1
|
Hammell MJ, Kachmar L, Balassy Z, IJpma G, Lauzon AM. Molecular-level evidence of force maintenance by smooth muscle myosin during LC20 dephosphorylation. J Gen Physiol 2022; 154:213418. [PMID: 36001043 PMCID: PMC9411650 DOI: 10.1085/jgp.202213117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Smooth muscle (SM) is found in most hollow organs of the body. Phasic SM, as found in the gut, contracts to propel content, whereas tonic SM, as found in most blood vessels, maintains tension. This force maintenance is referred to as the latch state and occurs at low levels of myosin activation (myosin light chain [LC20] phosphorylation). Molecular mechanisms have been proposed to explain the latch state but have been studied only at the whole-muscle level because of technological limitations. In the current study, an assay chamber was devised to allow injection of myosin light chain phosphatase (MLCP) during laser trap and in vitro motility assays, without creating bulk flow, to reproduce latch state conditions at the molecular level. Using the laser trap in a single-beam mode, an actin filament was brought in contact with several myosin molecules on a pedestal. Myosin pulled on the actin filament until a plateau force was reached, at which point, MLCP was injected. Force maintenance was observed during LC20 dephosphorylation, the level of which was assessed in a parallel in vitro motility assay performed in the same conditions. Force was maintained longer for myosin purified from tonic SM than from phasic SM. These data support the longstanding dogma of strong bonds caused by dephosphorylated, noncycling cross-bridges. Furthermore, MLCP injection in an in vitro motility mixture assay performed with SM and skeletal muscle myosin suggests that the maintenance of these strong bonds is possible only if no energy is provided by surrounding actively cycling myosin molecules.
Collapse
Affiliation(s)
- Megan Jean Hammell
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada,Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - Linda Kachmar
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Zsombor Balassy
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada,Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada
| | - Gijs IJpma
- Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Anne-Marie Lauzon
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada,Research Institute of the McGill University Health Centre, Meakins-Christie Laboratories, Montreal, Quebec, Canada,Department of Medicine, McGill University, Montreal, Quebec, Canada,Correspondence to Anne-Marie Lauzon:
| |
Collapse
|
2
|
Pütz S, Barthel LS, Frohn M, Metzler D, Barham M, Pryymachuk G, Trunschke O, Lubomirov LT, Hescheler J, Chalovich JM, Neiss WF, Koch M, Schroeter MM, Pfitzer G. Caldesmon ablation in mice causes umbilical herniation and alters contractility of fetal urinary bladder smooth muscle. J Gen Physiol 2021; 153:212279. [PMID: 34115104 PMCID: PMC8203487 DOI: 10.1085/jgp.202012776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The actin-, myosin-, and calmodulin-binding protein caldesmon (CaD) is expressed in two splice isoforms: h-CaD, which is an integral part of the actomyosin domain of smooth muscle cells, and l-CaD, which is widely expressed and is involved in many cellular functions. Despite extensive research for many years, CaD's in vivo function has remained elusive. To explore the role of CaD in smooth muscle contraction in vivo, we generated a mutant allele that ablates both isoforms. Heterozygous animals were viable and had a normal life span, but homozygous mutants died perinatally, likely because of a persistent umbilical hernia. The herniation was associated with hypoplastic and dysmorphic abdominal wall muscles. We assessed mechanical parameters in isometrically mounted longitudinal strips of E18.5 urinary bladders and in ring preparations from abdominal aorta using wire myography. Ca2+ sensitivity was higher and relaxation rate was slower in Cald1−/− compared with Cald1+/+ skinned bladder strips. However, we observed no change in the content and phosphorylation of regulatory proteins of the contractile apparatus and myosin isoforms known to affect these contractile parameters. Intact fibers showed no difference in actin and myosin content, regardless of genotype, although KCl-induced force tended to be lower in homozygous and higher in heterozygous mutants than in WTs. Conversely, in skinned fibers, myosin content and maximal force were significantly lower in Cald1−/− than in WTs. In KO abdominal aortas, resting and U46619 elicited force were lower than in WTs. Our results are consistent with the notion that CaD impacts smooth muscle function dually by (1) acting as a molecular brake on contraction and (2) maintaining the structural integrity of the contractile machinery. Most importantly, CaD is essential for resolution of the physiological umbilical hernia and ventral body wall closure.
Collapse
Affiliation(s)
- Sandra Pütz
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Lisa Sophie Barthel
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Marina Frohn
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Doris Metzler
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Mohammed Barham
- Institute of Anatomy I, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Galyna Pryymachuk
- Institute of Anatomy I, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Oliver Trunschke
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Lubomir T Lubomirov
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Joseph M Chalovich
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC
| | - Wolfram F Neiss
- Institute of Anatomy I, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mechthild M Schroeter
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Chantler PD. Scallop Adductor Muscles. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-444-62710-0.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
4
|
Abstract
Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM.
Collapse
Affiliation(s)
- Paul H Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
5
|
Eddinger TJ. Smooth muscle-protein translocation and tissue function. Anat Rec (Hoboken) 2015; 297:1734-46. [PMID: 25125185 DOI: 10.1002/ar.22970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 01/25/2023]
Abstract
Smooth muscle (SM) tissue is a complex organization of multiple cell types and is regulated by numerous signaling molecules (neurotransmitters, hormones, cytokines, etc.). SM contractile function can be regulated via expression and distribution of the contractile and cytoskeletal proteins, and activation of any of the second messenger pathways that regulate them. Spatial-temporal changes in the contractile, cytoskeletal or regulatory components of SM cells (SMCs) have been proposed to alter SM contractile activity. Ca(2+) sensitization/desensitization can occur as a result of changes at any of these levels, and specific pathways have been identified at all of these levels. Understanding when and how proteins can translocate within the cytoplasm, or to-and-from the plasmalemma and the cytoplasm to alter contractile activity is critical. Numerous studies have reported translocation of proteins associated with the adherens junction and G protein-coupled receptor activation pathways in isolated SMC systems. Specific examples of translocation of vinculin to and from the adherens junction and protein kinase C (PKC) and 17 kDa PKC-potentiated inhibitor of myosin light chain phosphatase (CPI-17) to and from the plasmalemma in isolated SMC systems but not in intact SM tissues are discussed. Using both isolated SMC systems and SM tissues in parallel to pursue these studies will advance our understanding of both the role and mechanism of these pathways as well as their possible significance for Ca(2+) sensitization in intact SM tissues and organ systems.
Collapse
Affiliation(s)
- Thomas J Eddinger
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
6
|
Roman HN, Zitouni NB, Kachmar L, Ijpma G, Hilbert L, Matusovskiy O, Benedetti A, Sobieszek A, Lauzon AM. Unphosphorylated calponin enhances the binding force of unphosphorylated myosin to actin. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1830:4634-41. [PMID: 23747303 PMCID: PMC3740034 DOI: 10.1016/j.bbagen.2013.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/03/2013] [Accepted: 05/29/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Smooth muscle has the distinctive ability to maintain force for long periods of time and at low energy costs. While it is generally agreed that this property, called the latch-state, is due to the dephosphorylation of myosin while attached to actin, dephosphorylated-detached myosin can also attach to actin and may contribute to force maintenance. Thus, we investigated the role of calponin in regulating and enhancing the binding force of unphosphorylated tonic muscle myosin to actin. METHODS To measure the effect of calponin on the binding of unphosphorylated myosin to actin, we used the laser trap assay to quantify the average force of unbinding (Funb) in the absence and presence of calponin or phosphorylated calponin. RESULTS Funb from F-actin alone (0.12±0.01pN; mean±SE) was significantly increased in the presence of calponin (0.20±0.02pN). This enhancement was lost when calponin was phosphorylated (0.12±0.01pN). To further verify that this enhancement of Funb was due to the cross-linking of actin to myosin by calponin, we repeated the measurements at high ionic strength. Indeed, the Funb obtained at a [KCl] of 25mM (0.21±0.02pN; mean±SE) was significantly decreased at a [KCl] of 150mM, (0.13±0.01pN). CONCLUSIONS This study provides direct molecular level-evidence that calponin enhances the binding force of unphosphorylated myosin to actin by cross-linking them and that this is reversed upon calponin phosphorylation. Thus, calponin might play an important role in the latch-state. GENERAL SIGNIFICANCE This study suggests a new mechanism that likely contributes to the latch-state, a fundamental and important property of smooth muscle that remains unresolved.
Collapse
Affiliation(s)
- Horia Nicolae Roman
- Meakins-Christie Laboratories, McGill University, Montréal, Québec, Canada
- Department of Biomedical Engineering, McGill University, Montréal, Québec, Canada
| | - Nedjma B. Zitouni
- Meakins-Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Linda Kachmar
- Meakins-Christie Laboratories, McGill University, Montréal, Québec, Canada
| | - Gijs Ijpma
- Meakins-Christie Laboratories, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Lennart Hilbert
- Meakins-Christie Laboratories, McGill University, Montréal, Québec, Canada
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Centre for Applied Mathematics in Bioscience and Medicine, McGill University
| | - Oleg Matusovskiy
- Meakins-Christie Laboratories, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Andrea Benedetti
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, Québec, Canada
- Respiratory Epidemiology & Clinical Research Unit, Montreal Chest Institute, Montréal, Québec, Canada
| | - Apolinary Sobieszek
- Institute for Biomedical Aging Research, Smooth Muscle Lab at the Life Science Center, Austrian Academy of Sciences, A-6020 Innsbruck, Mitterweg 24
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, McGill University, Montréal, Québec, Canada
- Department of Medicine, McGill University, Montréal, Québec, Canada
- Department of Biomedical Engineering, McGill University, Montréal, Québec, Canada
- Department of Physiology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
7
|
Guo H, Huang R, Semba S, Kordowska J, Huh YH, Khalina-Stackpole Y, Mabuchi K, Kitazawa T, Wang CLA. Ablation of smooth muscle caldesmon affects the relaxation kinetics of arterial muscle. Pflugers Arch 2012; 465:283-94. [PMID: 23149489 DOI: 10.1007/s00424-012-1178-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 01/04/2023]
Abstract
Smooth muscle caldesmon (h-CaD) is an actin- and myosin-binding protein that reversibly inhibits the actomyosin ATPase activity in vitro. To test the function of h-CaD in vivo, we eliminated its expression in mice. The h-CaD-null animals appeared normal and fertile, although the litter size was smaller. Tissues from the homozygotes lacked h-CaD and exhibited upregulation of the non-muscle isoform, l-CaD, in visceral, but not vascular tonic smooth muscles. While the Ca(2+) sensitivity of force generation of h-CaD-deficient smooth muscle remained largely unchanged, the kinetic behavior during relaxation in arteries was different. Both intact and permeabilized arterial smooth muscle tissues from the knockout animals relaxed more slowly than those of the wild type. Since this difference occurred after myosin dephosphorylation was complete, the kinetic effect most likely resulted from slower detachment of unphosphorylated crossbridges. Detailed analyses revealed that the apparently slower relaxation of h-CaD-null smooth muscle was due to an increase in the amplitude of a slower component of the biphasic tension decay. While the identity of this slower process has not been unequivocally determined, we propose it reflects a thin filament state that elicits fewer re-attached crossbridges. Our finding that h-CaD modulates the rate of smooth muscle relaxation clearly supports a role in the control of vascular tone.
Collapse
Affiliation(s)
- Hongqiu Guo
- Boston Biomedical Research Institute, Watertown, MA, 02472, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Huang Q, Babu GJ, Periasamy M, Eddinger TJ. SMB myosin heavy chain knockout enhances tonic contraction and reduces the rate of force generation in ileum and stomach antrum. Am J Physiol Cell Physiol 2012; 304:C194-206. [PMID: 23135699 DOI: 10.1152/ajpcell.00280.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of SMA and SMB smooth muscle myosin heavy chain (MHC) isoforms in tonic and phasic contractions was studied in phasic (longitudinal ileum and stomach circular antrum) and tonic (stomach circular fundus) smooth muscle tissues of SMB knockout mice. Knocking out the SMB MHC gene eliminated SMB MHC protein expression and resulted in upregulation of the SMA MHC protein without altering the total MHC protein level. Switching from SMB to SMA MHC protein expression decreased the rate of the force transient and increased the sustained tonic force in SMB((-/-)) ileum and antrum with high potassium (KPSS) but not with carbachol (CCh) stimulation. The increased tonic contraction under the depolarized condition was not through changes in second messenger signaling pathways (PKC/CPI-17 or Rho/ROCK signaling pathway) or LC(20) phosphorylation. Biochemical analyses showed that the expression of contractile regulatory proteins (MLCK, MLCP, PKCδ, and CPI-17) did not change significantly in tissues tested except for PKCα protein expression being significantly decreased in the SMB((-/-)) antrum. However, specifically activating PKCα with phorbol dibutyrate (PDBu) was not significantly different in knockout and wild-type tissues, with total force being a fraction of the force generation with KPSS or CCh stimulation in SMB((-/-)) ileum and antrum. Taken together, these data show removing the SMB MHC protein expression with a compensatory increase in the SMA MHC protein results in enhanced sustained KPSS-induced tonic contraction with a reduced rate of force generation in these phasic tissues.
Collapse
Affiliation(s)
- Qian Huang
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | | | | | | |
Collapse
|
9
|
New insights into myosin phosphorylation during cyclic nucleotide-mediated smooth muscle relaxation. J Muscle Res Cell Motil 2012; 33:471-83. [PMID: 22711245 PMCID: PMC3521644 DOI: 10.1007/s10974-012-9306-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/25/2012] [Indexed: 02/03/2023]
Abstract
Nitrovasodilators and agonists, via an increase in intracellular cyclic nucleotide levels, can induce smooth muscle relaxation without a concomitant decrease in phosphorylation of the regulatory light chains (RLC) of myosin. However, since cyclic nucleotide-induced relaxation is associated with a decrease in intracellular [Ca2+], and hence, a decreased activity of MLCK, we tested the hypothesis that the site responsible for the elevated RLC phosphorylation is not Ser19. Smooth muscle strips from gastric fundus were isometrically contracted with ET-1 which induced an increase in monophosphorylation from 9 ± 1 % under resting conditions (PSS) to 36 ± 1 % determined with 2D-PAGE. Electric field stimulation induced a rapid, largely NO-mediated relaxation with a half time of 8 s, which was associated with an initial decline in RLC phosphorylation to 18 % within 2 s and a rebound to 34 % after 30 s whereas relaxation was sustained. In contrast, phosphorylation of RLC at Ser19 probed with phosphospecific antibodies declined in parallel with force. LC/MS and western blot analysis with phosphospecific antibodies against monophosphorylated Thr18 indicate that Thr18 is significantly monophosphorylated during sustained relaxation. We therefore suggest that (i) monophosphorylation of Thr18 rather than Ser19 is responsible for the phosphorylation rebound during sustained EFS-induced relaxation of mouse gastric fundus, and (ii) that relaxation can be ascribed to dephosphorylation of Ser19, the site considered to be responsible for regulation of smooth muscle tone.
Collapse
|
10
|
Mechanism of catch force: tethering of thick and thin filaments by twitchin. J Biomed Biotechnol 2010; 2010:725207. [PMID: 20625409 PMCID: PMC2896863 DOI: 10.1155/2010/725207] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/10/2010] [Indexed: 11/17/2022] Open
Abstract
Catch is a mechanical state occurring in some invertebrate smooth muscles characterized
by high force maintenance and resistance to stretch during extremely slow relaxation.
During catch, intracellular calcium is near basal concentration and myosin crossbridge
cyctng rate is extremely slow. Catch force is relaxed by a protein kinase A-mediated
phosphorylation of sites near the N- and C- temini of the minititin twitchin (~526 kDa).
Some catch force maintenance car also occur together with cycling myosin crossbridges
at submaximal calcium concentrations, but not when the muscle is maximally activated.
Additionally, the link responsible for catch can adjust during shortening of submaximally
activated muscles and maintain catch force at the new shorter length. Twitchin binds to
both thick and thin filaments, and the thin filament binding shown by both the N- and Cterminal
portions of twitchin is decreased by phosphorylation of the sites that regulate
catch. The data suggest that the twitchin molecule itself is the catch force beanng tether
between thick and thin filaments. We present a model for the regulation of catch in
which the twitchin tether can be displaced from thin filaments by both (a) the
phosphorylation of twitchin and (b) the attachment of high force myosin crossbridges.
Collapse
|
11
|
Galler S. Molecular basis of the catch state in molluscan smooth muscles: a catchy challenge. J Muscle Res Cell Motil 2008; 29:73-99. [PMID: 19039672 DOI: 10.1007/s10974-008-9149-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 10/18/2008] [Indexed: 12/15/2022]
Abstract
The catch state (or 'catch') of molluscan smooth muscles is a passive holding state that occurs after cessation of stimulation. During catch, force and, in particular, resistance to stretch are maintained for long time periods with low (or no) energy consumption at basal intracellular free [Ca2+]. The catch state is initiated by Ca2+-stimulated dephosphorylation of the titin-like protein twitchin and is inhibited by cAMP-dependent phosphorylation of twitchin. In addition, catch is pH sensitive, but the reason for this is unknown. According to a traditional model, catch is due to slower cross-bridge cycles where myosin heads remain longer attached to the actin filaments after force generation, possibly caused by a hindered release of ADP from the myosin heads. However, this model was disproved by recent findings which showed that (i) inhibitors of myosin function, such as vanadate, do not affect catch force; (ii) factors which terminate the catch state do not accelerate myosin head detachment kinetics and (iii) a catch-like high resistance to stretch is still inducible when force development is prevented. Thus, catch probably involves passive linkage structures interconnecting the myofilaments (catch linkages). For example twitchin could (i) tie myosin heads to the thin filaments, (ii) mechanically lock them in a stretch resistant state or (iii) interconnect thick and thin filaments directly. However, it is questionable if these mechanisms are sufficient since twitchin seems to be about 15-times less abundant than myosin. Therefore, in addition, interconnections between thick filaments could exist, which could involve e.g. paramyosin or twitchin. Catch could even involve changes in the compliance of thick filaments. The function of myorod, found specifically in catch muscles in equal abundance with myosin, is not known. The suggestion is made here that catch linkages are present already during active contraction either as ratchet-like elements resisting stretch and not opposing shortening or in some kind of 'standby' mode ready to transform suddenly into the working mode by stretches or after Ca2+ removal following cessation of stimulation.
Collapse
Affiliation(s)
- Stefan Galler
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
| |
Collapse
|
12
|
Léguillette R, Zitouni NB, Govindaraju K, Fong LM, Lauzon AM. Affinity for MgADP and force of unbinding from actin of myosin purified from tonic and phasic smooth muscle. Am J Physiol Cell Physiol 2008; 295:C653-60. [PMID: 18614813 DOI: 10.1152/ajpcell.00100.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Smooth muscle is unique in its ability to maintain force at low MgATP consumption. This property, called the latch state, is more prominent in tonic than phasic smooth muscle. Studies performed at the muscle strip level have suggested that myosin from tonic muscle has a greater affinity for MgADP and therefore remains attached to actin longer than myosin from phasic muscle, allowing for cross-bridge dephosphorylation and latch-bridge formation. An alternative hypothesis is that after dephosphorylation, myosin reattaches to actin and maintains force. We investigated these fundamental properties of smooth muscle at the molecular level. We used an in vitro motility assay to measure actin filament velocity (nu(max)) when propelled by myosin purified from phasic or tonic muscle at increasing [MgADP]. Myosin was 25% thiophosphorylated and 75% unphosphorylated to approximate in vivo conditions. The slope of nu(max) versus [MgADP] was significantly greater for tonic (-0.51+/-0.04) than phasic muscle myosin (-0.15+/-0.04), demonstrating the greater MgADP affinity of myosin from tonic muscle. We then used a laser trap assay to measure the unbinding force from actin of populations of unphosphorylated tonic and phasic muscle myosin. Both myosin types attached to actin, and their unbinding force (0.092+/-0.022 pN for phasic muscle and 0.084+/-0.017 pN for tonic muscle) was not statistically different. We conclude that the greater affinity for MgADP of tonic muscle myosin and the reattachment of dephosphorylated myosin to actin may both contribute to the latch state.
Collapse
Affiliation(s)
- Renaud Léguillette
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St-Urbain St., Montreal, QC, Canada H2X 2P2
| | | | | | | | | |
Collapse
|
13
|
Ogut O, Yuen SL, Brozovich FV. Regulation of the smooth muscle contractile phenotype by nonmuscle myosin. J Muscle Res Cell Motil 2008; 28:409-14. [DOI: 10.1007/s10974-008-9132-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 03/04/2008] [Indexed: 01/15/2023]
|
14
|
Taggart MJ, Morgan KG. Regulation of the uterine contractile apparatus and cytoskeleton. Semin Cell Dev Biol 2007; 18:296-304. [PMID: 17582796 PMCID: PMC2001260 DOI: 10.1016/j.semcdb.2007.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 05/03/2007] [Indexed: 01/16/2023]
Abstract
Parturition at term, the end stage of a successful pregnancy, occurs as a result of powerful, co-ordinated and periodic contractions of uterine smooth muscle (myometrium). To occur in a propitious manner, a high degree of control over the activation of a myometrial cell is required. We review the molecular mechanisms and structural composition of myometrial cells that may contribute to their increased contractile capacity at term. We focus attention on pathways that lead to the activation of filamentous networks traditionally labeled 'contractile' or 'cytoskeletal' yet draw attention to the fact that functional discrimination between these systems is not absolute.
Collapse
Affiliation(s)
- Michael J Taggart
- Maternal & Fetal Health Research Centre & Cardiovascular Research Group, University of Manchester, St Mary’s Hospital, Hathersage Road, Manchester, M130JH, UK, Tel: +44 161 276 5469, Fax: +44 161 276 6134, E mail:
| | - Kathleen G Morgan
- Health Sciences Department, Sargent College, Boston University, 635 Commonwealth Avenue, Boston MA 02215, USA, Tel: 617-353-7464, Fax: 617-353-7567, E-mail:
| |
Collapse
|
15
|
Lubomirov LT, Schubert R, Gagov HS, Duridanova DB, Pfitzer G. Urocortin increases the intracellular cAMP concentration and thus decreases the degree of phosphorylation of MYPT1 and increases the myosin phosphatase activity. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906050010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Rhee AY, Ogut O, Brozovich FV. Nonmuscle myosin, force maintenance, and the tonic contractile phenotype in smooth muscle. Pflugers Arch 2006; 452:766-74. [PMID: 16685563 DOI: 10.1007/s00424-006-0091-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 03/22/2006] [Accepted: 04/13/2006] [Indexed: 11/28/2022]
Abstract
Recent studies have demonstrated that nonmuscle (NM) myosin II forms filaments and can generate and maintain force in smooth muscle tissue [Lofgren et al. (2003) J Gen Physiol 121:301-310; Morano et al. (2000) Nat Cell Biol 2:371-375]. To further investigate the mechanical contribution of NM myosin to force maintenance during smooth muscle contraction, we utilized a selective inhibitor of the NM myosin ATPase, blebbistatin [Straight et al. (2003) Science 299:1743-1747]. Force and myosin light chain (MLC(20)) phosphorylation were measured during KCl stimulation of small strips of intact mouse bladder and aorta at 22 degrees C. The bladder strips contracted with a typical phasic force response, characterized by a large, rapid, transient increase in force followed by a decline to a lower, steady-state level. The addition of blebbistatin did not alter the peak force, but decreased force maintenance. KCl depolarization of aortic strips resulted in a tonic contraction; force increased to a sustained steady state. Similar to the bladder tissue, blebbistatin substantially decreased the steady-state force in the aorta. Blebbistatin did not influence the MLC(20) phosphorylation transient in either tissue type. Additionally, blebbistatin did not change the maximum shortening velocity (V (max)) during KCl depolarization of the aorta. Our results also suggest that NMIIA and NMIIB isoforms are differentially expressed. The expression of NMIIA is more prominent in the bladder, while NMIIB expression is predominant in the aorta. These results suggest that NM myosin contributes to the mechanism of force maintenance in smooth muscle, and could suggest that the expression of NMIIB is a factor for determining the tonic contractile phenotype.
Collapse
Affiliation(s)
- Albert Y Rhee
- Department of Physiology, University of Maryland, Baltimore, MD, USA
| | | | | |
Collapse
|
17
|
Lubomirov LT, Reimann K, Metzler D, Hasse V, Stehle R, Ito M, Hartshorne DJ, Gagov H, Pfitzer G, Schubert R. Urocortin-induced decrease in Ca2+ sensitivity of contraction in mouse tail arteries is attributable to cAMP-dependent dephosphorylation of MYPT1 and activation of myosin light chain phosphatase. Circ Res 2006; 98:1159-67. [PMID: 16574904 DOI: 10.1161/01.res.0000219904.43852.3e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urocortin, a vasodilatory peptide related to corticotropin-releasing factor, may be an endogenous regulator of blood pressure. In vitro, rat tail arteries are relaxed by urocortin by a cAMP-mediated decrease in myofilament Ca2+ sensitivity through a still unclear mechanism. Here we show that contraction of intact mouse tail arteries induced with 42 mmol/L KCl or 0.5 micromol/L noradrenaline was associated with a approximately 2-fold increase in the phosphorylation of the regulatory subunit of myosin phosphatase (SMPP-1M), MYPT1, at Thr696, which was reversed in arteries relaxed with urocortin. Submaximally (pCa 6.1) contracted mouse tail arteries permeabilized with alpha-toxin were relaxed with urocortin by 39+/-3% at constant [Ca2+], which was associated with a decrease in myosin light chain (MLC20Ser19), MYPT1Thr696, and MYPT1Thr850 phosphorylation by 60%, 28%, and 52%, respectively. The Rho-associated kinase (ROK) inhibitor Y-27632 decreased MYPT1 phosphorylation by a similar extent. Inhibition of PP-2A with 3 nmol/L okadaic acid had no effect on MYPT1 phosphorylation, whereas inhibition of PP-1 with 3 micromol/L okadaic acid prevented dephosphorylation. Urocortin increased the rate of dephosphorylation of MLC20Ser19 approximately 2.2-fold but had no effect on the rate of contraction under conditions of, respectively, inhibited kinase and phosphatase activities. The effect of urocortin on MLC20Ser19 and MYPT1 phosphorylation was blocked by Rp-8-CPT-cAMPS and mimicked by Sp-5,6-DCl-cBIMPS. In summary, these results provide evidence that Ca(2+)-independent relaxation by urocortin can be attributed to a cAMP-mediated increased activity of SMPP-1M which at least in part is attributable to a decrease in the inhibitory phosphorylation of MYPT1.
Collapse
|
18
|
Abstract
In contrast to striated muscle, both normalized force and shortening velocities are regulated functions of cross-bridge phosphorylation in smooth muscle. Physiologically this is manifested as relatively fast rates of contraction associated with transiently high levels of cross-bridge phosphorylation. In sustained contractions, Ca2+, cross-bridge phosphorylation, and ATP consumption rates fall, a phenomenon termed "latch". This review focuses on the Hai and Murphy (1988a) model that predicted the highly non-linear dependence of force on phosphorylation and a directly proportional dependence of shortening velocity on phosphorylation. This model hypothesized that (i) cross-bridge phosphorylation was obligatory for cross-bridge attachment, but also that (ii) dephosphorylation of an attached cross-bridge reduced its detachment rate. The resulting variety of cross-bridge cycles as predicted by the model could explain the observed dependencies of force and velocity on cross-bridge phosphorylation. New evidence supports modifications for more general applicability. First, myosin light chain phosphatase activity is regulated. Activation of myosin phosphatase is best demonstrated with inhibitory regulatory mechanisms acting via nitric oxide. The second modification of the model incorporates cooperativity in cross-bridge attachment to predict improved data on the dependence of force on phosphorylation. The molecular basis for cooperativity is unknown, but may involve thin filament proteins absent in striated muscle.
Collapse
Affiliation(s)
- Richard A Murphy
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
19
|
Pfitzer G, Schroeter M, Hasse V, Ma J, Rösgen KH, Rösgen S, Smyth N. Is myosin phosphorylation sufficient to regulate smooth muscle contraction? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 565:319-28; discussion 328, 405-15. [PMID: 16106985 DOI: 10.1007/0-387-24990-7_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Gabriele Pfitzer
- Department of Vegetative Physiology, University of Cologne, 50931 Koeln, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Chapter 4 Scallop adductor muscles: Structure and function. SCALLOPS: BIOLOGY, ECOLOGY AND AQUACULTURE 2006. [DOI: 10.1016/s0167-9309(06)80031-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Léguillette R, Gil FR, Zitouni N, Lajoie-Kadoch S, Sobieszek A, Lauzon AM. (+)Insert smooth muscle myosin heavy chain (SM-B) isoform expression in human tissues. Am J Physiol Cell Physiol 2005; 289:C1277-85. [PMID: 16000639 DOI: 10.1152/ajpcell.00244.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two smooth muscle myosin heavy chain isoforms differ in their amino terminus by the presence [(+)insert] or absence [(-)insert] of a seven-amino acid insert. Animal studies show that the (+)insert isoform is predominantly expressed in rapidly contracting phasic muscle and the (-)insert isoform is mostly found in slowly contracting tonic muscle. The expression of the (+)insert isoform has never been demonstrated in human smooth muscle. We hypothesized that the (+)insert isoform is present in humans and that its expression is commensurate with the organ's functional requirements. We report, for the first time, the sequence of the human (+)insert isoform and quantification of its expression by real-time PCR and Western blot analysis in a panel of human organs. The (+)insert isoform mRNA and protein expression levels are significantly greater in small intestine compared with all organs studied except for trachea and are significantly greater in trachea compared with uterus and aorta. To assess the functional significance of this differential myosin isoform expression between organs, we measured the rate of actin filament movement (nu(max)) when propelled by myosin purified from rat organs, because the rat and human inserts are identical and their remaining sequences show 93% identity. nu(max) exhibits a rank correlation from the most tonic to the most phasic organ. The selective expression of the (+)insert isoform observed among human organs suggests that it is an important determinant of tissue shortening velocity. A differential expression of the (+)insert isoform could also account for altered contractile properties observed in human pathology.
Collapse
Affiliation(s)
- Renaud Léguillette
- Meakins-Christie Laboratories, McGill University, 3626 St-Urbain St., Montréal, QC, Canada, H2X 2P2
| | | | | | | | | | | |
Collapse
|
22
|
Karagiannis P, Babu GJ, Periasamy M, Brozovich FV. Myosin heavy chain isoform expression regulates shortening velocity in smooth muscle: studies using an SMB KO mouse line. J Muscle Res Cell Motil 2005; 25:149-58. [PMID: 15360130 DOI: 10.1023/b:jure.0000035879.87045.4b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The kinetics of smooth muscle are thought to be partially determined by the level of the expression of the 7 amino acid insert, SMB, in the myosin heavy chain, as SMB is generally expressed at higher levels in faster smooth muscle. In this study, we determined the role of this insert on shortening velocity and force regeneration following rapid reduction in muscle length (k(step)) in bladder tissue from a transgenic mouse line expressing the insert at three different levels: wild type (WT, +/+, SMB/SMB), an SMA homozygous type (SMB KO, -/-), and a heterozygous type (+/-, SMB/SMA). Smooth muscle from +/+ bladder shorten faster than both the +/- and -/- bladder smooth muscle when activated with Ca2+, consistent with SMB determining the shortening velocity of smooth muscle. The addition of Pi to the fully activated skinned bladder strips did not affect the rate of shortening for either the +/+ or -/- bladder types but did significantly decrease the rate of shortening for the +/- type. In contrast, the addition of ADP to fully Ca2+ activated bladder strips increased the rate of shortening for all three bladder types. However after thiophosphorylation, ADP slowed the shortening velocity. These data are consistent with shortening velocity being determined by the level of activation (or crossbridge attachment) in smooth muscle. The rates of force regeneration according to the k(step) protocol showed no differences between bladder types and also proved insensitive to either Pi or ADP. These data suggest that the rates of force regeneration were determined not only by the kinetics of the crossbridge cycle, but also by factors outside the contractile apparatus.
Collapse
Affiliation(s)
- Peter Karagiannis
- Department of Physiology and Biophysics and Medicine (Cardiology), Case Western Reserve University, Cleveland OH 44106, USA
| | | | | | | |
Collapse
|
23
|
Somlyo AV, Khromov AS, Webb MR, Ferenczi MA, Trentham DR, He ZH, Sheng S, Shao Z, Somlyo AP. Smooth muscle myosin: regulation and properties. Philos Trans R Soc Lond B Biol Sci 2005; 359:1921-30. [PMID: 15647168 PMCID: PMC1693473 DOI: 10.1098/rstb.2004.1562] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The relationship of the biochemical states to the mechanical events in contraction of smooth muscle cross-bridges is reviewed. These studies use direct measurements of the kinetics of Pi and ADP release. The rate of release of Pi from thiophosphorylated cycling cross-bridges held isometric was biphasic with turnovers of 1.8 s-1 and 0.3 s-1, reflecting properties and forces directly acting on cross-bridges through mechanisms such as positive strain and inhibition by high-affinity MgADP binding. Fluorescent transients reporting release of an ADP analogue 3'-deac-edaADP were significantly faster in phasic than in tonic smooth muscles. Thiophosphorylation of myosin regulatory light chains (RLCs) increased and positive strain decreased the release rate around twofold. The rates of ADP release from rigor cross-bridges and the steady-state Pi release from cycling isometric cross-bridges are similar, indicating that the ADP-release step or an isomerization preceding it may limit the ATPase rate. Thus ADP release in phasic and tonic smooth muscles is a regulated step with strain- and dephosphorylation-dependence. High affinity of cross-bridges for ADP and slow ADP release prolong the fraction of the duty cycle occupied by strongly bound AM.ADP state(s) and contribute to the high economy of force that is characteristic of smooth muscle. RLC thiophosphorylation led to structural changes in smooth muscle cross-bridges consistent with our findings that thiophosphorylation and strain modulate product release.
Collapse
Affiliation(s)
- Avril V Somlyo
- Molecular Physiology and Biological Physics, University of Virginia, PO Box 800736, 1300 Jefferson Park Avenue, Charlottesville, VA 22908-0736, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Graceffa P, Mazurkie A. Effect of Caldesmon on the Position and Myosin-induced Movement of Smooth Muscle Tropomyosin Bound to Actin. J Biol Chem 2005; 280:4135-43. [PMID: 15504719 DOI: 10.1074/jbc.m410375200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is known that the actin-binding protein caldesmon inhibits actomyosin ATPase activity and might in this way take part in the thin filament regulation of smooth muscle contraction. Although the molecular mechanism of this inhibition is unknown, it is clear that the presence of actin-bound tropomyosin is necessary for full inhibition. Recent evidence also suggests that the myosin-induced movement of tropomyosin plays a key role in regulation. In this work, fluorescence studies provide evidence to show that caldesmon interacts with and alters the position of tropomyosin in a reconstituted actin thin filament and thereby limits the ability of myosin heads to move tropomyosin. Caldesmon interacts with the Cys-190 region in the COOH-terminal half of tropomyosin, resulting in the movement of this part of tropomyosin to a new position on actin. Additionally, this constrains the myosin-induced movement of this region of tropomyosin. On the other hand, caldesmon does not appear to interact with the Cys-36 region in the NH2-terminal half of tropomyosin and neither alters the position of nor significantly constrains the myosin-induced movement of this part of tropomyosin. The ability of caldesmon to limit the myosin-induced movement of tropomyosin provides a possible molecular basis for the inhibitory function of caldesmon. The different movements of the two halves of tropomyosin indicate that actin-bound tropomyosin moves as a flexible molecule and not as a rigid rod. Interestingly, caldesmon, which inhibits tropomyosin's potentiation of actomyosin ATPase activity, moves tropomyosin in one direction, whereas myosin heads, which enhance potentiation, move tropomyosin in the opposite direction.
Collapse
Affiliation(s)
- Philip Graceffa
- Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA.
| | | |
Collapse
|
25
|
Khromov AS, Webb MR, Ferenczi MA, Trentham DR, Somlyo AP, Somlyo AV. Myosin regulatory light chain phosphorylation and strain modulate adenosine diphosphate release from smooth muscle Myosin. Biophys J 2004; 86:2318-28. [PMID: 15041670 PMCID: PMC1304081 DOI: 10.1016/s0006-3495(04)74289-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of myosin regulatory light chain (RLC) phosphorylation and strain on adenosine diphosphate (ADP) release from cross-bridges in phasic (rabbit bladder (Rbl)) and tonic (femoral artery (Rfa)) smooth muscle were determined by monitoring fluorescence transients of the novel ADP analog, 3'-deac-eda-ADP (deac-edaADP). Fluorescence transients reporting release of 3'-deac-eda-ADP were significantly faster in phasic (0.57 +/- 0.06 s(-1)) than tonic (0.29 +/- 0.03 s(-1)) smooth muscles. Thiophosphorylation of regulatory light chains increased and strain decreased the release rate approximately twofold. The calculated (k-ADP/k+ADP) dissociation constant, Kd of unstrained, unphosphorylated cross-bridges for ADP was 0.6 microM for rabbit bladder and 0.3 microM for femoral artery. The rates of ADP release from rigor bridges and reported values of Pi release (corresponding to the steady-state adenosine triphosphatase (ATPase) rate of actomyosin (AM)) from cross-bridges during a maintained isometric contraction are similar, indicating that the ADP-release step or an isomerization preceding it may be limiting the adenosine triphosphatase rate. We conclude that the strain- and dephosphorylation-dependent high affinity for and slow ADP release from smooth muscle myosin prolongs the fraction of the duty cycle occupied by strongly bound actomyosin.ADP state(s) and contributes to the high economy of force.
Collapse
Affiliation(s)
- Alexander S Khromov
- Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
26
|
Andersson KE, Arner A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 2004; 84:935-86. [PMID: 15269341 DOI: 10.1152/physrev.00038.2003] [Citation(s) in RCA: 637] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The detrusor smooth muscle is the main muscle component of the urinary bladder wall. Its ability to contract over a large length interval and to relax determines the bladder function during filling and micturition. These processes are regulated by several external nervous and hormonal control systems, and the detrusor contains multiple receptors and signaling pathways. Functional changes of the detrusor can be found in several clinically important conditions, e.g., lower urinary tract symptoms (LUTS) and bladder outlet obstruction. The aim of this review is to summarize and synthesize basic information and recent advances in the understanding of the properties of the detrusor smooth muscle, its contractile system, cellular signaling, membrane properties, and cellular receptors. Alterations in these systems in pathological conditions of the bladder wall are described, and some areas for future research are suggested.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Dept. of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
27
|
Abstract
Smooth muscle is a slow and economical muscle with a large variability in contractile properties. This review describes results regarding the relation between expression of myosin isoforms and the contraction of smooth muscle. The focus of the review is on studies of the organised contractile system in the smooth muscle tissue. The role of the myosin heavy chain variants formed by alternative splicing in the myosin heavy chain tail (SM1, SM2 isoforms) and head (SM-A SM-B isoforms) regions, as well as the role of essential light chains (LC17a, LC17b isoforms) for the variability of contractile properties are discussed. Smooth muscle also has the ability to alter its contractile properties in response to altered functional demands in vivo, e.g. during hypertrophic growth of urinary bladder, intestine, uterus and vessels and in response to altered hormone levels. These alterations involve changes in myosin expression and altered contractile kinetics. Non-muscle myosin has been shown to have a contractile function in some smooth muscle tissues and recent data on the kinetic properties of non-muscle myosin filaments in smooth muscle tissue are described.
Collapse
Affiliation(s)
- Anders Arner
- Department of Physiological Sciences, Medical Faculty, Lund University, BMC F11, Tornavägen 10, SE-221 84 Lund, Sweden.
| | | | | |
Collapse
|
28
|
Karagiannis P, Brozovich FV. The kinetic properties of smooth muscle: how a little extra weight makes myosin faster. J Muscle Res Cell Motil 2004; 24:157-63. [PMID: 14609027 DOI: 10.1023/a:1026049429858] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The contractile properties of smooth muscle (SM) are often described as fast and slow, but the molecular basis for the diversity in contractile properties has yet to be fully elucidated. Studies have shown that the differences in the contractile parameters are seen at the level of the contractile proteins. Experiments have implicated both the splicing of the SM myosin heavy chain (MHC) and the SM myosin essential myosin light chain as possible molecular determinants of the contractile properties of SM. This communication will focus on the role of the 7 aa insert in the smooth muscle MHC in determining the contractile properties of SM and the possible mechanism by which this insert could alter the kinetics of the SM actomyosin ATPase.
Collapse
Affiliation(s)
- Peter Karagiannis
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA
| | | |
Collapse
|
29
|
Rembold CM, Wardle RL, Wingard CJ, Batts TW, Etter EF, Murphy RA. Cooperative attachment of cross bridges predicts regulation of smooth muscle force by myosin phosphorylation. Am J Physiol Cell Physiol 2004; 287:C594-602. [PMID: 15151901 DOI: 10.1152/ajpcell.00082.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serine 19 phosphorylation of the myosin regulatory light chain (MRLC) appears to be the primary determinant of smooth muscle force development. The relationship between MRLC phosphorylation and force is nonlinear, showing that phosphorylation is not a simple switch regulating the number of cycling cross bridges. We reexamined the MRLC phosphorylation-force relationship in slow, tonic swine carotid media; fast, phasic rabbit urinary bladder detrusor; and very fast, tonic rat anococcygeus. We found a sigmoidal dependence of force on MRLC phosphorylation in all three tissues with a threshold for force development of approximately 0.15 mol P(i)/mol MRLC. This behavior suggests that force is regulated in a highly cooperative manner. We then determined whether a model that employs both the latch-bridge hypothesis and cooperative activation could reproduce the relationship between Ser(19)-MRLC phosphorylation and force without the need for a second regulatory system. We based this model on skeletal muscle in which attached cross bridges cooperatively activate thin filaments to facilitate cross-bridge attachment. We found that such a model describes both the steady-state and time-course relationship between Ser(19)-MRLC phosphorylation and force. The model required both cooperative activation and latch-bridge formation to predict force. The best fit of the model occurred when binding of a cross bridge cooperatively activated seven myosin binding sites on the thin filament. This result suggests cooperative mechanisms analogous to skeletal muscle that will require testing.
Collapse
Affiliation(s)
- Christopher M Rembold
- Box 801395, Cardiovascular Division, Univ. of Virginia Health System, Charlottesville, VA 22908-1395, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Lyons MA, Shukla R, Zhang K, Pyne GJ, Singh M, Biehle SJ, Clark JF. Increase of metabolic activity and disruption of normal contractile protein distribution by bilirubin oxidation products in vascular smooth-muscle cells. J Neurosurg 2004; 100:505-11. [PMID: 15035287 DOI: 10.3171/jns.2004.100.3.0505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECT Cerebral vasospasm is a common cause of morbidity and death following aneurysmal subarachnoid hemorrhage (SAH). Previous research has shown that bilirubin oxidation products (BOXes) are present in the cerebral spinal fluid in patients with SAH-induced cerebral vasospasm and can contribute to vasoconstriction and vasospasm in vitro and in vivo. The events leading to cerebral vasospasm are not understood; however, one component of the occlusion may be due to vascular remodeling. In this study the authors have investigated the actions of BOXes, okadaic acid ([OA], a phosphatase inhibitor), and phorbol-12 myristate-13 acetate ([PMA], a protein kinase activator) on vascular smooth-muscle cell (VSMC) morphology and metabolism. METHODS Immunohistochemical analysis was performed to assess VSMC morphology and alpha-smooth-muscle actin (alphaSMA) distribution following the application of BOXes, OA, or PMA. Changes in the level of lactate dehydrogenase (LDH) release and oxidative metabolism were also measured. The BOXes, OA, or PMA caused VSMCs to change their shape and exhibit altered alphaSMA distribution. These treatments increased LDH release (p < 0.05), which is an index of increased cell stress. Oxidative metabolism significantly increased at low and high doses of BOXes, that is, 143 +/- 8.5% and 180 +/- 11.8%, respectively (p < 0.0001). Both PMA and OA also caused a significant increase in metabolism. CONCLUSIONS The authors concluded that BOXes, OA, and PMA alter VSMC morphology and metabolic activity, events that have been observed during vascular remodeling. Although the mechanism remains unclear, the results indicate that BOXes may play a role in the vascular remodeling that occurs following aneurysmal SAH.
Collapse
Affiliation(s)
- Melissa A Lyons
- Department of Neurology, College of Medicine, University of Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Wendt IR, Paul RJ. Energy cost of contraction in rat urinary bladder smooth muscle during anoxia. Clin Exp Pharmacol Physiol 2003; 30:565-9. [PMID: 12890180 DOI: 10.1046/j.1440-1681.2003.03882.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The aim of the present study was to investigate the effects of hypoxia on energy metabolism and contraction of rat urinary bladder smooth muscle, thereby gaining insight into the capacity of this smooth muscle to maintain contractile function when rendered hypoxic. 2. Isometric force, oxygen consumption, lactate production, heat production and unloaded shortening velocity were measured in isolated muscle strips under both aerobic and anaerobic conditions. Muscle strips were bathed in physiological saline solution with the anaerobic condition being created by replacing the oxygen bubbling the solution with nitrogen. 3. During contraction under anaerobic conditions, the rate of lactate production was increased 2.5-fold above that observed under aerobic conditions. This, however, only provided for a rate of ATP production of approximately 30% of that measured under aerobic conditions. Despite this, force maintenance was only slightly depressed, indicating that the metabolic cost of contraction was reduced in hypoxia. In support of this, the rate of heat production during contractions in anoxia was only approximately half of that under aerobic conditions, whereas, again, force was only slightly lower. Unloaded shortening velocity was significantly lower in anoxia, suggesting a slower cross-bridge turnover rate. 4. The results indicate that the economy of force maintenance is increased in bladder smooth muscle under hypoxic conditions and that this is due, at least in part, to a reduced rate of cross-bridge cycling. This may help to preserve bladder contractile function during periods of ischaemia that may be associated with bladder filling and emptying.
Collapse
Affiliation(s)
- Igor R Wendt
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
32
|
Karagiannis P, Babu GJ, Periasamy M, Brozovich FV. The smooth muscle myosin seven amino acid heavy chain insert's kinetic role in the crossbridge cycle for mouse bladder. J Physiol 2003; 547:463-73. [PMID: 12562924 PMCID: PMC2342653 DOI: 10.1113/jphysiol.2002.035717] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The seven amino acid insert in the smooth muscle myosin heavy chain is thought to regulate the kinetics of contraction, contributing to the differences between fast and slow smooth muscle. The effects of this insert on force and stiffness were determined in bladder tissue of a transgenic mouse line expressing the insert SMB at one of three levels: an SMB wild type (+/+), an SMA homozygous type (-/-) and a heterozygous type (+/-). For skinned muscle, an increase in MgADP or inorganic phosphate (Pi) should shift the distribution of crossbridges in the actomyosin ATPase (AMATPase) to increase the relative population of the crossbridge state prior to ADP release and Pi release, respectively. Exogenous ADP increased force and stiffness in a manner consistent with increasing the Ca2+ concentration in both the +/+ and +/- mouse types. However, the -/- type showed a significantly greater increase in force than in stiffness suggesting that immediately prior to ADP release, the AMATPase either has an additional force producing isomerization state or a slower ADP dissociation rate for the -/- type compared to the +/+ or +/- types. Exogenous Pi led to a significantly greater decrease in stiffness than in force for all three mouse types suggesting that there is a force producing state prior to Pi release. In addition, the increase in Pi showed similar changes in the +/+ and -/- types whereas in the +/- type the decreases in both force and stiffness were greater than the other two mouse types indicating that the insert can affect the cooperativity between myosin heads. In conclusion, the seven amino acid insert modulates the kinetics and/or states of the AMATPase, which could lead to differences in the kinetics of contraction between fast and slow smooth muscle.
Collapse
Affiliation(s)
- Peter Karagiannis
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | |
Collapse
|
33
|
Oh JH, You SK, Hwang MK, Ahn DS, Kwon SC, Taggart MJ, Lee YH. Inhibition of rho-associated kinase reduces MLC20 phosphorylation and contractility of intact myometrium and attenuates agonist-induced Ca2+ sensitization of force of permeabilized rat myometrium. J Vet Med Sci 2003; 65:43-50. [PMID: 12576703 DOI: 10.1292/jvms.65.43] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of rhoA/rho-associated kinase (ROK) signaling pathways in agonist-induced contraction of the rat myometrium was investigated. We measured the [Ca(2+)](i)-force relationship, phosphorylation of myosin regulatory light chains (MLC(20)) in intact tissue and the Ca(2+)-sensitization of force in permeabilized myometrial cells of rat. In measurements of the relationship between [Ca(2+)](i) and tension in intact tissue, Y-27632, a ROK inhibitor, significantly attenuated the carbachol-induced contraction without changing [Ca (2+)](i). Phosphorylation of MLC(20) was increased by carbachol and this increased phosphorylation was blocked by treatment of tissue with Y-27632. In tension measurements of single hyperpermeable cells, carbachol evoked sustained contraction at constant pCa 6.7 and these agonist-induced contractions were decreased by treatment with Y-27632. These results suggest that activation of a ROK-mediated signaling pathway(s) plays an important role in agonist-induced alterations in MLC(20) phosphorylation and force of rat myometrium.
Collapse
Affiliation(s)
- Jae-Hwan Oh
- Department of Surgery, Gachon Medical School, Gil Medical Center
| | | | | | | | | | | | | |
Collapse
|
34
|
Pfitzer G, Wirth A, Lucius C, Brkic-Koric D, Manser E, de Lanerolle P, Arner A. Regulation of Smooth Muscle Contraction by Calcium, Monomeric Gtpases of the Rho Subfamily and Their Effector Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 538:89-99; discussion 99. [PMID: 15098657 DOI: 10.1007/978-1-4419-9029-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- G Pfitzer
- Department of Vegetative Physiologie, University of Cologne, Robert-Koch Str. 39, 50931 Koeln, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Schönleber RO, Bendig J, Hagen V, Giese B. Rapid photolytic release of cytidine 5'-diphosphate from a coumarin derivative: a new tool for the investigation of ribonucleotide reductases. Bioorg Med Chem 2002; 10:97-101. [PMID: 11738611 DOI: 10.1016/s0968-0896(01)00254-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to study the long-range radical transfer in the Escherichia coli ribonucleotide reductase (RNR), caged cytidine 5'-diphosphate (CDP) 1 was synthesized, which contains the photolabile (7-diethylaminocoumarin-4-yl)methyl moiety. The caged CDP 1 triggers the release of CDP when irradiated at wavelengths between 365 and 436 nm. The rate constant of the formation of alcohol 2 and cytidine 5'-diphosphate 3 is 2x10(8) s(-1) and the quantum efficiency for the disappearance of caged CDP 1 is 2.9%.
Collapse
Affiliation(s)
- Ralph O Schönleber
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | | | | | | |
Collapse
|
36
|
Abstract
Phosphorylation of the regulatory light chains of myosin II (rMLC) by the Ca(2+)/calmodulin-dependent myosin light-chain kinase (MLCK) and dephosphorylation by a type 1 phosphatase (MLCP), which is targeted to myosin by a regulatory subunit (MYPT1), are the predominant mechanisms of regulation of smooth muscle tone. The activities of both enzymes are modulated by several protein kinases. MLCK is inhibited by the Ca(2+)/calmodulin-dependent protein kinase II, whereas the activity of MLCP is increased by cGMP and perhaps also cAMP-dependent protein kinases. In either case, this results in a decrease in the Ca(2+) sensitivity of rMLC phosphorylation and force production. The activity of MLCP is inhibited by Rho-associated kinase, one of the effectors of the monomeric GTPase Rho, and protein kinase C, leading to an increase in Ca(2+) sensitivity. Hence, smooth muscle tone appears to be regulated by a network of activating and inactivating intracellular signaling cascades.
Collapse
Affiliation(s)
- G Pfitzer
- Department of Physiology, University of Cologne, D-50931 Koeln, Germany.
| |
Collapse
|
37
|
Abstract
Photolytic release of MgADP (25-300 microM) from caged ADP in permeabilized tonic (rabbit femoral artery-Rfa) and phasic (rabbit bladder-Rbl) smooth muscle in high-tension rigor state, in the absence of Ca(2+), caused an exponential decline (approximately 1.5% in Rfa and approximately 6% in Rbl) of rigor force, with the rate proportional to the liberated [MgADP]. The apparent second-order rate constant of MgADP binding was estimated as approximately 1.0 x 10(6) M(-1) s(-1) for both smooth muscles. In control experiments, designed to test the specificity of MgADP, photolysis of caged ADP in the absence of Mg(2+) did not decrease rigor force in either smooth muscle, but rigor force decreased after photolytic release of Mg(2+) in the presence of ADP. The effects of photolysis of caged ADP were similar in smooth muscles containing thiophosphorylated or non-phosphorylated regulatory myosin light chains. Stretching or releasing (within range of 0.1-1.2% of initial Ca(2+)-activated force) did not affect the rate or relative amplitude of the force decrease. The effect of additions of MgADP to rigor cross-bridges could result from rotation of the lever arm of smooth muscle myosin, but this need not imply that ADP-release is a significant force-producing step of the physiological cross-bridge cycle.
Collapse
Affiliation(s)
- A S Khromov
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22906, USA
| | | | | |
Collapse
|
38
|
Butler TM, Narayan SR, Mooers SU, Hartshorne DJ, Siegman MJ. The myosin cross-bridge cycle and its control by twitchin phosphorylation in catch muscle. Biophys J 2001; 80:415-26. [PMID: 11159412 PMCID: PMC1301243 DOI: 10.1016/s0006-3495(01)76024-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The anterior byssus retractor muscle of Mytilus edulis was used to characterize the myosin cross-bridge during catch, a state of tonic force maintenance with a very low rate of energy utilization. Addition of MgATP to permeabilized muscles in high force rigor at pCa > 8 results in a rapid loss of some force followed by a very slow rate of relaxation that is characteristic of catch. The fast component is slowed 3-4-fold in the presence of 1 mM MgADP, but the distribution between the fast and slow (catch) components is not dependent on [MgADP]. Phosphorylation of twitchin results in loss of the catch component. Fewer than 4% of the myosin heads have ADP bound in rigor, and the time course (0.2-10 s) of ADP formation following release of ATP from caged ATP is similar whether or not twitchin is phosphorylated. This suggests that MgATP binding to the cross-bridge and subsequent splitting are independent of twitchin phosphorylation, but detachment occurs only if twitchin is phosphorylated. A similar dependence of detachment on twitchin phosphorylation is seen with AMP-PNP and ATPgammaS. Single turnover experiments on bound ADP suggest an increase in the rate of release of ADP from the cross-bridge when catch is released by phosphorylation of twitchin. Low [Ca(2+)] and unphosphorylated twitchin appear to cause catch by 1) markedly slowing ADP release from attached cross-bridges and 2) preventing detachment following ATP binding to the rigor cross-bridge.
Collapse
Affiliation(s)
- T M Butler
- Department of Physiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | | | |
Collapse
|
39
|
Ogut O, Brozovich FV. Determinants of the contractile properties in the embryonic chicken gizzard and aorta. Am J Physiol Cell Physiol 2000; 279:C1722-32. [PMID: 11078686 DOI: 10.1152/ajpcell.2000.279.6.c1722] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Smooth muscle is generally grouped into two classes of differing contractile properties. Tonic smooth muscles show slow rates of force activation and relaxation and slow speeds of shortening (V(max)) but force maintenance, whereas phasic smooth muscles show poor force maintenance but have fast V(max) and rapid rates of force activation and relaxation. We characterized the development of gizzard and aortic smooth muscle in embryonic chicks to identify the cellular determinants that define phasic (gizzard) and tonic (aortic) contractile properties. Early during development, tonic contractile properties are the default for both tissues. The gizzard develops phasic contractile properties between embryonic days (ED) 12 and 20, characterized primarily by rapid rates of force activation and relaxation compared with the aorta. The rapid rate of force activation correlates with expression of the acidic isoform of the 17-kDa essential myosin light chain (MLC(17a)). Previous data from in vitro motility assays (Rover AS, Frezon Y, and Trybus KM. J Muscle Res Cell Motil 18: 103-110, 1997) have postulated that myosin heavy chain (MHC) isoform expression is a determinant for V(max) in intact tissues. In the current study, differences in V(max) did not correlate with previously published differences in MHC or MLC(17a) isoforms. Rather, V(max) was increased with thiophosphorylation of the 20-kDa regulatory myosin light chain (MLC(20)) in the gizzard, suggesting that a significant internal load exists. Furthermore, V(max) in the gizzard increased during postnatal development without changes in MHC or MLC(17) isoforms. Although the rate of MLC(20) phosphorylation was similar at ED 20, the rate of MLC(20) dephosphorylation was significantly higher in the gizzard versus the aorta, correlating with expression of the M130 isoform of the myosin binding subunit in the myosin light chain phosphatase (MLCP) holoenzyme. These results indicate that unique MLCP and MLC(17) isoform expression marks the phasic contractile phenotype.
Collapse
Affiliation(s)
- O Ogut
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | |
Collapse
|
40
|
Rhee AY, Brozovich FV. The smooth muscle cross-bridge cycle studied using sinusoidal length perturbations. Biophys J 2000; 79:1511-23. [PMID: 10969012 PMCID: PMC1301044 DOI: 10.1016/s0006-3495(00)76402-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The mechanical characteristics of smooth muscle can be broadly defined as either phasic, or fast contracting, and tonic, or slow contracting (, Pharmacol. Rev. 20:197-272). To determine if differences in the cross-bridge cycle and/or distribution of the cross-bridge states could contribute to differences in the mechanical properties of smooth muscle, we determined force and stiffness as a function of frequency in Triton-permeabilized strips of rabbit portal vein (phasic) and aorta (tonic). Permeabilized muscle strips were mounted between a piezoelectric length driver and a piezoresistive force transducer. Muscle length was oscillated from 1 to 100 Hz, and the stiffness was determined as a function of frequency from the resulting force response. During calcium activation (pCa 4, 5 mM MgATP), force and stiffness increased to steady-state levels consistent with the attachment of actively cycling cross-bridges. In smooth muscle, because the cross-bridge states involved in force production have yet to be elucidated, the effects of elevation of inorganic phosphate (P(i)) and MgADP on steady-state force and stiffness were examined. When portal vein strips were transferred from activating solution (pCa 4, 5 mM MgATP) to activating solution with 12 mM P(i), force and stiffness decreased proportionally, suggesting that cross-bridge attachment is associated with P(i) release. For the aorta, elevating P(i) decreased force more than stiffness, suggesting the existence of an attached, low-force actin-myosin-ADP- P(i) state. When portal vein strips were transferred from activating solution (pCa 4, 5 mM MgATP) to activating solution with 5 mM MgADP, force remained relatively constant, while stiffness decreased approximately 50%. For the aorta, elevating MgADP decreased force and stiffness proportionally, suggesting for tonic smooth muscle that a significant portion of force production is associated with ADP release. These data suggest that in the portal vein, force is produced either concurrently with or after P(i) release but before MgADP release, whereas in aorta, MgADP release is associated with a portion of the cross-bridge powerstroke. These differences in cross-bridge properties could contribute to the mechanical differences in properties of phasic and tonic smooth muscle.
Collapse
Affiliation(s)
- A Y Rhee
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970 USA
| | | |
Collapse
|
41
|
Clark JF, Radda GK, Boehm EA. The effects of anti-hypertensive therapy on the structural, mechanical and metabolic properties of the rat aorta. J Muscle Res Cell Motil 2000; 21:255-67. [PMID: 10952173 DOI: 10.1023/a:1005646614308] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The vascular system exhibits altered growth, calcium responses and metabolism during hypertension. To relate such changes, we compared histological, tension and metabolic responses in the aorta from 32-week-old spontaneously hypertensive rats (SHRs), normotensive Wistar-Kyoto (WKY) rats, and SHRs treated with Verapamil (V) and ACE-inhibitor, Trandolapril (T) as well as a combination of the two treatments (C). Vascular hypertrophy was apparent in the SHRs. Contractile responses induced by 50 mmol/1 KCl and 2.5 mmol/1 Ca2+ were significantly lower in the SHR (64.4 mN/mm2 vs. 49.2 mN/mm2), but an associated increase in Ca2+ -sensitivity (EC50 of extracellular Ca2+ (mumol/1): SHR, 456 vs. WKY, 616) normalised tension generating ability. All treatments led to significant decreases in blood pressure, although only T and C treated animals became normotensive with concomitant normalisation of vascular hypertrophy. An increase in oxygen consumption was apparent in the SHR aorta, which was associated with significant differences in the activities of key metabolic enzymes. Anti-hypertensive treatment normalised many of the metabolic parameters, with the C therapy being the most efficacious. We conclude that the treatment of hypertension by combined therapy leads to a better normalisation of structural, contractile, and metabolic parameters in the SHR, than either treatment alone and that metabolic changes with the pathology are resolved with appropriate therapy.
Collapse
Affiliation(s)
- J F Clark
- Department of Biochemistry, University of Oxford, UK.
| | | | | |
Collapse
|
42
|
Gollub J, Cremo CR, Cooke R. Phosphorylation regulates the ADP-induced rotation of the light chain domain of smooth muscle myosin. Biochemistry 1999; 38:10107-18. [PMID: 10433719 DOI: 10.1021/bi990267e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have observed the effects of MgADP and thiophosphorylation on the conformational state of the light chain domain of myosin in skinned smooth muscle. Electron paramagnetic resonance (EPR) spectroscopy was used to monitor the orientation of spin probes attached to the myosin regulatory light chain (RLC). Two spectral states were seen, termed here "intermediate" and "final", that are distinguished by a approximately 24 degrees axial rotation of spin probes attached to the RLC. The two observed conformations are similar to those found previously for smooth muscle myosin S1; the final state corresponds to the major conformation of S1 in the absence of ADP, while the intermediate state corresponds to the conformation of S1 with ADP bound. Light chain domain orientation was observed as a function of the MgADP concentration and the extent of RLC thiophosphorylation. In rigor (no MgADP), LC domains were distributed equally between the intermediate state and the final state; upon addition of saturating (3.5 mM) MgADP, about one-third of the LC domains in the final state rotated approximately 20 degrees axially to the intermediate state. The progression of the change in populations was fit to a simple binding equation, yielding an apparent dissociation constant of approximately 110 microM for skinned smooth muscle fibers and approximately 730 microM for thiophosphorylated, skinned smooth muscle fibers. These observations suggest a model that explains the behavior of "latch bridges" in smooth muscle.
Collapse
Affiliation(s)
- J Gollub
- Graduate Group in Biophysics, Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco 94143-0448, USA
| | | | | |
Collapse
|
43
|
Dantzig JA, Barsotti RJ, Manz S, Sweeney HL, Goldman YE. The ADP release step of the smooth muscle cross-bridge cycle is not directly associated with force generation. Biophys J 1999; 77:386-97. [PMID: 10388765 PMCID: PMC1300337 DOI: 10.1016/s0006-3495(99)76897-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
When smooth muscle myosin subfragment 1 (S1) is bound to actin filaments in vitro, the light chain domain tilts upon release of MgADP, producing a approximately 3.5-nm axial motion of the head-rod junction (Whittaker et al., 1995. Nature. 378:748-751). If this motion contributes significantly to the power stroke, rigor tension of smooth muscle should decrease substantially in response to cross-bridge binding of MgADP. To test this prediction, we monitored mechanical properties of permeabilized strips of chicken gizzard muscle in rigor and in the presence of MgADP. For comparison, we also tested psoas and soleus muscle fibers. Any residual bound ADP was minimized by incubation in Mg2+-free rigor solution containing 15 mM EDTA. The addition of 2 mM MgADP, while keeping ionic strength and free Mg2+ concentration constant, resulted in a slight increase in rigor tension in both gizzard and soleus muscles, but a decrease in psoas muscle. In-phase stiffness monitored during small (<0.1%) 500-Hz sinusoidal length oscillations decreased in all three muscle types when MgADP was added. The changes in force and stiffness with the addition of MgADP were similar at ionic strengths from 50 to 200 mM and were reversible. The results with gizzard muscle were similar after thiophosphorylation of the regulatory light chain of myosin. These results suggest that the axial motion of smooth muscle S1 bound to actin, upon dissociation of MgADP, is not associated with force generation. The difference between the present mechanical data and previous structural studies of smooth S1 may be explained if geometrical constraints of the intact contractile filament array alter the motions of the myosin heads.
Collapse
Affiliation(s)
- J A Dantzig
- Department of Physiology and Pennsylvania Muscle Institute, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6083, USA
| | | | | | | | | |
Collapse
|
44
|
Su X, Pott JW, Moreland RS. Effect of Mg2+ on stress, myosin phosphorylation, and ATPase activity in detergent-skinned swine carotid media. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H1416-24. [PMID: 10330223 DOI: 10.1152/ajpheart.1999.276.5.h1416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Smooth muscle contraction has a relatively high requirement for free magnesium (Mg2+). In this study we examined the effect of Mg2+ concentration ([Mg2+]) on Ca2+-dependent stress development and stress maintenance, myosin ATPase activity, and myosin light chain (MLC) phosphorylation levels in Triton X-100 detergent-skinned fibers of the swine carotid media. Increasing [Mg2+] in a stepwise fashion from 0.1 to 6 mM 1) decreased the magnitude and Ca2+ sensitivity of stress development but augmented the amount of stress maintained without proportional MLC phosphorylation, 2) produced a greater decrease in the Ca2+ sensitivity of MLC phosphorylation than that of stress development, and 3) decreased myosin ATPase activity. These findings demonstrate that Mg2+ differentially modulates the MLC phosphorylation-dependent development of stress and the MLC phosphorylation-independent maintenance of stress. We suggest that increases in [Mg2+] enhance stress maintenance by increasing [MgADP], thus increasing the number of cross bridges in a force-generating state, and by a direct effect on the pathway responsible for Ca2+-dependent, MLC phosphorylation-independent contractions.
Collapse
Affiliation(s)
- X Su
- Department of Physiology, MCP Hahnemann University, Philadelphia, Pennsylvania 19129, USA
| | | | | |
Collapse
|
45
|
Somlyo AP, Wu X, Walker LA, Somlyo AV. Pharmacomechanical coupling: the role of calcium, G-proteins, kinases and phosphatases. Rev Physiol Biochem Pharmacol 1999; 134:201-34. [PMID: 10087910 DOI: 10.1007/3-540-64753-8_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The concept of pharmacomechanical coupling, introduced 30 years ago to account for physiological mechanisms that can regulate contraction of smooth muscle independently of the membrane potential, has since been transformed from a definition into what we now recognize as a complex of well-defined, molecular mechanisms. The release of Ca2+ from the SR by a chemical messenger, InsP3, is well known to be initiated not by depolarization, but by agonist-receptor interaction. Furthermore, this G-protein-coupled phosphatidylinositol cascade, one of many processes covered by the umbrella of pharmacomechanical coupling, is part of complex and general signal transduction mechanisms also operating in many non-muscle cells of diverse organisms. It is also clear that, although the major contractile regulatory mechanism of smooth muscle, phosphorylation/dephosphorylation of MLC20, is [Ca2+]-dependent, the activity of both the kinase and the phosphatase can also be modulated independently of [Ca2+]i. Sensitization to Ca2+ is attributed to inhibition of SMPP-1M, a process most likely dominated by activation of the monomeric GTP-binding protein RhoA that, in turn, activates Rho-kinase that phosphorylates the regulatory subunit of SMPP-1M and inhibits its myosin phosphatase activity. It is likely that the tonic phase of contraction activated by a variety of excitatory agonists is, at least in part, mediated by this Ca(2+)-sensitizing mechanism. Desensitization to Ca2+ can occur either through inhibitory phosphorylation of MLCK by other kinases or autophosphorylation and by activation of SMPP-1M by cyclic nucleotide-activated kinases, probably involving phosphorylation of a phosphatase activator. Based on our current understanding of the complexity of the many cross-talking signal transduction mechanisms that operate in cells, it is likely that, in the future, our current concepts will be refined, additional mechanisms of pharmacomechanical coupling will be recognized, and those contributing to the pathologenesis diseases, such as hypertension and asthma, will be identified.
Collapse
Affiliation(s)
- A P Somlyo
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22906-0011, USA
| | | | | | | |
Collapse
|
46
|
Arner A, Pfitzer G. Regulation of cross-bridge cycling by Ca2+ in smooth muscle. Rev Physiol Biochem Pharmacol 1999; 134:63-146. [PMID: 10087908 DOI: 10.1007/3-540-64753-8_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A Arner
- Department of Physiology and Neuroscience, Lund University, Sweden
| | | |
Collapse
|
47
|
Murahashi T, Fujita A, Kitazawa T. Ca2+ -induced Ca2+ desensitization of myosin light chain phosphorylation and contraction in phasic smooth muscle. Mol Cell Biochem 1999; 190:91-8. [PMID: 10098975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The temporal relationship between Ca2+ -induced contraction and phosphorylation of 20 kDa myosin light chain (MLC) during a step increase in Ca2+ was investigated using permeabilized phasic smooth muscle from rabbit portal vein and guinea-pig ileum at 25 degrees C. We describe here a Ca2+ -induced Ca2+ desensitization phenomenon in which a transient rise in MLC phosphorylation is followed by a transient rise in contractile force. During and after the peak contraction, the force to phosphorylation ratio remained constant. Further treatment with cytochalasin D, an actin fragmenting agent, did not affect the transient increase in phosphorylation, but blocked force development. Together, these results indicate that the transient phosphorylation causes the transient contraction and that neither inhomogeneous contractility nor reduced thin filament integrity effects the transient phosphorylation. Lastly, we show that known inhibitors to MLC kinase kinases and to a Ca2+ -dependent protein phosphatase did not eliminate the desensitized contractile force. This study suggests that the Ca2+ -induced Ca2+ desensitization phenomenon in phasic smooth muscle does not result from any of the known intrinsic mechanisms involved with other aspects of smooth muscle contractility.
Collapse
Affiliation(s)
- T Murahashi
- Department of Physiology and Biophysics, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | |
Collapse
|
48
|
He ZH, Ferenczi MA, Brune M, Trentham DR, Webb MR, Somlyo AP, Somlyo AV. Time-resolved measurements of phosphate release by cycling cross-bridges in portal vein smooth muscle. Biophys J 1998; 75:3031-40. [PMID: 9826623 PMCID: PMC1299974 DOI: 10.1016/s0006-3495(98)77744-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rate of release of inorganic phosphate (Pi) from cycling cross-bridges in rabbit portal-anterior mesenteric vein smooth muscle was determined by following the fluorescence of the Pi-reporter, MDCC-PBP (Brune, M., J. L. Hunter, S. A. Howell, S. R. Martin, T. L. Hazlett, J. E. T. Corrie, and M. R. Webb. 1998. Biochemistry. 37:10370-10380). Cross-bridge cycling was initiated by photolytic release of ATP from caged-ATP in Triton-permeabilized smooth muscles in rigor. When the regulatory myosin light chains (MLC20) had been thiophosphorylated, the rate of Pi release was biphasic with an initial rate of 80 microM s-1 and amplitude 108 microM, decreasing to 13.7 microM s-1. These rates correspond to fast and slow turnovers of 1.8 s-1 and 0.3 s-1, assuming 84% thiophosphorylation of 52 microM myosin heads. Activation by Ca2+-dependent phosphorylation subsequent to ATP release resulted in slower Pi release, paralleling the rate of contraction that was also slower than after thiophosphorylation, and was also biphasic: 51 microM s-1 and 13.2 microM s-1. These rates suggest that the activity of myosin light chain kinase and phosphatase ("pseudo-ATPase") contributes <20% of the ATP usage during cross-bridge cycling. The extracellular "ecto-nucleotidase" activity was reduced eightfold by permeabilization, conditions in which the ecto-ADPase was 17% of the ecto-ATPase. Nevertheless, the remaining ecto-ATPase activity reduced the precision of the estimate of cross-bridge ATPase. We conclude that the transition from fast to slow ATPase rates reflects the properties and forces directly acting on cross-bridges, rather than the result of a time-dependent decrease in activation (MLC20 phosphorylation) occurring in intact smooth muscle. The mechanisms of slowing may include the effect of positive strain on cross-bridges, inhibition of the cycling rate by high affinity Mg-ADP binding, and associated state hydrolysis.
Collapse
Affiliation(s)
- Z H He
- National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Arner A, Malmqvist U. Cross-bridge cycling in smooth muscle: a short review. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 164:363-72. [PMID: 9887960 DOI: 10.1111/j.1365-201x.1998.tb10694.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This review is focused on the cross-bridge interaction of the organized contractile system of smooth muscle fibres. By using chemically skinned preparations the different enzymatic reactions of actin-myosin interaction have been associated with mechanical events. A rigor state has been identified in smooth muscle and the binding of ATP causes dissociation of rigor cross-bridges at rates slightly slower than those in skeletal muscle, but fast enough not to be rate-limiting for cross-bridge turn over in the muscle fibre. The release of inorganic phosphate (Pi) is associated with force generation, and this process is not rate-limiting for maximal shortening velocity (Vmax) in the fully activated muscle. The binding of ADP to myosin is strong in the smooth muscle contractile system, a property that might be associated with the generally slow cross-bridge turn over. Both force and Vmax are modulated by the extent of myosin light chain phosphorylation. Low levels of activation are considered to be associated with the recruitment of slowly cycling dephosphorylated cross-bridges which reduces shortening velocity. The attachment of these cross-bridge states in skinned smooth muscles can be regulated by cooperative mechanisms and thin filament associated systems. Smooth muscles exhibit a large diversity in their Vmax and the individual smooth muscle tissue can alter its Vmax under physiological conditions. The diversity and the long-term modulation of phenotype are associated with changes in myosin heavy and light chain isoform expression.
Collapse
Affiliation(s)
- A Arner
- Department of Physiology and Neuroscience, Lund University, Sweden
| | | |
Collapse
|
50
|
Butler TM, Siegman MJ. Control of cross-bridge cycling by myosin light chain phosphorylation in mammalian smooth muscle. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 164:389-400. [PMID: 9887963 DOI: 10.1046/j.1365-201x.1998.00450.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review focuses on experiments in which the single turnover of myosin-bound ADP is used to characterize the regulation of the cross-bridge cycle by myosin light chain phosphorylation in mammalian smooth muscle. Under isometric conditions, at rest, when the myosin light chain is not phosphorylated, myosin cycles very slowly (about 0.004 s-1), while phosphorylation of the light chain results in a 50-fold increase in cycling rate of 0.2 s-1. Experiments consistently show that some myosin does not increase its cycling rate although its light chain is phosphorylated. Studies at low levels of myosin light chain phosphorylation show that phosphorylation also induces an increase in the cycling rate of unphosphorylated myosin. The fast cycling phosphorylated myosin is the main determinant of suprabasal myosin ATPase activity, while the cycling rate of cooperatively activated unphosphorylated myosin is slow and appears to depend on the extent of phosphorylation of the entire thick filament. Single turnover experiments measuring the rate of phosphorylation and dephosphorylation of myosin light chain show that the turnover of light chain phosphate can be very rapid (0.3-0.4 s-1) at suprabasal calcium concentrations. The expected effect of such a rapid turnover of light chain phosphorylation on the turnover of myosin-bound ADP is not observed. The effects of low levels of myosin light chain phosphorylation on the single turnover of myosin suggest that the same small pool of myosin remains phosphorylated for relatively long periods of time rather than the entire pool of myosin spending a small fraction of its cycle time in the phosphorylated state.
Collapse
Affiliation(s)
- T M Butler
- Department of Physiology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|