1
|
Li W, Li W, Wen Y, Wu J. Repetitive transcranial magnetic stimulation elevates the serum levels of neurotrophic factors and serotonin and its metabolites in patients with ischemic stroke. Front Neurol 2025; 16:1513131. [PMID: 40109842 PMCID: PMC11919663 DOI: 10.3389/fneur.2025.1513131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
Objective Repetitive transcranial magnetic stimulation (rTMS) can effectively treat cognitive impairment in stroke patients; however, its mechanism of action remains unclear. The aim of this study was to investigate whether rTMS improves cognitive function by regulating the levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA). Methods In a 4-week study, 70 patients with ischemic stroke were randomly assigned to two groups: one received rTMS (n = 35) and the other received sham-stimulation (n = 35) in addition to conventional medication and rehabilitation training. Patients in the rTMS group were treated with rTMS at 10 Hz for 20 min per session. The Montreal Cognitive Assessment (MoCA) and response time in the n-back task were used to assess the severity of the disease. Fasting venous blood was collected in the early morning, both before and after the treatment. The peripheral blood levels of BDNF, NGF, 5-HT, and 5-HIAA were measured using the enzyme-linked immunosorbent assay (ELISA). Results The levels of BDNF and NGF were higher in the rTMS group than in the sham group (p = 0.017, p = 0.008), after the rTMS treatment, and the levels of 5-HT and 5-HIAA were also elevated in the rTMS group (p = 0.049, p = 0.004). The changes in serum 5-HT and 5-HIAA levels after the rTMS treatment correlated with the changes in the MoCA and response time in the n-back task. There was a positive correlation between the serum 5-HT and BDNF levels (r = 0.4034). Conclusion Our results showed that the BDNF, NGF, 5-HT, and 5-HIAA levels were upregulated after the rTMS treatment, which likely contributed to improvements in cognitive function and quality of life in the patients with stroke. Clinical trial registration https://www.chictr.org.cn/showproj.html?proj=216761, ChiCTR2400082383.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical Medicine, Shanxi Medical University, Taiyuan, China
- Department of Rehabilitation Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenyan Li
- Department of Rehabilitation Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yinghua Wen
- Department of Rehabilitation Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Junying Wu
- Department of Rehabilitation Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Stone TW, Williams RO. Tryptophan metabolism as a 'reflex' feature of neuroimmune communication: Sensor and effector functions for the indoleamine-2, 3-dioxygenase kynurenine pathway. J Neurochem 2024; 168:3333-3357. [PMID: 38102897 DOI: 10.1111/jnc.16015] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023]
Abstract
Although the central nervous system (CNS) and immune system were regarded as independent entities, it is now clear that immune system cells can influence the CNS, and neuroglial activity influences the immune system. Despite the many clinical implications for this 'neuroimmune interface', its detailed operation at the molecular level remains unclear. This narrative review focuses on the metabolism of tryptophan along the kynurenine pathway, since its products have critical actions in both the nervous and immune systems, placing it in a unique position to influence neuroimmune communication. In particular, since the kynurenine pathway is activated by pro-inflammatory mediators, it is proposed that physical and psychological stressors are the stimuli of an organismal protective reflex, with kynurenine metabolites as the effector arm co-ordinating protective neural and immune system responses. After a brief review of the neuroimmune interface, the general perception of tryptophan metabolism along the kynurenine pathway is expanded to emphasize this environmentally driven perspective. The initial enzymes in the kynurenine pathway include indoleamine-2,3-dioxygenase (IDO1), which is induced by tissue damage, inflammatory mediators or microbial products, and tryptophan-2,3-dioxygenase (TDO), which is induced by stress-induced glucocorticoids. In the immune system, kynurenic acid modulates leucocyte differentiation, inflammatory balance and immune tolerance by activating aryl hydrocarbon receptors and modulates pain via the GPR35 protein. In the CNS, quinolinic acid activates N-methyl-D-aspartate (NMDA)-sensitive glutamate receptors, whereas kynurenic acid is an antagonist: the balance between glutamate, quinolinic acid and kynurenic acid is a significant regulator of CNS function and plasticity. The concept of kynurenine and its metabolites as mediators of a reflex coordinated protection against stress helps to understand the variety and breadth of their activity. It should also help to understand the pathological origin of some psychiatric and neurodegenerative diseases involving the immune system and CNS, facilitating the development of new pharmacological strategies for treatment.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Eckardt N, Sinke C, Bleich S, Lichtinghagen R, Zedler M. Investigation of the relationship between neuroplasticity and grapheme-color synesthesia. Front Neurosci 2024; 18:1434309. [PMID: 39224579 PMCID: PMC11366591 DOI: 10.3389/fnins.2024.1434309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Grapheme-color synesthesia is a normal and healthy variation of human perception. It is characterized by the association of letters or numbers with color perceptions. The etiology of synesthesia is not yet fully understood. Theories include hyperconnectivity in the brain, cross-activation of adjacent or functionally proximate sensory areas of the brain, or various models of lack of inhibitory function in the brain. The growth factor brain-derived neurotrophic (BDNF) plays an important role in the development of neurons, neuronal pathways, and synapses, as well as in the protection of existing neurons in both the central and peripheral nervous systems. ELISA methods were used to compare BDNF serum concentrations between healthy test subjects with and without grapheme-color synesthesia to establish a connection between concentration and the occurrence of synesthesia. The results showed that grapheme-color synesthetes had an increased BDNF serum level compared to the matched control group. Increased levels of BDNF can enhance the brain's ability to adapt to changing environmental conditions, injuries, or experiences, resulting in positive effects. It is discussed whether the integration of sensory information is associated with or results from increased neuroplasticity. The parallels between neurodegeneration and brain regeneration lead to the conclusion that synesthesia, in the sense of an advanced state of consciousness, is in some cases a more differentiated development of the brain rather than a relic of early childhood.
Collapse
Affiliation(s)
- Nadine Eckardt
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Christopher Sinke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Division of Clinical Psychology & Sexual Medicine, Hannover Medical School, Hanover, Germany
| | - Stefan Bleich
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, Hanover, Germany
| | - Markus Zedler
- Department for Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| |
Collapse
|
4
|
Albadrani HM, Chauhan P, Ashique S, Babu MA, Iqbal D, Almutary AG, Abomughaid MM, Kamal M, Paiva-Santos AC, Alsaweed M, Hamed M, Sachdeva P, Dewanjee S, Jha SK, Ojha S, Slama P, Jha NK. Mechanistic insights into the potential role of dietary polyphenols and their nanoformulation in the management of Alzheimer's disease. Biomed Pharmacother 2024; 174:116376. [PMID: 38508080 DOI: 10.1016/j.biopha.2024.116376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/19/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
Alzheimer's disease (AD) is a very common neurodegenerative disorder associated with memory loss and a progressive decline in cognitive activity. The two major pathophysiological factors responsible for AD are amyloid plaques (comprising amyloid-beta aggregates) and neurofibrillary tangles (consisting of hyperphosphorylated tau protein). Polyphenols, a class of naturally occurring compounds, are immensely beneficial for the treatment or management of various disorders and illnesses. Naturally occurring sources of polyphenols include plants and plant-based foods, such as fruits, herbs, tea, vegetables, coffee, red wine, and dark chocolate. Polyphenols have unique properties, such as being the major source of anti-oxidants and possessing anti-aging and anti-cancerous properties. Currently, dietary polyphenols have become a potential therapeutic approach for the management of AD, depending on various research findings. Dietary polyphenols can be an effective strategy to tackle multifactorial events that occur with AD. For instance, naturally occurring polyphenols have been reported to exhibit neuroprotection by modulating the Aβ biogenesis pathway in AD. Many nanoformulations have been established to enhance the bioavailability of polyphenols, with nanonization being the most promising. This review comprehensively provides mechanistic insights into the neuroprotective potential of dietary polyphenols in treating AD. It also reviews the usability of dietary polyphenol as nanoformulation for AD treatment.
Collapse
Affiliation(s)
- Hind Muteb Albadrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia
| | - Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanad University, Rohtak, Haryana 124001, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mohammed Alsaweed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140401, Punjab, India.; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, India.
| |
Collapse
|
5
|
Xu X, Song L, Li Y, Guo J, Huang S, Du S, Li W, Cao R, Cui S. Neurotrophin-3 promotes peripheral nerve regeneration by maintaining a repair state of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway. J Transl Med 2023; 21:733. [PMID: 37848983 PMCID: PMC10583391 DOI: 10.1186/s12967-023-04609-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Maintaining the repair phenotype of denervated Schwann cells in the injured distal nerve is crucial for promoting peripheral nerve regeneration. However, when chronically denervated, the capacity of Schwann cells to support repair and regeneration deteriorates, leading to peripheral nerve regeneration and poor functional recovery. Herein, we investigated whether neurotrophin-3 (NT-3) could sustain the reparative phenotype of Schwann cells and promote peripheral nerve regeneration after chronic denervation and aimed to uncover its potential molecular mechanisms. METHODS Western blot was employed to investigate the relationship between the expression of c-Jun and the reparative phenotype of Schwann cells. The inducible expression of c-Jun by NT-3 was examined both in vitro and in vivo with western blot and immunofluorescence staining. A chronic denervation model was established to study the role of NT-3 in peripheral nerve regeneration. The number of regenerated distal axons, myelination of regenerated axons, reinnervation of neuromuscular junctions, and muscle fiber diameters of target muscles were used to evaluate peripheral nerve regeneration by immunofluorescence staining, transmission electron microscopy (TEM), and hematoxylin and eosin (H&E) staining. Adeno-associated virus (AAV) 2/9 carrying shRNA, small molecule inhibitors, and siRNA were employed to investigate whether NT-3 could signal through the TrkC/ERK pathway to maintain c-Jun expression and promote peripheral nerve regeneration after chronic denervation. RESULTS After peripheral nerve injury, c-Jun expression progressively increased until week 5 and then began to decrease in the distal nerve following denervation. NT-3 upregulated the expression of c-Jun in denervated Schwann cells, both in vitro and in vivo. NT-3 promoted peripheral nerve regeneration after chronic denervation, mainly by upregulating or maintaining a high level of c-Jun rather than NT-3 itself. The TrkC receptor was consistently presented on denervated Schwann cells and served as NT-3 receptors following chronic denervation. NT-3 mainly upregulated c-Jun through the TrkC/ERK pathway. CONCLUSION NT-3 promotes peripheral nerve regeneration by maintaining the repair phenotype of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway. It provides a potential target for the clinical treatment of peripheral nerve injury after chronic denervation.
Collapse
Affiliation(s)
- Xiong Xu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Lili Song
- Department of Hand & Microsurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yueying Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Jin Guo
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Shuo Huang
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Shuang Du
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| |
Collapse
|
6
|
Ornell F, Scherer JN, Schuch JB, Sordi AO, Halpern SC, Rebelatto FP, Bristot G, Kapczinski F, Roglio VS, Pechansky F, Kessler FHP, von Diemen L. Serum BDNF levels increase during early drug withdrawal in alcohol and crack cocaine addiction. Alcohol 2023; 111:1-7. [PMID: 37037287 DOI: 10.1016/j.alcohol.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/12/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in several drug-induced brain neuroadaptations. The impact of withdrawal from substances that have different neurological mechanisms on BDNF levels is unclear. Our goal was to compare serum BDNF levels in inpatients with alcohol or crack cocaine use disorders during the early withdrawal period, and to evaluate the association with substance-related outcomes. We performed a follow-up study with 101 men under detoxification treatment (drug preference: alcohol [n = 37] and crack cocaine [n = 64]). Blood samples were collected on the 1st and 15th days of hospitalization to measure serum BDNF levels. Serum BDNF levels increased during the early stage of withdrawal (28.2 ± 10.0 vs. 32.6 ± 13.3, p < 0.001), similarly in individuals with alcohol and crack cocaine use. In the alcohol group, BDNF levels on the 15th day of hospitalization were negatively correlated with age (r = -0.394, p = 0.023). Delta BDNF levels were also negatively correlated with BDNF on the 1st day of hospitalization (p = 0.011). No significant correlation was found regarding substance-related outcomes. This is the first study to compare BDNF levels in alcohol and crack cocaine users undergoing similar treatment conditions. These findings could be related to clinical improvement after abstinence or even to drug withdrawal itself, decreasing neuronal injury. Furthermore, age may be a crucial factor, hindering the recovery of neuroplasticity in alcohol users.
Collapse
Affiliation(s)
- Felipe Ornell
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana N Scherer
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jaqueline B Schuch
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Anne O Sordi
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Silvia C Halpern
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando P Rebelatto
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Giovana Bristot
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Flavio Kapczinski
- Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil; Department of Psychiatry and Behavioural Neurosciences, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Vinicius S Roglio
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Flavio Pechansky
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felix H P Kessler
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisia von Diemen
- Center for Drug and Alcohol Research, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Psychiatry and Behavioral Sciences, Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
7
|
Lu C, Li S, Kang L, Li Q, Chen H, Lin Y, Zhang H, Tang Z, Bai M, Xiong P. Aripiprazole combined with nerve growth factor improves cognitive function in mice with schizophrenia model. Neurosci Lett 2023; 812:137410. [PMID: 37495071 DOI: 10.1016/j.neulet.2023.137410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
The pathogenesis and treatment of cognitive dysfunction in patients with schizophrenia (SCZ) remains a challenge. Exploring new effective treatment strategies is relevant for the improvement of cognitive function. Aripiprazole (ARI) is an atypical antipsychotic that improves some cognitive functions. Nerve growth factor (NGF) has been shown to improve cognitive function in certain neurological impairments and partial neurological deficits, but its mechanism of action in cognitive dysfunction in SCZ is unclear. In this study, we established schizophrenia mouse model with dizocilpine (MK-801); treated mice with ARI alone or in combination with NGF; assessed spontaneous activity and cognitive function using open field test and Morris water maze test; and measured brain-derived neurotrophic factor (BDNF) protein and mRNA expression levels using immunohistochemistry and molecular biology assays. The results showed that ARI alone or in combination with NGF can improve increased spontaneous activity and spatial learning memory deficits in model mice by elevating BDNF expression levels in prefrontal cortex (PFC) and hippocampus (HIP). The results suggest that ARI combined with NGF can improve cognitive function in SCZ, which provides new ideas and directions for the clinical treatment of cognitive dysfunction in SCZ.
Collapse
Affiliation(s)
- Cailian Lu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shan Li
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lin Kang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qianqian Li
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongxu Chen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yanwen Lin
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Han Zhang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ziling Tang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Meiyan Bai
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Peng Xiong
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China; Yunnan Clinical Research Center for Mental Health, Kunming, Yunnan, China.
| |
Collapse
|
8
|
Curatola A, Graglia B, Granata G, Conti G, Capossela L, Manni L, Ferretti S, Di Giuda D, Romeo DM, Calcagni ML, Soligo M, Castelli E, Piastra M, Mantelli F, Marca GD, Staccioli S, Romeo T, Pani M, Cocciolillo F, Mancino A, Gatto A, Chiaretti A. Combined treatment of nerve growth factor and transcranical direct current stimulations to improve outcome in children with vegetative state after out-of-hospital cardiac arrest. Biol Direct 2023; 18:24. [PMID: 37165387 PMCID: PMC10170696 DOI: 10.1186/s13062-023-00379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023] Open
Abstract
BACKGROUND Out-of-hospital cardiac arrest (OHCA) is one of the most dramatic events in pediatric age and, despite advanced neurointensive care, the survival rate remains low. Currently, no effective treatments can restore neuronal loss or produce significant improvement in these patients. Nerve Growth Factor (NGF) is a neurotrophin potentially able to counteract many of the deleterious effects triggered by OHCA. Transcranial Direct Current Stimulation (tDCS) has been reported to be neuroprotective in many neurological diseases, such as motor deficit and cognitive impairment. Children with the diagnosis of chronic vegetative state after OHCA were enrolled. These patients underwent a combined treatment of intranasal administration of human recombinant NGF (hr-NGF), at a total dose of 50 gamma/kg, and tDCS, in which current intensity was increased from zero to 2 mA from the first 5 s of stimulation and maintained constant for 20 min. The treatment schedule was performed twice, at one month distance each. Neuroradiogical evaluation with Positron Emission Tomography scan (PET), Single Photon Emission Computed Tomography (SPECT), Electroencephalography (EEG) and Power Spectral Density of the brain (PSD) was determined before the treatment and one month after the end. Neurological assessment was deepened by using modified Ashworth Scale, Gross Motor Function Measure, and Disability Rating Scale. RESULTS Three children with a chronic vegetative state secondary to OHCA were treated. The combined treatment with hr-NGF and tDCS improved functional (PET and SPECT) and electrophysiological (EEG and PSD) assessment. Also clinical conditions improved, mainly for the reduction of spasticity and with the acquisition of voluntary finger movements, improved facial mimicry and reaction to painful stimuli. No side effects were reported. CONCLUSIONS These promising preliminary results and the ease of administration of this treatment make it worthwhile to be investigated further, mainly in the early stages from OHCA and in patients with better baseline neurological conditions, in order to explore more thoroughly the benefits of this new approach on neuronal function recovery after OHCA.
Collapse
Affiliation(s)
- Antonietta Curatola
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Benedetta Graglia
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Granata
- Istituto di Neurologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giorgio Conti
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Terapia Intensiva Pediatrica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Lavinia Capossela
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Manni
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Serena Ferretti
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Di Giuda
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico Marco Romeo
- Unità di Neurologia Pediatrica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Lucia Calcagni
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario "A. Gemelli" IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marzia Soligo
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Enrico Castelli
- Dipartimento di Neuroriabilitazione Intensiva, Ospedale Pediatrico "Bambino Gesù", Rome, Italy
| | - Marco Piastra
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Terapia Intensiva Pediatrica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Flavio Mantelli
- Dompé Farmaceutici Spa, Via Campo di Pile, snc, L'Aquila, 67100, Italy
| | - Giacomo Della Marca
- Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Susanna Staccioli
- Dipartimento di Neuroriabilitazione Intensiva, Ospedale Pediatrico "Bambino Gesù", Rome, Italy
| | - Tiziana Romeo
- Dompé Farmaceutici Spa, Via Campo di Pile, snc, L'Aquila, 67100, Italy
| | - Marcello Pani
- Direttore Farmacia Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy
| | - Fabrizio Cocciolillo
- UOC di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Aldo Mancino
- Dipartimento di Scienze dell'Emergenza, Anestesiologiche e Rianimazione, Terapia Intensiva Pediatrica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Antonio Gatto
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Antonio Chiaretti
- Dipartimento di Pediatria, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
- Dipartimento di Pediatria, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
9
|
Ratto MH, Paiva L, Carrasco R, Silva ME, Ulloa-Leal C, Ratto VF, Goicochea J. Review: Unveiling the effect of beta-nerve growth factor on the reproductive function in llamas and cows. Animal 2023; 17 Suppl 1:100754. [PMID: 37567661 DOI: 10.1016/j.animal.2023.100754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 08/13/2023] Open
Abstract
The actions of the beta-nerve growth factor (β-NGF) on the neuroendocrine and reproductive system have challenged classical views on the control of reproductive function. After endometrial absorption, β-NGF triggers ovulation and promotes the development of functional corpora lutea in camelids. In this article, we review evidence showing that, in camelids, β-NGF exerts its actions by acting in both the hypothalamus and the ovary. In the hypothalamus, β-NGF may induce gonadotropin-releasing hormone (GnRH) release by interacting with neurons or glial cells expressing receptors for β-NGF. The LH surge occurs under the influence of ovarian estradiol and requires the release of GnRH into the portal vessels to reach the pituitary gland. In the ovary, β-NGF may be promoting the differentiation of follicular to luteal cells by modifying the steroidogenic profile of ovarian follicular cells in both camelids and ruminants. Although the mechanisms for these actions are largely undetermined, we aim to offer an update on the current understanding of the effects of β-NGF controlling reproductive function in camelids and ruminants.
Collapse
Affiliation(s)
- Marcelo H Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Paiva
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo Carrasco
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, Saskatoon, Canada
| | - Mauricio E Silva
- Departamento de Medicina Veterinaria y Salud Publica, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Cesar Ulloa-Leal
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Vicente F Ratto
- Instituto de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Jose Goicochea
- Departamento de Cirugía y Biotecnología Reproductiva, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Hermilio Valdizán, Huánuco, Perú
| |
Collapse
|
10
|
Nikolac Perkovic M, Borovecki F, Filipcic I, Vuic B, Milos T, Nedic Erjavec G, Konjevod M, Tudor L, Mimica N, Uzun S, Kozumplik O, Svob Strac D, Pivac N. Relationship between Brain-Derived Neurotrophic Factor and Cognitive Decline in Patients with Mild Cognitive Impairment and Dementia. Biomolecules 2023; 13:biom13030570. [PMID: 36979505 PMCID: PMC10046678 DOI: 10.3390/biom13030570] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
In the last decade, increasing evidence has emerged linking alterations in the brain-derived neurotrophic factor (BDNF) expression with the development of Alzheimer's disease (AD). Because of the important role of BDNF in cognition and its association with AD pathogenesis, the aim of this study was to evaluate the potential difference in plasma BDNF concentrations between subjects with mild cognitive impairment (MCI; N = 209) and AD patients (N = 295) and to determine the possible association between BDNF plasma levels and the degree of cognitive decline in these individuals. The results showed a significantly higher (p < 0.001) concentration of plasma BDNF in subjects with AD (1.16; 0.13-21.34) compared with individuals with MCI (0.68; 0.02-19.14). The results of the present study additionally indicated a negative correlation between cognitive functions and BDNF plasma concentrations, suggesting higher BDNF levels in subjects with more pronounced cognitive decline. The correlation analysis revealed a significant negative correlation between BDNF plasma levels and both Mini-Mental State Examination (p < 0.001) and Clock Drawing test (p < 0.001) scores. In conclusion, the results of our study point towards elevated plasma BDNF levels in AD patients compared with MCI subjects, which may be due to the body's attempt to counteract the early and middle stages of neurodegeneration.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Fran Borovecki
- Department of Neurology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Filipcic
- Psychiatric Hospital "Sveti Ivan", 10090 Zagreb, Croatia
| | - Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Suzana Uzun
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, 49000 Krapina, Croatia
| |
Collapse
|
11
|
Kouter K, Nikolac Perkovic M, Nedic Erjavec G, Milos T, Tudor L, Uzun S, Mimica N, Pivac N, Videtic Paska A. Difference in Methylation and Expression of Brain-Derived Neurotrophic Factor in Alzheimer's Disease and Mild Cognitive Impairment. Biomedicines 2023; 11:235. [PMID: 36830773 PMCID: PMC9953261 DOI: 10.3390/biomedicines11020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Due to the increasing number of progressive dementias in the population, numerous studies are being conducted that seek to determine risk factors, biomarkers and pathological mechanisms that could help to differentiate between normal symptoms of aging, mild cognitive impairment (MCI) and dementia. The aim of this study was to investigate the possible association of levels of BDNF and COMT gene expression and methylation in peripheral blood cells with the development of Alzheimer's disease (AD). Our results revealed higher expression levels of BDNF (p < 0.001) in MCI subjects compared to individuals diagnosed with AD. However, no difference in COMT gene expression (p = 0.366) was detected. DNA methylation of the CpG islands and other sequences with potential effects on gene expression regulation revealed just one region (BDNF_9) in the BDNF gene (p = 0.078) with marginally lower levels of methylation in the AD compared to MCI subjects. Here, we show that the level of BDNF expression in the periphery is decreased in subjects with AD compared to individuals with MCI. The combined results from the gene expression analysis and DNA methylation analysis point to the potential of BDNF as a marker that could help distinguish between MCI and AD patients.
Collapse
Affiliation(s)
- Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapce, 10090 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia
| | - Alja Videtic Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Keshri N, Nandeesha H. Dysregulation of Synaptic Plasticity Markers in Schizophrenia. Indian J Clin Biochem 2023; 38:4-12. [PMID: 36684500 PMCID: PMC9852406 DOI: 10.1007/s12291-022-01068-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/05/2022] [Indexed: 01/25/2023]
Abstract
Schizophrenia is a mental disorder characterized by cognitive impairment resulting in compromised quality of life. Since the regulation of synaptic plasticity has functional implications in various aspects of cognition such as learning, memory, and neural circuit maturation, the dysregulation of synaptic plasticity is considered as a pathobiological feature of schizophrenia. The findings from our recently concluded studies indicate that there is an alteration in levels of synaptic plasticity markers such as neural cell adhesion molecule-1 (NCAM-1), Neurotropin-3 (NT-3) and Matrix-mettaloproteinase-9 (MMP-9) in schizophrenia patients. The objective of the present article is to review the role of markers of synaptic plasticity in schizophrenia. PubMed database (http;//www.ncbi.nlm.nih.gov/pubmed) was used to perform an extensive literature search using the keywords schizophrenia and synaptic plasticity. We conclude that markers of synaptic plasticity are altered in schizophrenia and may lead to complications of schizophrenia including cognitive dysfunction.
Collapse
Affiliation(s)
- Neha Keshri
- Department of Biochemistry, JIPMER, Puducherry, 605006 India
| | | |
Collapse
|
13
|
Stone TW, Clanchy FIL, Huang YS, Chiang NY, Darlington LG, Williams RO. An integrated cytokine and kynurenine network as the basis of neuroimmune communication. Front Neurosci 2022; 16:1002004. [PMID: 36507331 PMCID: PMC9729788 DOI: 10.3389/fnins.2022.1002004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Two of the molecular families closely associated with mediating communication between the brain and immune system are cytokines and the kynurenine metabolites of tryptophan. Both groups regulate neuron and glial activity in the central nervous system (CNS) and leukocyte function in the immune system, although neither group alone completely explains neuroimmune function, disease occurrence or severity. This essay suggests that the two families perform complementary functions generating an integrated network. The kynurenine pathway determines overall neuronal excitability and plasticity by modulating glutamate receptors and GPR35 activity across the CNS, and regulates general features of immune cell status, surveillance and tolerance which often involves the Aryl Hydrocarbon Receptor (AHR). Equally, cytokines and chemokines define and regulate specific populations of neurons, glia or immune system leukocytes, generating more specific responses within restricted CNS regions or leukocyte populations. In addition, as there is a much larger variety of these compounds, their homing properties enable the superimposition of dynamic variations of cell activity upon local, spatially limited, cell populations. This would in principle allow the targeting of potential treatments to restricted regions of the CNS. The proposed synergistic interface of 'tonic' kynurenine pathway affecting baseline activity and the superimposed 'phasic' cytokine system would constitute an integrated network explaining some features of neuroimmune communication. The concept would broaden the scope for the development of new treatments for disorders involving both the CNS and immune systems, with safer and more effective agents targeted to specific CNS regions.
Collapse
Affiliation(s)
- Trevor W. Stone
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom,*Correspondence: Trevor W. Stone,
| | - Felix I. L. Clanchy
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Yi-Shu Huang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - Nien-Yi Chiang
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| | - L. Gail Darlington
- Department of Internal Medicine, Ashtead Hospital, Ashtead, United Kingdom
| | - Richard O. Williams
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Prochnik A, Burgueño AL, Rubinstein MR, Marcone MP, Bianchi MS, Gonzalez Murano MR, Genaro AM, Wald MR. Sexual dimorphism modulates metabolic and cognitive alterations under HFD nutrition and chronic stress exposure in mice. Correlation between spatial memory impairment and BDNF mRNA expression in hippocampus and spleen. Neurochem Int 2022; 160:105416. [PMID: 36055604 DOI: 10.1016/j.neuint.2022.105416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 10/31/2022]
Abstract
AIMS The accumulated evidence suggests that lifestyle - specifically dietary habits and stress exposure - plays a detrimental role in health. The purpose of the present study was to analyze the interplay of stress, diet, and sex in metabolic and cognitive alterations. MAIN METHODS For this purpose, one-month-old C57Bl/6J mice were fed with a standard diet or high-fat diet (HFD). After eight weeks, one subgroup of mice from each respective diet was exposed to 20 weeks of chronic mild stress (CMS), whilst the others were left undisturbed. KEY FINDINGS After 28 weeks of HFD feeding, mice from both sexes were overweight, with an increase in caloric intake and abdominal and subcutaneous fat pads. Stress exposure induced a decrease in body weight, related to a decrease in caloric efficiency in both males and females. Results indicate that males are more susceptible than the females in modulating metabolic and cognitive functions under HFD and CMS. Although both sexes demonstrated HFD-induced weight gain, fat accumulation, insulin resistance, high cholesterol, only males exposed to CMS but not females have (i) impaired glucose tolerance with higher glucose level; (ii) significant prolonged latency in Barnes test, suggesting cognitive impairment; (iii) increased IFN-gamma expression in hippocampus, suggesting greater neuroinflammatory response; (iv) poorer cognitive performance related to a decrease in hippocampal and spleen BDNF mRNA expression. SIGNIFICANCE The main finding in this study is the presence of a sexual dimorphism in modulating metabolic and cognitive functions under HFD and CMS, showing males are more susceptible than females. In addition, poorer cognitive performance was related to a decrease in hippocampal BDNF mRNA expression. Interestingly, these changes were observed in the spleen as well.
Collapse
Affiliation(s)
- Andrés Prochnik
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - Adriana L Burgueño
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - Mara R Rubinstein
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - María P Marcone
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - María S Bianchi
- Instituto de Biología y Medicina Experimental. CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - María R Gonzalez Murano
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina
| | - Ana M Genaro
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina; Primera Cátedra de Farmacología. Facultad de Medicina, Paraguay 2155, C1121 ABG, Buenos Aires, Argentina.
| | - Miriam R Wald
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Pontificia Universidad Católica Argentina, Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Huang Z, Kang M, Li G, Xiong P, Chen H, Kang L, Li S, Lu C, Li Q, Bai M. Predictive effect of Bayes discrimination in the level of serum protein factors and cognitive dysfunction in schizophrenia. J Psychiatr Res 2022; 151:539-545. [PMID: 35636029 DOI: 10.1016/j.jpsychires.2022.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 01/19/2023]
Abstract
Finding molecular biomarkers that can be related to the degree of cognitive dysfunction in schizophrenia remains a challenge. The levels of 6 Serum Protein Factors (NGF, BDNF, IL-6, TNF-α, S100β, GFAP) in peripheral blood of patients with schizophrenia were measured. The cognitive function of patients with schizophrenia was assessed by MATRICS Consensus Cognitive Battery (MCCB), a systematic assessment tool of international gold standard for cognitive function assessment of schizophrenia. To explore the correlation between these 6 biomarkers and the degree of cognitive dysfunction in schizophrenia,78 schizophrenic patients and 71 healthy controls were included in the study. The serum concentrations of BDNF and GFAP were lower in the patient group, but the concentrations of IL-6, TNF-α and S100β were higher. The speed of information processing, word learning, reasoning and problem solving, visual learning T-score of the patient group were lower than the control group. Bayes discriminant function model has a high correct discriminant rate for the severity of cognitive dysfunction in schizophrenia. The level of serum protein factor and clinical symptom score of schizophrenia may forecast the degree of cognitive dysfunction, which is expected to be a potential biomarker to identify the degree of cognitive dysfunction of schizophrenia, and provide objective basis for the clinical diagnosis and treatment of patients with schizophrenia.
Collapse
Affiliation(s)
- Zhengyuan Huang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, #295 Xichang, Road, Kunming, Yunnan, 650032, China
| | - Minmin Kang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, #295 Xichang, Road, Kunming, Yunnan, 650032, China; Department of Psychiatry, The Affiliated Hospital of Hubei Minzu University, #39 Xueyuan Road, Enshi, Hubei,445000, China
| | - Guangyu Li
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, #295 Xichang, Road, Kunming, Yunnan, 650032, China
| | - Peng Xiong
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, #295 Xichang, Road, Kunming, Yunnan, 650032, China; Yunnan Clinical Research Center for Mental Health, Kunming, Yunnan, 650032, China.
| | - Hongxu Chen
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, #295 Xichang, Road, Kunming, Yunnan, 650032, China
| | - Lin Kang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, #295 Xichang, Road, Kunming, Yunnan, 650032, China
| | - Shan Li
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, #295 Xichang, Road, Kunming, Yunnan, 650032, China
| | - Cailian Lu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, #295 Xichang, Road, Kunming, Yunnan, 650032, China
| | - Qianqian Li
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, #295 Xichang, Road, Kunming, Yunnan, 650032, China
| | - Meiyan Bai
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, #295 Xichang, Road, Kunming, Yunnan, 650032, China
| |
Collapse
|
16
|
Brewer KD, Shi SM, Wyss-Coray T. Unraveling protein dynamics to understand the brain - the next molecular frontier. Mol Neurodegener 2022; 17:45. [PMID: 35717317 PMCID: PMC9206758 DOI: 10.1186/s13024-022-00546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
The technological revolution to measure global gene expression at the single-cell level is currently transforming our knowledge of the brain and neurological diseases, leading from a basic understanding of genetic regulators and risk factors to one of more complex gene interactions and biological pathways. Looking ahead, our next challenge will be the reliable measurement and understanding of proteins. We describe in this review how to apply new, powerful methods of protein labeling, tracking, and detection. Recent developments of these methods now enable researchers to uncover protein mechanisms in vivo that may previously have only been hypothesized. These methods are also useful for discovering new biology because how proteins regulate systemic interactions is not well understood in most cases, such as how they travel through the bloodstream to distal targets or cross the blood–brain barrier. Genetic sequencing of DNA and RNA have enabled many great discoveries in the past 20 years, and now, the protein methods described here are creating a more complete picture of how cells to whole organisms function. It is likely that these developments will generate another transformation in biomedical research and our understanding of the brain and will ultimately allow for patient-specific medicine on a protein level.
Collapse
Affiliation(s)
- Kyle D Brewer
- ChEM-H, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Sophia M Shi
- ChEM-H, Stanford University, Stanford, CA, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Tony Wyss-Coray
- ChEM-H, Stanford University, Stanford, CA, USA. .,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA. .,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA. .,Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Serum Mature BDNF Level Is Associated with Remission Following ECT in Treatment-Resistant Depression. Brain Sci 2022; 12:brainsci12020126. [PMID: 35203890 PMCID: PMC8870188 DOI: 10.3390/brainsci12020126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/16/2022] [Indexed: 11/16/2022] Open
Abstract
The search for a biological marker predicting the future failure or success of electroconvulsive therapy (ECT) remains highly challenging for patients with treatment-resistant depression. Evidence suggests that Brain-Derived Neurotrophic Factor (BDNF), a protein known to be involved in brain plasticity mechanisms, can play a key role in both the clinical efficacy of ECT and the pathophysiology of depressive disorders. We hypothesized that mature BDNF (mBDNF), an isoform of BDNF involved in the neural plasticity and survival of neural networks, might be a good candidate for predicting the efficacy of ECT. Total BDNF (tBDNF) and mBDNF levels were measured in 23 patients with severe treatment-resistant depression before (baseline) they received a course of ECT. More precisely, tBDNF and mBDNF measured before ECT were compared between patients who achieved the criteria of remission after the ECT course (remitters, n = 7) and those who did not (non-remitters, n = 16). We found that at baseline, future remitters displayed significantly higher mBDNF levels than future non-remitters (p = 0.04). No differences were observed regarding tBDNF levels at baseline. The multiple logistic regression model controlled for age and sex revealed that having a higher baseline mBDNF level was significantly associated with future remission after ECT sessions (odd ratio = 1.38; 95% confidence interval = 1.07–2.02, p = 0.04). Despite the limitations of the study, current findings provide additional elements regarding the major role of BDNF and especially the mBDNF isoform in the clinical response to ECT in major depression.
Collapse
|
18
|
Sydney-Smith JD, Spejo AB, Warren PM, Moon LDF. Peripherally delivered Adeno-associated viral vectors for spinal cord injury repair. Exp Neurol 2021; 348:113945. [PMID: 34896114 DOI: 10.1016/j.expneurol.2021.113945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
Via the peripheral and autonomic nervous systems, the spinal cord directly or indirectly connects reciprocally with many body systems (muscular, intengumentary, respiratory, immune, digestive, excretory, reproductive, cardiovascular, etc). Accordingly, spinal cord injury (SCI) can result in catastrophe for multiple body systems including muscle paralysis affecting movement and loss of normal sensation, as well as neuropathic pain, spasticity, reduced fertility and autonomic dysreflexia. Treatments and cure for an injured spinal cord will likely require access of therapeutic agents across the blood-CNS (central nervous system) barrier. However, some types of repair within the CNS may be possible by targeting treatment to peripherally located cells or by delivering Adeno-Associated Viral vectors (AAVs) by peripheral routes (e.g., intrathecal, intravenous). This review will consider some future possibilities for SCI repair generated by therapeutic peripheral gene delivery. There are now six gene therapies approved worldwide as safe and effective medicines of which three were created by modification of the apparently nonpathogenic Adeno-Associated Virus. One of these AAVs, Zolgensma, is injected intrathecally for treatment of spinal muscular atrophy in children. One day, delivery of AAVs into peripheral tissues might improve recovery after spinal cord injury in humans; we discuss experiments by us and others delivering transgenes into nerves or muscles for sensorimotor recovery in animal models of SCI or of stroke including human Neurotrophin-3. We also describe ongoing efforts to develop AAVs that are delivered to particular targets within and without the CNS after peripheral administration using capsids with improved tropisms, promoters that are selective for particular cell types, and methods for controlling the dose and duration of expression of a transgene. In conclusion, in the future, minimally invasive administration of AAVs may improve recovery after SCI with minimal side effects.
Collapse
Affiliation(s)
- Jared D Sydney-Smith
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Aline B Spejo
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Philippa M Warren
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom
| | - Lawrence D F Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, University of London, 16-20 Newcomen Street, London SE1 1UL, United Kingdom.
| |
Collapse
|
19
|
Ribeiro D, Petrigna L, Pereira FC, Muscella A, Bianco A, Tavares P. The Impact of Physical Exercise on the Circulating Levels of BDNF and NT 4/5: A Review. Int J Mol Sci 2021; 22:ijms22168814. [PMID: 34445512 PMCID: PMC8396229 DOI: 10.3390/ijms22168814] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: One mechanism through which physical activity (PA) provides benefits is by triggering activity at a molecular level, where neurotrophins (NTs) are known to play an important role. However, the expression of the circulating levels of neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4/5), in response to exercise, is not fully understood. Therefore, the aim was to provide an updated overview on the neurotrophin (NT) variation levels of BDNF and NT-4/5 as a consequence of a long-term aerobic exercise intervention, and to understand and describe whether the upregulation of circulating NT levels is a result of neurotrophic factors produced and released from the brain, and/or from neurotrophic secreting peripheral organs. (2) Methods: The articles were collected from PubMed, SPORTDiscus, Web of Science, MEDLINE, and Embase. Data were analyzed through a narrative synthesis. (3) Results: 30 articles studied humans who performed training protocols that ranged from 4 to 48 weeks; 22 articles studied rodents with an intervention period that ranged from 4 to 64 weeks. (4) Conclusions: There is no unanimity between the upregulation of BDNF in humans; conversely, concerning both BDNF and NT-4/5 in animal models, the results are heterogeneous. Whilst BDNF upregulation appears to be in relative agreement, NT-4/5 seems to display contradictory and inconsistent conclusions.
Collapse
Affiliation(s)
- Daniel Ribeiro
- University of Coimbra, Faculty of Sport Sciences and Physical Education, Coimbra Institute for Clinical and Biomedical Research, 3004-504 Coimbra, Portugal; (D.R.); (P.T.)
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, 3004-504 Coimbra, Portugal;
- University of Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, 3004-504 Coimbra, Portugal
| | - Luca Petrigna
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
- Correspondence:
| | - Frederico C. Pereira
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, 3004-504 Coimbra, Portugal;
- University of Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, 3004-504 Coimbra, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3004-504 Coimbra, Portugal
| | - Antonella Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy;
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, 90144 Palermo, Italy;
| | - Paula Tavares
- University of Coimbra, Faculty of Sport Sciences and Physical Education, Coimbra Institute for Clinical and Biomedical Research, 3004-504 Coimbra, Portugal; (D.R.); (P.T.)
- University of Coimbra, Faculty of Medicine, Institute of Pharmacology and Experimental Therapeutics, 3004-504 Coimbra, Portugal;
- University of Coimbra, Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research, 3004-504 Coimbra, Portugal
| |
Collapse
|
20
|
Kim A, Lalonde K, Truesdell A, Gomes Welter P, Brocardo PS, Rosenstock TR, Gil-Mohapel J. New Avenues for the Treatment of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22168363. [PMID: 34445070 PMCID: PMC8394361 DOI: 10.3390/ijms22168363] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HD gene. The disease is characterized by neurodegeneration, particularly in the striatum and cortex. The first symptoms usually appear in mid-life and include cognitive deficits and motor disturbances that progress over time. Despite being a genetic disorder with a known cause, several mechanisms are thought to contribute to neurodegeneration in HD, and numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. Although current clinical trials may lead to the identification or refinement of treatments that are likely to improve the quality of life of those living with HD, major efforts continue to be invested at the pre-clinical level, with numerous studies testing novel approaches that show promise as disease-modifying strategies. This review offers a detailed overview of the currently approved treatment options for HD and the clinical trials for this neurodegenerative disorder that are underway and concludes by discussing potential disease-modifying treatments that have shown promise in pre-clinical studies, including increasing neurotropic support, modulating autophagy, epigenetic and genetic manipulations, and the use of nanocarriers and stem cells.
Collapse
Affiliation(s)
- Amy Kim
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Kathryn Lalonde
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Aaron Truesdell
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Priscilla Gomes Welter
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Tatiana R. Rosenstock
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Department of Pharmacology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Joana Gil-Mohapel
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Correspondence: ; Tel.: +1-250-472-4597; Fax: +1-250-472-5505
| |
Collapse
|
21
|
Alastra G, Aloe L, Baldassarro VA, Calzà L, Cescatti M, Duskey JT, Focarete ML, Giacomini D, Giardino L, Giraldi V, Lorenzini L, Moretti M, Parmeggiani I, Sannia M, Tosi G. Nerve Growth Factor Biodelivery: A Limiting Step in Moving Toward Extensive Clinical Application? Front Neurosci 2021; 15:695592. [PMID: 34335170 PMCID: PMC8319677 DOI: 10.3389/fnins.2021.695592] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Nerve growth factor (NGF) was the first-discovered member of the neurotrophin family, a class of bioactive molecules which exerts powerful biological effects on the CNS and other peripheral tissues, not only during development, but also during adulthood. While these molecules have long been regarded as potential drugs to combat acute and chronic neurodegenerative processes, as evidenced by the extensive data on their neuroprotective properties, their clinical application has been hindered by their unexpected side effects, as well as by difficulties in defining appropriate dosing and administration strategies. This paper reviews aspects related to the endogenous production of NGF in healthy and pathological conditions, along with conventional and biomaterial-assisted delivery strategies, in an attempt to clarify the impediments to the clinical application of this powerful molecule.
Collapse
Affiliation(s)
- Giuseppe Alastra
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | | | - Vito Antonio Baldassarro
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Laura Calzà
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- IRET Foundation, Bologna, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Jason Thomas Duskey
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Letizia Focarete
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Daria Giacomini
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luciana Giardino
- IRET Foundation, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Valentina Giraldi
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Bologna, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Irene Parmeggiani
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Sannia
- Interdepartmental Centre for Industrial Research in Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Giovanni Tosi
- Nanotech Laboratory, TeFarTI Center, Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
22
|
Azevedo LVDS, Pereira JR, Silva Santos RM, Rocha NP, Teixeira AL, Christo PP, Santos VR, Scalzo PL. Acute exercise increases BDNF serum levels in patients with Parkinson's disease regardless of depression or fatigue. Eur J Sport Sci 2021; 22:1296-1303. [PMID: 33944700 DOI: 10.1080/17461391.2021.1922505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Studies have consistently reported a decreased level of brain-derived neurotrophic factor (BDNF) in individuals with Parkinson's disease (PD). The benefits of exercise on BDNF levels are well-documented in humans, however, the effects of acute exercise are inconclusive in neurological disorders. In addition, there are no studies investigating a precursor molecule - proBDNF - and its comparison to patients with vs. without depression or fatigue. Thirty patients with PD were instructed to walk on a treadmill at light to moderate intensity for 30 min. Generalized Estimating Equation (GEE) showed a significant effect of time (pre- vs. post-exercise) when compared individuals with vs. without depression [Wald Chi Square (4.392), p = 0.036)] and with vs. without fatigue [Wald Chi Square (7.123), p = 0.008)] for mature BDNF (mBDNF) level. There was no effect of group, time, and group x time interaction for proBDNF level when compared individuals with vs. without depression or fatigue. The present study showed that a single bout of light to moderate-intensity exercise increases mBDNF serum levels in patients with PD regardless of depression and fatigue. Our finding is important because it is necessary investigate methods to enhance the gains made by rehabilitation, especially when considering a short period of rehabilitation in different health services. The increase in mBDNF level can lead to an enhancement of neuroplasticity and facilitate the improvement of motor performance. No effect on proBDNF level could be explained, as this precursor molecule is cleaved by intracellular or extracellular enzymes.
Collapse
Affiliation(s)
| | | | | | - Natalia Pessoa Rocha
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Paulo Pereira Christo
- Department of Neurology and Neurosurgery, Santa Casa de Belo Horizonte Hospital, Belo Horizonte, Brazil
| | - Victor Rodrigues Santos
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paula Luciana Scalzo
- Laboratory of Neurobiology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Keshri N, Nandeesha H, Rajappa M, Menon V. Matrix metalloproteinase-9 increases the risk of cognitive impairment in schizophrenia. Nord J Psychiatry 2021; 75:130-134. [PMID: 32815771 DOI: 10.1080/08039488.2020.1808901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF THE ARTICLE Synaptic plasticity is known to play role in pathogenesis of schizophrenia. Cognitive impairment is one of the complications of schizophrenia, leading to poor quality of life. Matrix metalloprotease-9 (MMP-9) and neurotrophin-3 (NT-3) are markers of synaptic plasticity, widely investigated in neuropsychiatric disorders. The objective of the study was to investigate the levels of MMP-9 and NT-3 and their association with cognitive impairment in schizophrenia. MATERIAL AND METHODS 124 schizophrenia patients and 124 controls were enrolled in the study. MMP-9 and NT-3 were estimated in both the groups using ELISA. Cognition was assessed using Addenbrooke cognitive examination-III (ACE-III) and disease severity was assessed using PANSS. RESULTS MMP-9 (p = .003) and NT -3 (p < .001) were found to be elevated in schizophrenia cases compared to controls. There was significant association of MMP-9 with fluency (r = -0.195, p = .030), language (r = -0.196, p = .029) and total ACE-III scores (r = -0.197, p = .029). Also we observed that MMP-9 increases the risk of cognitive impairment in schizophrenia patients (OR = 2.509, CI= 1.215 - 5.18, p = .013). CONCLUSION MMP-9 and NT-3 are elevated in schizophrenia. MMP-9 was associated with fluency and language component of cognition and increases the risk of cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Neha Keshri
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, India
| | | | - Medha Rajappa
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, India
| | - Vikas Menon
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, India
| |
Collapse
|
24
|
Carrasco RA, Singh J, Ratto MH, Adams GP. Neuroanatomical basis of the nerve growth factor ovulation-induction pathway in llamas†. Biol Reprod 2020; 104:578-588. [PMID: 33331645 DOI: 10.1093/biolre/ioaa223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 12/25/2022] Open
Abstract
The objective of the study was to characterize the anatomical framework and sites of action of the nerve growth factor (NGF)-mediated ovulation-inducing system of llamas. The expression patterns of NGF and its receptors in the hypothalamus of llamas (n = 5) were examined using single and double immunohistochemistry/immunofluorescence. We also compare the expression pattern of the P75 receptor in the hypothalamus of llama and a spontaneous ovulator species (sheep, n = 5). Both NGF receptors (TrkA and P75) were highly expressed in the medial septum and diagonal band of Broca, and populations of TrkA cells were observed in the periventricular and dorsal hypothalamus. Unexpectedly, we found NGF immunoreactive cell bodies with widespread distribution in the hypothalamus but not in areas endowed with NGF receptors. The organum vasculosum of the lamina terminalis (OVLT) and the median eminence displayed immunoreactivity for P75. Double immunofluorescence using vimentin, a marker of tanycytes, confirmed that tanycytes were immunoreactive to P75 in the median eminence and in the OVLT. Additionally, tanycytes were in close association with GnRH and kisspeptin in the arcuate nucleus and median eminence of llamas. The choroid plexus of llamas contained TrkA and NGF immunoreactivity but no P75 immunoreactivity. Results of the present study demonstrate sites of action of NGF in the llama hypothalamus, providing support for the hypothesis of a central effect of NGF in the ovulation-inducing mechanism in llamas.
Collapse
Affiliation(s)
- Rodrigo A Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Marcelo H Ratto
- Department of Animal Science, Universidad Austral de Chile, Valdivia, Chile
| | - Gregg P Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
25
|
McPhee GM, Downey LA, Stough C. Neurotrophins as a reliable biomarker for brain function, structure and cognition: A systematic review and meta-analysis. Neurobiol Learn Mem 2020; 175:107298. [PMID: 32822863 DOI: 10.1016/j.nlm.2020.107298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/02/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023]
Abstract
Neurotrophins are signalling molecules involved in the formation and maintenance of synapses in the brain. They can cross the blood-brain barrier and be detected in peripheral blood, suggesting they may be a potential biomarker for brain health and function. In this review, the available literature was systematically searched for studies comparing peripheral neurotrophins levels with MRI and cognitive measures in healthy adults. Twenty-four studies were identified, six of which included a neuroimaging outcome. Fifteen studies measuring cognition were eligible for meta-analysis. The majority of studies measured levels of brain-derived neurotrophic factor (BDNF), with few assessing other neurotrophins. Results revealed BDNF is related to some neuroimaging outcomes, with some studies suggesting older age may be an important factor. A higher proportion of studies who had older samples observed significant effects between cognition and neurotrophin levels. When cognitive studies were pooled together in a meta-analysis, there was a weak non-significant effect between BDNF and cognitive outcomes. There was also a high level of heterogeneity between cognitive studies. Results indicated that gender was a notable source of the heterogeneity, but additional studies employing relevant covariates are necessary to better characterise the inter-relationship between circulating neurotrophins and cognition.
Collapse
Affiliation(s)
- Grace M McPhee
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| | - Luke A Downey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia; Institute for Breathing and Sleep, Austin Health, Melbourne, Australia
| | - Con Stough
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
26
|
Pinet-Charvet C, Fleurot R, Derouin-Tochon F, de Graaf S, Druart X, Tsikis G, Taragnat C, Teixeira-Gomes AP, Labas V, Moreau T, Cayla X, Duittoz AH. Beta-nerve growth factor stimulates spontaneous electrical activity of in vitro embryonic mouse GnRH neurons through a P75 mediated-mechanism. Sci Rep 2020; 10:10654. [PMID: 32606357 PMCID: PMC7326925 DOI: 10.1038/s41598-020-67665-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/11/2020] [Indexed: 02/04/2023] Open
Abstract
The control of ovulation helps guarantee the success of reproduction and as such, contributes to the fitness of a species. In mammals, two types of ovulation are observed: induced and spontaneous ovulation. Recent work on camelids, that are induced ovulators, highlighted the role of a factor present in seminal plasma, beta Nerve Growth Factor (β-NGF), as the factor that triggers ovulation in a GnRH dependent manner. In the present work, we characterized alpaca β-NGF (aβ-NGF) and its 3D structure and compared it with human recombinant β-NGF (hβ-NGF). We showed that the β-NGF enriched fraction of alpaca semen and the human recombinant protein, both stimulated spontaneous electrical activity of primary GnRH neurons derived from mouse embryonic olfactory placodes. This effect was dose-dependent and mediated by p75 receptor signaling. P75 receptors were found expressed in vitro by olfactory ensheathing cells (OEC) in close association with GnRH neurons and in vivo by tanycytes in close vicinity to GnRH fibers in adult mouse. Altogether, these results suggested that β-NGF induced ovulation through an increase in GnRH secretion provoked by a glial dependent P75 mediated mechanism.
Collapse
Affiliation(s)
- Caroline Pinet-Charvet
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
- Physiologie de la Reproduction et des Comportements (PRC), ComUE Centre-Val de Loire, Centre INRA Val de Loire, Université de Poitiers, 37380, Nouzilly, France
| | - Renaud Fleurot
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Flavie Derouin-Tochon
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Simon de Graaf
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xavier Druart
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Guillaume Tsikis
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Catherine Taragnat
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Ana-Paula Teixeira-Gomes
- Infectiologie et Santé Publique (ISP) UMR1282, INRA, Centre INRA Val de Loire, Université de Tours, 37380, Nouzilly, France
| | - Valérie Labas
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Thierry Moreau
- Biologie des Oiseaux et Aviculture (BOA) UMR Centre INRA Val de Loire, 37380, Nouzilly, France
| | - Xavier Cayla
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France
| | - Anne H Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRA Val de Loire, Université de Tours, IFCE, 37380, Nouzilly, France.
| |
Collapse
|
27
|
Tunçel ÖK, Sarisoy G, Çetin E, Kaynar Tunçel E, Bilgici B, Karaustaoğlu A. Neurotrophic factors in bipolar disorders patients with manic episode. Turk J Med Sci 2020; 50:985-993. [PMID: 32283906 PMCID: PMC7379459 DOI: 10.3906/sag-1907-70] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 04/11/2020] [Indexed: 12/31/2022] Open
Abstract
Background/aim Neurotrophins are one of the most important molecule groups affecting cerebral neuroplasticity. The amount of
evidence about the role of changes in neuroplasticity in the pathophysiology of bipolar disease is growing. Materials and methods We measured serum levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), glial cell-line derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), fibroblast growth factor (FGF)-2, neuritin 1 (Nrn 1) in bipolar 1 manic episode patients (n = 45) and healthy control group. Results When controlled for age, BMI and cortisol, it was found that the serum levels of BDNF, NGF, NT-3, VEGF and FGF-2 of bipolar manic episode patients were not statistically different compared to those of the control group. GDNF level and Nrn 1 levels were significantly lower (P = 0.003 and P = 0.025 respectively) while IGF-1 levels were significantly higher than the control group (P = 0.0001). ROC analysis was performed and the area under the the curve was calculated as 0.737, 0.766 for GDNF, IGF-1 respectively. Conclusion The changes in the levels of GDNF, IGF-1 and Nrn 1 might be involved in pathopysiology of bipolar disorder, and GDNF, IGF-1 may be considered as state markers in bipolar manic episode.
Collapse
Affiliation(s)
- Özgür Korhan Tunçel
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun,Turkey
| | - Gökhan Sarisoy
- Psychiatry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Eda Çetin
- Psychiatry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | | | - Birşen Bilgici
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun,Turkey
| | - Arzu Karaustaoğlu
- Medical Biochemistry Department, Faculty of Medicine, Ondokuz Mayıs University, Samsun,Turkey
| |
Collapse
|
28
|
Yang J, Wu S, Hou L, Zhu D, Yin S, Yang G, Wang Y. Therapeutic Effects of Simultaneous Delivery of Nerve Growth Factor mRNA and Protein via Exosomes on Cerebral Ischemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:512-522. [PMID: 32682291 PMCID: PMC7365960 DOI: 10.1016/j.omtn.2020.06.013] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/26/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Stroke is the leading neurological cause of death and disability all over the world, with few effective drugs. Nerve growth factor (NGF) is well known for its multifaceted neuroprotective functions post-ischemia. However, the lack of an efficient approach to systemically deliver bioactive NGF into ischemic region hinders its clinical application. In this study, we engineered the exosomes with RVG peptide on the surface for neuron targeting and loaded NGF into exosomes simultaneously, with the resultant exosomes denoted as NGF@ExoRVG. By systemic administration of NGF@ExoRVG, NGF was efficiently delivered into ischemic cortex, with a burst release of encapsulated NGF protein and de novo NGF protein translated from the delivered mRNA. Moreover, NGF@ExoRVG was found to be highly stable for preservation and function efficiently for a long time in vivo. Functional study revealed that the delivered NGF reduced inflammation by reshaping microglia polarization, promoted cell survival, and increased the population of doublecortin-positive cells, a marker of neuroblast. The results of our study suggest the potential therapeutic effects of NGF@ExoRVG for stroke. Moreover, the strategy proposed in our study may shed light on the clinical application of other neurotrophic factors for central nervous system diseases.
Collapse
Affiliation(s)
- Jialei Yang
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China; Beijing Institute of Biotechnology, Beijing, China
| | - Shipo Wu
- Beijing Institute of Biotechnology, Beijing, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, China
| | - Danni Zhu
- Beijing Institute of Biotechnology, Beijing, China
| | - Shimin Yin
- Department of Neurology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
29
|
Yang J, Tan J, Zheng L, Lu CX, Hou WQ, Liu Y, Li QF, Li JX, Cheng D, Luo X, Zhang J. Plasma BDNF and TrkB mRNA in PBMCs Are Correlated With Anti-depressive Effects of 12-Weeks Supervised Exercise During Protracted Methamphetamine Abstinence. Front Mol Neurosci 2020; 13:20. [PMID: 32210759 PMCID: PMC7069447 DOI: 10.3389/fnmol.2020.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose: The aim of this study was to evaluate the potential neurotrophic factors and expression of neurotrophin receptors in peripheral blood mononuclear cells linked with the antidepressant action of exercise intervention during protracted methamphetamine (METH) abstinence. Materials and Methods: A total of 72 male METH addicts, including 47 individuals with depression and 25 individuals without depression, were recruited in this study. Individuals with depression were divided into the depression control group and the depression exercised group. Consequently, 12 weeks of supervised exercise intervention was applied. Depression and anxiety were analyzed; plasma brain-derived neurotrophic factor (BDNF), neuronal growth factor (NGF), neurotrophin-3 (NT-3), NT-4, and proBDNF levels were tested using enzyme-linked immunosorbent assay; the mRNA expressions of TrkA, TrkB-FL, TrkB-T1, TrkCB, and P75NTR in peripheral blood mononuclear cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Results: NT-4 plasma levels were correlated with depression (r = −0.330, p = 0.005), which remained significant after Bonferroni correction. In addition, the BDNF and NT-3 levels in the plasma were significantly correlated with depression (r = −0.268, p = 0.023; r = −0.259, p = 0.028), but did not reach significance after Bonferroni correction. The BDNF, NT-3, and NT-4 plasma levels were significantly different between the depressive control group and the depressive exercise group using pre-exercise values as the covariate. The fold changes in TrkB-FL and TrkB-T1 mRNA in peripheral blood mononuclear cells between the post-exercise and pre-exercise demonstrated a remarkable decrease (fold change = −11.056 and −39.055). Conclusions: Exercise intervention can alleviate depression and anxiety during protracted METH abstinence. Decrease in BDNF and the expression of TrkB in peripheral blood mononuclear cells occur following the exercise intervention.
Collapse
Affiliation(s)
- Jue Yang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China.,Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
| | - Jun Tan
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Chun Xia Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Wen Qi Hou
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Yi Liu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Qiu Fang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Jin Xiu Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Dan Cheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha, China
| | - Xu Luo
- Hunan Judicial Police Vocational College, Changsha, China
| | - Jun Zhang
- Hunan Judicial Police Vocational College, Changsha, China
| |
Collapse
|
30
|
Lima FS, Stewart JL, Canisso IF. Insights into nerve growth factor-β role in bovine reproduction - Review. Theriogenology 2020; 150:288-293. [PMID: 32088043 DOI: 10.1016/j.theriogenology.2020.01.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
Nerve growth factor-β (NGF), initially recognized as a neurotrophin involved in regulating neuronal survival and differentiation, was also later revealed as a ubiquitous seminal plasma protein in mammals. In South American camelids, NGF was initially named ovulation-inducing factor and a dose-dependent luteotropic effect was also reported in llamas. Although NGF was present in the seminal plasma of bulls, the first studies only indicated a potential role on regulation of sperm physiology. The breakthrough discovery of NGF ability to induce ovulation in camelids led to a series of studies investigating the potential functions of NGF within the female reproductive system. In the bovine, a potential luteotropic effect of NGF was perceived as potential tool to overcome the current issues with early embryonic losses attributed at least in part to luteal insufficiency and failed maternal recognition of pregnancy. The aims of this review are to discuss recent advancements in the understanding of the biological roles of NGF in the bovine species. The insights of recent studies with NGF administered in cattle include enhancement of steroidogenesis, luteal formation, and function through increased release of LH, and downstream effect of increased expression of interferon-stimulated genes. In addition, a positive association with sire conception rates; the determination that is produced in the ampulla and vesicular glands of bulls and that is secreted into the sperm-rich fraction of the ejaculate; and the absence of improved post-thaw sperm motility, viability, acrosome integrity, or chromatin stability in ejaculated or epididymal derived sperm supplemented with purified NGF is also discussed.
Collapse
Affiliation(s)
- Fabio S Lima
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA.
| | - Jamie L Stewart
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, USA
| |
Collapse
|
31
|
Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer's Disease. Int J Mol Sci 2019; 20:E5090. [PMID: 31615073 PMCID: PMC6834216 DOI: 10.3390/ijms20205090] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
Ageing is an inevitable fundamental process for people and is their greatest risk factor for neurodegenerative disease. The ageing processes bring changes in cells that can drive the organisms to experience loss of nutrient sensing, disrupted cellular functions, increased oxidative stress, loss of cellular homeostasis, genomic instability, accumulation of misfolded protein, impaired cellular defenses and telomere shortening. Perturbation of these vital cellular processes in neuronal cells can lead to life threatening neurological disorders like Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Lewy body dementia, etc. Alzheimer's Disease is the most frequent cause of deaths in the elderly population. Various therapeutic molecules have been designed to overcome the social, economic and health care burden caused by Alzheimer's Disease. Almost all the chemical compounds in clinical practice have been found to treat symptoms only limiting them to palliative care. The reason behind such imperfect drugs may result from the inefficiencies of the current drugs to target the cause of the disease. Here, we review the potential role of antioxidant polyphenolic compounds that could possibly be the most effective preventative strategy against Alzheimer's Disease.
Collapse
Affiliation(s)
- Sudip Dhakal
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Naufal Kushairi
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Department of Anatomy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Chia Wei Phan
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Benu Adhikari
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
32
|
Bartlett DM, Dominguez D JF, Lazar AS, Kordsachia CC, Rankin TJ, Lo J, Govus AD, Power BD, Lampit A, Eastwood PR, Ziman MR, Cruickshank TM. Multidisciplinary rehabilitation reduces hypothalamic grey matter volume loss in individuals with preclinical Huntington's disease: A nine-month pilot study. J Neurol Sci 2019; 408:116522. [PMID: 31665619 DOI: 10.1016/j.jns.2019.116522] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/04/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hypothalamic pathology is a well-documented feature of Huntington's disease (HD) and is believed to contribute to circadian rhythm and habitual sleep disturbances. Currently, no therapies exist to combat hypothalamic changes, nor circadian rhythm and habitual sleep disturbances in HD. OBJECTIVE To evaluate the effects of multidisciplinary rehabilitation on hypothalamic volume, brain-derived neurotrophic factor (BDNF), circadian rhythm and habitual sleep in individuals with preclinical HD. METHODS Eighteen individuals with HD (ten premanifest and eight prodromal) undertook a nine-month multidisciplinary rehabilitation intervention (intervention group), which included exercise, cognitive and dual task training and social events, and were compared to a community sample of eleven individuals with premanifest HD receiving no intervention (control group). Hypothalamic volume, serum BDNF, salivary cortisol and melatonin concentrations, subjective sleep quality, daytime somnolence, habitual sleep-wake patterns, stress and anxiety and depression symptomatology were evaluated. RESULTS Hypothalamus grey matter volume loss was significantly attenuated in the intervention group compared to the control group after controlling for age, gender, Unified Huntington's Disease Rating Scale-Total Motor Score and number of cytosine-adenine-guanine repeats. Serum BDNF levels were maintained in the intervention group, but decreased in the control group following the study period. Both groups exhibited decreases in cortisol and melatonin concentrations. No changes were observed in sleep or mood outcomes. CONCLUSIONS This exploratory study provides evidence that multidisciplinary rehabilitation can reduce hypothalamic volume loss and maintain peripheral BDNF levels in individuals with preclinical HD but may not impact on circadian rhythm. Larger, randomised controlled trials are required to confirm these findings.
Collapse
Affiliation(s)
- Danielle M Bartlett
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.
| | - Juan F Dominguez D
- Cognition and Emotion Research Centre & Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Alpar S Lazar
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Catarina C Kordsachia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Tim J Rankin
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Johnny Lo
- School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Andrew D Govus
- School of Allied Health, Department of Human Services, Nutrition and Sport, La Trobe University, Melbourne, Victoria, Australia
| | - Brian D Power
- School of Medicine, The University of Notre Dame, Fremantle, Western Australia, Australia
| | - Amit Lampit
- Department of Psychiatry, University of Melbourne, Victoria, Australia; Department of Neurology, Charité - Universitätsmedizin Berlin, Germany
| | - Peter R Eastwood
- Centre for Sleep Science, School of Human Sciences, Faculty of Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Mel R Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; School of Biomedical Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Travis M Cruickshank
- Exercise Medicine Research Institute, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia; Perron Institute for Neurological and Translational Science, Perth, Western Australia, Australia
| |
Collapse
|
33
|
Xu D, Wu D, Qin M, Nih LR, Liu C, Cao Z, Ren J, Chen X, He Z, Yu W, Guan J, Duan S, Liu F, Liu X, Li J, Harley D, Xu B, Hou L, Chen ISY, Wen J, Chen W, Pourtaheri S, Lu Y. Efficient Delivery of Nerve Growth Factors to the Central Nervous System for Neural Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900727. [PMID: 31125138 DOI: 10.1002/adma.201900727] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The central nervous system (CNS) plays a central role in the control of sensory and motor functions, and the disruption of its barriers can result in severe and debilitating neurological disorders. Neurotrophins are promising therapeutic agents for neural regeneration in the damaged CNS. However, their penetration across the blood-brain barrier remains a formidable challenge, representing a bottleneck for brain and spinal cord therapy. Herein, a nanocapsule-based delivery system is reported that enables intravenously injected nerve growth factor (NGF) to enter the CNS in healthy mice and nonhuman primates. Under pathological conditions, the delivery of NGF enables neural regeneration, tissue remodeling, and functional recovery in mice with spinal cord injury. This technology can be utilized to deliver other neurotrophins and growth factors to the CNS, opening a new avenue for tissue engineering and the treatment of CNS disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Duo Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Di Wu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Meng Qin
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Biotechnology, Beijing, 100029, China
| | - Lina R Nih
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chaoyong Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Biotechnology, Beijing, 100029, China
| | - Zheng Cao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jie Ren
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiangjun Chen
- Department of Neurology, Huashan Hospital, Shanghai, 200040, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Jiaoqiong Guan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, 650118, China
| | - Fang Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiangsheng Liu
- California NanoSystem Institute, Los Angeles, CA, 90095, USA
| | - Jesse Li
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, 90095, USA
| | - Dushawn Harley
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, 90095, USA
| | - Bin Xu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, China
| | - Lihua Hou
- Beijing Institute of Biotechnology, Beijing, 100029, China
| | - Irvin S Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jing Wen
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA AIDS Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing, 100029, China
| | - Sina Pourtaheri
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA, 90095, USA
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
34
|
Choucry AM, Al-Shorbagy MY, Attia AS, El-Abhar HS. Pharmacological Manipulation of Trk, p75NTR, and NGF Balance Restores Memory Deficit in Global Ischemia/Reperfusion Model in Rats. J Mol Neurosci 2019; 68:78-90. [PMID: 30863991 DOI: 10.1007/s12031-019-01284-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/21/2019] [Indexed: 01/17/2023]
Abstract
Long-term memory impairment is reported in more than 50% of cardiac arrest survivors. Monosialoganglioside (GM1) provided neuroprotection in experimental models of stroke but failed to replicate its promise clinically for unknown reasons. GM1 stimulates the release of nerve growth factor (NGF), which is synthesized as a precursor protein (pro-NGF) that either mediates apoptosis through the p75 neurotrophin receptor (p75NTR) or is cleaved by the protease furin (FUR) to yield mature NGF, the latter supporting survival through tropomyosin kinase receptor (Trk). The flavanol epicatechin (EPI) inhibits p75NTR-mediated signaling and apoptosis by pro-NGF. The aim of the current work is to test whether these two drugs affect, or communicate with, each other in the setting of CNS injuries. Using the two-vessel occlusion model of global ischemia/reperfusion (I/R), we tested if pharmacological modulation of Trk, p75NTR, and NGF balance with GM1, EPI, and their combination, can correct the memory deficit that follows this insult. Finally, we tested if FUR insufficiency and/or p75NTR-mediated apoptosis negatively affect the neurotherapeutic effect of GM1. Key proteins for Trk and p75NTR, FUR, and both forms of NGF were assessed. All treatment regiments successfully improved spatial memory retention and acquisition. A week after the insult, most Trk and p75NTR proteins were normal, but pro/mature NGF ratio remained sharply elevated and was associated with the poorest memory performance. Pharmacological correction of this balance was achieved by reinforcing Trk and p75NTR signaling. GM1 increased FUR levels, while concomitant administration of EPI weakened GM1 effect on pro-survival Trk and p75NTR mediators. GM1 neuroprotection is therefore not limited by FUR but could be dependent on p75NTR. Graphical Abstract "."
Collapse
Affiliation(s)
- Ali Mohamed Choucry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini st., Cairo, 11562, Egypt.,Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, Toyama University, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Muhammad Yusuf Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini st., Cairo, 11562, Egypt. .,School of Pharmacy, New Giza University, Giza, Egypt.
| | - Ahmed Sherif Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| | - Hanan Salah El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini st., Cairo, 11562, Egypt
| |
Collapse
|
35
|
Neugebauer K, Hammans C, Wensing T, Kumar V, Grodd W, Mevissen L, Sternkopf MA, Novakovic A, Abel T, Habel U, Nickl-Jockschat T. Nerve Growth Factor Serum Levels Are Associated With Regional Gray Matter Volume Differences in Schizophrenia Patients. Front Psychiatry 2019; 10:275. [PMID: 31105606 PMCID: PMC6498747 DOI: 10.3389/fpsyt.2019.00275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/10/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous neuroimaging studies have revealed structural brain abnormalities in schizophrenia patients. There is emerging evidence that dysfunctional nerve growth factor (NGF) signaling may contribute to structural brain alterations found in these patients. In this pilot study, we investigated whether there was a correlation between NGF serum levels and gray matter volume (GMV) in schizophrenia patients. Further, we investigated whether there was an overlap between the correlative findings and cross-sectional GMV differences between schizophrenia patients (n = 18) and healthy controls (n = 19). Serum NGF was significantly correlated to GMV in the left prefrontal lobe, the left midcingulate cortex, and the brainstem in schizophrenia patients. However, we did not find any correlations of NGF serum levels with GMV in healthy controls. Schizophrenia patients showed smaller GMV than healthy controls in brain regions located in the bilateral limbic system, bilateral parietal lobe, bilateral insula, bilateral primary auditory cortex, left frontal lobe, and bilateral occipital regions. In a conjunction analysis, GMV in the left midcingulate cortex (MCC) appears negatively correlated to NGF serum levels in the group of schizophrenia patients and also to be reduced compared to healthy controls. These results suggest an increased vulnerability of schizophrenia patients to changes in NGF levels compared to healthy controls and support a role for NGF signaling in the pathophysiology of schizophrenia. As our pilot study is exploratory in nature, further studies enrolling larger sample sizes will be needed to further corroborate our findings and to investigate the influence of additional covariates.
Collapse
Affiliation(s)
- Kristina Neugebauer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany
| | - Christine Hammans
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany
| | - Tobias Wensing
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Vinod Kumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany.,Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Wolfgang Grodd
- Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
| | - Lea Mevissen
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany
| | - Melanie A Sternkopf
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany
| | - Ana Novakovic
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany
| | - Ted Abel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance, Jülich, Germany.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States.,Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
36
|
Duricki DA, Drndarski S, Bernanos M, Wood T, Bosch K, Chen Q, Shine HD, Simmons C, Williams SCR, McMahon SB, Begley DJ, Cash D, Moon LDF. Stroke Recovery in Rats after 24-Hour-Delayed Intramuscular Neurotrophin-3 Infusion. Ann Neurol 2018; 85:32-46. [PMID: 30525223 PMCID: PMC6492080 DOI: 10.1002/ana.25386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/30/2022]
Abstract
Objective Neurotrophin‐3 (NT3) plays a key role in the development and function of locomotor circuits including descending serotonergic and corticospinal tract axons and afferents from muscle and skin. We have previously shown that gene therapy delivery of human NT3 into affected forelimb muscles improves sensorimotor recovery after stroke in adult and elderly rats. Here, to move toward the clinic, we tested the hypothesis that intramuscular infusion of NT3 protein could improve sensorimotor recovery after stroke. Methods Rats received unilateral ischemic stroke in sensorimotor cortex. To simulate a clinically feasible time to treatment, 24 hours later rats were randomized to receive NT3 or vehicle by infusion into affected triceps brachii for 4 weeks using implanted catheters and minipumps. Results Radiolabeled NT3 crossed from the bloodstream into the brain and spinal cord in rodents with or without strokes. NT3 increased the accuracy of forelimb placement during walking on a horizontal ladder and increased use of the affected arm for lateral support during rearing. NT3 also reversed sensory impairment of the affected wrist. Functional magnetic resonance imaging during stimulation of the affected wrist showed spontaneous recovery of peri‐infarct blood oxygenation level–dependent signal that NT3 did not further enhance. Rather, NT3 induced neuroplasticity of the spared corticospinal and serotonergic pathways. Interpretation Our results show that delayed, peripheral infusion of NT3 can improve sensorimotor function after ischemic stroke. Phase I and II clinical trials of NT3 (for constipation and neuropathy) have shown that peripheral high doses are safe and well tolerated, which paves the way for NT3 as a therapy for stroke. ANN NEUROL 2019;85:32–46.
Collapse
Affiliation(s)
- Denise A Duricki
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom.,Centre for Integrative Biology, King's College London, London, United Kingdom
| | - Svetlana Drndarski
- Blood-Brain Barrier Group, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Michel Bernanos
- Neuroimaging Research Group, King's College London, London, United Kingdom
| | - Tobias Wood
- Neuroimaging Research Group, King's College London, London, United Kingdom
| | - Karen Bosch
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Qin Chen
- Center for Cell and Gene Therapy, Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - H David Shine
- Center for Cell and Gene Therapy, Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Camilla Simmons
- Neuroimaging Research Group, King's College London, London, United Kingdom
| | | | - Stephen B McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - David J Begley
- Blood-Brain Barrier Group, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Diana Cash
- Neuroimaging Research Group, King's College London, London, United Kingdom
| | - Lawrence D F Moon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom.,Centre for Integrative Biology, King's College London, London, United Kingdom
| |
Collapse
|
37
|
Ornell F, Hansen F, Schuch FB, Pezzini Rebelatto F, Tavares AL, Scherer JN, Valerio AG, Pechansky F, Paim Kessler FH, von Diemen L. Brain-derived neurotrophic factor in substance use disorders: A systematic review and meta-analysis. Drug Alcohol Depend 2018; 193:91-103. [PMID: 30347311 DOI: 10.1016/j.drugalcdep.2018.08.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/23/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is associated with several neurodegenerative and psychiatric disorders. It is not clear, however, whether BDNF levels are modified in substance use disorders (SUDs). METHODS We conducted a systematic search of electronic databases to identify studies comparing peripheral plasma or serum BDNF levels in adults with SUDs vs. non-user controls. Forty studies were included in the meta-analysis involving a total of 2238 participants with SUDs and 2574 controls. RESULTS After trim and fill adjustment, current drug users presented lower serum BDNF levels (SMD = -0.99, 95%CI -1.40 to -0.58, I2 = 95.9) than non-user controls. However, this difference disappears during withdrawal. Studies using serum or plasma BDNF samples have shown different results. Subgroup analysis revealed lower levels of serum BDNF in alcohol users (SMD = -0.70, 95%CI -1.15 to -0.25, I2 = 89.81) and crack/cocaine users (SMD = -1.78, 95%CI -2.92 to -0.65, I2 = 97.59) than controls. Meta-regression analysis revealed that gender, age, and age of first use moderate the effects of drug use in peripheral BDNF levels. CONCLUSIONS Peripheral BDNF levels are decreased in the serum, but not the plasma, of active drug users. Altogether, these findings suggest that BDNF levels may be related to acute use and addiction severity and also point to BDNF's potential utility as a biomarker in this population.
Collapse
Affiliation(s)
- Felipe Ornell
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil; Postgraduate Program in Psychiatry and Behavioral Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Fernanda Hansen
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil; Department of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Felipe Barreto Schuch
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Universidade La Salle, Porto Alegre, RS, Brazil
| | - Fernando Pezzini Rebelatto
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil
| | - Ana Laura Tavares
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil
| | - Juliana Nichterwitz Scherer
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil; Postgraduate Program in Psychiatry and Behavioral Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andrei Garziera Valerio
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil
| | - Flavio Pechansky
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil; Postgraduate Program in Psychiatry and Behavioral Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felix Henrique Paim Kessler
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil; Postgraduate Program in Psychiatry and Behavioral Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lisia von Diemen
- Center for Drug and Alcohol Research and Collaborating Center on Alcohol and Drugs, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Professor Álvaro Alvim, 400, 90420-020, Porto Alegre, RS, Brazil; Postgraduate Program in Psychiatry and Behavioral Science, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
38
|
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci 2018; 8:E177. [PMID: 30223579 PMCID: PMC6162719 DOI: 10.3390/brainsci8090177] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Regeneration refers to regrowth of tissue in the central nervous system. It includes generation of new neurons, glia, myelin, and synapses, as well as the regaining of essential functions: sensory, motor, emotional and cognitive abilities. Unfortunately, regeneration within the nervous system is very slow compared to other body systems. This relative slowness is attributed to increased vulnerability to irreversible cellular insults and the loss of function due to the very long lifespan of neurons, the stretch of cells and cytoplasm over several dozens of inches throughout the body, insufficiency of the tissue-level waste removal system, and minimal neural cell proliferation/self-renewal capacity. In this context, the current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Hira Zubair
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Sarah Pursell
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Muhammad Shahab
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
39
|
Arabska J, Łucka A, Strzelecki D, Wysokiński A. In schizophrenia serum level of neurotrophin-3 (NT-3) is increased only if depressive symptoms are present. Neurosci Lett 2018; 684:152-155. [DOI: 10.1016/j.neulet.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/28/2018] [Accepted: 08/07/2018] [Indexed: 11/29/2022]
|
40
|
Carrasco RA, Singh J, Adams GP. The relationship between gonadotropin releasing hormone and ovulation inducing factor/nerve growth factor receptors in the hypothalamus of the llama. Reprod Biol Endocrinol 2018; 16:83. [PMID: 30170607 PMCID: PMC6119247 DOI: 10.1186/s12958-018-0402-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A molecule identical to nerve growth factor, with ovulation-inducing properties has been discovered in the seminal plasma of South American camelids (ovulation-inducing factor/nerve growth factor; OIF/NGF). We hypothesize that the ovulatory effect of OIF/NGF is initiated at the level of the hypothalamus, presumably by GnRH neurons. The objective of the present study was to determine the structural relationship between GnRH neurons and neurons expressing high- and low-affinity receptors for NGF (i.e., TrkA and p75, respectively) in the hypothalamus. METHODS Mature llamas (n = 4) were euthanized and their hypothalamic tissue was fixed, sectioned, and processed for immunohistochemistry on free-floating sections. Ten equidistant sections per brain were double stained for immunofluorescence detection of TrkA and GnRH, or p75 and GnRH. RESULTS Cells immunoreactive to TrkA were detected in most hypothalamic areas, but the majority of cells were detected in the diagonal band of Broca (part of the ventral forebrain) and the supraoptic nuclei and periventricular area. The number of cells immunoreactive to p75 was highest in the diagonal band of Broca and lateral preoptic areas and least in more caudal areas of the hypothalamus (p < 0.05) in a pattern similar to that of TrkA. A low proportion of GnRH neurons were immunoreactive to TrkA (2.5% of total GnRH cells), and no co-localization between GnRH and p75 was detected. GnRH neuron fibers were detected only occasionally in proximity to TrkA immunopositive neurons. CONCLUSIONS Results do not support the hypothesis that the effect of OIF/NGF is driven by a direct interaction with GnRH neurons, but rather provide rationale for the hypothesis that interneurons exist in the hypothalamus that mediate OIF/NGF-induced ovulation.
Collapse
Affiliation(s)
- Rodrigo A. Carrasco
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 campus drive, Saskatoon, Saskatchewan S7N5B4 Canada
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 campus drive, Saskatoon, Saskatchewan S7N5B4 Canada
| | - Gregg P. Adams
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 campus drive, Saskatoon, Saskatchewan S7N5B4 Canada
| |
Collapse
|
41
|
Marie C, Pedard M, Quirié A, Tessier A, Garnier P, Totoson P, Demougeot C. Brain-derived neurotrophic factor secreted by the cerebral endothelium: A new actor of brain function? J Cereb Blood Flow Metab 2018; 38:935-949. [PMID: 29557702 PMCID: PMC5998997 DOI: 10.1177/0271678x18766772] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Low cerebral levels of brain-derived neurotrophic factor (BDNF), which plays a critical role in many brain functions, have been implicated in neurodegenerative, neurological and psychiatric diseases. Thus, increasing BDNF levels in the brain is considered an attractive possibility for the prevention/treatment of various brain diseases. To date, BDNF-based therapies have largely focused on neurons. However, given the cross-talk between endothelial cells and neurons and recent evidence that BDNF expressed by the cerebral endothelium largely accounts for BDNF levels present in the brain, it is likely that BDNF-based therapies would be most effective if they also targeted the cerebral endothelium. In this review, we summarize the available knowledge about the biology and actions of BDNF derived from endothelial cells of the cerebral microvasculature and we emphasize the remaining gaps and shortcomings.
Collapse
Affiliation(s)
- Christine Marie
- 1 INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Martin Pedard
- 1 INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, France.,2 Service de Neurologie, CHRU, Dijon, France
| | - Aurore Quirié
- 1 INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Anne Tessier
- 1 INSERM U1093, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Perle Totoson
- 3 EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
| | - Céline Demougeot
- 3 EA4267 PEPITE, FHU INCREASE, Univ. Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
42
|
Rocco ML, Soligo M, Manni L, Aloe L. Nerve Growth Factor: Early Studies and Recent Clinical Trials. Curr Neuropharmacol 2018; 16:1455-1465. [PMID: 29651949 PMCID: PMC6295934 DOI: 10.2174/1570159x16666180412092859] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 12/02/2022] Open
Abstract
Since its discovery, nerve growth factor (NGF) has long occupied a critical role in developmental and adult neurobiology for its many important regulatory functions on the survival, growth and differentiation of nerve cells in the peripheral and central nervous system. NGF is the first discovered member of a family of neurotrophic factors, collectively indicated as neurotrophins, (which include brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin 4/5). NGF was discovered for its action on the survival and differentiation of selected populations of peripheral neurons. Since then, an enormous number of basic and human studies were undertaken to explore the role of purified NGF to prevent the death of NGF-receptive cells. These studies revealed that NGF possesses important therapeutic properties, after topical administration, on human cutaneous pressure ulcer, corneal ulcers, glaucoma, retinal maculopathy, Retinitis Pigmentosa and in pediatric optic gliomas and brain traumas. The aim of this review is to present our previous, recent and ongoing clinical studies on the therapeutic properties of NGF.
Collapse
Affiliation(s)
| | | | | | - Luigi Aloe
- Address correspondence to this author at the Fondazione IRET ONLUS, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia (BO), Italy; Tel: +39-051-798776; Fax: +39-051-799673; E-mail:
| |
Collapse
|
43
|
Morais VACD, Tourino MFDS, Almeida ACDS, Albuquerque TBD, Linhares RC, Christo PP, Martinelli PM, Scalzo PL. A single session of moderate intensity walking increases brain-derived neurotrophic factor (BDNF) in the chronic post-stroke patients. Top Stroke Rehabil 2017; 25:1-5. [DOI: 10.1080/10749357.2017.1373500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Viviane Aparecida Carvalho de Morais
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marina Ferreira da Silva Tourino
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ana Carolina de Souza Almeida
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thaís Bueno Dias Albuquerque
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Roberta Castro Linhares
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Paulo Pereira Christo
- Ambulatório de Neurologia, Centro de Especialidades Médicas da Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Patrícia Massara Martinelli
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Paula Luciana Scalzo
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
44
|
Chiaretti A, Conti G, Falsini B, Buonsenso D, Crasti M, Manni L, Soligo M, Fantacci C, Genovese O, Calcagni ML, Di Giuda D, Mattoli MV, Cocciolillo F, Ferrara P, Ruggiero A, Staccioli S, Colafati GS, Riccardi R. Intranasal Nerve Growth Factor administration improves cerebral functions in a child with severe traumatic brain injury: A case report. Brain Inj 2017; 31:1538-1547. [PMID: 28972396 DOI: 10.1080/02699052.2017.1376760] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Nerve growth factor (NGF) promotes neural recovery after experimental traumatic brain injury (TBI) supporting neuronal growth, differentiation and survival of brain cells and up-regulating the neurogenesis-associated protein Doublecortin (DCX). Only a few studies reported NGF administration in paediatric patients with severe TBI. METHODS A four-year-old boy in a persistent unresponsive wakefulness syndrome (UWS) was treated with intranasal murine NGF administration 6 months after severe TBI. The patient received four cycles of intranasal NGF (0.1 mg/kg, twice a day for 10 consecutive days). RESULTS NGF administration improved functional [Positron Emission Tomography/Computed Tomography (PET/CT); Single photon emission/Computed Tomography (SPECT/CT) and Magnetic Resonance Imaging (MRI)] assessment, electrophysiological [Electroencephalogram (EEG) and Visual Evoked Potential (VEP)] studies and clinical conditions. He showed improvements in voluntary movements, facial mimicry, phonation, attention and verbal comprehension, ability to cry, cough reflex, oral motility, feeding capacity, and bowel and urinary functions. After NGF administration, raised levels of both NGF and DCX were found in the cerebrospinal fluid of the patient. No side effects were reported. CONCLUSIONS Although further studies are needed for better understanding the neuroprotective role of this neurotrophin, intranasal NGF administration appears to be a promising and safe rescuing strategy treatment in children with neurological impairment after TBI.
Collapse
Affiliation(s)
- Antonio Chiaretti
- a Institute of Pediatrics , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Giorgio Conti
- b Pediatric Intensive Care Unit , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Benedetto Falsini
- c Institute of Ophthalmology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Danilo Buonsenso
- a Institute of Pediatrics , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Matteo Crasti
- a Institute of Pediatrics , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Luigi Manni
- d Institute of Translational Pharmacology , CNR , Rome , Italy
| | - Marzia Soligo
- d Institute of Translational Pharmacology , CNR , Rome , Italy
| | - Claudia Fantacci
- a Institute of Pediatrics , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Orazio Genovese
- b Pediatric Intensive Care Unit , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Maria Lucia Calcagni
- e Institute of Nuclear Medicine , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Daniela Di Giuda
- e Institute of Nuclear Medicine , Università Cattolica del Sacro Cuore , Rome , Italy
| | | | - Fabrizio Cocciolillo
- e Institute of Nuclear Medicine , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Pietro Ferrara
- a Institute of Pediatrics , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Antonio Ruggiero
- f Pediatric Oncology , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Susanna Staccioli
- g Department of Neuroscience and Neurorehabilitation , Bambino Gesù Children's Hospital , Rome , Italy
| | | | - Riccardo Riccardi
- f Pediatric Oncology , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
45
|
Kumar A, Pareek V, Faiq MA, Kumar P, Raza K, Prasoon P, Dantham S, Mochan S. Regulatory role of NGFs in neurocognitive functions. Rev Neurosci 2017; 28:649-673. [DOI: 10.1515/revneuro-2016-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
AbstractNerve growth factors (NGFs), especially the prototype NGF and brain-derived neurotrophic factor (BDNF), have a diverse array of functions in the central nervous system through their peculiar set of receptors and intricate signaling. They are implicated not only in the development of the nervous system but also in regulation of neurocognitive functions like learning, memory, synaptic transmission, and plasticity. Evidence even suggests their role in continued neurogenesis and experience-dependent neural network remodeling in adult brain. They have also been associated extensively with brain disorders characterized by neurocognitive dysfunction. In the present article, we aimed to make an exhaustive review of literature to get a comprehensive view on the role of NGFs in neurocognitive functions in health and disease. Starting with historical perspective, distribution in adult brain, implied molecular mechanisms, and developmental basis, this article further provides a detailed account of NGFs’ role in specified neurocognitive functions. Furthermore, it discusses plausible NGF-based homeostatic and adaptation mechanisms operating in the pathogenesis of neurocognitive disorders and has presents a survey of such disorders. Finally, it elaborates on current evidence and future possibilities in therapeutic applications of NGFs with an emphasis on recent research updates in drug delivery mechanisms. Conclusive remarks of the article make a strong case for plausible role of NGFs in comprehensive regulation of the neurocognitive functions and pathogenesis of related disorders and advocate that future research should be directed to explore use of NGF-based mechanisms in the prevention of implicated diseases as well as to target these molecules pharmacologically.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, Puducherry 609602, India
| | - Vikas Pareek
- Computational Neuroscience and Neuroimaging Division, National Brain Research Centre (NBRC), Manesar, Haryana 122051, India
| | - Muneeb A. Faiq
- Department of Ophthalmology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pavan Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Khursheed Raza
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pranav Prasoon
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Subrahamanyam Dantham
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sankat Mochan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
46
|
El Allali K, El Bousmaki N, Ainani H, Simonneaux V. Effect of the Camelid's Seminal Plasma Ovulation-Inducing Factor/β-NGF: A Kisspeptin Target Hypothesis. Front Vet Sci 2017; 4:99. [PMID: 28713816 PMCID: PMC5491598 DOI: 10.3389/fvets.2017.00099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/12/2017] [Indexed: 01/09/2023] Open
Abstract
Female mammals are classified into spontaneous and induced ovulators based on the mechanism eliciting ovulation. Ovulation in spontaneous species (e.g., human, sheep, cattle, horse, pigs, and most rodents) occurs at regular intervals and depends upon the circulating estradiol. However, in induced ovulators (e.g., rabbits, ferrets, cats, and camelids), ovulation is associated with coitus. In the later, various factors have been proposed to trigger ovulation, including auditory, visual, olfactory, and mechanic stimuli. However, other studies have identified a biochemical component in the semen of induced ovulators responsible for the induction of ovulation and named accordingly ovulation-inducing factor (OIF). In camelids, intramuscular or intrauterine administration of seminal plasma (SP) was shown to induce the preovulatory luteinizing hormone (LH) surge followed by ovulation and subsequent formation of corpus luteum. Recently, this OIF has been identified from SP as a neurotrophin, the β subunit of nerve growth factor (β-NGF). β-NGF is well known as promoting neuron survival and growth, but in this case, it appears to induce ovulation through an endocrine mode of action. Indeed, β-NGF may be absorbed through the endometrium to be conveyed, via the blood stream, to the central structures regulating the LH preovulatory surge. In this review, we provide a summary of the most relevant results obtained in the field, and we propose a working hypothesis for the central action of β-NGF based on our recent demonstration of the presence of neurons expressing kisspeptin, a potent stimulator of GnRH/LH, in the camel hypothalamus.
Collapse
Affiliation(s)
- Khalid El Allali
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Najlae El Bousmaki
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Hassan Ainani
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Valérie Simonneaux
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institute of Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
47
|
Roh HT, Cho SY, So WY. Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2017; 6:225-230. [PMID: 30356585 PMCID: PMC6188985 DOI: 10.1016/j.jshs.2016.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/25/2016] [Accepted: 04/06/2016] [Indexed: 05/16/2023]
Abstract
PURPOSE The purpose of this study was to investigate the effects of obesity and high-intensity acute exercise on oxidant-antioxidant status, neurotrophic factor expression, and blood-brain barrier (BBB) disruption. METHODS Twenty-four healthy, untrained men (12 non-obese (mean 14.9% body fat) and 12 obese subjects (mean 29.8% body fat)) performed 20 min of continuous submaximal aerobic exercise at 85% maximal oxygen consumption. Blood sampling was performed to examine the oxidant-antioxidant status (reactive oxygen species (ROS) and superoxide dismutase (SOD)), neurotrophic factors (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)), and BBB disruption (S100β and neuron-specific enolase) before and after acute exercise. RESULTS The obese group showed significantly higher pre-exercise serum ROS levels and significantly lower pre-exercise serum SOD levels than the non-obese group (p < 0.05). Serum ROS, SOD, BDNF, NGF, and S100β levels were significantly increased post-exercise compared with pre-exercise levels in both the non-obese and the obese groups (p < 0.05). The obese group showed significantly higher serum ROS, BDNF, NGF, and S100β levels post-exercise compared to the non-obese group (p < 0.05). CONCLUSION Our study suggests that episodic vigorous exercise can increase oxidative stress and blood neurotrophic factor levels and induce disruption of the BBB. Moreover, high levels of neurotrophic factor in the blood after exercise in the obese group may be due to BBB disruption, and it is assumed that oxidative stress was the main cause of this BBB disruption.
Collapse
Affiliation(s)
- Hee-Tae Roh
- Department of Physical Education, Dong-A University, Busan 604-714, Republic of Korea
| | - Su-Youn Cho
- School of Taekwondo, College of Creative Human Resources, Youngsan University, Yangsan-si 626-790, Republic of Korea
| | - Wi-Young So
- Sports and Health Care Major, College of Humanities and Arts, Korea National University of Transportation, Chungju-si 380-702, Republic of Korea
- Corresponding author.
| |
Collapse
|
48
|
Miranda A, Cordeiro T, dos Santos Lacerda Soares TM, Ferreira R, Simões e Silva A. Kidney–brain axis inflammatory cross-talk: from bench to bedside. Clin Sci (Lond) 2017; 131:1093-1105. [DOI: 10.1042/cs20160927] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Epidemiologic data suggest that individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing neuropsychiatric disorders, cognitive impairment, and dementia. This risk is generally explained by the high prevalence of both symptomatic and subclinical ischemic cerebrovascular lesions. However, other potential mechanisms, including cytokine/chemokine release, production of reactive oxygen species (ROS), circulating and local formation of trophic factors and of renin–angiotensin system (RAS) molecules, could also be involved, especially in the absence of obvious cerebrovascular disease. In this review, we discuss experimental and clinical evidence for the role of these mechanisms in kidney–brain cross-talk. In addition, we hypothesize potential pathways for the interactions between kidney and brain and their pathophysiological role in neuropsychiatric and cognitive changes found in patients with CKD. Understanding the pathophysiologic interactions between renal impairment and brain function is important in order to minimize the risk for future cognitive impairment and to develop new strategies for innovative pharmacological treatment.
Collapse
Affiliation(s)
- Aline Silva Miranda
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Thiago Macedo Cordeiro
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | | | - Rodrigo Novaes Ferreira
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Ana Cristina Simões e Silva
- Laboratório Interdisciplinar de Investigação Médica (LIIM), Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| |
Collapse
|
49
|
Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 2017; 71:77-103. [PMID: 27800654 DOI: 10.1111/pcn.12476] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
The most common mood disorders are major depressive disorders and bipolar disorders (BD). The pathophysiology of BD is complex, multifactorial, and not fully understood. Creation of new hypotheses in the field gives impetus for studies and for finding new biomarkers for BD. Conversely, new biomarkers facilitate not only diagnosis of a disorder and monitoring of biological effects of treatment, but also formulation of new hypotheses about the causes and pathophysiology of the BD. BD is characterized by multiple associations between disturbed brain development, neuroplasticity, and chronobiology, caused by: genetic and environmental factors; defects in apoptotic, immune-inflammatory, neurotransmitter, neurotrophin, and calcium-signaling pathways; oxidative and nitrosative stress; cellular bioenergetics; and membrane or vesicular transport. Current biological hypotheses of BD are summarized, including related pathophysiological processes and key biomarkers, which have been associated with changes in genetics, systems of neurotransmitter and neurotrophic factors, neuroinflammation, autoimmunity, cytokines, stress axis activity, chronobiology, oxidative stress, and mitochondrial dysfunctions. Here we also discuss the therapeutic hypotheses and mechanisms of the switch between depressive and manic state.
Collapse
Affiliation(s)
- Ekaterina Sigitova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
50
|
Adams GP, Ratto MH, Silva ME, Carrasco RA. Ovulation-inducing factor (OIF/NGF) in seminal plasma: a review and update. Reprod Domest Anim 2016; 51 Suppl 2:4-17. [DOI: 10.1111/rda.12795] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- GP Adams
- Veterinary Biomedical Sciences; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon SK Canada
| | - MH Ratto
- Faculty of Veterinary Sciences; Universidad Austral de Chile; Valdivia Chile
| | - ME Silva
- School of Veterinary Medicine; Núcleo de Investigación en Producción Alimentaria; Universidad Católica de Temuco; Temuco Chile
| | - RA Carrasco
- Veterinary Biomedical Sciences; Western College of Veterinary Medicine; University of Saskatchewan; Saskatoon SK Canada
| |
Collapse
|