
Affiliation(s)
- Douglas P Dyer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0684, USA.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Elisa Migliorini
- CIC biomaGUNE, 20009 Donostia-San Sebastian, Spain.,Département de Chimie Moléculaire, Université Grenoble Alpes-CNRS, 38041 Grenoble Cedex 9, France
| | - Catherina L Salanga
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0684, USA
| | - Dhruv Thakar
- Département de Chimie Moléculaire, Université Grenoble Alpes-CNRS, 38041 Grenoble Cedex 9, France
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0684, USA
| | - Ralf P Richter
- CIC biomaGUNE, 20009 Donostia-San Sebastian, Spain .,Département de Chimie Moléculaire, Université Grenoble Alpes-CNRS, 38041 Grenoble Cedex 9, France.,School of Biomedical Sciences and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
20
|
Torres LN, Chung KK, Salgado CL, Dubick MA, Torres Filho IP. Low-volume resuscitation with normal saline is associated with microvascular endothelial dysfunction after hemorrhage in rats, compared to colloids and balanced crystalloids. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:160. [PMID: 28659186 PMCID: PMC5490091 DOI: 10.1186/s13054-017-1745-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/26/2017] [Indexed: 02/06/2023]
Abstract
Background Restoration of endothelial glycocalyx (EG) barrier may be an essential therapeutic target for successful resuscitation. The aim of this study was to compare in vivo the effects of resuscitation with normal saline (NS) to lactated Ringer’s solution (LR), 5% albumin and fresh frozen plasma (FFP) on their ability to maintain EG and barrier function integrity, mitigate endothelial injury and inflammation, and restore vascular homeostasis after hemorrhagic shock. Methods Anesthetized rats (N = 36) were subjected to hemorrhagic shock (bled 40% of total blood volume), followed by resuscitation with 45 ml/kg NS or LR, or 15 ml/kg 5% albumin or FFP. Microhemodynamics, EG thickness, permeability, leukocyte rolling and adhesion were assessed in >180 vessels from cremaster muscle, as well as systemic measures. Results After hypotensive resuscitation, arterial pressure was 25% lower than baseline in all cohorts. Unlike FFP, resuscitation with crystalloids failed to restore EG thickness to baseline post shock and shedding of glycocalyx proteoglycan was significantly higher after NS. NS decreased blood flow and shear, and markedly increased permeability and leukocyte rolling/adhesion. In contrast, LR had lesser effects on increased permeability and leukocyte rolling. Albumin stabilized permeability and white blood cell (WBC) rolling/adhesion post shock, comparable to FFP. Conclusions Resuscitation with NS failed to inhibit syndecan-1 shedding and to repair the EG, which led to loss of endothelial barrier function (edema), decline in tissue perfusion and pronounced leukocyte rolling and adhesion. Detrimental effects of NS on endothelial and microvascular stabilization post shock may provide a pathophysiological basis to understand and prevent morbidity associated with iatrogenic resuscitation after hemorrhagic shock.
Collapse
Affiliation(s)
- Luciana N Torres
- Damage Control Resuscitation, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA.
| | - Kevin K Chung
- Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, TX, USA.,Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Christi L Salgado
- Damage Control Resuscitation, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA
| | - Michael A Dubick
- Damage Control Resuscitation, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA
| | - Ivo P Torres Filho
- Damage Control Resuscitation, US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, USA
| |
Collapse
|
21
|
Li Q, Wayman A, Lin J, Fang Y, Zhu C, Wu J. Flow-Enhanced Stability of Rolling Adhesion through E-Selectin. Biophys J 2017; 111:686-699. [PMID: 27558713 DOI: 10.1016/j.bpj.2016.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/10/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022] Open
Abstract
Selectin-ligand interactions mediate tethering and rolling of circulating leukocytes on the vessel wall during inflammation. Extensive study has been devoted to elucidating the kinetic and mechanical constraints of receptor-ligand-interaction-mediated leukocyte adhesion, yet many questions remain unanswered. Here, we describe our design of an inverted flow chamber to compare adhesions of HL-60 cells to E-selectin in the upright and inverted orientations. This new, to our knowledge, design allowed us to evaluate the effect of gravity and to investigate the mechanisms of flow-enhanced adhesion. Cell rolling in the two orientations was qualitatively similar, and the quantitative differences can be explained by the effect of gravity, which promotes free-flowing cells to tether and detached cells to reattach to the surface in the upright orientation but prevents such attachment from happening in the inverted orientation. We characterized rolling stability by the lifetime of rolling adhesion and detachment of rolling cells, which could be easily measured in the inverted orientation, but not in the upright orientation because of the reattachment of transiently detached cells. Unlike the transient tether lifetime of E-selectin-ligand interaction, which exhibited triphasic slip-catch-slip bonds, the lifetime of rolling adhesion displayed a biphasic trend that first increased with the wall shear stress, reached a maximum at 0.4 dyn/cm(2), and then decreased gradually. We have developed a minimal mathematical model for the probability of rolling adhesion. Comparison of the theoretical predictions to data has provided model validation and allowed evaluation of the effective two-dimensional association on-rate, kon, and the binding affinity, Ka, of the E-selectin-ligand interaction. kon increased with the wall shear stress from 0.1 to 0.7 dyn/cm(2). Ka first increased with the wall shear stress, reached a maximum at 0.4 dyn/cm(2), and then decreased gradually. Our results provide insights into how the interplay between flow-dependent on-rate and off-rate of E-selectin-ligand bonds determine flow-enhanced cell rolling stability.
Collapse
Affiliation(s)
- Quhuan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Annica Wayman
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Jiangguo Lin
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Ying Fang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia.
| | - Jianhua Wu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
22
|
Schierke F, Wyrwoll MJ, Wisdorf M, Niedzielski L, Maase M, Ruck T, Meuth SG, Kusche-Vihrog K. Nanomechanics of the endothelial glycocalyx contribute to Na +-induced vascular inflammation. Sci Rep 2017; 7:46476. [PMID: 28406245 PMCID: PMC5390251 DOI: 10.1038/srep46476] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
High dietary salt (NaCl) is a known risk factor for cardiovascular pathologies and inflammation. High plasma Na+ concentrations (high Na+) have been shown to stiffen the endothelial cortex and decrease nitric oxide (NO) release, a hallmark of endothelial dysfunction. Here we report that chronic high Na+ damages the endothelial glycocalyx (eGC), induces release of inflammatory cytokines from the endothelium and promotes monocyte adhesion. Single cell force spectroscopy reveals that high Na+ enhances vascular adhesion protein-1 (VCAM-1)-dependent adhesion forces between monocytes and endothelial surface, giving rise to increased numbers of adherent monocytes on the endothelial surface. Mineralocorticoid receptor antagonism with spironolactone prevents high Na+-induced eGC deterioration, decreases monocyte-endothelium interactions, and restores endothelial function, indicated by increased release of NO. Whereas high Na+ decreases NO release, it induces endothelial release of the pro-inflammatory cytokines IL-1ß and TNFα. However, in contrast to chronic salt load (hours), in vivo and in vitro, an acute salt challenge (minutes) does not impair eGC function. This study identifies the eGC as important mediator of inflammatory processes and might further explain how dietary salt contributes to endothelialitis and cardiovascular pathologies by linking endothelial nanomechanics with vascular inflammation.
Collapse
Affiliation(s)
- Florian Schierke
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Margot J Wyrwoll
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Martin Wisdorf
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Leon Niedzielski
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Martina Maase
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Tobias Ruck
- Department of Neurology, University of Münster, 48149 Münster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster, 48149 Münster, Germany
| | | |
Collapse
|
23
|
Lipowsky HH, Lescanic A. Inhibition of inflammation induced shedding of the endothelial glycocalyx with low molecular weight heparin. Microvasc Res 2017; 112:72-78. [PMID: 28347755 DOI: 10.1016/j.mvr.2017.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 01/15/2023]
Abstract
The endothelial surface layer (ESL) consists of the endothelial cell (EC) glycocalyx and adsorbed proteins, and forms a barrier between blood and the EC. Enzymatic shedding of the ESL in response to cytokines may expose receptors for leukocyte (WBC) adhesion and increase vascular permeability. Thus, intravital microscopy was used to explore stabilization of the ESL with low molecular weight heparin (LMWH) to mitigate structural changes with inflammation. Following bolus infusions (i.v.) of LMWH (0.12-1.6mg/kg), shedding of glycans in response to 10-7M fMLP was measured by loss of fluorescently labeled lectins bound to the EC and WBC-EC adhesion was monitored in post-capillary venules of rat mesentery. During a 30min exposure to fMLP, a 50% reduction in fluorescence (indicative of glycan shedding) occurred at the lowest dose of LMWH whereas a 50% increase occurred (indicative of ESL compaction) at the highest dose. Shedding was reduced by LMWH in a dose dependent manner with an EC50 of 0.6mg/kg. Concomitant WBC-EC adhesion increased over 3-fold for all doses of LMWH. However, at a dose of 1.6mg/kg, WBC-EC adhesion did not rise significantly during the initial 10min exposure to fMLP. Correlation of WBC adhesion with intensity of the lectin stain for all measurements revealed a significant 40% reduction in adhesion as intensity increased 50%. This relationship was attributed to LMWH inhibition of heparanase and/or binding to components of the glycocalyx that resulted in mitigation of glycan shedding, compaction of the lectin stain and stabilization of the glycocalyx.
Collapse
Affiliation(s)
- Herbert H Lipowsky
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Anne Lescanic
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
24
|
Mitchell MJ, Webster J, Chung A, Guimarães PPG, Khan OF, Langer R. Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis. Nat Commun 2017; 8:14179. [PMID: 28317839 PMCID: PMC5364380 DOI: 10.1038/ncomms14179] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 12/07/2016] [Indexed: 12/25/2022] Open
Abstract
Physical forces affect tumour growth, progression and metastasis. Here, we develop polymeric mechanical amplifiers that exploit in vitro and in vivo physical forces to increase immune cytokine-mediated tumour cell apoptosis. Mechanical amplifiers, consisting of biodegradable polymeric particles tethered to the tumour cell surface via polyethylene glycol linkers, increase the apoptotic effect of an immune cytokine on tumour cells under fluid shear exposure by as much as 50% compared with treatment under static conditions. We show that targeted polymeric particles delivered to tumour cells in vivo amplify the apoptotic effect of a subsequent treatment of immune cytokine, reduce circulating tumour cells in blood and overall tumour cell burden by over 90% and reduce solid tumour growth in combination with the antioxidant resveratrol. The work introduces a potentially new application for a broad range of micro- and nanoparticles to maximize receptor-mediated signalling and function in the presence of physical forces. Fluid shear stress plays a critical role in receptor-mediated signalling and has been shown to sensitize cancer cells to apoptosis. Here, Mitchell et al. introduce polymer micro- and nanoparticles tethered to tumour cells to amplify fluid shear stress effects, and find that they can enhance immune cytokine-mediated apoptosis of tumour cells in vitro and in vivo.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
| | - Jamie Webster
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
| | - Amanda Chung
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
| | - Pedro P G Guimarães
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
| | - Omar F Khan
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
| | - Robert Langer
- Department of Chemical Engineering, David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
25
|
Abstract
During inflammation, circulating neutrophils roll on, and eventually tether to, the endothelial lining of blood vessels, allowing them to exit the bloodstream and enter the surrounding tissue to target pathogens. This process is mediated by the selectin family of adhesion proteins expressed by endothelial cells. Interestingly, only 10% of activated, migrating neutrophils transmigrate into the extravascular space; the other 90% detach from the wall and rejoin the blood flow. Neutrophils extrude pseudopods during the adhesion cascade; however, the transport behavior of this unique cell geometry has not been previously addressed. In this study, a three-dimensional computational model was applied to neutrophils with pseudopodial extensions to study the effect of cell shape on the hydrodynamic transport of neutrophils. The collision time, contact area, contact force, and collision frequency were analyzed as a function of pseudopod length. It was found that neutrophils experience more frequent collisions compared to prolate spheroids of equal volume and length. Longer pseudopods and lower shear rates increase the collision time integral contact area, a predictor of binding potential. Our results indicate that contact between the neutrophil and the vessel wall was found to be focused predominantly on the pseudopod tip.
Collapse
|
26
|
Ekpenyong AE, Toepfner N, Chilvers ER, Guck J. Mechanotransduction in neutrophil activation and deactivation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [PMID: 26211453 DOI: 10.1016/j.bbamcr.2015.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mechanotransduction refers to the processes through which cells sense mechanical stimuli by converting them to biochemical signals and, thus, eliciting specific cellular responses. Cells sense mechanical stimuli from their 3D environment, including the extracellular matrix, neighboring cells and other mechanical forces. Incidentally, the emerging concept of mechanical homeostasis,long term or chronic regulation of mechanical properties, seems to apply to neutrophils in a peculiar manner, owing to neutrophils' ability to dynamically switch between the activated/primed and deactivated/deprimed states. While neutrophil activation has been known for over a century, its deactivation is a relatively recent discovery. Even more intriguing is the reversibility of neutrophil activation and deactivation. We review and critically evaluate recent findings that suggest physiological roles for neutrophil activation and deactivation and discuss possible mechanisms by which mechanical stimuli can drive the oscillation of neutrophils between the activated and resting states. We highlight several molecules that have been identified in neutrophil mechanotransduction, including cell adhesion and transmembrane receptors, cytoskeletal and ion channel molecules. The physiological and pathophysiological implications of such mechanically induced signal transduction in neutrophils are highlighted as a basis for future work. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Andrew E Ekpenyong
- Department of Physics, Creighton University, Omaha, NE 68178, USA; Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Nicole Toepfner
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany; Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge CB2 0QQ, UK
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
27
|
Rocheleau AD, Sumagin R, Sarelius IH, King MR. Simulation and Analysis of Tethering Behavior of Neutrophils with Pseudopods. PLoS One 2015; 10:e0128378. [PMID: 26091091 PMCID: PMC4474963 DOI: 10.1371/journal.pone.0128378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/29/2015] [Indexed: 11/30/2022] Open
Abstract
P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) play important roles in mediating the inflammatory cascade. Selectin kinetics, together with neutrophil hydrodynamics, regulate the fundamental adhesion cascade of cell tethering and rolling on the endothelium. The current study uses the Multiscale Adhesive Dynamics computational model to simulate, for the first time, the tethering and rolling behavior of pseudopod-containing neutrophils as mediated by P-selectin/PSGL-1 bonds. This paper looks at the effect of including P-selectin/PSGL-1 adhesion kinetics. The parameters examined included the shear rate, adhesion on-rate, initial neutrophil position, and receptor number sensitivity. The outcomes analyzed included types of adhesive behavior observed, tether rolling distance and time, number of bonds formed during an adhesive event, contact area, and contact time. In contrast to the hydrodynamic model, P-selectin/PSGL-1 binding slows the neutrophil’s translation in the direction of flow and causes the neutrophil to swing around perpendicular to flow. Several behaviors were observed during the simulations, including tethering without firm adhesion, tethering with downstream firm adhesion, and firm adhesion upon first contact with the endothelium. These behaviors were qualitatively consistent with in vivo data of murine neutrophils with pseudopods. In the simulations, increasing shear rate, receptor count, and bond formation rate increased the incidence of firm adhesion upon first contact with the endothelium. Tethering was conserved across a range of physiological shear rates and was resistant to fluctuations in the number of surface PSGL-1 molecules. In simulations where bonding occurred, interaction with the side of the pseudopod, rather than the tip, afforded more surface area and greater contact time with the endothelial wall.
Collapse
Affiliation(s)
- Anne D. Rocheleau
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ingrid H. Sarelius
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Michael R. King
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Marki A, Esko JD, Pries AR, Ley K. Role of the endothelial surface layer in neutrophil recruitment. J Leukoc Biol 2015; 98:503-15. [PMID: 25979432 DOI: 10.1189/jlb.3mr0115-011r] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/25/2015] [Indexed: 12/15/2022] Open
Abstract
Neutrophil recruitment in most tissues is limited to postcapillary venules, where E- and P-selectins are inducibly expressed by venular endothelial cells. These molecules support neutrophil rolling via binding of PSGL-1 and other ligands on neutrophils. Selectins extend ≤ 38 nm above the endothelial plasma membrane, and PSGL-1 extends to 50 nm above the neutrophil plasma membrane. However, endothelial cells are covered with an ESL composed of glycosaminoglycans that is ≥ 500 nm thick and has measurable resistance against compression. The neutrophil surface is also covered with a surface layer. These surface layers would be expected to completely shield adhesion molecules; thus, neutrophils should not be able to roll and adhere. However, in the cremaster muscle and in many other models investigated using intravital microscopy, neutrophils clearly roll, and their rolling is easily and quickly induced. This conundrum was thought to be resolved by the observation that the induction of selectins is accompanied by ESL shedding; however, ESL shedding only partially reduces the ESL thickness (to 200 nm) and thus is insufficient to expose adhesion molecules. In addition to its antiadhesive functions, the ESL also presents neutrophil arrest-inducing chemokines. ESL heparan sulfate can also bind L-selectin expressed by the neutrophils, which contributes to rolling and arrest. We conclude that ESL has both proadhesive and antiadhesive functions. However, most previous studies considered either only the proadhesive or only the antiadhesive effects of the ESL. An integrated model for the role of the ESL in neutrophil rolling, arrest, and transmigration is needed.
Collapse
Affiliation(s)
- Alex Marki
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| | - Jeffrey D Esko
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| | - Axel R Pries
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| | - Klaus Ley
- *Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA; and Department of Physiology and Center for Cardiovascular Research, Charite, Berlin, Germany
| |
Collapse
|
29
|
Maksimenko AV, Turashev AD. [Endothelial glycocalyx of blood circulation. II. Biological functions, state at norm and pathology, bioengineering application]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 40:259-74. [PMID: 25898732 DOI: 10.1134/s106816201403008x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In normal state, a complex multicomponent system called glycocalyx is present on the surface of endothelial vascular system. Due to complexity of its composition and location on the border between vessel wall and blood circulation, glycocalyx participates in a number of functions supporting the metabolism of the vascular wall. In pathological conditions undergo complete or partial loss of this structure, which leads to inconsistencies in the vascular wall and change its functions. The functions of endothelial glycocalyx are its involvement in the regulation of vascular permeability, transduction and transformation by the shear stress of blood flow on endothelium, the molecular regulation of glycocalyx microenvironment and its interaction with circulating blood cells. Also briefly be considered participation of glycocalyx in the implementation of cardiovascular diseases, their correction, bioengineering application of glycocalyx and its components.
Collapse
|
30
|
Gupta VK. Effects of cellular viscoelasticity in multiple-bond force spectroscopy. Biomech Model Mechanobiol 2014; 14:615-32. [PMID: 25326875 DOI: 10.1007/s10237-014-0626-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/04/2014] [Indexed: 12/17/2022]
Abstract
Receptor-ligand bonds are often subjected to forces that regulate their detachment via modulating off-rates. Though the dynamics of detachment is primarily controlled by the physical chemistry of adhesion molecules cellular features such as cell deformability and microvillus viscoelasticity have been shown to have an effect on it as well. In this work, Monte Carlo simulation of the rupture of multiple receptor-ligand bonds between substrate and a polymorphonuclear leukocyte (PMN) cell suspended in a Newtonian fluid is performed. It is demonstrated via various micromechanical models of the PMN cell adhered to the substrate by multiple receptor-ligand bonds that viscous drag caused by relative motion of cell suspended in a Newtonian fluid and cellular viscoelasticity modulate transmission of an applied external load to receptor-ligand bonds. It is demonstrated that due to cellular viscoelasticity the instantaneous intermolecular bond force is lower than the instantaneous applied force. It is also demonstrated that due to cellular viscoelasticity, the mean intermolecular bond rupture forces are lowered while the mean bond lifetime increases.
Collapse
Affiliation(s)
- V K Gupta
- Department of Mechanical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA,
| |
Collapse
|
31
|
TRAIL-coated leukocytes that kill cancer cells in the circulation. Proc Natl Acad Sci U S A 2014; 111:930-5. [PMID: 24395803 DOI: 10.1073/pnas.1316312111] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metastasis through the bloodstream contributes to poor prognosis in many types of cancer. Mounting evidence implicates selectin-based adhesive interactions between cancer cells and the blood vessel wall as facilitating this process, in a manner similar to leukocyte trafficking during inflammation. Here, we describe a unique approach to target and kill colon and prostate cancer cells in the blood that causes circulating leukocytes to present the cancer-specific TNF-related apoptosis inducing ligand (TRAIL) on their surface along with E-selectin adhesion receptor. This approach, demonstrated in vitro with human blood and also in mice, mimics the cytotoxic activity of natural killer cells and increases the surface area available for delivery of the receptor-mediated signal. The resulting "unnatural killer cells" hold promise as an effective means to neutralize circulating tumor cells that enter blood with the potential to form new metastases.
Collapse
|
32
|
Gupta VK. Rupture of multiple catch-slip bonds: Two-state two-pathway catch-slip bonds. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:133. [PMID: 24272665 DOI: 10.1140/epje/i2013-13133-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/29/2013] [Indexed: 06/02/2023]
Abstract
We performed Monte Carlo simulation of the detachment of a polymorphonuclear (PMN) leukocyte immersed in a Newtonian fluid and adhered to a substrate by multiple catch-slip bonds. We found that at certain loading rates the interplay of multiple catch-slip bonds leads to a bimodal distribution of the bond rupture force. We also found that the low force peak in these bond rupture force distributions switches to a high force peak with a gradual increase in the loading rate. These trends in the bond rupture force distributions are characteristics of two-state systems. Consequently, though individual catch-slip bonds follow one-state two-pathway energy landscape, their interplay mimics a two-state two-pathway energy landscape.
Collapse
Affiliation(s)
- V K Gupta
- University of Maryland Baltimore County, 21250, Baltimore, Maryland, USA,
| |
Collapse
|
33
|
Mitchell MJ, King MR. Physical biology in cancer. 3. The role of cell glycocalyx in vascular transport of circulating tumor cells. Am J Physiol Cell Physiol 2013; 306:C89-97. [PMID: 24133067 PMCID: PMC3919988 DOI: 10.1152/ajpcell.00285.2013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circulating tumor cells (CTCs) in blood are known to adhere to the luminal surface of the microvasculature via receptor-mediated adhesion, which contributes to the spread of cancer metastasis to anatomically distant organs. Such interactions between ligands on CTCs and endothelial cell-bound surface receptors are sensitive to receptor-ligand distances at the nanoscale. The sugar-rich coating expressed on the surface of CTCs and endothelial cells, known as the glycocalyx, serves as a physical structure that can control the spacing and, thus, the availability of such receptor-ligand interactions. The cancer cell glycocalyx can also regulate the ability of therapeutic ligands to bind to CTCs in the bloodstream. Here, we review the role of cell glycocalyx on the adhesion and therapeutic treatment of CTCs in the bloodstream.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | |
Collapse
|
34
|
Tsubota Y, Frey JM, Raines EW. Novel ex vivo culture method for human monocytes uses shear flow to prevent total loss of transendothelial diapedesis function. J Leukoc Biol 2013; 95:191-5. [PMID: 24006509 DOI: 10.1189/jlb.0513272] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Monocyte recruitment to inflammatory sites and their transendothelial migration into tissues are critical to homeostasis and pathogenesis of chronic inflammatory diseases. However, even short-term suspension culture of primary human monocytes leads to phenotypic changes. In this study, we characterize the functional effects of ex vivo monocyte culture on the steps involved in monocyte transendothelial migration. Our data demonstrate that monocyte diapedesis is impaired by as little as 4 h culture, and the locomotion step is subsequently compromised. After 16 h in culture, monocyte diapedesis is irreversibly reduced by ∼90%. However, maintenance of monocytes under conditions mimicking physiological flow (5-7.5 dyn/cm²) is sufficient to reduce diapedesis impairment significantly. Thus, through the application of shear during ex vivo culture of monocytes, our study establishes a novel protocol, allowing functional analyses of monocytes not currently possible under static culture conditions. These data further suggest that monocyte-based therapeutic applications may be measurably improved by alteration of ex vivo conditions before their use in patients.
Collapse
Affiliation(s)
- Yoshiaki Tsubota
- 1.Dept. of Pathology, 325 Ninth Ave., Seattle, WA 98104-2499, USA.
| | | | | |
Collapse
|
35
|
Lipowsky HH, Lescanic A. Shear-dependent adhesion of leukocytes and lectins to the endothelium and concurrent changes in thickness of the glycocalyx of post-capillary venules in the low-flow state. Microcirculation 2013; 20:149-57. [PMID: 22963321 DOI: 10.1111/micc.12013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/04/2012] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To elucidate shear-dependent effects of deformation of the endothelial glycocalyx on adhesion of circulating ligands in post-capillary venules, and delineate effect of MMPs. METHODS Adhesion of WBCs and lectin-coated FLMs (0.1 μm diameter) to EC of post-capillary venules in mesentery was examined during acute reductions in shear rates (γ·, hemorrhagic hypotension). Adhesion was examined with or without superfusion with 0.5 μm doxycycline to inhibit MMPs. Thickness of the glycocalyx was measured by exclusion of fluorescent 70 kDa dextran from the EC surface. RESULTS During superfusion with Ringers, rapid reductions in γ· resulted in a significant rise in WBC adhesion and a twofold rise in microsphere adhesion. With addition of doxycycline WBC and FLM adhesion increased twofold under high- and low-flow conditions. FLM adhesion was invariant with γ· throughout the network in the normal (high)-flow state. With reductions in γ·, thickness of the glycocalyx increased significantly, with or without doxycycline. CONCLUSIONS The concurrent increase in WBC and FLM adhesion with increased thickness of the glycocalyx during reductions in shear suggests that glycocalyx core proteins recoil from their deformed steady-state configuration, which increases exposure of binding sites for circulating ligands.
Collapse
Affiliation(s)
- Herbert H Lipowsky
- Department of Bioengineering, Penn State University, University Park, Pennsylvania, USA.
| | | |
Collapse
|
36
|
Robert P, Touchard D, Bongrand P, Pierres A. Biophysical description of multiple events contributing blood leukocyte arrest on endothelium. Front Immunol 2013; 4:108. [PMID: 23750158 PMCID: PMC3654224 DOI: 10.3389/fimmu.2013.00108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/26/2013] [Indexed: 12/16/2022] Open
Abstract
Blood leukocytes have a remarkable capacity to bind to and stop on specific blood vessel areas. Many studies have disclosed a key role of integrin structural changes following the interaction of rolling leukocytes with surface-bound chemoattractants. However, the functional significance of structural data and mechanisms of cell arrest are incompletely understood. Recent experiments revealed the unexpected complexity of several key steps of cell-surface interaction: (i) ligand-receptor binding requires a minimum amount of time to proceed and this is influenced by forces. (ii) Also, molecular interactions at interfaces are not fully accounted for by the interaction properties of soluble molecules. (iii) Cell arrest depends on nanoscale topography and mechanical properties of the cell membrane, and these properties are highly dynamic. Here, we summarize these results and we discuss their relevance to recent functional studies of integrin-receptor association in cells from a patient with type III leukocyte adhesion deficiency. It is concluded that an accurate understanding of all physical events listed in this review is needed to unravel the precise role of the multiple molecules and biochemical pathway involved in arrest triggering.
Collapse
Affiliation(s)
- Philippe Robert
- Laboratoire Adhésion and Inflammation, Aix-Marseille Université Marseille, France ; Institut National de la Santé et de la Recherche Médicale Marseille, France ; Centre National de la Recherche Scientifique Marseille, France ; Laboratoire d'Immunologie, Hôpitaux de Marseille, Hôpital de la Conception Marseille, France
| | | | | | | |
Collapse
|
37
|
Vascular Endothelium. TISSUE FUNCTIONING AND REMODELING IN THE CIRCULATORY AND VENTILATORY SYSTEMS 2013. [DOI: 10.1007/978-1-4614-5966-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Forces on a wall-bound leukocyte in a small vessel due to red cells in the blood stream. Biophys J 2012; 103:1604-15. [PMID: 23062353 DOI: 10.1016/j.bpj.2012.08.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 08/19/2012] [Accepted: 08/29/2012] [Indexed: 11/23/2022] Open
Abstract
As part of the inflammation response, white blood cells (leukocytes) are well known to bind nearly statically to the vessel walls, where they must resist the force exerted by the flowing blood. This force is particularly difficult to estimate due to the particulate character of blood, especially in small vessels where the red blood cells must substantially deform to pass an adhered leukocyte. An efficient simulation tool with realistically flexible red blood cells is used to estimate these forces. At these length scales, it is found that the red cells significantly augment the streamwise forces that must be resisted by the binding. However, interactions with the red cells are also found to cause an average wall-directed force, which can be anticipated to enhance binding. These forces increase significantly as hematocrit values approach 25% and decrease significantly as the leukocyte is made flatter on the wall. For a tube hematocrit of 25% and a spherical protrusion with a diameter three-quarters that of the vessel, the average forces are increased by ~40% and the local forces are more than double those estimated with an effective-viscosity-homogenized blood. Both the enhanced streamwise and wall-ward forces and their unsteady character are potentially important in regard to binding mechanisms.
Collapse
|
39
|
Gupta VK. Rupture of multiple receptor-ligand bonds: bimodal distribution of bond rupture force. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2012; 35:94. [PMID: 23015276 DOI: 10.1140/epje/i2012-12094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/16/2012] [Accepted: 08/17/2012] [Indexed: 06/01/2023]
Abstract
Monte Carlo simulation of the rupture of multiple receptor-ligand bonds between two PMN cells suspended in a Newtonian fluid is performed. In the presence of a hydrodynamic drag force acting on two PMN cells the interplay of multiple receptor-ligand bonds between these cells leads to a bimodal distribution of the bond rupture force at certain loading rates. Specifically, it is found that the interplay of multiple bonds between two PMN cells in the presence of hydrodynamic drag force acting on these cells modifies the bond energy landscape in such a way as to lead to a bimodal distribution of the bond rupture force where a low force peak switches to a high force peak as the loading rate is increased progressively, characteristics of two-state systems.
Collapse
Affiliation(s)
- V K Gupta
- University of Maryland Baltimore County, Baltimore, Maryland 21250, USA.
| |
Collapse
|
40
|
Bai K, Wang W. Spatio-temporal development of the endothelial glycocalyx layer and its mechanical property in vitro. J R Soc Interface 2012; 9:2290-8. [PMID: 22417911 DOI: 10.1098/rsif.2011.0901] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The endothelial glycocalyx is a thin layer of polysaccharide matrix on the luminal surface of endothelial cells (ECs), which contains sulphated proteoglycans and glycoproteins. It is a mechanotransducer and functions as an amplifier of the shear stress on ECs. It controls the vessel permeability and mediates the blood-endothelium interaction. This study investigates the spatial distribution and temporal development of the glycocalyx on cultured ECs, and evaluates mechanical properties of the glycocalyx using atomic force microscopy (AFM) nano-indentation. The glycocalyx on human umbilical vein endothelial cells (HUVECs) is observed under a confocal microscope. Manipulation of the glycocalyx is achieved using heparanase or neuraminidase. The Young's modulus of the cell membrane is calculated from the force-distance curve during AFM indentation. Results show that the glycocalyx appears predominantly on the edge of cells in the early days in culture, e.g. up to day 5 after seeding. On day 7, the glycocalyx is also seen in the apical area of the cell membrane. The thickness of the glycocalyx is approximately 300 nm-1 μm. AFM indentation reveals the Young's modulus of the cell membrane decreases from day 3 (2.93 ± 1.16 kPa) to day 14 (0.35 ± 0.15 kPa) and remains unchanged to day 21 (0.33 ± 0.19 kPa). Significant difference in the Young's modulus is also seen between the apical (1.54 ± 0.58 kPa) and the edge (0.69 ± 0.55 kPa) of cells at day 7. By contrast, neuraminidase-treated cells (i.e. without the glycocalyx) have similar values between day 3 (3.18 ± 0.88 kPa), day 14 (2.12 ± 0.78 kPa) and day 21 (2.15 ± 0.48 kPa). The endothelial glycocalyx in vitro shows temporal development in the early days in culture. It covers predominantly the edge of cells initially and appears on the apical membrane of cells as time progresses. The Young's modulus of the glycocalyx is deduced from Young's moduli of cell membranes with and without the glycocalyx layer. Our results show the glycocalyx on cultured HUVECs has a Young's modulus of approximately 0.39 kPa.
Collapse
Affiliation(s)
- Ke Bai
- Institute for Bioengineering, Queen Mary University of London, London, UK
| | | |
Collapse
|
41
|
Gupta VK, Eggleton CD. Effect of cell and microvillus mechanics on the transmission of applied loads to single bonds in dynamic force spectroscopy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:011912. [PMID: 21867218 DOI: 10.1103/physreve.84.011912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 02/14/2011] [Indexed: 05/31/2023]
Abstract
Receptor-ligand interactions that mediate cellular adhesion are often subjected to forces that regulate their detachment via modulating off-rates. Although the dynamics of detachment is primarily controlled by the physical chemistry of adhesion molecules, cellular features such as cell deformability and microvillus viscoelasticity have been shown to affect the rolling velocity of leukocytes in vitro through experiments and simulation. In this work, we demonstrate via various micromechanical models of two cells adhered by a single (intramolecular) bond that cell deformability and microvillus viscoelasticity modulate transmission of an applied external load to an intramolecular bond, and thus the dynamics of detachment. Specifically, it is demonstrated that the intermolecular bond force is not equivalent to the instantaneous applied force and that the instantaneous bond force decreases with cellular and microvillus compliance. As cellular compliance increases, not only does the time lag between the applied load and the bond force increase, an initial response time is observed during which cell deformation is observed without transfer of force to the bond. It is further demonstrated that following tether formation the instantaneous intramoleular bond force increases linearly at a rate dependent on microvillus viscosity. Monte Carlo simulations with fixed kinetic parameters predict that both cell and microvillus compliance increase the average rupture time, although the average rupture force based on bond length remains nearly unchanged.
Collapse
Affiliation(s)
- V K Gupta
- University of Maryland Baltimore County, Baltimore, Maryland 21250, USA
| | | |
Collapse
|
42
|
Alonso-Latorre B, del Álamo JC, Meili R, Firtel RA, Lasheras JC. An Oscillatory Contractile Pole-Force Component Dominates the Traction Forces Exerted by Migrating Amoeboid Cells. Cell Mol Bioeng 2011; 4:603-615. [PMID: 22207880 PMCID: PMC3234362 DOI: 10.1007/s12195-011-0184-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/11/2011] [Indexed: 01/18/2023] Open
Abstract
We used principal component analysis to dissect the mechanics of chemotaxis of amoeboid cells into a reduced set of dominant components of cellular traction forces and shape changes. The dominant traction force component in wild-type cells accounted for ~40% of the mechanical work performed by these cells, and consisted of the cell attaching at front and back contracting the substrate towards its centroid (pole-force). The time evolution of this pole-force component was responsible for the periodic variations of cell length and strain energy that the cells underwent during migration. We identified four additional canonical components, reproducible from cell to cell, overall accounting for an additional ~20% of mechanical work, and associated with events such as lateral protrusion of pseudopodia. We analyzed mutant strains with contractility defects to quantify the role that non-muscle Myosin II (MyoII) plays in amoeboid motility. In MyoII essential light chain null cells the polar-force component remained dominant. On the other hand, MyoII heavy chain null cells exhibited a different dominant traction force component, with a marked increase in lateral contractile forces, suggesting that cortical contractility and/or enhanced lateral adhesions are important for motility in this cell line. By compressing the mechanics of chemotaxing cells into a reduced set of temporally-resolved degrees of freedom, the present study may contribute to refined models of cell migration that incorporate cell-substrate interactions.
Collapse
Affiliation(s)
- Baldomero Alonso-Latorre
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Ruedi Meili
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Richard A. Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| | - Juan C. Lasheras
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 USA
| |
Collapse
|
43
|
Advances in Experiments and Modeling in Micro- and Nano-Biomechanics: A Mini Review. Cell Mol Bioeng 2011. [DOI: 10.1007/s12195-011-0183-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
44
|
Weinbaum S, Duan Y, Thi MM, You L. An Integrative Review of Mechanotransduction in Endothelial, Epithelial (Renal) and Dendritic Cells (Osteocytes). Cell Mol Bioeng 2011; 4:510-537. [PMID: 23976901 DOI: 10.1007/s12195-011-0179-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this review we will examine from a biomechanical and ultrastructural viewpoint how the cytoskeletal specialization of three basic cell types, endothelial cells (ECs), epithelial cells (renal tubule) and dendritic cells (osteocytes), enables the mechano-sensing of fluid flow in both their native in vivo environment and in culture, and the downstream signaling that is initiated at the molecular level in response to fluid flow. These cellular responses will be discussed in terms of basic mysteries and paradoxes encountered by each cell type. In ECs fluid shear stress (FSS) is nearly entirely attenuated by the endothelial glycocalyx that covers their apical membrane and yet FSS is communicated to both intracellular and junctional molecular components in activating a wide variety of signaling pathways. The same is true in proximal tubule (PT) cells where a dense brush border of microvilli covers the apical surface and the flow at the apical membrane is negligible. A four decade old unexplained mystery is the ability of PT epithelia to reliably reabsorb 60% of the flow entering the tubule regardless of the glomerular filtration rate. In the cortical collecting duct (CCD) the flow rates are so low that a special sensing apparatus, a primary cilia is needed to detect very small variations in tubular flow. In bone it has been a century old mystery as to how osteocytes embedded in a stiff mineralized tissue are able to sense miniscule whole tissue strains that are far smaller than the cellular level strains required to activate osteocytes in vitro.
Collapse
Affiliation(s)
- Sheldon Weinbaum
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | | | | | | |
Collapse
|
45
|
|
46
|
Gupta VK, Sraj IA, Konstantopoulos K, Eggleton CD. Multi-scale simulation of L-selectin-PSGL-1-dependent homotypic leukocyte binding and rupture. Biomech Model Mechanobiol 2010; 9:613-27. [PMID: 20229248 DOI: 10.1007/s10237-010-0201-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 02/16/2010] [Indexed: 01/14/2023]
Abstract
L-selectin-PSGL-1-mediated polymorphonuclear (PMN) leukocyte homotypic interactions potentiate the extent of PMN recruitment to endothelial sites of inflammation. Cell-cell adhesion is a complex phenomenon involving the interplay of bond kinetics and hydrodynamics. As a first step, a 3-D computational model based on the Immersed Boundary Method is developed to simulate adhesion-detachment of two PMN cells in quiescent conditions. Our simulations predict that the total number of bonds formed is dictated by the number of available receptors (PSGL-1) when ligands (L-selectin) are in excess, while the excess amount of ligands influences the rate of bond formation. Increasing equilibrium bond length results in a higher number of receptor-ligand bonds due to an increased intercellular contact area. On-rate constants determine the rate of bond formation, while off-rates control the average number of bonds by modulating bond lifetimes. Application of an external pulling force leads to time-dependent on- and off-rates and causes bond rupture. Moreover, the time required for bond rupture in response to an external force is inversely proportional to the applied load and decreases with increasing off-rate.
Collapse
Affiliation(s)
- V K Gupta
- Department of Mechanical Engineering, University of Maryland, Baltimore, 21250, USA
| | | | | | | |
Collapse
|
47
|
Schmidt BJ, Papin JA, Lawrence MB. Nano-motion dynamics are determined by surface-tethered selectin mechanokinetics and bond formation. PLoS Comput Biol 2009; 5:e1000612. [PMID: 20019797 PMCID: PMC2787012 DOI: 10.1371/journal.pcbi.1000612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 11/16/2009] [Indexed: 12/11/2022] Open
Abstract
The interaction of proteins at cellular interfaces is critical for many biological processes, from intercellular signaling to cell adhesion. For example, the selectin family of adhesion receptors plays a critical role in trafficking during inflammation and immunosurveillance. Quantitative measurements of binding rates between surface-constrained proteins elicit insight into how molecular structural details and post-translational modifications contribute to function. However, nano-scale transport effects can obfuscate measurements in experimental assays. We constructed a biophysical simulation of the motion of a rigid microsphere coated with biomolecular adhesion receptors in shearing flow undergoing thermal motion. The simulation enabled in silico investigation of the effects of kinetic force dependence, molecular deformation, grouping adhesion receptors into clusters, surface-constrained bond formation, and nano-scale vertical transport on outputs that directly map to observable motions. Simulations recreated the jerky, discrete stop-and-go motions observed in P-selectin/PSGL-1 microbead assays with physiologic ligand densities. Motion statistics tied detailed simulated motion data to experimentally reported quantities. New deductions about biomolecular function for P-selectin/PSGL-1 interactions were made. Distributing adhesive forces among P-selectin/PSGL-1 molecules closely grouped in clusters was necessary to achieve bond lifetimes observed in microbead assays. Initial, capturing bond formation effectively occurred across the entire molecular contour length. However, subsequent rebinding events were enhanced by the reduced separation distance following the initial capture. The result demonstrates that vertical transport can contribute to an enhancement in the apparent bond formation rate. A detailed analysis of in silico motions prompted the proposition of wobble autocorrelation as an indicator of two-dimensional function. Insight into two-dimensional bond formation gained from flow cell assays might therefore be important to understand processes involving extended cellular interactions, such as immunological synapse formation. A biologically informative in silico system was created with minimal, high-confidence inputs. Incorporating random effects in surface separation through thermal motion enabled new deductions of the effects of surface-constrained biomolecular function. Important molecular information is embedded in the patterns and statistics of motion.
Collapse
Affiliation(s)
- Brian J. Schmidt
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael B. Lawrence
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
48
|
Ham ASW, Klibanov AL, Lawrence MB. Action at a distance: lengthening adhesion bonds with poly(ethylene glycol) spacers enhances mechanically stressed affinity for improved vascular targeting of microparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10038-44. [PMID: 19621909 PMCID: PMC3022502 DOI: 10.1021/la900966h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Poly(ethylene glycol) (PEG) chains were used to decorate microparticles with long adhesion ligands to emulate the efficacy of selectin-mediated leukocyte homing mechanisms. Ligands for P-selectin, an endothelial cell inflammatory marker, were coupled to PEG spacers of two sizes (MW 3400 and 10,000 Da) to investigate the effects on adhesion kinetics to P-selectin substrates. Under shear flow 80 nm PEG spacers improved P-selectin-antibody adhesion frequency by up to 4.5-fold and bond lifetimes by 7-fold compared to microparticles bearing chemisorbed antibody. Presentation of the glycosulfopeptide P-selectin ligands (2-GSP-6) and its nonsulfated low affinity form (2-GP-6) by long PEG spacers led to improved lifetimes of stressed bonds formed with P-selectin in shear flow and the rolling fluxes. Thus, structural features far removed from the binding pocket of a receptor that increase molecular contour length may enhance affinity in mechanically stressed environments such as those existing within the confines of the blood vessel. Such features may be useful for improving the performance of vascular-targeted micro- and nanoparticles used for drug, gene, and image contrast delivery. Ligand presentation on molecularly extended stalks may also serve to enhance any particle-surface interaction that takes place in laminar shear flow.
Collapse
Affiliation(s)
- Anthony Sang Won Ham
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, Tel: 434-982-4269, Fax: 434-982-3870,
| | - Alexander L. Klibanov
- Cardiovascular Division: Department of Medicine, University of Virginia, Charlottesville, VA 22908
| | - Michael B. Lawrence
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, VA 22908, Tel: 434-982-4269, Fax: 434-982-3870,
| |
Collapse
|
49
|
Potter DR, Jiang J, Damiano ER. The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro. Circ Res 2009; 104:1318-25. [PMID: 19443840 DOI: 10.1161/circresaha.108.191585] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Compelling evidence continues to emerge suggesting that the glycocalyx surface layer on vascular endothelial cells plays a determining role in numerous physiological processes including inflammation, microvascular permeability, and endothelial mechanotransduction. Previous research has shown that enzymes degrade the glycocalyx, whereas inflammation causes shedding of the layer. To track the endogenous recovery of the glycocalyx in vivo, we used fluorescent microparticle image velocimetry (micro-PIV) in mouse cremaster muscle venules to estimate the hydrodynamically relevant glycocalyx thickness 1, 3, 5, and 7 days after enzymatic or cytokine-mediated degradation of the layer. Results indicate that after acute degradation of the glycocalyx, 5 to 7 days are required for the layer to endogenously restore itself to its native hydrodynamically relevant thickness in vivo. In light of these findings, and because demonstrable evidence has emerged that standard cell culture conditions are not conducive to providing the environment and/or cellular conditions necessary to produce and maintain a physiologically relevant cell surface glycocalyx in vitro, we sought to determine whether merely the passage of time would be sufficient to promote the production of a hydrodynamically relevant glycocalyx on a confluent monolayer of human umbilical vein endothelial cells (HUVECs). Using micro-PIV, we found that the hydrodynamically relevant glycocalyx was substantially absent 7 days postconfluence on HUVEC-lined cylindrical collagen microchannels maintained under standard culture conditions. Thus, it remains to be determined how a hydrodynamically relevant glycocalyx surface layer can be synthesized and maintained in culture before the endothelial cell culture model can be used to elucidate glycocalyx-mediated mechanisms of endothelial cell function.
Collapse
Affiliation(s)
- Daniel R Potter
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
50
|
Khismatullin DB. Chapter 3 The Cytoskeleton and Deformability of White Blood Cells. CURRENT TOPICS IN MEMBRANES 2009. [DOI: 10.1016/s1063-5823(09)64003-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|