1
|
Park KT, Jo H, Jeon SH, Jeong K, Im M, Kim JW, Jung JP, Jung HC, Lee JH, Kim W. Analgesic Effect of Human Placenta Hydrolysate on CFA-Induced Inflammatory Pain in Mice. Pharmaceuticals (Basel) 2024; 17:1179. [PMID: 39338341 PMCID: PMC11435073 DOI: 10.3390/ph17091179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
To evaluate the efficacy of human placenta hydrolysate (HPH) in a mice model of CFA-induced inflammatory pain. TNF-α, IL-1β, and IL-6 are key pro-inflammatory cytokine factors for relieving inflammatory pain. Therefore, this study investigates whether HPH suppresses CFA-induced pain and attenuates the inflammatory process by regulating cytokines. In addition, the relationship between neuropathic pain and HPH was established by staining GFAP and Iba-1 in mice spinal cord tissues. This study was conducted for a total of day 28, and inflammatory pain was induced in mice by injecting CFA into the right paw at day 0 and day 14, respectively. 100 μL of 20% glucose and polydeoxyribonucleotide (PDRN) and 100, 200, and 300 μL of HPH were administered intraperitoneally twice a week. In the CFA-induced group, cold and mechanical allodynia and pro-inflammatory cytokine factors in the spinal cord and plantar tissue were significantly increased. The five groups of drugs evenly reduced pain and gene expression of inflammatory factors, and particularly excellent effects were confirmed in the HPH 200 and 300 groups. Meanwhile, the expression of GFAP and Iba-1 in the spinal cord was increased by CFA administration but decreased by HPH administration, which was confirmed to suppress damage to peripheral ganglia. The present study suggests that HPH attenuates CFA-induced inflammatory pain through inhibition of pro-inflammatory cytokine factors and protection of peripheral nerves.
Collapse
Affiliation(s)
- Keun-Tae Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Heejoon Jo
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - So-Hyun Jeon
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Kyeongsoo Jeong
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Minju Im
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Jae-Won Kim
- Research and Development Center, Green Cross Wellbeing Corporation, Yongin 16950, Republic of Korea
| | - Jong-Pil Jung
- Nuke Medical Society of Pain Research, Daejeon 35002, Republic of Korea
| | - Hoe Chang Jung
- Nuke Medical Society of Pain Research, Daejeon 35002, Republic of Korea
| | - Jae Hun Lee
- Nuke Medical Society of Pain Research, Daejeon 35002, Republic of Korea
| | - Woojin Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| |
Collapse
|
2
|
Martinez J, Maisey T, Ingram N, Kapur N, Beales PA, Jayne DG. Development and validation of a mouse model to investigate post surgical pain after laparotomy. Surg Open Sci 2024; 20:106-115. [PMID: 39021615 PMCID: PMC11253691 DOI: 10.1016/j.sopen.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Background Postoperative pain following abdominal surgery is a significant obstacle to patient recovery, often necessitating high analgesic doses associated with adverse effects like cognitive impairment and cardiorespiratory depression. Reliable animal models are crucial for understanding the pathophysiology of post surgical pain and developing more effective pain-relieving strategies. Methods We developed a mouse model to replicate peritoneal trauma induced by abdominal surgery. 30 C57BL/6 mice underwent laparotomy, with half undergoing standardised peritoneal abrasion and the rest serving as controls. Mouse recovery was assessed using two validated scoring systems of surgical recovery: Post surgery Severity Assessment (PSSA) and Mouse Grimace Score (MGS). Blood samples were taken for cytokine analysis. Adhesions were evaluated on day 6, and peritoneal tissue was examined for healing markers. Results After laparotomy, all mice exhibited expected pain profiles. Mice with peritoneal abrasion had significantly higher PSSA (7.2 ± 1.2 vs 4.68 ± 0.82, p ≤ 0.001) and MGS scores (3.62 ± 0.74 vs 0.82 ± 0.40, p ≤ 0.05) with slower recovery. Serum inflammatory cytokine levels were significantly elevated in the abraded group, and adhesion formation was higher in this group. Immunohistochemical analysis showed significantly increased expression of α-SMA, CD31, CD68, and F4/80 in peritoneal tissue in the abraded group. Discussion A mouse model involving laparotomy and standardised peritoneal abrasion replicates the expected pathophysiological changes following abdominal surgery. It will be a useful model for better understanding the mechanisms of post surgical pain and developing improved pain-relief strategies. It also has utility for the study of intra-abdominal adhesion formation. Key message To understand the intricate relationship between peritoneal trauma-induced pain, cytokine response, and post-operative adhesion formation in mouse models for advancing therapeutic interventions and enhancing post-operative recovery outcomes.
Collapse
Affiliation(s)
- Juan Martinez
- School of Chemistry, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK
| | - Thomas Maisey
- Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK
| | - Nicola Ingram
- Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Paul A. Beales
- School of Chemistry, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - David G. Jayne
- Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire LS9 7TF, UK
- The John Goligher Colorectal Surgery Unit, St. James's University Hospital, Leeds Teaching Hospital Trust, Beckett Street, Leeds, West Yorkshire LS9 7TF, UK
| |
Collapse
|
3
|
Kaye AD, Perilloux DM, Hawkins AM, Wester GC, Ragaland AR, Hebert SV, Kim J, Heisler M, Kelkar RA, Chami AA, Shekoohi S, Kaye AM. Tumor Necrosis Factor and Interleukin Modulators for Pathologic Pain States: A Narrative Review. Pain Ther 2024; 13:481-493. [PMID: 38724743 PMCID: PMC11111651 DOI: 10.1007/s40122-024-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/04/2024] [Indexed: 05/23/2024] Open
Abstract
Chronic pain, a complex and debilitating condition, involves intricate interactions between central and peripheral inflammatory processes. Cytokines, specifically tumor necrosis factor (TNF) and interleukins (IL), are key mediators in the initiation and maintenance of chronic pain states. Sensory neurons expressing receptors for cytokines like TNF, IL-1, and IL-6 are implicated in peripheral sensitization, contributing to increased signaling of painful sensations. The potential of targeting TNF and IL for therapeutic intervention in chronic pain states is the focus of this review, with preclinical and clinical evidence supporting the use of TNF and IL modulators for pain management. The physiological and pathological roles of TNF in neuropathic pain is complex. Experimental evidence highlights the effectiveness of TNF modulation in mitigating pain symptoms in animal models and displays promising outcomes of clinical trials with TNF inhibitors, such as infliximab and etanercept. ILs, a diverse group of cytokines, including IL-1, IL-6, and IL-17, are discussed for their contributions to chronic pain through inflammation and peripheral sensitization. Specific IL modulators, such as secukinumab and tocilizumab, have shown potential in managing chronic neuropathic pain, as demonstrated in various studies and clinical trials. The pharmacokinetics, safety profiles, and challenges associated with TNF and IL modulators highlight the need for cautious medication monitoring in clinical practice. Comparative evaluations have revealed distinct efficacy and safety profiles among different cytokine modulators, emphasizing the need for personalized approaches based on the specific underlying causes of pain. Further research is necessary to elucidate the intricate mechanisms by which cytokines contribute to chronic pain, as well as to understand why they may affect pain differently in various contexts. Additionally, long-term safety profiles of cytokine modulators require more thorough investigation. This continued exploration holds the promise of enhancing our comprehension of cytokine modulation in chronic pain and shaping more potent therapeutic strategies for the future.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology and Department of Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA.
| | - Dominique M Perilloux
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Alison M Hawkins
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Grace C Wester
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Amanda R Ragaland
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Sage V Hebert
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Julian Kim
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Michael Heisler
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Rucha A Kelkar
- School of Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC, 29425, USA
| | - Azem A Chami
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, 71103, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
| |
Collapse
|
4
|
Tyagi S, Higerd-Rusli GP, Ghovanloo MR, Dib-Hajj F, Zhao P, Liu S, Kim DH, Shim JS, Park KS, Waxman SG, Choi JS, Dib-Hajj SD. Compartment-specific regulation of Na V1.7 in sensory neurons after acute exposure to TNF-α. Cell Rep 2024; 43:113685. [PMID: 38261513 PMCID: PMC10947185 DOI: 10.1016/j.celrep.2024.113685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Tumor necrosis factor α (TNF-α) is a major pro-inflammatory cytokine, important in many diseases, that sensitizes nociceptors through its action on a variety of ion channels, including voltage-gated sodium (NaV) channels. We show here that TNF-α acutely upregulates sensory neuron excitability and current density of threshold channel NaV1.7. Using electrophysiological recordings and live imaging, we demonstrate that this effect on NaV1.7 is mediated by p38 MAPK and identify serine 110 in the channel's N terminus as the phospho-acceptor site, which triggers NaV1.7 channel insertion into the somatic membrane. We also show that the N terminus of NaV1.7 is sufficient to mediate this effect. Although acute TNF-α treatment increases NaV1.7-carrying vesicle accumulation at axonal endings, we did not observe increased channel insertion into the axonal membrane. These results identify molecular determinants of TNF-α-mediated regulation of NaV1.7 in sensory neurons and demonstrate compartment-specific effects of TNF-α on channel insertion in the neuronal plasma membrane.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT 06511, USA; Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Grant P Higerd-Rusli
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT 06511, USA; Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Mohammad-Reza Ghovanloo
- Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Fadia Dib-Hajj
- Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Peng Zhao
- Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Shujun Liu
- Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Dong-Hyun Kim
- Integrated Research Institute of Pharmaceutical Science, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, South Korea; New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Ji Seon Shim
- Department of Physiology, Kyung Hee University School of Medicine, Seoul 02447, South Korea
| | - Kang-Sik Park
- Department of Physiology, Kyung Hee University School of Medicine, Seoul 02447, South Korea
| | - Stephen G Waxman
- Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| | - Jin-Sung Choi
- Integrated Research Institute of Pharmaceutical Science, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, South Korea.
| | - Sulayman D Dib-Hajj
- Center for Neuroscience and Regeneration Research, West Haven, CT 06516, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06516, USA; Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT 06516, USA.
| |
Collapse
|
5
|
Yu YQ, Wang H. Imbalance of Th1 and Th2 Cytokines and Stem Cell Therapy in Pathological Pain. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:88-101. [PMID: 36573059 DOI: 10.2174/1871527322666221226145828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 12/28/2022]
Abstract
The pathophysiological importance of T helper 1 (Th1) and Th2 cell cytokines in pathological pain has been highly debated in recent decades. However, the analgesic strategy targeting individual cytokines still has a long way to go for clinical application. In this review, we focus on the contributions of Th1 cytokines (TNF-α, IFN-γ, and IL-2) and Th2 cytokines (IL-4, IL-5, IL-10, and IL-13) in rodent pain models and human pain-related diseases. A large number of studies have shown that Th1 and Th2 cytokines have opposing effects on pain modulation. The imbalance of Th1 and Th2 cytokines might determine the final effect of pain generation or inhibition. However, increasing evidence indicates that targeting the individual cytokine is not sufficient for the treatment of pathological pain. It is practical to suggest a promising therapeutic strategy against the combined effects of Th1 and Th2 cytokines. We summarize the current advances in stem cell therapy for pain-related diseases. Preclinical and clinical studies show that stem cells inhibit proinflammatory cytokines and release enormous Th2 cytokines that exhibit a strong analgesic effect. Therefore, a shift of the imbalance of Th1 and Th2 cytokines induced by stem cells will provide a novel therapeutic strategy against intractable pain. It is extremely important to reveal the cellular and molecular mechanisms of stem cell-mediated analgesia. The efficiency and safety of stem cell therapy should be carefully evaluated in animal models and patients with pathological pain.
Collapse
Affiliation(s)
- Yao-Qing Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Huan Wang
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
6
|
Seyed-Razavi Y, Kenyon BM, Qiu F, Harris DL, Hamrah P. A novel animal model of neuropathic corneal pain-the ciliary nerve constriction model. Front Neurosci 2023; 17:1265708. [PMID: 38144209 PMCID: PMC10749205 DOI: 10.3389/fnins.2023.1265708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Neuropathic pain arises as a result of peripheral nerve injury or altered pain processing within the central nervous system. When this phenomenon affects the cornea, it is referred to as neuropathic corneal pain (NCP), resulting in pain, hyperalgesia, burning, and photoallodynia, severely affecting patients' quality of life. To date there is no suitable animal model for the study of NCP. Herein, we developed an NCP model by constriction of the long ciliary nerves innervating the eye. Methods Mice underwent ciliary nerve constriction (CNC) or sham procedures. Safety was determined by corneal fluorescein staining to assess ocular surface damage, whereas Cochet-Bonnet esthesiometry and confocal microscopy assessed the function and structure of corneal nerves, respectively. Efficacy was assessed by paw wipe responses within 30 seconds of applying hyperosmolar (5M) saline at Days 3, 7, 10, and 14 post-constriction. Additionally, behavior was assessed in an open field test (OFT) at Days 7, 14, and 21. Results CNC resulted in significantly increased response to hyperosmolar saline between groups (p < 0.0001), demonstrating hyperalgesia and induction of neuropathic pain. Further, animals that underwent CNC had increased anxiety-like behavior in an open field test compared to controls at the 14- and 21-Day time-points (p < 0.05). In contrast, CNC did not result in increased corneal fluorescein staining or decreased sensation as compared to sham controls (p > 0.05). Additionally, confocal microscopy of corneal whole-mounts revealed that constriction resulted in only a slight reduction in corneal nerve density (p < 0.05), compared to naïve and sham groups. Discussion The CNC model induces a pure NCP phenotype and may be a useful model for the study of NCP, recapitulating features of NCP, including hyperalgesia in the absence of ocular surface damage, and anxiety-like behavior.
Collapse
Affiliation(s)
- Yashar Seyed-Razavi
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Fangfang Qiu
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Deshea L. Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Boston, MA, United States
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, United States
- Departments of Neuroscience and Immunology, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
7
|
DuPont CM, Olmstead R, Reid MJ, Hamilton KR, Campbell CM, Finan PH, Sadeghi N, Castillo D, Irwin MR, Smith MT. A randomized, placebo-controlled, double-blinded mechanistic clinical trial using endotoxin to evaluate the relationship between insomnia, inflammation, and affective disturbance on pain in older adults: A protocol for the sleep and Healthy Aging Research for pain (SHARE-P) study. Brain Behav Immun Health 2023; 30:100642. [PMID: 37256193 PMCID: PMC10225887 DOI: 10.1016/j.bbih.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023] Open
Abstract
UNLABELLED Chronic pain is prevalent in older adults. Treatment, especially with opioids, is often ineffective and poses considerable negative consequences in this population. To improve treatment, it is important to understand why older adults are at a heightened risk for developing chronic pain. Insomnia is a major modifiable risk factor for chronic pain that is ubiquitous among older adults. Insomnia can also lead to heightened systemic inflammation and affective disturbance, both of which may further exacerbate pain conditions in older adults. Endotoxin exposure can be used as an experimental model of systemic inflammation and affective disturbance. The current study aims to understand how insomnia status and endotoxin-induced changes in inflammation and affect (increased negative affect and decreased positive affect) may interact to impact pain facilitatory and inhibitory processes in older adults. Longitudinal data will also assess how pain processing, affective, and inflammatory responses to endotoxin may predict the development of pain and/or depressive symptoms. The current study is a randomized, double-blinded, placebo-controlled, mechanistic clinical trial in men and women, with and without insomnia, aged 50 years and older. Participants were randomized to either 0.8ng/kg endotoxin injection or saline placebo injection. Daily diaries were used to collect variables related to sleep, mood, and pain at two-week intervals during baseline and 3-, 6-, 9-, and 12-months post-injection. Primary outcomes during the experimental phase include conditioned pain modulation, temporal summation, and affective pain modulation ∼5.5 hours after injection. Primary outcomes for longitudinal assessments are self-reported pain intensity and depressive symptoms. The current study uses endotoxin as an experimental model for pain. In doing so, it aims to extend the current literature by: (1) including older adults, (2) investigating insomnia as a potential risk factor for chronic pain, (3) evaluating the role of endotoxin-induced affective disturbances on pain sensitivity, and (4) assessing sex differences in endotoxin-induced hyperalgesia. CLINICALTRIALSGOV NCT03256760. TRIAL SPONSOR NIH R01AG057750-01.
Collapse
Affiliation(s)
- Caitlin M. DuPont
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Richard Olmstead
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Matthew J. Reid
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Katrina R. Hamilton
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Claudia M. Campbell
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Patrick H. Finan
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nina Sadeghi
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Daisy Castillo
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michael R. Irwin
- Department of Psychiatry and Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Michael T. Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Phull AR, Ahmed M, Park HJ. Cordyceps militaris as a Bio Functional Food Source: Pharmacological Potential, Anti-Inflammatory Actions and Related Molecular Mechanisms. Microorganisms 2022; 10:405. [PMID: 35208860 PMCID: PMC8875674 DOI: 10.3390/microorganisms10020405] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Cordyceps militaris (C. militaris) is a medicinal mushroom possessing a variety of biofunctionalities. It has several biologically important components such as polysaccharides and others. The diverse pharmacological potential of C. militaris has generated interest in reviewing the current scientific literature, with a particular focus on prevention and associated molecular mechanisms in inflammatory diseases. Due to rising global demand, research on C. militaris has continued to increase in recent years. C. militaris has shown the potential for inhibiting inflammation-related events, both in in vivo and in vitro experiments. Inflammation is a multifaceted biological process that contributes to the development and severity of diseases, including cancer, colitis, and allergies. These functions make C. militaris a suitable functional food for inhibiting inflammatory responses such as the regulation of proinflammatory cytokines. Therefore, on the basis of existing information, the current study provides insights towards the understanding of anti-inflammatory activity-related mechanisms. This article presents a foundation for clinical use, and analyzes the roadmap for future studies concerning the medical use of C. militaris and its constituents in the next generation of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
9
|
TNF-α-Mediated RIPK1 Pathway Participates in the Development of Trigeminal Neuropathic Pain in Rats. Int J Mol Sci 2022; 23:ijms23010506. [PMID: 35008931 PMCID: PMC8745573 DOI: 10.3390/ijms23010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/05/2023] Open
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) participates in the regulation of cellular stress and inflammatory responses, but its function in neuropathic pain remains poorly understood. This study evaluated the role of RIPK1 in neuropathic pain following inferior alveolar nerve injury. We developed a model using malpositioned dental implants in male Sprague Dawley rats. This model resulted in significant mechanical allodynia and upregulated RIPK1 expression in the trigeminal subnucleus caudalis (TSC). The intracisternal administration of Necrosatin-1 (Nec-1), an RIPK1 inhibitor, blocked the mechanical allodynia produced by inferior alveolar nerve injury The intracisternal administration of recombinant rat tumor necrosis factor-α (rrTNF-α) protein in naive rats produced mechanical allodynia and upregulated RIPK1 expression in the TSC. Moreover, an intracisternal pretreatment with Nec-1 inhibited the mechanical allodynia produced by rrTNF-α protein. Nerve injury caused elevated TNF-α concentration in the TSC and a TNF-α block had anti-allodynic effects, thereby attenuating RIPK1 expression in the TSC. Finally, double immunofluorescence analyses revealed the colocalization of TNF receptor and RIPK1 with astrocytes. Hence, we have identified that astroglial RIPK1, activated by the TNF-α pathway, is a central driver of neuropathic pain and that the TNF-α-mediated RIPK1 pathway is a potential therapeutic target for reducing neuropathic pain following nerve injury.
Collapse
|
10
|
Xie H, Lu F, Liu W, Wang E, Wang L, Zhong M. Remimazolam alleviates neuropathic pain via regulating bradykinin receptor B1 and autophagy. J Pharm Pharmacol 2021; 73:1643-1651. [PMID: 34061162 DOI: 10.1093/jpp/rgab080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Neuropathic pain (NP) represents a broad scope of various pathological ramifications of the nervous system. Remimazolam is a proved sedative in treating neuropathic pain. Considering the Bradykinin receptor's vital role and the potentials of Bradykinin receptor B1 (BDKRB1) in the neuropathic pain-signalling pathway, we nominated them as a primary target for remimazolam. METHODS In this study, rats were injected with complete freund's adjuvant (CFA) to construct NP models in vivo. BV2 microglia cells were treated with LPS to establish NP model in vitro. qRT-PCR, ELISA, western blot and immunofluorescence were applied to determine gene expression. KEY FINDINGS Our findings revealed that BDKRB1 was overexpressed in NP models in vivo, while R715 (an antagonist of BDKRB1) suppressed the levels of BDKRB1 and inhibited the hyperpathia induced by spinal nerve litigation surgery. Moreover, remimazolam inactivated BDKRB1 signalling via suppressing NF-κB translocation and decreased the release of pro-inflammatory cytokines. Additionally, remimazolam suppressed the translocation of NF-κB, and inhibited autophagic lysosome formation in vivo and in vitro. However, R838 (an agonist of BDKRB1) reversed the effects of remimazolam. CONCLUSIONS Remimazolam downregulated BDKRB1, inhibited BDKRB1/RAS/MEK signalling pathway and regulated the autophagic lysosome induction, exhibiting a better outcome in the NP.
Collapse
Affiliation(s)
- Haiyu Xie
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Feng Lu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Weilian Liu
- Department of Anesthesiology, Xingguo People's Hospital, Xingguo County, Ganzhou City, Jiangxi Province, China
| | - Enfu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Lifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Zhanggong District, Ganzhou City, Jiangxi Province, China
| | - Maolin Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical College, Zhanggong District, Ganzhou City, Jiangxi Province, China
| |
Collapse
|
11
|
Haranishi Y, Hara K, Terada T. Analgesic potency of intrathecally administered punicalagin in rat neuropathic and inflammatory pain models. J Nat Med 2021; 76:314-320. [PMID: 34643876 DOI: 10.1007/s11418-021-01576-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
Punicalagin, a natural polyphenolic compound classified as an ellagitannin, is a major ingredient of pomegranate (Punica granatum L.). Punicalagin has potent antioxidant and anti-inflammatory effects. Although the antinociceptive effects of orally administered pomegranate extracts have been reported, little is known about the effect of punicalagin on nociceptive transmission in the central nervous system. We examined whether punicalagin ameliorates neuropathic pain and inflammatory pain in the spinal cord. Male Sprague-Dawley rats were subjected to chronic constriction injury (CCI) of the sciatic nerve, and an intrathecal catheter was implanted for drug administration. The electronic von Frey test and cold-plate test were performed in CCI rats to evaluate mechanical and cold hyperalgesia in neuropathic pain, and the formalin test was performed in normal rats to evaluate acute and persistent inflammatory pain. An open-field test was conducted to explore whether punicalagin affects locomotor activity in CCI rats. Punicalagin administered intrathecally attenuated mechanical and cold hyperalgesia to the same degree as gabapentin in CCI rats and reduced pain-related behaviors in both the early and late phases in formalin-injected rats. Punicalagin did not affect motor function. These results suggest that punicalagin exerts an antinociceptive effect in the spinal cord without motor deficit, thus showing therapeutic potential for neuropathic pain and inflammatory pain.
Collapse
Affiliation(s)
- Yasunori Haranishi
- Department of Anesthesiology, University of Occupational and Environmental Health, School of Medicine, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, 807-8555, Japan
- Division of Anesthesia, Kawashima Orthopaedic Hospital, 17 Miyabu, Nakatsu, 871-0012, Japan
| | - Koji Hara
- Division of Operative Medicine, Hospital of the University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, 807-8556, Japan.
| | - Tadanori Terada
- Department of Anesthesiology, University of Occupational and Environmental Health, School of Medicine, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, 807-8555, Japan
| |
Collapse
|
12
|
Bohren Y, Timbolschi DI, Muller A, Barrot M, Yalcin I, Salvat E. Platelet-rich plasma and cytokines in neuropathic pain: A narrative review and a clinical perspective. Eur J Pain 2021; 26:43-60. [PMID: 34288258 DOI: 10.1002/ejp.1846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/18/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Neuropathic pain arises as a direct consequence of a lesion or disease affecting the somatosensory system. A number of preclinical studies have provided evidence for the involvement of cytokines, predominantly secreted by a variety of immune cells and by glial cells from the nervous system, in neuropathic pain conditions. Clinical trials and the use of anti-cytokine drugs in different neuropathic aetiologies support the relevance of cytokines as treatment targets. However, the use of such drugs, in particularly biotherapies, can provoke notable adverse effects. Moreover, it is challenging to select one given cytokine as a target, among the various neuropathic pain conditions. It could thus be of interest to target other proteins, such as growth factors, in order to act more widely on the neuroinflammation network. Thus, platelet-rich plasma (PRP), an autologous blood concentrate, is known to contain a natural concentration of growth factors and immune system messengers and is widely used in the clinical setting for tissue regeneration and repair. DATABASE AND DATA TREATMENT In the present review, we critically assess the current knowledge on cytokines in neuropathic pain by taking into consideration both human studies and animal models. RESULTS This analysis of the literature highlights the pathophysiological importance of cytokines. We particularly highlight the concept of time- and tissue-dependent cytokine activation during neuropathic pain conditions. RESULTS Conclusion: Thus, direct or indirect cytokines modulation with biotherapies or growth factors appears relevant. In addition, we discuss the therapeutic potential of localized injection of PRP as neuropathic pain treatment by pointing out the possible link between cytokines and the action of PRP. SIGNIFICANCE Preclinical and clinical studies highlight the idea of a cytokine imbalance in the development and maintenance of neuropathic pain. Clinical trials with anticytokine drugs are encouraging but are limited by a 'cytokine candidate approach' and adverse effect of biotherapies. PRP, containing various growth factors, is a new therapeutic used in regenerative medicine. Growth factors can be also considered as modulators of cytokine balance. Here, we emphasize a potential therapeutic effect of PRP on cytokine imbalance in neuropathic pain. We also underline the clinical interest of the use of PRP, not only for its therapeutic effect but also for its safety of use.
Collapse
Affiliation(s)
- Yohann Bohren
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Daniel Ionut Timbolschi
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - André Muller
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Eric Salvat
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| |
Collapse
|
13
|
Jin Y, Wei S, Liu TT, Qiu CY, Hu WP. Acute P38-Mediated Enhancement of P2X3 Receptor Currents by TNF-α in Rat Dorsal Root Ganglion Neurons. J Inflamm Res 2021; 14:2841-2850. [PMID: 34234509 PMCID: PMC8254564 DOI: 10.2147/jir.s315774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/05/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine and involves in a variety of pain conditions. Some findings suggest that TNF-α may act directly on primary afferent neurons to induce acute pain hypersensitivity through non-transcriptional regulation. This study investigated whether TNF-α had an effect on functional activity of P2X3 receptors in primary sensory neurons. Herein, we report that a brief (5 min) application of TNF-α rapidly enhanced the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. Methods Electrophysiological recordings were carried out on rat DRG neurons, and nociceptive behavior was quantified in rats. Results A brief (5 min) exposure of TNF-α rapidly increased P2X3 receptor-mediated and α,β-methylene-ATP (α,β-meATP)-evoked inward currents in a dose-dependent manner. The potentiation of P2X3 receptor-mediated ATP currents by TNF-α was voltage-independent. TNF-α shifted the concentration-response curve for α,β-meATP upwards, with an increase of 31.57 ± 6.81% in the maximal current response to α,β-meATP. This acute potentiation of ATP currents by TNF-α was blocked by p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190, but not by non-selective cyclooxygenase inhibitor indomethacin, suggesting involvement of p38 MAPK, but not cyclooxygenase. Moreover, intraplantar injection of TNF-α and α,β-meATP produced a synergistic effect on mechanical allodynia in rats. TNF-α-induced mechanical allodynia was also alleviated after local P2X3 receptors were blocked. Conclusion These results suggested that TNF-α rapidly sensitized P2X3 receptors in primary sensory neurons via a p38 MAPK dependent pathway, which revealed a novel peripheral mechanism underlying acute mechanical hypersensitivity by peripheral administration of TNF-α.
Collapse
Affiliation(s)
- Ying Jin
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, 437100, People's Republic of China
| | - Shuang Wei
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, 437100, People's Republic of China
| | - Ting-Ting Liu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, 437100, People's Republic of China
| | - Chun-Yu Qiu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, 437100, People's Republic of China
| | - Wang-Ping Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, Hubei, 437100, People's Republic of China
| |
Collapse
|
14
|
Falo CP, Benitez R, Caro M, Morell M, Forte-Lago I, Hernandez-Cortes P, Sanchez-Gonzalez C, O’Valle F, Delgado M, Gonzalez-Rey E. The Neuropeptide Cortistatin Alleviates Neuropathic Pain in Experimental Models of Peripheral Nerve Injury. Pharmaceutics 2021; 13:pharmaceutics13070947. [PMID: 34202793 PMCID: PMC8309056 DOI: 10.3390/pharmaceutics13070947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/25/2022] Open
Abstract
Neuropathic pain is one of the most severe forms of chronic pain caused by the direct injury of the somatosensory system. The current drugs for treating neuropathies have limited efficacies or show important side effects, and the development of analgesics with novel modes of action is critical. The identification of endogenous anti-nociceptive factors has emerged as an attractive strategy for designing new pharmacological approaches to treat neuropathic pain. Cortistatin is a neuropeptide with potent anti-inflammatory activity, recently identified as a natural analgesic peptide in several models of pain evoked by inflammatory conditions. Here, we investigated the potential analgesic effect of cortistatin in neuropathic pain using a variety of experimental models of peripheral nerve injury caused by chronic constriction or partial transection of the sciatic nerve or by diabetic neuropathy. We found that the peripheral and central injection of cortistatin ameliorated hyperalgesia and allodynia, two of the dominant clinical manifestations of chronic neuropathic pain. Cortistatin-induced analgesia was multitargeted, as it regulated the nerve damage-induced hypersensitization of primary nociceptors, inhibited neuroinflammatory responses, and enhanced the production of neurotrophic factors both at the peripheral and central levels. We also demonstrated the neuroregenerative/protective capacity of cortistatin in a model of severe peripheral nerve transection. Interestingly, the nociceptive system responded to nerve injury by secreting cortistatin, and a deficiency in cortistatin exacerbated the neuropathic pain responses and peripheral nerve dysfunction. Therefore, cortistatin-based therapies emerge as attractive alternatives for treating chronic neuropathic pain of different etiologies.
Collapse
Affiliation(s)
- Clara P. Falo
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Raquel Benitez
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Maria Morell
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Genyo Center for Genomics and Oncological Research, Parque Tecnologico de la Salud, 18016 Granada, Spain
| | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Pedro Hernandez-Cortes
- Department of Orthopedic Surgery, San Cecilio University Hospital, 18071 Granada, Spain;
| | - Clara Sanchez-Gonzalez
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
| | - Francisco O’Valle
- Department of Pathology, School of Medicine, IBIMER and IBS-Granada, Granada University, 18016 Granada, Spain;
| | - Mario Delgado
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Correspondence: (M.D.); (E.G.-R.)
| | - Elena Gonzalez-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra, IPBLN-CSIC, Parque Tecnologico de la Salud, 18016 Granada, Spain; (C.P.F.); (R.B.); (M.C.); (M.M.); (I.F.-L.); (C.S.-G.)
- Correspondence: (M.D.); (E.G.-R.)
| |
Collapse
|
15
|
Abstract
BACKGROUND Pain and depression have a high impact on caring for the people who need palliative care, but both of these are neglected compared with the approach for other symptoms encountered by these patients. AREAS OF UNCERTAINTY There are few studies in humans that support the existence of common neural circuits between depression and pain that also explore the use of drugs with effects in both conditions. More knowledge is needed about the relationship of these clinical entities that will lead to the optimization of the treatment and improvement of quality of life. DATA SOURCES We conducted a search in PubMed to identify relevant articles and reviews that have been published in the last 5 years, concerning the topic of common pathways between depression and pain (2014-April 2019). THERAPEUTIC ADVANCES The connections between the 2 clinical entities start at the level of the cortical regions. The hippocampus is the main site of neural changes, modification of the immune system, neuromodulators, neurotransmitters, and signaling pathways implicated in both conditions. Increased levels of peripheral proinflammatory cytokines and neuroinflammatory changes are related to the physiopathology of these entities. Inflammation links depression and pain by altering neural circuits and changes in their common cortical regions. Antidepressants are used to treat depression and chronic, pain but more experimental studies are needed to determine which antidepressant drugs are the most effective in treating the 2 entities. CONCLUSIONS Pharmacological and nonpharmacological interventions targeting cortical changes in pain and depression are promising, but more clinical studies are needed to validate their usefulness.
Collapse
|
16
|
Wei S, Qiu CY, Jin Y, Liu TT, Hu WP. TNF-α acutely enhances acid-sensing ion channel currents in rat dorsal root ganglion neurons via a p38 MAPK pathway. J Neuroinflammation 2021; 18:92. [PMID: 33853615 PMCID: PMC8048296 DOI: 10.1186/s12974-021-02151-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Background Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine involved in pain processing and hypersensitivity. It regulates not only the expression of a variety of inflammatory mediators but also the functional activity of some ion channels. Acid-sensing ion channels (ASICs), as key sensors for extracellular protons, are expressed in nociceptive sensory neurons and contribute to pain signaling caused by tissue acidosis. It is still unclear whether TNF-α has an effect on functional activity of ASICs. Herein, we reported that a brief exposure of TNF-α acutely sensitized ASICs in rat dorsal root ganglion (DRG) neurons. Methods Electrophysiological experiments on rat DRG neurons were performed in vitro and acetic acid induced nociceptive behavior quantified in vitro. Results A brief (5min) application of TNF-α rapidly enhanced ASIC-mediated currents in rat DRG neurons. TNF-α (0.1-10 ng/ml) dose-dependently increased the proton-evoked ASIC currents with an EC50 value of 0.12 ± 0.01 nM. TNF-α shifted the concentration-response curve of proton upwards with a maximal current response increase of 42.34 ± 7.89%. In current-clamp recording, an acute application of TNF-α also significantly increased acid-evoked firing in rat DRG neurons. The rapid enhancement of ASIC-mediated electrophysiological activity by TNF-α was prevented by p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190, but not by non-selective cyclooxygenase inhibitor indomethacin, suggesting that p38 MAPK is necessary for this enhancement. Behaviorally, TNF-α exacerbated acid-induced nociceptive behaviors in rats via activation of local p38 MAPK pathway. Conclusions These results suggest that TNF-α rapidly enhanced ASIC-mediated functional activity via a p38 MAPK pathway, which revealed a novel peripheral mechanism underlying TNF-α involvement in rapid hyperalgesia by sensitizing ASICs in primary sensory neurons.
Collapse
Affiliation(s)
- Shuang Wei
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China.,Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Chun-Yu Qiu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Ying Jin
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Ting-Ting Liu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China
| | - Wang-Ping Hu
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, 88 Xianning Road, Xianning, 437100, Hubei, PR China.
| |
Collapse
|
17
|
Vanderwall AG, Milligan ED. Cytokines in Pain: Harnessing Endogenous Anti-Inflammatory Signaling for Improved Pain Management. Front Immunol 2019; 10:3009. [PMID: 31921220 PMCID: PMC6935995 DOI: 10.3389/fimmu.2019.03009] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Current pain therapeutics offer inadequate relief to patients with chronic pain. A growing literature supports that pro-inflammatory cytokine signaling between immune, glial, and neural cells is integral to the development of pathological pain. Modulation of these communications may hold the key to improved pain management. In this review we first offer an overview of the relationships between pro-inflammatory cytokine and chemokine signaling and pathological pain, with a focus on the actions of cytokines and chemokines in communication between glia (astrocytes and microglia), immune cells (macrophages and T cells), and neurons. These interactions will be discussed in relation to both peripheral and central nervous system locations. Several novel non-neuronal drug targets for controlling pain are emerging as highly promising, including non-viral IL-10 gene therapy, which offer the potential for substantial pain relief through localized modulation of targeted cytokine pathways. Preclinical investigation of the mechanisms underlying the success of IL-10 gene therapy revealed the unexpected discovery of the powerful anti-nociceptive anti-inflammatory properties of D-mannose, an adjuvant in the non-viral gene therapeutic formulation. This review will include gene therapeutic approaches showing the most promise in controlling pro-inflammatory signaling via increased expression of anti-inflammatory cytokines like interleukin-10 (IL-10) or IL-4, or by directly limiting the bioavailability of specific pro-inflammatory cytokines, as with tumor necrosis factor (TNF) by the TNF soluble receptor (TNFSR). Approaches that increase endogenous anti-inflammatory signaling may offer additional opportunities for pain therapeutic development in patients not candidates for gene therapy. Promising novel avenues discussed here include the disruption of lymphocyte function-associated antigen (LFA-1) activity, antagonism at the cannabinoid 2 receptor (CB2R), and toll-like receptor 4 (TLR4) antagonism. Given the partial efficacy of current drugs, new strategies to manipulate neuroimmune and cytokine interactions hold considerable promise.
Collapse
Affiliation(s)
- Arden G. Vanderwall
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
- Department of Anesthesiology and Critical Care, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Erin D. Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, United States
| |
Collapse
|
18
|
TNFR2 promotes Treg-mediated recovery from neuropathic pain across sexes. Proc Natl Acad Sci U S A 2019; 116:17045-17050. [PMID: 31391309 PMCID: PMC6708347 DOI: 10.1073/pnas.1902091116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tumor necrosis factor (TNF) is a cytokine that induces signaling via two receptors, TNFR1 and TNFR2. TNF signaling via TNFR1 contributes to development and maintenance of neuropathic pain. Here, we show that TNFR2 is essential for recovery from neuropathic pain across sexes. Treatment of male and female neuropathic mice with a TNFR2 agonist resulted in long-lasting recovery from neuropathic pain. We identified Tregs as the cellular mediator of the analgesic effect of TNFR2. Indeed, TNFR2 agonist administration alleviated peripheral and central inflammation and promoted neuroprotection in a Treg-dependent manner, indicating that TNFR2-dependent modulation of immunity is neuroprotective. We therefore argue that TNFR2 agonists might be a class of nonopioid drugs that can promote long-lasting pain recovery in males and females. Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that is linked to immune modulation and tissue regeneration. Here, we show that TNFR2 essentially promotes long-term pain resolution independently of sex. Genetic deletion of TNFR2 resulted in impaired neuronal regeneration and chronic nonresolving pain after chronic constriction injury (CCI). Further, pharmacological activation of TNFR2 using the TNFR2 agonist EHD2-sc-mTNFR2 in mice with chronic neuropathic pain promoted long-lasting pain recovery. TNFR2 agonist treatment reduced neuronal injury, alleviated peripheral and central inflammation, and promoted repolarization of central nervous system (CNS)-infiltrating myeloid cells into an antiinflammatory/reparative phenotype. Depletion of regulatory T cells (Tregs) delayed spontaneous pain recovery and abolished the therapeutic effect of EHD2-sc-mTNFR2. This study therefore reveals a function of TNFR2 in neuropathic pain recovery and demonstrates that both TNFR2 signaling and Tregs are essential for pain recovery after CCI. Therefore, therapeutic strategies based on the concept of enhancing TNFR2 signaling could be developed into a nonopioid therapy for the treatment of chronic neuropathic pain.
Collapse
|
19
|
Hore Z, Denk F. Neuroimmune interactions in chronic pain - An interdisciplinary perspective. Brain Behav Immun 2019; 79:56-62. [PMID: 31029795 DOI: 10.1016/j.bbi.2019.04.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/16/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that communication between the nervous and immune systems is involved in the development of chronic pain. At each level of the nervous system, immune cells have been reported to accompany and frequently mediate dysfunction of nociceptive circuitry; however the exact mechanisms are not fully understood. One way to speed up progress in this area is to increase interdisciplinary cross-talk. This review sets out to summarize what pain research has already learnt, or indeed might still learn, from examining peripheral and central nociceptive mechanisms using tools and perspectives from other fields like immunology, inflammation biology or the study of stress.
Collapse
Affiliation(s)
- Zoe Hore
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
20
|
Qin F, Zhang H, Liu A, Wang Q, Sun Q, Lu S, Li Q, Guo H, Liu X, Lu Z. Analgesic Effect of Zanthoxylum nitidum Extract in Inflammatory Pain Models Through Targeting of ERK and NF-κB Signaling. Front Pharmacol 2019; 10:359. [PMID: 31068805 PMCID: PMC6491746 DOI: 10.3389/fphar.2019.00359] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/21/2019] [Indexed: 11/21/2022] Open
Abstract
Background Zanthoxylum nitidum (Roxb.) DC., also named Liang Mianzhen (LMZ), one kind of Chinese herb characterized with anti-inflammatory and relieving pain potency, which is widely used to treat injuries, rheumatism, arthralgia, stomach pain and so on in China. But its mechanism related to the anti-hyperalgesic has not been reported. The aim of this study was to investigate the analgesic activity of Liang Mianzhen on mice with Complete Freund adjuvant (CFA)-induced chronic inflammatory pain. Meanwhile, the peripheral and central mechanisms of analgesic effect of Liang Mianzhen were further examined via observing the effects of Liang Mianzhen on the signal pathway associated with inflammatory induced hyperalgesia. Methods The inflammatory pain model was established by intraplantar injection of CFA in C57BL/6J mice. After 1 day of CFA injection, the mice were treated with LMZ (100 mg/kg) for seven consecutive days, and the behavioral tests were measured after the daily intragastric administration of LMZ. The morphological changes on inflamed paw sections were determined by hematoxylin eosin (HE) staining. Changes in the mRNA expression levels of tumor necrosis factor (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and nuclear factor κB p65 (NF-κBp65) were measured on day seven after CFA injection by using real-time quantitative PCR analysis and enzyme linked immunosorbent assay (ELISA) method, respectively. Moreover, immunohistochemistry and western blotting were used to detect extracellular regulated protein kinases 1/2 (ERK1/2) and NF-κB signal pathway activation. Results The extract of LMZ (100 mg/kg) showed a significant anti-inflammatory and analgesic effect in the mice model. The paw edema volume was significantly reduced after the administration of LMZ compared to CFA group, as well as the paw tissues inflammatory damage was relived and the numbers of neutrophils in mice was reduced significantly. The CFA-induced mechanical threshold and thermal hyperalgesia value were significant improved with LMZ treatment at day three to day seven. We also found the mRNA levels of TNF-α, IL-1β, IL-6 and NF-κBp65 were down-regulate after 7 days from the LMZ treatment compared to CFA group. Meanwhile, LMZ significantly suppressed over-expression of the phosphorylation of ERK1/2 and NF-κBp65 in peripheral and central. Conclusion The present study suggests that the extract of LMZ attenuates CFA-induced inflammatory pain by suppressing the ERK1/2 and NF-κB signaling pathway at both peripheral and central level.
Collapse
Affiliation(s)
- Fenfen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zhang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Anlong Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qisheng Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinmei Sun
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.,First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongwei Guo
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xing Liu
- College of Pharmacy, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhigang Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
21
|
Brifault C, Kwon H, Campana WM, Gonias SL. LRP1 deficiency in microglia blocks neuro-inflammation in the spinal dorsal horn and neuropathic pain processing. Glia 2019; 67:1210-1224. [PMID: 30746765 DOI: 10.1002/glia.23599] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/18/2018] [Accepted: 01/22/2019] [Indexed: 01/29/2023]
Abstract
Following injury to the peripheral nervous system (PNS), microglia in the spinal dorsal horn (SDH) become activated and contribute to the development of local neuro-inflammation, which may regulate neuropathic pain processing. The molecular mechanisms that control microglial activation and its effects on neuropathic pain remain incompletely understood. We deleted the gene encoding the plasma membrane receptor, LDL Receptor-related Protein-1 (LRP1), conditionally in microglia using two distinct promoter-Cre recombinase systems in mice. LRP1 deletion in microglia blocked development of tactile allodynia, a neuropathic pain-related behavior, after partial sciatic nerve ligation (PNL). LRP1 deletion also substantially attenuated microglial activation and pro-inflammatory cytokine expression in the SDH following PNL. Because LRP1 shedding from microglial plasma membranes generates a highly pro-inflammatory soluble product, we demonstrated that factors which activate spinal cord microglia, including lipopolysaccharide (LPS) and colony-stimulating factor-1, promote LRP1 shedding. Proteinases known to mediate LRP1 shedding, including ADAM10 and ADAM17, were expressed at increased levels in the SDH after PNL. Furthermore, LRP1-deficient microglia in cell culture expressed significantly decreased levels of interleukin-1β and interleukin-6 when treated with LPS. We conclude that in the SDH, microglial LRP1 plays an important role in establishing and/or amplifying local neuro-inflammation and neuropathic pain following PNS injury. The responsible mechanism most likely involves proteolytic release of LRP1 from the plasma membrane to generate a soluble product that functions similarly to pro-inflammatory cytokines in mediating crosstalk between cells in the SDH and in regulating neuropathic pain.
Collapse
Affiliation(s)
- Coralie Brifault
- Department of Pathology, University of California San Diego, La Jolla, California.,Department of Anesthesiology, University of California San Diego, La Jolla, California
| | - HyoJun Kwon
- Department of Anesthesiology, University of California San Diego, La Jolla, California
| | - Wendy M Campana
- Department of Anesthesiology, University of California San Diego, La Jolla, California.,Department of Anesthesiology, Veterans Administration San Diego HealthCare System, San Diego, California
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, California
| |
Collapse
|
22
|
Khangura RK, Sharma J, Bali A, Singh N, Jaggi AS. An integrated review on new targets in the treatment of neuropathic pain. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:1-20. [PMID: 30627005 PMCID: PMC6315088 DOI: 10.4196/kjpp.2019.23.1.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023]
Abstract
Neuropathic pain is a complex chronic pain state caused by the dysfunction of somatosensory nervous system, and it affects the millions of people worldwide. At present, there are very few medical treatments available for neuropathic pain management and the intolerable side effects of medications may further worsen the symptoms. Despite the presence of profound knowledge that delineates the pathophysiology and mechanisms leading to neuropathic pain, the unmet clinical needs demand more research in this field that would ultimately assist to ameliorate the pain conditions. Efforts are being made globally to explore and understand the basic molecular mechanisms responsible for somatosensory dysfunction in preclinical pain models. The present review highlights some of the novel molecular targets like D-amino acid oxidase, endoplasmic reticulum stress receptors, sigma receptors, hyperpolarization-activated cyclic nucleotide-gated cation channels, histone deacetylase, Wnt/β-catenin and Wnt/Ryk, ephrins and Eph receptor tyrosine kinase, Cdh-1 and mitochondrial ATPase that are implicated in the induction of neuropathic pain. Studies conducted on the different animal models and observed results have been summarized with an aim to facilitate the efforts made in the drug discovery. The diligent analysis and exploitation of these targets may help in the identification of some promising therapies that can better manage neuropathic pain and improve the health of patients.
Collapse
Affiliation(s)
- Ravneet Kaur Khangura
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Jasmine Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Anjana Bali
- Akal College of Pharmacy and Technical Education, Mastuana Sahib 148002, Sangrur, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
23
|
E3 Ubiquitin Ligase c-cbl Inhibits Microglia Activation After Chronic Constriction Injury. Neurochem Res 2018; 43:1631-1640. [PMID: 29934689 DOI: 10.1007/s11064-018-2578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
Abstract
E3 ubiquitin ligase c-Caritas B cell lymphoma (c-cbl) is associated with negative regulation of receptor tyrosine kinases, signal transduction of antigens and cytokine receptors, and immune response. However, the expression and function of c-cbl in the regulation of neuropathic pain after chronic constriction injury (CCI) are unknown. In rat CCI model, c-cbl inhibited the activation of spinal cord microglia and the release of pro-inflammatory factors including tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 6 (IL-6), which alleviated mechanical and heat pain through down-regulating extracellular signal-regulated kinase (ERK) pathway. Additionally, exogenous TNF-α inhibited c-cbl protein level vice versa. In the primary microglia transfected with c-cbl siRNA, when treated with TNF-α or TNF-α inhibitor, the corresponding secretion of IL-1β and IL-6 did not change. In summary, CCI down-regulated c-cbl expression and induced the activation of microglia, then activated microglia released inflammatory factors via ERK signaling to cause pain. Our data might supply a novel molecular target for the therapy of CCI-induced neuropathic pain.
Collapse
|
24
|
Ogawa T, Ishizuka O, Ueda T, Tyagi P, Chancellor MB, Yoshimura N. Pharmacological management of interstitial cystitis /bladder pain syndrome and the role cyclosporine and other immunomodulating drugs play. Expert Rev Clin Pharmacol 2018; 11:495-505. [PMID: 29575959 DOI: 10.1080/17512433.2018.1457435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Interstitial cystitis/bladder pain syndrome (IC/BPS) is a symptomatic disorder characterized by pelvic pain and urinary frequency. Immunological responses are considered as one of the possible etiologies of IC/BPS. In this review, we focused on emerging targets, especially on those modulating immunological mechanisms for the treatments of IC/BPS. Area covered: This review was based on the literature search of PubMed/MEDLINE, for which key words following bladder pain syndrome, interstitial cystitis, and/or cyclosporine A (CyA) were used. We discussed current treatments and the drugs targeting the immune responses including CyA and other drugs with different mechanisms including NGF antibodies and P2X3 antagonists. Expert commentary: IC/BPS is often difficult to treat by current treatments. Immunosuppression agents, especially CyA are considered as effective treatments for IC/BPS with Hunner's lesion because these drugs suppress the inflammatory responses in the bladder underlying urinary symptoms of the disease. Base on the previous literatures, we should use CyA for the refractory IC/BPS, especially that with Hunner's lesion due to its side effects. New drugs targeting other mechanisms such as urothelial or afferent nerve dysfunction or new delivery systems such as sustained drug releasing devices or gene therapy techniques may be promising for the future treatments of IC/BPS.
Collapse
Affiliation(s)
- Teruyuki Ogawa
- a Department of Urology , Shinshu University School of Medicine , Matsumoto , Japan.,b Department of Urology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Osamu Ishizuka
- a Department of Urology , Shinshu University School of Medicine , Matsumoto , Japan
| | - Tomohiro Ueda
- c Department of Urology , Ueda Clinic , Kyoto , Japan
| | - Pradeep Tyagi
- b Department of Urology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA
| | - Michael B Chancellor
- d Department of Urology , Oakland University William Beaumont School of Medicine , Royal Oak , MI , USA
| | - Naoki Yoshimura
- b Department of Urology , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,c Department of Urology , Ueda Clinic , Kyoto , Japan
| |
Collapse
|
25
|
Bollenbach M, Salvat E, Daubeuf F, Wagner P, Yalcin I, Humo M, Letellier B, Becker LJ, Bihel F, Bourguignon JJ, Villa P, Obrecht A, Frossard N, Barrot M, Schmitt M. Phenylpyridine-2-ylguanidines and rigid mimetics as novel inhibitors of TNFα overproduction: Beneficial action in models of neuropathic pain and of acute lung inflammation. Eur J Med Chem 2018; 147:163-182. [PMID: 29432948 DOI: 10.1016/j.ejmech.2018.01.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
4-phenylpyridin-2-yl-guanidine (5b): a new inhibitor of the overproduction of pro-inflammatory cytokines (TNFα and Il1β) was identified from a high-throughput screening of a chemical library on human peripheral blood mononuclear cells (PBMCs) after LPS stimulation. Derivatives, homologues and rigid mimetics of 5b were designed and synthesized, and their cytotoxicity and ability to inhibit TNFα overproduction were evaluated. Among them, compound 5b and its mimetic 12 (2-aminodihydroquinazoline) showed similar inhibitory activities, and were evaluated in vivo in models of lung inflammation and neuropathic pain in mice. In particular, compound 12 proved to be active (5 mg/kg, ip) in both models.
Collapse
Affiliation(s)
- Maud Bollenbach
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Eric Salvat
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France; Hôpitaux universitaires de Strasbourg, Centre d'Evaluation et de Traitement de la Douleur, 67000 Strasbourg, France
| | - François Daubeuf
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; CNRS, Université de Strasbourg, UMS3286 PCBIS Plateforme de chimie biologique intégrative, 67400 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Patrick Wagner
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Ipek Yalcin
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Muris Humo
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Baptiste Letellier
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Léa J Becker
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Frédéric Bihel
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Jean-Jacques Bourguignon
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Pascal Villa
- CNRS, Université de Strasbourg, UMS3286 PCBIS Plateforme de chimie biologique intégrative, 67400 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Adeline Obrecht
- CNRS, Université de Strasbourg, UMS3286 PCBIS Plateforme de chimie biologique intégrative, 67400 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Nelly Frossard
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France
| | - Michel Barrot
- CNRS, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, 67000 Strasbourg, France
| | - Martine Schmitt
- CNRS, Université de Strasbourg, UMR7200 Laboratoire d' Innovation Thérapeutique, 67401 Illkirch, France; Labex MEDALIS, 67000 Strasbourg, France.
| |
Collapse
|
26
|
Al-Mazidi S, Alotaibi M, Nedjadi T, Chaudhary A, Alzoghaibi M, Djouhri L. Blocking of cytokines signalling attenuates evoked and spontaneous neuropathic pain behaviours in the paclitaxel rat model of chemotherapy-induced neuropathy. Eur J Pain 2017; 22:810-821. [DOI: 10.1002/ejp.1169] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2017] [Indexed: 12/26/2022]
Affiliation(s)
- S. Al-Mazidi
- Department of Physiology; College of Medicine; King Saud University; Riyadh Saudi Arabia
- Rehabilitation Department; College of Health, and Rehabilitation Sciences; Princess Nourah Bint Abdulrahman University; Riyadh Saudi Arabia
| | - M. Alotaibi
- Department of Physiology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - T. Nedjadi
- King Abdullah International Medical Research Center (KAIMRC); King Fahd Medical Research Center; King Abdulaziz University; Jeddah Saudi Arabia
| | - A. Chaudhary
- Center of Excellence in Genomic Medicine Research; King Abdulaziz University; Jeddah Saudi Arabia
| | - M. Alzoghaibi
- Department of Physiology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| | - L. Djouhri
- Department of Physiology; College of Medicine; King Saud University; Riyadh Saudi Arabia
| |
Collapse
|
27
|
Yi Z, Xie L, Zhou C, Yuan H, Ouyang S, Fang Z, Zhao S, Jia T, Zou L, Wang S, Xue Y, Wu B, Gao Y, Li G, Liu S, Xu H, Xu C, Zhang C, Liang S. P2Y 12 receptor upregulation in satellite glial cells is involved in neuropathic pain induced by HIV glycoprotein 120 and 2',3'-dideoxycytidine. Purinergic Signal 2017; 14:47-58. [PMID: 29159762 DOI: 10.1007/s11302-017-9594-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca2+]i activated by the P2Y12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca2+]i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.
Collapse
Affiliation(s)
- Zhihua Yi
- School of life Sciences of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Nursing College, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lihui Xie
- Undergraduate student of Clinic Medicine School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Congfa Zhou
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Huilong Yuan
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuai Ouyang
- Undergraduate student of Clinic Medicine School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zhi Fang
- Undergraduate student of Clinic Medicine School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shanhong Zhao
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Tianyu Jia
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lifang Zou
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shouyu Wang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yun Xue
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yun Gao
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Hong Xu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Changshui Xu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Chunping Zhang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- School of life Sciences of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
28
|
Hung AL, Lim M, Doshi TL. Targeting cytokines for treatment of neuropathic pain. Scand J Pain 2017; 17:287-293. [PMID: 29229214 DOI: 10.1016/j.sjpain.2017.08.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuropathic pain is a challenging condition often refractory to existing therapies. An increasing number of studies have indicated that the immune system plays a crucial role in the mediation of neuropathic pain. Exploration of the various functions of individual cytokines in neuropathic pain will provide greater insight into the mechanisms of neuropathic pain and suggest potential opportunities to expand the repertoire of treatment options. METHODS A literature review was performed to assess the role of pro-inflammatory and anti-inflammatory cytokines in the development of neuropathic pain. Both direct and indirect therapeutic approaches that target various cytokines for pain were reviewed. The current understanding based on preclinical and clinical studies is summarized. RESULTS AND CONCLUSIONS In both human and animal studies, neuropathic pain has been associated with a pro-inflammatory state. Analgesic therapies involving direct manipulation of various cytokines and indirect methods to alter the balance of the immune system have been explored, although there have been few large-scale clinical trials evaluating the efficacy of immune modulators in the treatment of neuropathic pain. TNF-α is perhaps the widely studied pro-inflammatory cytokine in the context of neuropathic pain, but other pro-inflammatory (IL-1β, IL-6, and IL-17) and anti-inflammatory (IL-4, IL-10, TGF-β) signaling molecules are garnering increased interest. With better appreciation and understanding of the interaction between the immune system and neuropathic pain, novel therapies may be developed to target this condition.
Collapse
Affiliation(s)
- Alice L Hung
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tina L Doshi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
29
|
Clark IA, Vissel B. The meteorology of cytokine storms, and the clinical usefulness of this knowledge. Semin Immunopathol 2017; 39:505-516. [PMID: 28451786 PMCID: PMC5495849 DOI: 10.1007/s00281-017-0628-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 04/10/2017] [Indexed: 01/07/2023]
Abstract
The term cytokine storm has become a popular descriptor of the dramatic harmful consequences of the rapid release of polypeptide mediators, or cytokines, that generate inflammatory responses. This occurs throughout the body in both non-infectious and infectious disease states, including the central nervous system. In infectious disease it has become a useful concept through which to appreciate that most infectious disease is not caused directly by a pathogen, but by an overexuberant innate immune response by the host to its presence. It is less widely known that in addition to these roles in disease pathogenesis these same cytokines are also the basis of innate immunity, and in lower concentrations have many essential physiological roles. Here we update this field, including what can be learned through the history of how these interlinking three aspects of biology and disease came to be appreciated. We argue that understanding cytokine storms in their various degrees of acuteness, severity and persistence is essential in order to grasp the pathophysiology of many diseases, and thus the basis of newer therapeutic approaches to treating them. This particularly applies to the neurodegenerative diseases.
Collapse
Affiliation(s)
- Ian A Clark
- Research School of Biology, Australian National University, Canberra, Australia.
| | - Bryce Vissel
- School of Life Sciences, Faculty of Science, University of Technology, Sydney, Australia
- Garvan Institute of Medical Research, Sydney, Australia
| |
Collapse
|
30
|
Chen G, Luo X, Qadri MY, Berta T, Ji RR. Sex-Dependent Glial Signaling in Pathological Pain: Distinct Roles of Spinal Microglia and Astrocytes. Neurosci Bull 2017; 34:98-108. [PMID: 28585113 DOI: 10.1007/s12264-017-0145-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence suggests that spinal microglia regulate pathological pain in males. In this study, we investigated the effects of several microglial and astroglial modulators on inflammatory and neuropathic pain following intrathecal injection in male and female mice. These modulators were the microglial inhibitors minocycline and ZVEID (a caspase-6 inhibitor) and the astroglial inhibitors L-α-aminoadipate (L-AA, an astroglial toxin) and carbenoxolone (a connexin 43 inhibitor), as well as U0126 (an ERK kinase inhibitor) and D-JNKI-1 (a c-Jun N-terminal kinase inhibitor). We found that spinal administration of minocycline or ZVEID, or Caspase6 deletion, reduced formalin-induced inflammatory and nerve injury-induced neuropathic pain primarily in male mice. In contrast, intrathecal L-AA reduced neuropathic pain but not inflammatory pain in both sexes. Intrathecal U0126 and D-JNKI-1 reduced neuropathic pain in both sexes. Nerve injury caused spinal upregulation of the astroglial markers GFAP and Connexin 43 in both sexes. Collectively, our data confirmed male-dominant microglial signaling but also revealed sex-independent astroglial signaling in the spinal cord in inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Gang Chen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA. .,Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Xin Luo
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - M Yawar Qadri
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Temugin Berta
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.,Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Ru-Rong Ji
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
31
|
Borghi SM, Fattori V, Ruiz-Miyazawa KW, Miranda-Sapla MM, Casagrande R, Pinge-Filho P, Pavanelli WR, Verri WA. Leishmania (L). amazonensis induces hyperalgesia in balb/c mice: Contribution of endogenous spinal cord TNFα and NFκB activation. Chem Biol Interact 2017; 268:1-12. [DOI: 10.1016/j.cbi.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/27/2017] [Accepted: 02/14/2017] [Indexed: 02/07/2023]
|
32
|
Yang Y, Zhang J, Gao Q, Bo J, Ma Z. Etanercept attenuates thermal and mechanical hyperalgesia induced by bone cancer. Exp Ther Med 2017; 13:2565-2569. [PMID: 28565880 DOI: 10.3892/etm.2017.4260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
Bone cancer pain commonly occurs when tumors originating in the breast, prostate or lung metastasize to long bones, spinal vertebrae and/or the pelvis. However, the underlying mechanisms of bone cancer pain remain largely unknown. The present study aimed to determine the role of spinal tumor necrosis factor-α (TNF-α) in the development of bone cancer pain. Osteosarcoma NCTC 2472 cells were implanted into the femoral intramedullary space of C3H/HeJ mice to establish a bone cancer model. Resulting pain-related behaviors, namely spontaneous foot lifting, paw withdrawal mechanical threshold and paw withdrawal thermal latency were observed prior to inoculation and on days 3, 5, 7, 10 and 14 thereafter. Reverse transcription-quantitative polymerase chain reaction was also performed to assess the levels of TNF-α mRNA within the spinal cord. In addition, the effects of the TNF-α antagonist etanercept on TNF-α levels and pain behaviors were evaluated. It was observed that the levels of TNF-α mRNA in the spinal cord were significantly higher in tumor-bearing mice 10 days post-inoculation, which was accompanied by increases in spontaneous flinching, mechanical hyperalgesia and thermal hyperalgesia, relative to control mice. Etanercept attenuated the bone cancer-induced increase in TNF-α and pain-related behaviors. These results suggest that etanercept may be a potential therapeutic for the treatment of bone cancer pain.
Collapse
Affiliation(s)
- Yan Yang
- Department of Anesthesiology, Affiliated Drum-Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Juan Zhang
- Department of Anesthesiology, Affiliated Drum-Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Qin Gao
- Department of Anesthesiology, Affiliated Drum-Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jinhua Bo
- Department of Anesthesiology, Affiliated Drum-Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhengliang Ma
- Department of Anesthesiology, Affiliated Drum-Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
33
|
Geis C, Geuss E, Sommer C, Schmidt HHHW, Kleinschnitz C. NOX4 is an early initiator of neuropathic pain. Exp Neurol 2016; 288:94-103. [PMID: 27856286 DOI: 10.1016/j.expneurol.2016.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/09/2016] [Accepted: 11/12/2016] [Indexed: 02/07/2023]
Abstract
Treatment of neuropathic pain remains challenging as the etiology is heterogeneous and pathomechanisms are incompletely understood. One possible mechanism is oxidative stress due to unphysiological reactive oxygen species (ROS) formation. The only know dedicated enzymatic source of ROS are NADPH oxidases of which the type 4 isoform (NOX4) has been suggested to be involved in the subacute and chronic phase of neuropathic pain. Here, we aim to translate this finding into a treatment strategy by examining the efficacy of the NOX1/4-specific inhibitor GKT136901 using the chronic constriction injury (CCI) mouse model of neuropathic pain. Unexpectedly, post-nerve lesion treatment using GKT136901 was ineffective to reduce pain-related behavior after CCI. We therefore re-investigated the role of NOX4 using an independent KO mouse model. Early after CCI we found an increase in pro-inflammatory cytokines, ROS formation and the oxidative stress marker nitrotyrosine in the lesioned nerve together with an upregulated Nox4 gene expression. In NOX4 KO mice, mechanical allodynia was markedly reduced from day 4 after nerve injury as were all ROS related and acute biomarkers. In addition, we observed a reduction in the CCI-induced upregulation of pro-inflammatory cytokines in the sciatic nerve and dorsal root ganglia along with NOX4-deficiency. Thus, we conclude that NOX4 is involved in the development of neuropathic pain states by producing oxidative stress and subsequent cytokine dysregulation at the lesion site. This appears at very early stages immediately after nerve injury explaining ineffectiveness of post-acute pharmacological NOX inhibition. We suggest that future target validation of NOX4 should now focus on defining the possible therapeutic window in human neuropathic pain.
Collapse
Affiliation(s)
- Christian Geis
- Hans-Berger Department of Neurology and Center of Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany; Department of Neurology, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany.
| | - Eva Geuss
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany
| | - Claudia Sommer
- Hans-Berger Department of Neurology and Center of Sepsis Control and Care, Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | - Harald H H W Schmidt
- Department for Pharmacology, Cardiovascular Research Institute, Maastricht University, (CARIM), PO Box 616, Maastricht, 6200 MD, The Netherlands
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Straße 11, 97080 Würzburg, Germany; Department of Neurology, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
34
|
Javadi F, Ahmadzadeh A, Eghtesadi S, Aryaeian N, Zabihiyeganeh M, Rahimi Foroushani A, Jazayeri S. The Effect of Quercetin on Inflammatory Factors and Clinical Symptoms in Women with Rheumatoid Arthritis: A Double-Blind, Randomized Controlled Trial. J Am Coll Nutr 2016; 36:9-15. [DOI: 10.1080/07315724.2016.1140093] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Fatemeh Javadi
- Department of Clinical Nutrition, School of Nutritional Sciences & Dietetics, Tehran University of Medical Sciences, Tehran, IRAN
| | - Arman Ahmadzadeh
- Department of Rheumatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, IRAN
| | - Shahryar Eghtesadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, IRAN
| | - Naheed Aryaeian
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, IRAN
| | - Mozhdeh Zabihiyeganeh
- Department of Rheumatology, Rasool Akram Hospital, Iran University of Medical Sciencesw, Tehran, IRAN
| | - Abbas Rahimi Foroushani
- Department of Biostatistics and Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IRAN
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, IRAN
| |
Collapse
|
35
|
Vicario N, Parenti R, Arico' G, Turnaturi R, Scoto GM, Chiechio S, Parenti C. Repeated activation of delta opiod receptors counteracts nerve injury-induced TNF-α up-regulation in the sciatic nerve of rats with neuropathic pain: A possible correlation with delta opiod receptors-mediated antiallodinic effect. Mol Pain 2016; 12:12/0/1744806916667949. [PMID: 27590071 PMCID: PMC5024981 DOI: 10.1177/1744806916667949] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Despite mu opioid receptor agonists are the cornerstones of moderate-to-severe acute pain treatment, their effectiveness in chronic pain conditions is controversial. In contrast to mu opioid receptor agonists, a number of studies have reported the effectiveness of delta opioid receptor agonists on neuropathic pain strengthening the idea that delta opioid receptors gain importance when chronic pain develops. Among other effects, it has been shown that delta opioid receptor activation in optic nerve astrocytes inhibits tumor necrosis factor-α-mediated inflammation in response to severe hypoxia. Considering the involvement of tumor necrosis factor-α in the development and maintenance of neuropathic pain, with this study we sought to correlate the effect of delta opioid receptor agonist on the development of mechanical allodynia to tumor necrosis factor-α expression at the site of nerve injury in rats subjected to chronic constriction injury of the sciatic nerve. To this aim, we measured the levels of tumor necrosis factor-α in the sciatic nerve of rats with neuropathic pain after repeated injections with a delta opioid receptor agonist. Results obtained demonstrated that repeated administrations of the delta opioid receptor agonist SNC80 (10 mg/kg, i.p. for seven consecutive days) significantly inhibited the development of mechanical allodynia in rats with neuropathic pain and that the improvement of neuropathic symptom was timely related to the reduced expression of tumor necrosis factor-α in the rat sciatic nerve. We demonstrated also that when treatment with the delta opioid receptor agonist was suspended both allodynia and tumor necrosis factor-α up-regulation in the sciatic nerve of rats with neuropathic pain were restored. These results show that persistent delta opioid receptor activation significantly attenuates neuropathic pain and negatively regulates sciatic nerve tumor necrosis factor-α expression in chronic constriction injury rats.
Collapse
Affiliation(s)
| | | | | | | | | | - Santina Chiechio
- University of CataniaUniversity of CataniaUniversity of CataniaUniversity of CataniaUniversity of Catania
| | - Carmela Parenti
- University of CataniaUniversity of CataniaUniversity of CataniaUniversity of CataniaUniversity of Catania
| |
Collapse
|
36
|
Nakanishi M, Nakae A, Kishida Y, Baba K, Sakashita N, Shibata M, Yoshikawa H, Hagihara K. Go-sha-jinki-Gan (GJG) ameliorates allodynia in chronic constriction injury-model mice via suppression of TNF-α expression in the spinal cord. Mol Pain 2016; 12:12/0/1744806916656382. [PMID: 27296622 PMCID: PMC4956397 DOI: 10.1177/1744806916656382] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Background Alternative medicine is noted for its clinical effect and minimal invasiveness in the treatment of neuropathic pain. Go-sha-jinki-Gan, a traditional Japanese herbal medicine, has been used for meralgia and numbness in elderly patients. However, the exact mechanism of GJG is unclear. This study aimed to investigate the molecular mechanism of the analgesic effect of GJG in a chronic constriction injury model. Results GJG significantly reduced allodynia and hyperalgesia from the early phase (von Frey test, p < 0.0001; cold-plate test, p < 0.0001; hot-plate test p = 0.011; two-way repeated measures ANOVA). Immunohistochemistry and Western blot analysis revealed that GJG decreased the expression of Iba1 and tumor necrosis factor-α in the spinal cord. Double staining immunohistochemistry showed that most of the tumor necrosis factor-α was co-expressed in Iba1-positive cells at day 3 post-operation. GJG decreased the phosphorylation of p38 in the ipsilateral dorsal horn. Moreover, intrathecal injection of tumor necrosis factor-α opposed the anti-allodynic effect of GJG in the cold-plate test. Conclusions Our data suggest that GJG ameliorates allodynia in chronic constriction injury model mice via suppression of tumor necrosis factor-α expression derived from activated microglia. GJG is a promising drug for the treatment of neuropathic pain induced by neuro-inflammation.
Collapse
Affiliation(s)
| | - Aya Nakae
- Osaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicine Osaka University Graduate School of Medicine Osaka University Graduate School of Medicine
| | | | | | | | | | | | - Keisuke Hagihara
- Osaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicineOsaka University Graduate School of medicine Osaka University Graduate School of Medicine Osaka University Graduate School of Medicine
| |
Collapse
|
37
|
Chen Y, Zhang Y, Huo Y, Wang D, Hong Y. Adrenomedullin mediates tumor necrosis factor-α-induced responses in dorsal root ganglia in rats. Brain Res 2016; 1644:183-91. [PMID: 27184601 DOI: 10.1016/j.brainres.2016.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023]
Abstract
Adrenomedullin (AM), a member of the calcitonin gene-related peptide (CGRP) family, has been demonstrated to be a pain peptide. This study investigated the possible involvement of AM in tumor necrosis factor-alpha (TNF-α)-induced responses contributing to neuronal plasticity in the dorsal root ganglia (DRG). Exposure of the DRG explant cultures to TNF-α (5nM) for 48h upregulated the expression of AM mRNA. The treatment with TNF-α also increased the level of CGRP, CCL-2 and MMP-9 mRNA in the cultured DRG. This increase was attenuated by the co-treatment with the selective AM receptor antagonist AM22-52 (2μM). The blockade of AM receptors inhibited TNF-α-induced increase of the glial fibrillary acidic protein (GFAP), interleukin-1β (IL-1β), phosphorylated cAMP response element binding protein (pCREB) and nuclear factor kappa B (pNF-κB) proteins. On the other hand, the treatment with the AM receptor agonist AM1-50 (10nM) for 96h induced an increase in the level of GFAP, IL-1β, pCREB and pNF-κB proteins. The inhibition of AM activity did not change TNF-α-induced phosphorylation of extracellular signal-related kinase (pERK) while the treatment with AM1-50 still increased the level of pERK in the cultured DRG. Immunofluorescence assay showed the colocalization of AM-like immunoreactivity (IR) with TNF-α-IR in DRG neurons. The present study suggests that the increased AM receptor signaling mediated the many, but not all, TNF-α-induced activities, contributing to peripheral sensitization in neuropathic pain.
Collapse
Affiliation(s)
- Yajuan Chen
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University Fuzhou, Fujian 350117, China
| | - Yan Zhang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University Fuzhou, Fujian 350117, China
| | - Yuanhui Huo
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University Fuzhou, Fujian 350117, China
| | - Dongmei Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University Fuzhou, Fujian 350117, China
| | - Yanguo Hong
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University Fuzhou, Fujian 350117, China.
| |
Collapse
|
38
|
Matsuda K, Orito K, Amagai Y, Jang H, Matsuda H, Tanaka A. Swing time ratio, a new parameter of gait disturbance, for the evaluation of the severity of neuropathic pain in a rat model of partial sciatic nerve ligation. J Pharmacol Toxicol Methods 2016; 79:7-14. [DOI: 10.1016/j.vascn.2015.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 01/15/2023]
|
39
|
Kremer M, Yalcin I, Nexon L, Wurtz X, Ceredig RA, Daniel D, Hawkes RA, Salvat E, Barrot M. The antiallodynic action of pregabalin in neuropathic pain is independent from the opioid system. Mol Pain 2016; 12:12/0/1744806916633477. [PMID: 27030724 PMCID: PMC4956392 DOI: 10.1177/1744806916633477] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clinical management of neuropathic pain, which is pain arising as a consequence of a lesion or a disease affecting the somatosensory system, partly relies on the use of anticonvulsant drugs such as gabapentinoids. Therapeutic action of gabapentinoids such as gabapentin and pregabalin, which act by the inhibition of calcium currents through interaction with the α2δ-1 subunit of voltage-dependent calcium channels, is well documented. However, some aspects of the downstream mechanisms are still to be uncovered. Using behavioral, genetic, and pharmacological approaches, we tested whether opioid receptors are necessary for the antiallodynic action of acute and/or long-term pregabalin treatment in the specific context of neuropathic pain. RESULTS Using the cuff model of neuropathic pain in mice, we show that acute pregabalin administration at high dose has a transitory antiallodynic action, while prolonged oral pregabalin treatment leads to sustained antiallodynic action, consistent with clinical observations. We show that pregabalin remains fully effective in μ-opioid receptor, in δ-opioid receptor and in κ-opioid receptor deficient mice, either female or male, and its antiallodynic action is not affected by acute naloxone. Our work also shows that long-term pregabalin treatment suppresses tumor necrosis factor-α overproduction induced by sciatic nerve constriction in the lumbar dorsal root ganglia. CONCLUSIONS We demonstrate that neither acute nor long-term antiallodynic effect of pregabalin in a context of neuropathic pain is mediated by the endogenous opioid system, which differs from opioid treatment of pain and antidepressant treatment of neuropathic pain. Our data are also supportive of an impact of gabapentinoid treatment on the neuroimmune aspect of neuropathic pain.
Collapse
Affiliation(s)
- Mélanie Kremer
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Laurent Nexon
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Xavier Wurtz
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Rhian Alice Ceredig
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Dorothée Daniel
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Rachael Aredhel Hawkes
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Université de Strasbourg, Strasbourg, France
| | - Eric Salvat
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France Centre d'Etude et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
40
|
Ogawa T, Ishizuka O, Ueda T, Tyagi P, Chancellor MB, Yoshimura N. Current and emerging drugs for interstitial cystitis/bladder pain syndrome (IC/BPS). Expert Opin Emerg Drugs 2015; 20:555-70. [DOI: 10.1517/14728214.2015.1105216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Li ZY, Zhang YP, Zhang J, Zhang SB, Li D, Huang ZZ, Xin WJ. The possible involvement of JNK activation in the spinal dorsal horn in bortezomib-induced allodynia: the role of TNF-α and IL-1β. J Anesth 2015; 30:55-63. [PMID: 26373954 DOI: 10.1007/s00540-015-2077-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 09/06/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE Bortezomib (BTZ), a widely used chemotherapeutic drug, is closely associated with the development of painful peripheral neuropathy, but the mechanism underlying the induction of this disorder by BTZ remains largely unclear. To examine this association, we have evaluated the activation of mitogen-activated protein kinase (MAPK) family members in the spinal dorsal horn and the role of tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in BTZ-induced allodynia in rats. METHODS Male Sprague-Dawley rats were used as the model animals. The paw withdrawal test, in which mechanical stimuli (von Frey hairs) is applied to the plantar surface of the hindpaw, was used to determine any changes in the paw withdrawal threshold of the treated rats. A PE-10 catheter was placed intrathecally to deliver TNF-α neutralizing antibody, IL-1 receptor antagonist (IL-1ra) or the c-Jun N-terminal kinase (JNK) inhibitor SP600125. The mRNA levels of various cytokines were measured by real-time quantitative PCR. The expression of TNF-α, IL-1β and mitogen-activated protein kinase (MAPK) family members in the spinal dorsal horn was measured by western blot analysis and immunohistochemistry. All data were expressed as the mean ± standard error of the mean and analyzed using the SPSS version 13.0 software program. RESULTS The BTZ treatment induced an upsurge in the mRNA and protein levels of TNF-α in the neurons and IL-1β in the astrocytes in the spinal dorsal horn. It also significantly upregulated the phosphorylation of JNK but not of extracellular signal-regulated kinases (ERK) and p38-MAPK in astrocytes of the spinal dorsal horn. Inhibition of TNF-α or IL-1β ameliorated JNK activation and mechanical allodynia induced by BTZ. Co-administration of thalidomide (TNF-α synthesis inhibitor) and IL-1ra prevented BTZ-induced mechanical allodynia. CONCLUSION Our results suggest that the TNF-α or IL-1β/JNK pathway in the spinal dorsal horn may play a critical role in the development of painful peripheral neuropathy induced by BTZ.
Collapse
Affiliation(s)
- Zhen-Yu Li
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Sun Yet-Sen University, 58 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Yuan-Pei Zhang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Jie Zhang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Su-Bo Zhang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Dai Li
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Zhen-Zhen Huang
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yet-Sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China.
| |
Collapse
|
42
|
Gerard E, Spengler RN, Bonoiu AC, Mahajan SD, Davidson BA, Ding H, Kumar R, Prasad PN, Knight PR, Ignatowski TA. Chronic constriction injury-induced nociception is relieved by nanomedicine-mediated decrease of rat hippocampal tumor necrosis factor. Pain 2015; 156:1320-1333. [PMID: 25851457 PMCID: PMC4474806 DOI: 10.1097/j.pain.0000000000000181] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is a chronic pain syndrome that arises from nerve injury. Current treatments only offer limited relief, clearly indicating the need for more effective therapeutic strategies. Previously, we demonstrated that proinflammatory tumor necrosis factor-alpha (TNF) is a key mediator of neuropathic pain pathogenesis; TNF is elevated at sites of neuronal injury, in the spinal cord, and supraspinally during the initial development of pain. The inhibition of TNF action along pain pathways outside higher brain centers results in transient decreases in pain perception. The objective of this study was to determine whether specific blockade of TNF in the hippocampus, a site of pain integration, could prove efficacious in reducing sciatic nerve chronic constriction injury (CCI)-induced pain behavior. Small inhibitory RNA directed against TNF mRNA was complexed to gold nanorods (GNR-TNF siRNA; TNF nanoplexes) and injected into the contralateral hippocampus of rats 4 days after unilateral CCI. Withdrawal latencies to a noxious thermal stimulus (hyperalgesia) and withdrawal to innocuous forces (allodynia) were recorded up to 10 days and compared with baseline values and sham-operated rats. Thermal hyperalgesia was dramatically decreased in CCI rats receiving hippocampal TNF nanoplexes; and mechanical allodynia was transiently relieved. TNF levels (bioactive protein, TNF immunoreactivity) in hippocampal tissue were decreased. The observation that TNF nanoplex injection into the hippocampus alleviated neuropathic pain-like behavior advances our previous findings that hippocampal TNF levels modulate pain perception. These data provide evidence that targeting TNF in the brain using nanoparticle-protected siRNA may be an effective strategy for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Elizabeth Gerard
- Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York
| | | | - Adela C. Bonoiu
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University at Buffalo, The State University of New York
| | - Bruce A. Davidson
- Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York
- NanoAxis, LLC, Clarence, New York 14031
- Department of Anesthesiology, University at Buffalo, The State University of New York
- Veterans Administration Western New York Healthcare System
| | - Hong Ding
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
| | - Rajiv Kumar
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
| | - Paras N. Prasad
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
- Department of Chemistry, University at Buffalo, The State University of New York
| | - Paul R. Knight
- NanoAxis, LLC, Clarence, New York 14031
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York
- Department of Anesthesiology, University at Buffalo, The State University of New York
- Veterans Administration Western New York Healthcare System
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York
| | - Tracey A. Ignatowski
- Department of Pathology and Anatomical Sciences, University at Buffalo, The State University of New York
- NanoAxis, LLC, Clarence, New York 14031
- Program for Neuroscience, University at Buffalo, The State University of New York
| |
Collapse
|
43
|
Ma F, Zhang L, Oz HS, Mashni M, Westlund KN. Dysregulated TNFα promotes cytokine proteome profile increases and bilateral orofacial hypersensitivity. Neuroscience 2015; 300:493-507. [PMID: 26033565 DOI: 10.1016/j.neuroscience.2015.05.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tumor necrosis factor alpha (TNFα) is increased in patients with headache, neuropathic pain, periodontal and temporomandibular disease. This study and others have utilized TNF receptor 1/2 (TNFR1/2) knockout (KO) animals to investigate the effect of TNFα dysregulation in generation and maintenance of chronic neuropathic pain. The present study determined the impact of TNFα dysregulation in a trigeminal inflammatory compression (TIC) nerve injury model comparing wild-type (WT) and TNFR1/2 KO mice. METHODS Chromic gut suture was inserted adjacent to the infraorbital nerve to induce the TIC model mechanical hypersensitivity. Cytokine proteome profiles demonstrated serology, and morphology explored microglial activation in trigeminal nucleus 10weeks post. RESULTS TIC injury induced ipsilateral whisker pad mechanical allodynia persisting throughout the 10-week study in both TNFR1/2 KO and WT mice. Delayed mechanical allodynia developed on the contralateral whisker pad in TNFR1/2 KO mice but not in WT mice. Proteomic profiling 10weeks after chronic TIC injury revealed TNFα, interleukin-1alpha (IL-1α), interleukin-5 (IL-5), interleukin-23 (IL-23), macrophage inflammatory protein-1β (MIP-1β), and granulocyte-macrophage colony-stimulating factor (GM-CSF) were increased more than 2-fold in TNFR1/2 KO mice compared to WT mice with TIC. Bilateral microglial activation in spinal trigeminal nucleus was detected only in TNFR1/2 KO mice. p38 mitogen-activated protein kinase (MAPK) inhibitor and microglial inhibitor minocycline reduced hypersensitivity. CONCLUSIONS The results suggest the dysregulated serum cytokine proteome profile and bilateral spinal trigeminal nucleus microglial activation are contributory to the bilateral mechanical hypersensitization in this chronic trigeminal neuropathic pain model in the mice with TNFα dysregulation. Data support involvement of both neurogenic and humoral influences in chronic neuropathic pain.
Collapse
Affiliation(s)
- F Ma
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - L Zhang
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - H S Oz
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - M Mashni
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| | - K N Westlund
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.
| |
Collapse
|
44
|
Zhang Q, Yu J, Wang J, Ding CP, Han SP, Zeng XY, Wang JY. The Red Nucleus TNF-α Participates in the Initiation and Maintenance of Neuropathic Pain Through Different Signaling Pathways. Neurochem Res 2015; 40:1360-71. [DOI: 10.1007/s11064-015-1599-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/11/2015] [Accepted: 05/02/2015] [Indexed: 11/30/2022]
|
45
|
Sun Y, Yang M, Tang H, Ma Z, Liang Y, Li Z. The over-production of TNF-α via Toll-like receptor 4 in spinal dorsal horn contributes to the chronic postsurgical pain in rat. J Anesth 2015; 29:734-40. [PMID: 25895164 DOI: 10.1007/s00540-015-2011-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/29/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE Many patients suffer from chronic postsurgical pain (CPSP) following surgery, and the underlying mechanisms are poorly understood. In the present work, using the skin/muscle incision retraction (SMIR) model, the role of spinal TLR4/TNF-α pathway in the induction of CPSP was evaluated. METHODS Mechanical allodynia induced by SMIR was established in adult male Sprague-Dawley rats. The von Frey test was performed to evaluate the role of TLR4/TNF-α pathway on the mechanical allodynia. Western-blot and immunohistochemistry methods were adopted to understand the molecular mechanisms. RESULTS SMIR surgery decreased the ipsilateral 50 % paw withdrawal threshold, lasting for at least 20 days. Western-blot analysis and immunohistochemistry revealed that SMIR surgery significantly upregulated the expression of TLR4 (p < 0.01) in glial cells on the ipsilateral side of spinal cord and increased TLR4 occurred on day 5 and was maintained to the end of the experiment (day 20). Similarly, tumor necrosis factor-alpha (TNF-α) was significantly increased on days 5, 10, and 20 on the ipsilateral side of spinal dorsal horn following SMIR surgery. Intraperitoneal injection of an inhibitor of TNF-α synthesis thalidomide at 50 or 100 mg/kg dose (but not 10 mg/kg dose) significantly ameliorated the reduced paw withdrawal threshold induced by SMIR surgery. Importantly, intrathecal delivery of a specific TLR4 antagonist (LPS-RS) at dose of 25 μg significantly attenuated mechanical allodynia and prevented the upregulation of TNF-α induced by SMIR surgery. CONCLUSIONS These findings suggest that the upregulation of TNF-α via TLR4 contributes to the development of CPSP in spinal dorsal horn.
Collapse
Affiliation(s)
- Yang Sun
- Department of Pain, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Mingmin Yang
- Department of Pain, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Hao Tang
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Sun Yet-Sen University, 58 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Zhongfu Ma
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Sun Yet-Sen University, 58 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Yanbing Liang
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Sun Yet-Sen University, 58 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Zhenyu Li
- Department of General Internal Medicine, The First Affiliated Hospital of Sun Yat-sen University, Sun Yet-Sen University, 58 Zhongshan Rd. 2, Guangzhou, 510080, China.
| |
Collapse
|
46
|
Yoshimura N, Oguchi T, Yokoyama H, Funahashi Y, Yoshikawa S, Sugino Y, Kawamorita N, Kashyap MP, Chancellor MB, Tyagi P, Ogawa T. Bladder afferent hyperexcitability in bladder pain syndrome/interstitial cystitis. Int J Urol 2015; 21 Suppl 1:18-25. [PMID: 24807488 DOI: 10.1111/iju.12308] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 08/27/2013] [Indexed: 12/30/2022]
Abstract
Bladder pain syndrome/interstitial cystitis is a disease with lower urinary tract symptoms, such as bladder pain and urinary frequency, which results in seriously impaired quality of life of patients. The extreme pain and urinary frequency are often difficult to treat. Although the etiology of bladder pain syndrome/interstitial cystitis is still not known, there is increasing evidence showing that afferent hyperexcitability as a result of neurogenic bladder inflammation and urothelial dysfunction is important to the pathophysiological basis of symptom development. Further investigation of the pathophysiology will lead to the effective treatment of patients with bladder pain syndrome/interstitial cystitis.
Collapse
Affiliation(s)
- Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci Biobehav Rev 2015; 53:139-59. [PMID: 25857253 DOI: 10.1016/j.neubiorev.2015.03.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 02/02/2015] [Accepted: 03/28/2015] [Indexed: 02/07/2023]
Abstract
Major depression and chronic pain are significant health problems that seriously impact the quality of life of affected individuals. These diseases that individually are difficult to treat often co-exist, thereby compounding the patient's disability and impairment as well as the challenge of successful treatment. The development of efficacious treatments for these comorbid disorders requires a more comprehensive understanding of their linked associations through common neuromodulators, such as tumor necrosis factor-α (TNFα), and various neurotransmitters, as well as common neuroanatomical pathways and structures, including the hippocampal brain region. This review discusses the interaction between depression and chronic pain, emphasizing the fundamental role of the hippocampus in the development and maintenance of both disorders. The focus of this review addresses the hypothesis that hippocampal expressed TNFα serves as a therapeutic target for management of chronic pain and major depressive disorder (MDD).
Collapse
Affiliation(s)
- Victoria Fasick
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | | | - Shabnam Samankan
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Nader D Nader
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; Department of Anesthesiology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; NanoAxis, LLC, Clarence, NY 14031, United States; Program for Neuroscience, School of Medicine and Biomedical Science, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States.
| |
Collapse
|
48
|
Salvat E, Schweitzer B, Massard G, Meyer N, de Blay F, Muller A, Barrot M. Effects of β2 agonists on post-thoracotomy pain incidence. Eur J Pain 2015; 19:1428-36. [PMID: 25766791 DOI: 10.1002/ejp.673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pre-clinical research has shown β2 -adrenoceptors to be essential for the antiallodynic action of antidepressant drugs in murine models of neuropathic pain and that sustained treatment with β2 -agonists has an antiallodynic action. Here, we clinically investigated whether chronic β2 -agonist treatments may influence the incidence of post-thoracotomy chronic pain, defined as pain that recurs or persists along a thoracotomy scar more than 2 months after surgery, either neuropathic or non-neuropathic. METHODS We conducted an epidemiological study on patients operated by thoracotomy. Demographic data, medical history and treatments concomitant to the surgery were recorded at a follow-up visit. Information on perioperative treatments was collected from the anaesthesia records and confirmed by the patients. In patients with pain at the surgery level, post-thoracotomy chronic pain was assessed by clinical examination and numeric scale. Physical examination and DN4 questionnaire were used to discriminate neuropathic and non-neuropathic chronic pain at scar level. RESULTS One hundred and eighty-nine patients were included. Eighty-one patients reported persisting thoracic pain, with neuropathic characteristics in 58 of them (30% of the 189 patients). The most common chronic drugs during the perioperative period were inhaled β2 -agonists (28.6%). The chronic use of β2 -agonists was an independent predictor of thoracic neuropathic pain (but not of non-neuropathic pain) and was associated with a five-fold decrease in the relative incidence of neuropathic pain [OR = 0.19 (0.06-0.45)]. CONCLUSIONS These data suggest a possible influence of chronic β2 -agonist treatments on neuropathic pain secondary to thoracotomy. This apparent preventive effect of β2 -agonist treatments should warrant controlled clinical trials.
Collapse
Affiliation(s)
- E Salvat
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, France
| | - B Schweitzer
- Département d'Anesthésie-Réanimation Chirurgicale, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, France
| | - G Massard
- Département de Pathologies Thoraciques, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, France
| | - N Meyer
- Service de Santé Publique, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, France
| | - F de Blay
- Département de Pathologies Thoraciques, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, France
| | - A Muller
- Centre d'Evaluation et de Traitement de la Douleur, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, France
| | - M Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, France
| |
Collapse
|
49
|
Bali A, Singh N, Jaggi AS. Renin–angiotensin system in pain: Existing in a double life? J Renin Angiotensin Aldosterone Syst 2014; 15:329-40. [DOI: 10.1177/1470320313503694] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, India
| |
Collapse
|
50
|
Chen NF, Huang SY, Chen WF, Chen CH, Lu CH, Chen CL, Yang SN, Wang HM, Wen ZH. TGF-β1 attenuates spinal neuroinflammation and the excitatory amino acid system in rats with neuropathic pain. THE JOURNAL OF PAIN 2014; 14:1671-85. [PMID: 24290447 DOI: 10.1016/j.jpain.2013.08.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/16/2013] [Accepted: 08/28/2013] [Indexed: 01/28/2023]
Abstract
UNLABELLED Previous studies have reported that the intrathecal (i.t.) administration of transforming growth factor β1 (TGF-β1) prevents and reverses neuropathic pain. However, only limited information is available regarding the possible role and effects of spinal TGF-β1 in neuropathic pain. We aimed to investigate the antinociceptive effects of exogenous TGF-β1 on chronic constriction injury (CCI)-induced neuropathic pain in rats. We demonstrated that sciatic nerve injury caused a downregulation of endogenous TGF-β1 levels on the ipsilateral side of the lumbar spinal dorsal gray matter, and that the i.t. administration of TGF-β1 (.01-10 ng) significantly attenuated CCI-induced thermal hyperalgesia in neuropathic rats. TGF-β1 significantly inhibited CCI-induced spinal neuroinflammation, microglial and astrocytic activation, and upregulation of tumor necrosis factor-α. Moreover, i.t. TGF-β1 significantly attenuated the CCI-induced downregulation of glutamate transporter 1, the glutamate aspartate transporter, and the excitatory amino acid carrier 1 on the ipsilateral side. Furthermore, i.t. TGF-β1 significantly decreased the concentrations of 2 excitatory amino acids, aspartate and glutamate, in the spinal dialysates in CCI rats. In summary, we conclude that the mechanisms of the antinociceptive effects of i.t. TGF-β1 in neuropathy may include attenuation of spinal neuroinflammation, attenuation, or upregulation of glutamate transporter downregulation, and a decrease of spinal extracellular excitatory amino acids. PERSPECTIVE Clinically, medical treatment is usually initiated after the onset of intractable pain. Therefore, in the present study, i.t. TGF-β1 was designed to be administered 2 weeks after the establishment of CCI pain. Compared to the continuous TGF-β1 infusion mode, single-dose administration seems more convenient and practical to use.
Collapse
Affiliation(s)
- Nan-Fu Chen
- Department of Marine Biotechnology and Resources, Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan; Division of Neurosurgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|