1
|
Georgescu T. The role of maternal hormones in regulating autonomic functions during pregnancy. J Neuroendocrinol 2023; 35:e13348. [PMID: 37936545 DOI: 10.1111/jne.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023]
Abstract
Offspring development relies on numerous physiological changes that occur in a mother's body, with hormones driving many of these adaptations. Amongst these, the physiological functions controlled by the autonomic nervous system are required for the mother to survive and are adjusted to meet the demands of the growing foetus and to ensure a successful birth. The hormones oestrogen, progesterone, and lactogenic hormones rise significantly during pregnancy, suggesting they may also play a role in regulating the maternal adaptations linked to autonomic nervous system functions, including respiratory, cardiovascular, and thermoregulatory functions. Indeed, expression of pregnancy hormone receptors spans multiple brain regions known to regulate these physiological functions. This review examines how respiratory, cardiovascular, and thermoregulatory functions are controlled by these pregnancy hormones by focusing on their action on central nervous system circuits. Inadequate adaptations in these systems during pregnancy can give rise to several pregnancy complications, highlighting the importance in understanding the mechanistic underpinnings of these changes and potentially identifying ways to treat pregnancy-associated afflictions using hormones.
Collapse
Affiliation(s)
- T Georgescu
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Pham LT, Yamanaka K, Miyamoto Y, Waki H, Gouraud SSS. Estradiol-dependent gene expression profile in the amygdala of young ovariectomized spontaneously hypertensive rats. Physiol Genomics 2022; 54:99-114. [DOI: 10.1152/physiolgenomics.00082.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Estrogen plays a role in cardiovascular functions, emotional health, and energy homeostasis via estrogen receptors expressed in the brain. The comorbid relationship between rising blood pressure, a decline in mood and motivation, and body weight gain after menopause, when estrogen levels drop, suggests that the same brain area(s) contributes to protection from all of these postmenopausal disorders. The amygdala, a major limbic system nucleus known to express high estrogen receptor levels, is involved in the regulation of such physiological and psychological responses. We hypothesized that elevated estrogen levels contribute to premenopausal characteristics by activating specific genes and pathways in the amygdala. We examined the effect of 1-month estradiol treatment on the gene expression profile in the amygdala of ovariectomized young adult female spontaneously hypertensive rats. Estradiol substitution significantly decreased blood pressure, prevented body weight gain, and enhanced the voluntary physical activity of ovariectomized rats. In the amygdala of ovariectomized rats, estradiol treatment downregulated the expression of genes associated with estrogen signaling, cholinergic synapse, dopaminergic synapse, and long-term depression pathways. These findings indicate that the transcriptomic characteristics of the amygdala may be involved in estrogen-dependent regulation of blood pressure, physical activity motivation, and body weight control in young adult female spontaneously hypertensive rats.
Collapse
Affiliation(s)
- Linh T Pham
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Sciences, Juntendo University, Inzai, Chiba, Japan
| | | | - Hidefumi Waki
- Department of Physiolgy, Graduate School of Health and Sports Sciences, Juntendo University, Inzai, Chiba, Japan
| | - Sabine S. S. Gouraud
- College of Liberal Arts, Department of Natural Sciences, International Christian University, Tokyo, 東京都, Japan
| |
Collapse
|
3
|
Zhang Z, DiVittorio JR, Joseph AM, Correa SM. The Effects of Estrogens on Neural Circuits That Control Temperature. Endocrinology 2021; 162:6262699. [PMID: 33939822 PMCID: PMC8237993 DOI: 10.1210/endocr/bqab087] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 12/17/2022]
Abstract
Declining and variable levels of estrogens around the time of menopause are associated with a suite of metabolic, vascular, and neuroendocrine changes. The archetypal adverse effects of perimenopause are vasomotor symptoms, which include hot flashes and night sweats. Although vasomotor symptoms are routinely treated with hormone therapy, the risks associated with these treatments encourage us to seek alternative treatment avenues. Understanding the mechanisms underlying the effects of estrogens on temperature regulation is a first step toward identifying novel therapeutic targets. Here we outline findings in rodents that reveal neural and molecular targets of estrogens within brain regions that control distinct components of temperature homeostasis. These insights suggest that estrogens may alter the function of multiple specialized neural circuits to coordinate the suite of changes after menopause. Thus, defining the precise cells and neural circuits that mediate the effects of estrogens on temperature has promise to identify strategies that would selectively counteract hot flashes or other negative side effects without the health risks that accompany systemic hormone therapies.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Johnathon R DiVittorio
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alexia M Joseph
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Laboratory of Neuroendocrinology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: Stephanie Correa, Ph.D., UCLA Dept. of Integrative Biology and Physiology 2028 Terasaki Life Sciences Building, 610 Charles E Young Drive East, Box 957239 Los Angeles, CA 90095, USA.
| |
Collapse
|
4
|
Liu M, Xing F, Bian C, Zhao Y, Zhao J, Liu Y, Zhang J. Letrozole induces worse hippocampal synaptic and dendritic changes and spatial memory impairment than ovariectomy in adult female mice. Neurosci Lett 2019; 706:61-67. [PMID: 31077740 DOI: 10.1016/j.neulet.2019.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 01/11/2023]
Abstract
Estrogens (E2) derived from ovaries and/or local de novo synthesis in the hippocampus profoundly regulate hippocampal structure and function, but the importance of local E2 versus ovarian E2 on hippocampal synaptic plasticity and spatial memory has not been well elucidated. The present study used ovariectomy (OVX) and intraperitoneal injection of an E2 synthase inhibitor, letrozole (LET), in adult female mice to investigate changes in hippocampal steroid receptor coactivator-1 (SRC-1), postsynaptic proteins, and actin polymerization dynamics with these treatments. Changes in the CA1 spine density, synapse density and spatial learning and memory after OVX and LET were also investigated. As a result, OVX and LET showed similar regulation of the expression of GluR1, spinophilin and p-Cofilin, but LET tended to induce more significant changes in SRC-1, PSD95, Rictor, Cofilin and actin depolymerization. More significant decreases in F-actin/G-actin, CA1 spine density and synapse density were also observed after LET than after OVX. Notably, LET-treated mice showed worse learning and memory impairment than OVX mice. Taken together, these results demonstrated that circulating E2 played a limited role and that hippocampus-derived E2 played a more important role in the regulation of hippocampal synaptic plasticity and hippocampus-based spatial learning and memory.
Collapse
Affiliation(s)
- Mengying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Fangzhou Xing
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Chen Bian
- Department of Military Psychology, College of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Jikai Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Yan Liu
- School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
5
|
Smith JB, Alloway KD, Hof PR, Orman R, Reser DH, Watakabe A, Watson GDR. The relationship between the claustrum and endopiriform nucleus: A perspective towards consensus on cross-species homology. J Comp Neurol 2019; 527:476-499. [PMID: 30225888 PMCID: PMC6421118 DOI: 10.1002/cne.24537] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
With the emergence of interest in studying the claustrum, a recent special issue of the Journal of Comparative Neurology dedicated to the claustrum (Volume 525, Issue 6, pp. 1313-1513) brought to light questions concerning the relationship between the claustrum (CLA) and a region immediately ventral known as the endopiriform nucleus (En). These structures have been identified as separate entities in rodents but appear as a single continuous structure in primates. During the recent Society for Claustrum Research meeting, a panel of experts presented data pertaining to the relationship of these regions and held a discussion on whether the CLA and En should be considered (a) separate unrelated structures, (b) separate nuclei within the same formation, or (c) subregions of a continuous structure. This review article summarizes that discussion, presenting comparisons of the cytoarchitecture, neurochemical profiles, genetic markers, and anatomical connectivity of the CLA and En across several mammalian species. In rodents, we conclude that the CLA and the dorsal endopiriform nucleus (DEn) are subregions of a larger complex, which likely performs analogous computations and exert similar effects on their respective cortical targets (e.g., sensorimotor versus limbic). Moving forward, we recommend that the field retain the nomenclature currently employed for this region but should continue to examine the delineation of these structures across different species. Using thorough descriptions of a variety of anatomical features, this review offers a clear definition of the CLA and En in rodents, which provides a framework for identifying homologous structures in primates.
Collapse
Affiliation(s)
- Jared B. Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kevin D. Alloway
- Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rena Orman
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, 11203 USA
| | - David H. Reser
- Graduate Entry Medicine Program, Monash Rural Health Churchill, Monash University, Churchill, Victoria 3842, Australia
- Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | | | - Glenn D. R. Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Zhao J, Bian C, Liu M, Zhao Y, Sun T, Xing F, Zhang J. Orchiectomy and letrozole differentially regulate synaptic plasticity and spatial memory in a manner that is mediated by SRC-1 in the hippocampus of male mice. J Steroid Biochem Mol Biol 2018; 178:354-368. [PMID: 29452160 DOI: 10.1016/j.jsbmb.2018.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/07/2018] [Accepted: 02/12/2018] [Indexed: 11/23/2022]
Abstract
Hippocampal synaptic plasticity is the basis of spatial memory and cognition and is strongly regulated by both testicular androgens (testosterone, T) and hippocampal estrogens (17β-estradiol, E2) converted from T by aromatase, which is inhibited by letrozole (LET), but the contribution of each pathway to spatial memory and the associated mechanisms are unclear. In this study, we first used orchiectomy (ORX) and LET injection to investigate the effects of T and hippocampal E2 on spatial memory and hippocampal synaptic plasticity. Next, we examined the changes in steroid receptors and steroid receptor coactivator-1 (SRC-1) under these treatments. Finally, we constructed an SRC-1 RNA interference lentivirus and an AROM overexpression lentivirus to explore the roles of SRC-1 under T replacement and AROM overexpression. The results revealed spatial memory impairment only after LET. LET induced more actin depolymerization and greater losses of spines, synapses, and postsynaptic proteins compared with ORX. Moreover, although ERα and ERβ were affected by LET and ORX at similar levels, AR, GPR30, and SRC-1 were dramatically decreased by LET compared with ORX. Finally, the T and AROM overexpression-induced changes in synaptic proteins and actin polymerization were blocked by SRC-1 inhibition. These results demonstrate that testicular androgens play a limited role, whereas local E2 is more important for cognition, which may explain why castrated men such as eunuchs usually do not have cognitive disorders. These results also suggest a pivotal role of SRC-1 in the action of steroids; thus, SRC-1 may serve as a novel therapeutic target for cognitive disorders.
Collapse
Affiliation(s)
- Jikai Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Chen Bian
- Department of Military Psychology, College of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Mengying Liu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Tao Sun
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China
| | - Fangzhou Xing
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China; School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
7
|
Briski KP, Alhamami HN, Alshamrani A, Mandal SK, Shakya M, Ibrahim MHH. Sex Differences and Role of Estradiol in Hypoglycemia-Associated Counter-Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:359-383. [PMID: 29224103 DOI: 10.1007/978-3-319-70178-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vital nerve cell functions, including maintenance of transmembrane voltage and information transfer, occur at high energy expense. Inadequate provision of the obligate metabolic fuel glucose exposes neurons to risk of dysfunction or injury. Clinical hypoglycemia rarely occurs in nondiabetic individuals but is an unfortunate regular occurrence in patients with type 1 or advanced insulin-treated type 2 diabetes mellitus. Requisite strict glycemic control, involving treatment with insulin, sulfonylureas, or glinides, can cause frequent episodes of iatrogenic hypoglycemia due to defective counter-regulation, including reduced glycemic thresholds and diminished magnitude of motor responses. Multiple components of the body's far-reaching energy balance regulatory network, including the hindbrain dorsal vagal complex, provide dynamic readout of cellular energetic disequilibrium, signals that are utilized by the hypothalamus to shape counterregulatory autonomic, neuroendocrine, and behavioral outflow toward restoration of glucostasis. The ovarian steroid hormone 17β-estradiol acts on central substrates to preserve nerve cell energy stability brain-wide, thereby providing neuroprotection against bio-energetic insults such as neurodegenerative diseases and acute brain ischemia. The current review highlights recent evidence implicating estrogen in gluco-regulation in females by control of hindbrain metabolic sensor screening and signaling of hypoglycemia-associated neuro-energetic instability. It is anticipated that new understanding of the mechanistic basis of how estradiol influences metabolic sensory input from this critical brain locus to discrete downstream regulatory network substrates will likely reveal viable new molecular targets for therapeutic simulation of hormone actions that promote positive neuronal metabolic state during acute and recurring hypoglycemia.
Collapse
Affiliation(s)
- Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA.
| | - Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Ayed Alshamrani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Santosh K Mandal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Mostafa H H Ibrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
8
|
Qiu L, Zhao Y, Guo Q, Zhang Y, He L, Li W, Zhang J. Dose-dependent regulation of steroid receptor coactivator-1 and steroid receptors by testosterone propionate in the hippocampus of adult male mice. J Steroid Biochem Mol Biol 2016; 156:23-31. [PMID: 26607693 DOI: 10.1016/j.jsbmb.2015.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
Androgens have been proposed to play important roles in the regulation of hippocampus function either directly, through the androgen receptor (AR), or indirectly, through estrogen receptors (ERs), after aromatization into estradiol. Steroid receptor coactivator-1 (SRC-1) is present in the hippocampus of several species, and its expression is regulated by development and aging, as well as by orchidectomy and aromatase inhibitor letrozole administration, while ovariectomy only transiently downregulated hippocampal SRC-1. However, whether the expression of hippocampal SRC-1 can be directly regulated by testosterone, the principal male sex hormone, remains unclear. In the present study, we investigated the expression of hippocampal SRC-1 after orchidectomy and testosterone treatment using immunohistochemistry and Western blot analysis. We found that while hippocampal SRC-1 was significantly downregulated by orchidectomy (ORX), its expression was rescued by treatment with testosterone in a dose-dependent manner. Furthermore, we noticed that the decreased expression of hippocampal AR, ERs and the synaptic proteins GluR-1 and PSD-95 induced by ORX was also rescued by testosterone treatment in a dose-dependent manner. However, we found that hippocampal membrane estrogen receptor GPR30 and dendritic spine marker spinophilin were not altered by ORX or testosterone treatment. Together, the above results provided the first direct evidence for the androgenic regulation on hippocampal SRC-1, indicating that SRC-1 may be a direct target of androgenic regulation on the hippocampus. Furthermore, because AR and ERs can be differentially regulated by testosterone, and the transcriptional activity requires the involvement of local SRC-1, and considering the complicated regulatory pathway of each individual receptor, the converged hub regulator SRC-1 of these nuclear receptor networks is worthy of further investigation.
Collapse
Affiliation(s)
- Linli Qiu
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Department of Filed Nursing, School of Nursing, Third Military Medical University, Chongqing 400038, China
| | - Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Qiang Guo
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Yuanyuan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Li He
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Department of Filed Nursing, School of Nursing, Third Military Medical University, Chongqing 400038, China
| | - Wei Li
- Department of Filed Nursing, School of Nursing, Third Military Medical University, Chongqing 400038, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
9
|
Kyi-Tha-Thu C, Okoshi K, Ito H, Matsuda KI, Kawata M, Tsukahara S. Sex differences in cells expressing green fluorescent protein under the control of the estrogen receptor-α promoter in the hypothalamus of mice. Neurosci Res 2015; 101:44-52. [DOI: 10.1016/j.neures.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/26/2015] [Accepted: 07/08/2015] [Indexed: 01/06/2023]
|
10
|
Bian C, Zhang K, Zhao Y, Guo Q, Cai W, Zhang J. Regional specific regulation of steroid receptor coactivator-1 immunoreactivity by orchidectomy in the brain of adult male mice. Steroids 2014; 88:7-14. [PMID: 24945110 DOI: 10.1016/j.steroids.2014.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/13/2014] [Accepted: 06/04/2014] [Indexed: 01/06/2023]
Abstract
Androgens including testosterone and dihydrotestosterone play important roles on brain structure and function, either directly through androgen receptor or indirectly through estrogen receptors, which need coactivators for their transcription activation. Steroid receptor coactivator-1 (SRC-1) has been shown to be multifunctional potentials in the brain, but how it is regulated by androgens in the brain remains unclear. In this study, we explored the effect of orchidectomy (ORX) on the expression of SRC-1 in the adult male mice using nickel-intensified immunohistochemistry. The results showed that ORX induced dramatic decrease of SRC-1 immunoreactivity in the olfactory tubercle, piriform cortex, ventral pallidum, most parts of the septal area, hippocampus, substantia nigra (compact part), pontine nuclei and nucleus of the trapezoid body (p<0.01). Significant decrease of SRC-1 was noticed in the dorsal and lateral septal nucleus, medial preoptical area, dorsomedial and ventromedial hypothalamic nucleus and superior paraolivary nucleus (p<0.05). Whereas in other regions examined, levels of SRC-1 immunoreactivity were not obviously changed by ORX (p>0.05). The above results demonstrated ORX downregulation of SRC-1 in specific regions that have been involved in sense of smell, learning and memory, cognition, neuroendocrine, reproduction and motor control, indicating that SRC-1 play pivotal role in the mediating circulating androgenic regulation on these important brain functions. It also indicates that SRC-1 may serve as a novel target for the central disorders caused by the age-related decrease of circulating androgens.
Collapse
Affiliation(s)
- Chen Bian
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Kaiyuan Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China; Cadet Brigade, Third Military Medical University, Chongqing 400038, China
| | - Yangang Zhao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Qiang Guo
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Wenqin Cai
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| | - Jiqiang Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
11
|
Estrogen-dependent changes in estrogen receptor-β mRNA expression in middle-aged female rat brain. Brain Res 2013; 1543:49-57. [PMID: 24239930 DOI: 10.1016/j.brainres.2013.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 01/21/2023]
Abstract
During aging, estrogen production and circulating levels of estrogen are markedly decreased in females. Although several differences exist in the process of reproductive aging between women and female rats, the results of many studies suggest that the female rat, especially the middle-aged or aged ovariectomized female, is an important animal model of hormone loss in women. In target tissues including the brain, the actions of estrogen are mediated mainly via the alpha and beta subtypes of the estrogen receptor (ER-α and ER-β). Estrogen treatment is known to change the expression of ER-α mRNA and protein in specific regions of the brain in middle-aged female rodents. In contrast, we do not know if estrogen regulates the expression of ER-β in the brain at this stage of life. In the present study, we performed in situ hybridization on brain sections of ovariectomized and estrogen-treated middle-aged female rats to reveal the effects of estrogen on the expression of ER-β throughout the brain. Our results showed that estrogen treatment decreased the number of ER-β mRNA-positive cells in the mitral cell and external plexiform layers of the olfactory bulb, central amygdaloid nucleus, medial geniculate nucleus, posterior hypothalamic nucleus, suprachiasmatic nucleus, and reticular part of the substantia nigra. As compared to the results of previous studies of young females, our data revealed that the regions in which expression of ER-β mRNA expression is affected by estrogen differ in middle age. These results suggest that the effects of estrogen on ER-β expression change with age.
Collapse
|
12
|
17β-Estradiol alters the response of subfornical organ neurons that project to supraoptic nucleus to plasma angiotensin II and hypernatremia. Brain Res 2013; 1526:54-64. [PMID: 23830850 DOI: 10.1016/j.brainres.2013.06.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/21/2013] [Accepted: 06/26/2013] [Indexed: 12/26/2022]
Abstract
This study was done in urethane anesthetized, ovariectomized (OVX) female rats that were either implanted or not implanted with silastic capsules containing17β-estradiol (E2) to investigate the effect of systemic changes in E2 on the discharge rate of subfornical organ (SFO) neurons that projected to supraoptic nucleus (SON) and responded to changes in plasma levels of angiotensin II (ANG II) or hypernatremia. Extracellular single unit recordings were made from 146 histologically verified single units in SFO. Intra-carotid infusions of ANG II excited ~57% of these neurons, whereas ~23% were excited by hypertonic NaCl. Basal discharge rate of neurons excited by ANG II or hypertonic NaCl was significantly lower in OVX+E2 rats compared to OVX only animals. The response of SFO neurons antidromically activated by SON stimulation to intra-carotid injections of ANG II or hypertonic NaCl was greater in the OVX only compared to the OVX+E2 rats. Intra-carotid injections of E2 in either group attenuated not only the basal discharge of these neurons, but also their response to ANG II or hypertonic NaCl. In all cases this inhibitory effect of E2 was blocked by an intra-carotid injection of the E2 receptor antagonist ICI-182780, although ICI-182780 did not alter the neuron's response to ANG II or hypertonic NaCl. Additionally, ICI-182780 in the OVX+E2 animals significantly raised the basal discharge of SFO neurons and their response to ANG II or hypertonic NaCl. These data indicate that E2 alters the response of SFO neurons to ANG II or NaCl that project to SON, and suggest that E2 functions in the female to regulate neurohypophyseal function in response to circulating ANG II and plasma hypernatremia.
Collapse
|
13
|
Kaliyamurthi V, Thanigavelan V, Rajamanickam GV. Effects of diet-induced hypercholesterolemia on amyloid accumulation in ovariectomized mice. J Biosci 2013; 37:1017-27. [PMID: 23151792 DOI: 10.1007/s12038-012-9262-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A central hypothesis in the study of Alzheimer's disease (AD) is the accumulation and aggregation of beta-amyloid peptide (A beta). Recent epidemiological studies suggest that patients with elevated cholesterol and decreased estrogen levels are more susceptible to AD through A beta accumulation. To test the above hypothesis, we used ovariectomized with diet-induced hypercholesterolemia (OVX) and hypercholesterolemia (HCL) diet alone mouse models. HPLC analysis reveals the presence of beta amyloid in the OVX and HCL mice brain. Congo red staining analysis revealed the extent of amyloid deposition in OVX and hypercholesterolemia mice brain. Overall, A beta levels were higher in OVX mice than in HCL. Secondly, estrogen receptors alpha (ER alpha) were assessed by immunohistochemistry and this suggested that there was a decreased expression of ER alpha in OVX animals when compared to hypercholesterolemic animals. A beta was quantified by Western blot and ELISA analysis. Overall, A beta levels were higher in OVX mice than in HCL mice. Our experimental results suggested that OVX animals were more susceptible to AD with significant increase in A beta peptide.
Collapse
Affiliation(s)
- V Kaliyamurthi
- Department of Bio-Organic and Neurochemistry Laboratory, Central Leather Research Institute, Chennai 600 020, India.
| | | | | |
Collapse
|
14
|
Demonstration of estrogen receptor α protein in glutamatergic (vesicular glutamate transporter 2 immunoreactive) neurons of the female rat hypothalamus and amygdala using double-label immunocytochemistry. Exp Brain Res 2013; 226:595-602. [DOI: 10.1007/s00221-013-3474-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/28/2013] [Indexed: 11/25/2022]
|
15
|
Nedungadi TP, Briski KP. Site-specific effects of intracranial estradiol administration on recurrent insulin-induced hypoglycemia in the ovariectomized female rat. Neuroendocrinology 2012; 96:311-23. [PMID: 22572755 DOI: 10.1159/000338407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/22/2012] [Indexed: 01/08/2023]
Abstract
Clinical and experimental studies reveal gender differences in susceptibility to dampening effects of precedent hypoglycemia on recurrent insulin-induced hypoglycemia (RIIH). Recent studies implicate the ovarian steroid, estradiol, in the regulation of RIIH, since systemic replacement of this hormone at basal estrous cycle levels maintains glucose profiles during serial insulin dosing and prevents RIIH-associated reductions in neuronal activation in key metabolic structures in the ovariectomized female rat brain. The present study investigated the hypothesis that these effects are achieved, in part, by estrogenic action within the central nervous system, including glucoregulatory structures characterized by high estrogen receptor (ER) expression. Initial experiments evaluated the impact of global intracranial administration of estradiol on RIIH. Ovariectomized rats were treated by continuous infusion of graded doses of 17β-estradiol-3-benzoate (EB) or vehicle into the lateral ventricle (LV), and injected subcutaneously with 1 or 4 doses of the intermediate-release insulin, Humulin N (HN), 1 dose per day. Animals infused with 5 or 10 µg EB/day exhibited uniform glycemic responses to 1 versus 4 doses of insulin, whereas rescue from hypoglycemia was delayed during repetitive HN injection of rats infused with either vehicle or 1 µg EB/day. Recovery from both single and multiple bouts of hypoglycemia was more rapid in rats infused with the higher EB doses, compared to other groups. Mapping of ERα immunoreactivity in animals treated by LV infusion of EB revealed variable nuclear staining in ER-expressing metabolic loci typified by estrogen-dependent sustenance of neuronal reactivity to hypoglycemia, with highest levels of ERα immunoreactivity observed in the arcuate (ARH) and ventromedial (VMH) hypothalamic nuclei, and moderate labeling of the caudal hindbrain dorsal vagal complex. EB delivery to the caudal hindbrain via the caudal fourth ventricle resulted in dose-dependent effects on RIIH, since glycemic profiles were either unchanged or diminished relative to acute NH-induced hypoglycemia, in high versus low EB-treated animals, respectively. Bilateral administration of 1.0 µg EB into the ARH or VMH elicited disparate effects on acute and chronic HN-induced hypoglycemia. Intra-VMH EB delayed recovery from both acute and chronic hypoglycemia, compared to non-estradiol-treated controls. In contrast, neither that dose nor a 10-fold lower dosage of EB delivered to the ARH modified acute HN-induced hypoglycemia, but RIIH was either attenuated or enhanced, respectively, in animals treated by intra-ARH delivery of 1.0 versus 0.1 µg EB, respectively. These results suggest that whole brain exposure to elevated estradiol may promote outflow that truncates hypoglycemia and maintains glucose profiles during RIIH, whereas actions of relatively low hormone levels on the central nervous system may result in adaptive adjustments that result in lower blood glucose levels during recurring versus acute hypoglycemia. The data also imply that, at a given concentration, estrogens may exert site-specific effects on acute and chronic HN-induced hypoglycemia. Further research is needed to identify the cellular substrates and physiological mechanisms that mediate caudal hindbrain-, ARH-, and VMH-specific actions of estradiol on acute and chronic hypoglycemia.
Collapse
Affiliation(s)
- T Prashant Nedungadi
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, La 71201, USA
| | | |
Collapse
|
16
|
Al Sweidi S, Sánchez MG, Bourque M, Morissette M, Dluzen D, Di Paolo T. Oestrogen receptors and signalling pathways: implications for neuroprotective effects of sex steroids in Parkinson's disease. J Neuroendocrinol 2012; 24:48-61. [PMID: 21790809 DOI: 10.1111/j.1365-2826.2011.02193.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder with a higher incidence in the male population. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD, 17β-oestradiol but not androgens were shown to protect dopamine (DA) neurones. We report that oestrogen receptors (ER)α and β distinctly contribute to neuroprotection against MPTP toxicity, as revealed by examining the membrane DA transporter (DAT), the vesicular monoamine transporter 2 (VMAT2) and tyrosine hyroxylase in ER wild-type (WT) and knockout (ERKO) C57Bl/6 male mice. Intact ERKOβ mice had lower levels of striatal DAT and VMAT2, whereas ERKOα mice were the most sensitive to MPTP toxicity compared to WT and ERKOβ mice and had the highest levels of plasma androgens. In both ERKO mice groups, treatment with 17β-oestradiol did not provide neuroprotection against MPTP, despite elevated plasma 17β-oestradiol levels. Next, the recently described membrane G protein-coupled oestrogen receptor (GPER1) was examined in female Macaca fascicularis monkeys and mice. GPER1 levels were increased in the caudate nucleus and the putamen of MPTP-monkeys and in the male mouse striatum lesioned with methamphetamine or MPTP. Moreover, neuroprotective mechanisms in response to oestrogens transmit via Akt/glycogen synthase kinase-3 (GSK3) signalling. The intact and lesioned striata of 17β-oestradiol treated monkeys, similar to that of mice, had increased levels of pAkt (Ser 473)/βIII-tubulin, pGSK3 (Ser 9)/βIII-tubulin and Akt/βIII-tubulin. Hence, ERα, ERβ and GPER1 activation by oestrogens is imperative in the modulation of ER signalling and serves as a basis for evaluating nigrostriatal neuroprotection.
Collapse
Affiliation(s)
- S Al Sweidi
- Molecular Endocrinology and Genomic Research Center, CHUQ (CHUL), Quebec City, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Hammond R, Nelson D, Gibbs R. GPR30 co-localizes with cholinergic neurons in the basal forebrain and enhances potassium-stimulated acetylcholine release in the hippocampus. Psychoneuroendocrinology 2011; 36:182-92. [PMID: 20696528 PMCID: PMC2994977 DOI: 10.1016/j.psyneuen.2010.07.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/04/2010] [Accepted: 07/06/2010] [Indexed: 11/26/2022]
Abstract
GPR30 is a novel, membrane-bound, G-protein coupled estrogen receptor (Filardo et al., 2002; Prossnitz et al., 2008). We hypothesize that GPR30 may mediate effects of estradiol (E2) on basal forebrain cholinergic neurons and cognitive performance. Recently we showed that G-1, a selective GPR30 agonist, enhances the rate of acquisition on a delayed matching-to-position (DMP) T-maze task (Hammond et al., 2009). In the present study, we examined the distribution of GPR30 in the rat forebrain, and the effects of G-1 on potassium-stimulated acetylcholine release in the hippocampus. GPR30-like immunoreactivity was detected in many regions of the forebrain including the hippocampus, frontal cortex, medial septum/diagonal band of Broca, nucleus basalis magnocellularis and striatum. GPR30 mRNA also was detected, with higher levels in the hippocampus and cortex than in the septum and striatum. Co-localization studies revealed that the majority (63-99%) of cholinergic neurons in the forebrain expressed GPR30-like immunoreactivity. A far lower percentage (0.4-42%) of GABAergic (parvalbumin-containing) cells also contained GPR30. Sustained administration of either G-1 or E2 (5 μg/day) to ovariectomized rats produced a nearly 3-fold increase in potassium-stimulated acetylcholine release in the hippocampus relative to vehicle-treated controls. These data demonstrate that GPR30 is expressed by cholinergic neurons in the basal forebrain, and suggest that activation of GPR30 enhances cholinergic function in the hippocampus similar to E2. This may account for the effects of G-1 on DMP acquisition previously reported.
Collapse
Affiliation(s)
- R. Hammond
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| | - D. Nelson
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| | - R.B. Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| |
Collapse
|
18
|
Mitsushima D. Sex differences in the septo-hippocampal cholinergic system in rats: behavioral consequences. Curr Top Behav Neurosci 2011; 8:57-71. [PMID: 21769723 DOI: 10.1007/7854_2010_95] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The hippocampus is processing temporal and spatial information in particular contexts or episodes. Using freely moving rats, we monitored extracellular levels of acetylcholine (ACh), a critical neurotransmitter activating hippocampal circuits. We found that the ACh release in the dorsal hippocampus increases during the period of learning or exploration, exhibiting a sex-specific 24-h release profile. Moreover, neonatal increase in circulating androgen not only androgenizes behavioral and hormonal features, but also produces male-type ACh release profile after the development. The results suggest neonatal sexual differentiation of septo-hippocampal cholinergic system. Environmental conditions (such as stress, housing or food) of animals further affected the ACh release.Although recent advances of neuroscience successfully revealed molecular/cellular mechanism of learning and memory, most research were performed using male animals at specific time period. Sex-specific or time-dependent hippocampal functions are still largely unknown.
Collapse
Affiliation(s)
- Dai Mitsushima
- Department of Physiology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawaku, Yokohama, 236-0004, Japan.
| |
Collapse
|
19
|
Nakamura NH, Akiyama K, Naito T. Quantitative gene-expression analysis of the ligand-receptor system for classical neurotransmitters and neuropeptides in hippocampal CA1, CA3, and dentate gyrus. Hippocampus 2010; 21:1228-39. [PMID: 20623762 DOI: 10.1002/hipo.20830] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2010] [Indexed: 11/08/2022]
Abstract
We have shown quantitative expression levels of genes coding for the "ligand-receptor system" for classical neurotransmitters and neuropeptides in hippocampal subregions CA1, CA3, and dentate gyrus (DG). Using a combination of DNA microarray and quantitative PCR methods, we found that the three subregions have relatively similar expression patterns of ionotropic receptors for classical neurotransmitters. Expression of ionotropic receptors for glutamate and GABA represents more than 90% of all ionotropic receptors for classical neurotransmitters, and the expression ratio between ionotropic receptors for glutamate and GABA is constant (1.2:1-1.6:1) in each subregion. Meanwhile, the three subregions have different expression patterns of neuropeptide receptors. Furthermore, there are asymmetric expression patterns between neuropeptides and their receptors. Expression of Cck, Npy, Sst, and Penk1 represents 90% of neuropeptides derived locally in the hippocampus, whereas expression of these four neuropeptide receptors accounts for 50% of G protein-coupled receptors for neuropeptides. We propose that CA1, CA3, and DG have different modalities based on the ligand-receptor system, particularly the "neuropeptidergic system." Our quantitative gene-expression analysis provides fundamental data to support functional differences between the three hippocampal subregions regarding ligand-receptor interactions.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology, Japan.
| | | | | |
Collapse
|
20
|
Ishunina TA. The α and β estrogen receptors in the human hypothalamus and basal forebrain in Alzheimer’s disease. NEUROCHEM J+ 2010. [DOI: 10.1134/s1819712410010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Mitsushima D. Sex Steroids and Acetylcholine Release in the Hippocampus. HORMONES OF THE LIMBIC SYSTEM 2010; 82:263-77. [DOI: 10.1016/s0083-6729(10)82014-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Hammond R, Mauk R, Ninaci D, Nelson D, Gibbs RB. Chronic treatment with estrogen receptor agonists restores acquisition of a spatial learning task in young ovariectomized rats. Horm Behav 2009; 56:309-14. [PMID: 19560466 PMCID: PMC2772993 DOI: 10.1016/j.yhbeh.2009.06.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 11/16/2022]
Abstract
Previous work has shown that continuous estradiol replacement in young ovariectomized rats enhances acquisition of a delayed matching-to-position (DMP) T-maze task over that of ovariectomized controls. The mechanism by which estradiol confers this benefit has not been fully elucidated. This study examined the role of selective estrogen receptor agonists of ERalpha, ERbeta, and GPR30 in the enhancement of spatial learning on a DMP task by comparing continuous estradiol replacement with continuous administration of PPT (an agonist of ERalpha), DPN (an agonist of ERbeta), or G-1 (an agonist of GPR30) relative to gonadally intact and ovariectomized vehicle-treated controls. It was found that ovariectomy impaired acquisition on this task, whereas all ER selective agonists restored the rate of acquisition to that of gonadally intact controls. These data suggest that estradiol can work through any of several estrogen receptors to enhance the rate of acquisition on this task.
Collapse
Affiliation(s)
- R. Hammond
- University of Pittsburgh Department of Pharmaceutical Sciences, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| | - R. Mauk
- University of Pittsburgh Department of Pharmaceutical Sciences, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| | - D. Ninaci
- University of Pittsburgh Department of Pharmaceutical Sciences, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| | - D. Nelson
- University of Pittsburgh Department of Pharmaceutical Sciences, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| | - RB Gibbs
- University of Pittsburgh Department of Pharmaceutical Sciences, 1009 Salk Hall, Pittsburgh, PA 15261, TEL: 412-383-6877,
| |
Collapse
|
23
|
Mitsushima D, Takase K, Funabashi T, Kimura F. Gonadal steroids maintain 24 h acetylcholine release in the hippocampus: organizational and activational effects in behaving rats. J Neurosci 2009; 29:3808-15. [PMID: 19321777 PMCID: PMC6665029 DOI: 10.1523/jneurosci.5301-08.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/05/2009] [Accepted: 02/17/2009] [Indexed: 11/21/2022] Open
Abstract
Extracellular acetylcholine (ACh) levels in the dorsal hippocampus increases during learning or exploration, exhibiting a sex-specific 24 h release profile. To examine the activational effect of gonadal steroid hormones on the sex-specific ACh levels and its correlation with spontaneous locomotor activity, we observed these parameters simultaneously for 24 h. Gonadectomy severely attenuated the ACh levels, whereas the testosterone replacement in gonadectomized males or 17beta-estradiol replacement in gonadectomized females successfully restored the levels. 17beta-Estradiol-priming in gonadectomized males could not restore the ACh levels, and testosterone replacement in gonadectomized females failed to raise ACh levels to those seen in testosterone-primed gonadectomized males, revealing a sex-specific activational effect. Spontaneous locomotor activity was not changed in males by gonadectomy or the replacement of gonadal steroids, but 17beta-estradiol enhanced the activity in gonadectomized females. Gonadectomy severely reduced the correlation between ACh release and activity levels, but the testosterone replacement in gonadectomized males or 17beta-estradiol replacement in gonadectomized females successfully restored it. To further analyze the sex-specific effect of gonadal steroids, we examined the organizational effect of gonadal steroids on the ACh release in female rats. Neonatal testosterone or 17beta-estradiol treatment not only increased the ACh levels but also altered them to resemble male-specific ACh release properties without affecting levels of spontaneous locomotor activity. We conclude that the activational effects of gonadal steroids maintaining the ACh levels and the high correlation with spontaneous locomotor activity are sex-specific, and that the organizational effects of gonadal steroids suggest estrogen receptor-mediated masculinization of the septo-hippocampal cholinergic system.
Collapse
Affiliation(s)
- Dai Mitsushima
- Department of Physiology, Yokohama City University Graduate School of Medicine, 236-0004 Yokohama, Japan.
| | | | | | | |
Collapse
|
24
|
Mitsushima D, Takase K, Takahashi T, Kimura F. Activational and organisational effects of gonadal steroids on sex-specific acetylcholine release in the dorsal hippocampus. J Neuroendocrinol 2009; 21:400-5. [PMID: 19356199 DOI: 10.1111/j.1365-2826.2009.01848.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetylcholine (ACh) release in the dorsal hippocampus increases during stress, exploration or learning, exhibiting sex-specific 24-h release profile. We review the role of gonadal steroids on the ACh release in the dorsal hippocampus. In our studies, we found that male rats showed higher extracellular ACh levels than females, but gonadectomy decreased ACh levels in both sexes of rats and subsequently eliminated the sex difference. To examine the sex difference under comparable gonadal steroid levels, we implanted steroid capsules after gonadectomy. Oestradiol supplementation maintained circulating oestradiol to the levels in proestrous female rats, whereas testosterone capsules maintained circulating testosterone to the levels similar to intact male rats. Under comparable gonadal steroids levels, ACh levels were sex-specific. Testosterone replacement in orchidectomised rats clearly restored ACh levels, which were greater than ovariectomised testosterone-primed rats. Similarly, oestradiol replacement in ovariectomised rats successfully restored ACh levels, which were higher than orchidectomised oestradiol-primed rats. These results suggest sex-specific activational effects of gonadal steroids on ACh release. To further examine the organisational effect, female pups were neonatally treated with oil, testosterone, oestradiol, or dihydrotestosterone. These rats were bilaterally ovariectomised and a testosterone capsule was implanted at postnatal week 8. Neonatal treatment of either testosterone or oestradiol clearly increased ACh levels, whereas neonatal dihydrotestosterone treatment failed to change levels. These results suggest that: (i) gonadal steroids maintain the sex-specific ACh release in the dorsal hippocampus and (ii) neonatal activation of oestrogen receptors is sufficient to mediate masculinisation of the septo-hippocampal cholinergic system.
Collapse
Affiliation(s)
- D Mitsushima
- Department of Physiology, Yokohama City University, Graduate School of Medicine, Yokohama, Japan.
| | | | | | | |
Collapse
|
25
|
Sex-specific 24-h acetylcholine release profile in the medial prefrontal cortex: Simultaneous measurement of spontaneous locomotor activity in behaving rats. Neuroscience 2009; 159:7-15. [DOI: 10.1016/j.neuroscience.2008.12.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022]
|
26
|
Zhao C, Fujinaga R, Yanai A, Kokubu K, Takeshita Y, Watanabe Y, Shinoda K. Sex-steroidal regulation of aromatase mRNA expression in adult male rat brain: a quantitative non-radioactive in situ hybridization study. Cell Tissue Res 2008; 332:381-91. [DOI: 10.1007/s00441-008-0606-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|
27
|
Mitsushima D, Takase K, Funabashi T, Kimura F. Gonadal steroid hormones maintain the stress-induced acetylcholine release in the hippocampus: simultaneous measurements of the extracellular acetylcholine and serum corticosterone levels in the same subjects. Endocrinology 2008; 149:802-11. [PMID: 17962346 DOI: 10.1210/en.2007-0827] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To examine the role of gonadal steroid hormones in the stress responses of acetylcholine (ACh) levels in the hippocampus and serum corticosterone levels, we observed these parameters simultaneously in intact, gonadectomized, or gonadectomized steroid-primed rats. In both sexes of rats, neither gonadectomy nor the replacement of gonadal steroid hormone affected the baseline levels of ACh. However, gonadectomy severely attenuated the stress response of ACh, whereas the replacement of corresponding gonadal hormone successfully restored the response to intact levels. The gonadal hormones affected the serum corticosterone levels in a different manner; the testosterone replacement in orchidectomized rats suppressed the baseline and the stress response of corticosterone levels, whereas the 17beta-estradiol replacement in ovariectomized rats increased the levels. We further found that letrozole or flutamide administration in intact male rats attenuated the stress response of ACh. In addition, flutamide treatment increased the baseline levels of corticosterone, whereas letrozole treatment attenuated the stress response of corticosterone. Moreover, we found a low positive correlation between the ACh levels and corticosterone levels, depending on the presence of gonadal steroid hormone. We conclude that: 1) gonadal steroid hormones maintain the stress response of ACh levels in the hippocampus, 2) the gonadal steroid hormone independently regulates the stress response of ACh in the hippocampus and serum corticosterone, and 3) the sex-specific action of gonadal hormone on the cholinergic stress response may suggest a neonatal sexual differentiation of the septohippocampal cholinergic system in rats.
Collapse
Affiliation(s)
- Dai Mitsushima
- Department of Physiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | | | | | | |
Collapse
|
28
|
Yamamoto H, Kitawaki J, Kikuchi N, Okubo T, Iwasa K, Kawata M, Honjo H. Effects of estrogens on cholinergic neurons in the rat basal nucleus. J Steroid Biochem Mol Biol 2007; 107:70-9. [PMID: 17651965 DOI: 10.1016/j.jsbmb.2007.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
Estrogen replacement in postmenopausal women may help prevent or delay development of Alzheimer's disease. Because loss of basal forebrain cholinergic neurons with reductions in choline acetyltransferase (ChAT) concentration are associated with Alzheimer's disease, we investigated the effect of estradiol (E(2)) and J 861, a non-feminizing estrogen, on cholinergic neurons in the basal forebrain. Ovariectomized rats received E(2), J 861 or vehicle, and basal forebrain sections through the substantia innominata, medial septum, and nucleus of the diagonal band were immunostained for ChAT. ChAT-immunoreactive cells in the basal forebrain were significantly reduced in the ovariectomized rats compared to intact rats, but those ovariectomized rats receiving estrogen replacement with E(2) and J 861 had near normal levels of ChAT-positive neurons. While retrograde tracing experiments with fluorogold injected into the prefrontal cortex showed no significant differences in the number of fluorogold-labeled cells among the groups, ChAT-immunoreactive cells and double-labeled cells were significantly lower in OVX rats than in intact and E(2) rats. Some substantia innominata cells in the J 861 rats were ChAT/estrogen receptor alpha-positive. These results suggest that E(2) and J 861 have positive effects on cholinergic neurons that project from the basal nucleus to the forebrain cortex.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Kovács EG, Szalay F, Rácz B, Halasy K. Chronic fasting-induced changes of neuropeptide Y immunoreactivity in the lateral septum of intact and ovariectomized female rats. Brain Res 2007; 1153:103-10. [PMID: 17466286 DOI: 10.1016/j.brainres.2007.03.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 03/13/2007] [Accepted: 03/23/2007] [Indexed: 12/29/2022]
Abstract
The effect of 40% food deprivation for 1 week on the immunohistochemically detectable amount of neuropeptide Y (NPY) was studied in the lateral septum (LS) of intact and ovariectomized (OVX) female rats. Animals were either fed ad libitum or 40% food-deprived. Densitometric analysis of immunostained material showed a significant decrease in NPY-immunoreactivity (NPY-IR) in OVX rats compared to the control group. Food deprivation increased the density of punctate NPY-IR profiles in both intact and OVX animals, however, the density in food-deprived OVX animals was increased compared to baseline but remained reduced compared to intact rats. Our study indicates that the lack of gonadal hormones - most likely estrogen - results in a decrease in the density of NPY-IR axonal fibers within the LS, while food deprivation induced considerable elevation in NPY density. Food restriction-induced changes in the density of NPY-containing neural elements suggest that the LS may play a crucial role in the regulation of food intake and energy balance, in concert with the relevant hypothalamic areas.
Collapse
Affiliation(s)
- Eva G Kovács
- Department of Anatomy and Histology, Faculty of Veterinary Science, Szent István University, Budapest, Hungary.
| | | | | | | |
Collapse
|
30
|
Nakamura NH, Akama KT, Yuen GS, Mcewen BS. Thinking outside the pyramidal cell: unexplored contributions of interneurons and neuropeptide Y to estrogen-induced synapse formation in the hippocampus. Rev Neurosci 2007; 18:1-13. [PMID: 17405448 DOI: 10.1515/revneuro.2007.18.1.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Since the first finding that 17beta-estradiol (E) can regulate CA1 pyramidal cell synapse formation, subsequent studies have explored many potential E-dependent mechanisms occurring within CA1 pyramidal cells. Fewer studies have focused on E-dependent processes outside of the pyramidal cell that may influence events activity of the pyramidal cells. This review considers hippocampal interneurons, which can potently regulate the excitability of simultaneously firing pyramidal cells. In particular, we discuss neuropeptide Y (NPY) expression by these interneurons because our published findings show that NPY expression is increased by E in a subset of interneurons which coincidentally exhibit E-regulated increase in GABA synthesis and are uniquely situated anatomically such that they may regulate synaptic activity. Here we review the role of different phenotypes of CA1 interneurons, and we propose a model in which E-stimulated NPY gene expression and the release of NPY by interneurons inhibits glutamate release presynaptically and alters glutamate-dependent synaptic events in the rat hippocampus during adulthood.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | | | | | | |
Collapse
|
31
|
Yamaguchi-Shima N, Yuri K. Age-related changes in the expression of ER-beta mRNA in the female rat brain. Brain Res 2007; 1155:34-41. [PMID: 17490623 DOI: 10.1016/j.brainres.2007.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 03/30/2007] [Accepted: 04/09/2007] [Indexed: 12/01/2022]
Abstract
Estrogen is important for numerous physiological actions, most of which are mediated via the nuclear estrogen receptors (ERs), ER-alpha and ER-beta, which modulate the transcription of target genes following estrogen binding. Estrogen functions change with age. In the present study, to reveal the effects of normal aging on ER-beta expression in the brain, we examined ER-beta expression at the transcriptional level using young (10 weeks), middle-aged (12 months) and old (24 months) intact female rats. In situ hybridization using a digoxigenin-labeled RNA probe was used to assess the number of ER-beta mRNA-positive cells in each region in whole brain. ER-beta mRNA-positive cells were detected throughout the brain in young female rats and were reduced in number in the olfactory bulb, cerebral cortex, hippocampus, accumbens nucleus, part of the amygdala and raphe nucleus of middle-aged rats but did not decline further in number in aged animals. By contrast, the number of ER-beta mRNA-positive cells in the hippocampus, caudate putamen, claustrum, accumbens nucleus, substantia nigra and cerebellum was not significantly different between young and middle-aged rats but was decreased in old rats. These results indicate that the expression of ER-beta mRNA in the female rat brain is differentially modulated during aging and that the changes are region specific.
Collapse
Affiliation(s)
- Naoko Yamaguchi-Shima
- Department of Neurobiology and Anatomy, Kochi Medical School, Kochi University, Kohasu, Kochi, Japan
| | | |
Collapse
|
32
|
Takase K, Mitsushima D, Funabashi T, Kimura F. Sex difference in the 24-h acetylcholine release profile in the premotor/supplementary motor area of behaving rats. Brain Res 2007; 1154:105-15. [PMID: 17477908 DOI: 10.1016/j.brainres.2007.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 03/31/2007] [Accepted: 04/02/2007] [Indexed: 11/27/2022]
Abstract
The sex differences in various motor functions suggest a sex-specific neural basis in the nonprimary or primary motor area. To examine the sex difference in the 24-h profile of acetylcholine (ACh) release in the rostral frontal cortex area 2 (rFr2), which is equivalent to the premotor/supplementary motor area in primates, we performed an in vivo microdialysis study in both sexes of rats fed pelleted or powdered diet. The dialysate was automatically collected from the rFr2 for 24 h under freely moving conditions. Moreover, the number of cholinergic neurons in the nucleus basalis magnocellularis (NBM) was examined. Further, to confirm the relation between ACh release in the rFr2 and motor function, the spontaneous locomotor activity was monitored for 24 h. Both sexes showed a distinct 24-h rhythm of ACh release, which was high during the dark phase and low during the light phase. Female rats, however, showed a greater ACh release and more cholinergic neurons in the NBM than male rats. Similarly, spontaneous locomotor activity also showed a 24-h rhythm, which paralleled the changes in ACh release in both sexes, and these changes were again greater in female rats than in male rats. In addition, feeding with powdered diet significantly increased the ACh release and spontaneous locomotor activity. The present study is the first to report the sex difference in the 24-h profile of ACh release in the rFr2 in rats. The sex specific ACh release in the rFr2 may partly contribute to the sex difference in motor function in rats.
Collapse
Affiliation(s)
- Kenkichi Takase
- Department of Neuroendocrinology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | |
Collapse
|
33
|
Hua X, Lei M, Zhang Y, Ding J, Han Q, Hu G, Xiao M. Long-term d-galactose injection combined with ovariectomy serves as a new rodent model for Alzheimer's disease. Life Sci 2007; 80:1897-905. [PMID: 17391708 DOI: 10.1016/j.lfs.2007.02.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 12/22/2006] [Accepted: 02/17/2007] [Indexed: 10/23/2022]
Abstract
Estrogen deprivation and oxidative stress have been well established as two main factors closely related to the pathological development of Alzheimer's disease (AD). The aim of the present study is to investigate whether these two components act synergistically to accelerate the pathophysiological course of AD. To do this, we examined the effect of long-term intraperitoneal administration of D-galactose (D-gal) into ovariectomized (OVX) rats. Six weeks later, the OVX and d-gal-injected rats exhibited a higher degree of cognitive and memory impairment. This was accompanied by cholinergic neuronal loss in the forebrain and synaptic degeneration in the hippocampus and cerebral cortex which was not observed in intact controls, animals receiving injections of d-gal alone, untreated OVX animals or OVX animals receiving both D-gal and 17-beta estradiol. The typical histopathological alterations associated with AD, including intracellular deposition of amyloid beta peptide and the appearance of intracellular neurofibrillary tangles and nuclear granulovacuolar bodies, were observed in the hippocampus of OVX and D-gal-injected rats but not in other control groups. These results strongly suggest that estrogen deprivation and oxidative stress behave synergistically to enhance the development and progression of AD. Long-term OVX combined with D-gal injection serves as an ideal AD rodent model capable of mimicking pathological, neurochemical and behavioral alterations in AD.
Collapse
Affiliation(s)
- Xiangdong Hua
- Department of Human Anatomy, Histology and Embryology, Institute of Neurosciences, Nanjing Medical University, Nanjing, 210029 China
| | | | | | | | | | | | | |
Collapse
|
34
|
Chakraborti A, Gulati K, Ray A. Estrogen Actions on Brain and Behavior: Recent Insights and Future Challenges. Rev Neurosci 2007; 18:395-416. [DOI: 10.1515/revneuro.2007.18.5.395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Petersen SL, Krishnan S, Hudgens ED. The aryl hydrocarbon receptor pathway and sexual differentiation of neuroendocrine functions. Endocrinology 2006; 147:S33-42. [PMID: 16690800 DOI: 10.1210/en.2005-1157] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Historically, much of the research on health effects of environmental pollutants focused on ascertaining whether compounds were carcinogenic. More recent findings show that environmental contaminants also exert insidious effects by disrupting hormone action. Of particular concern are findings that developmental exposure to dioxins, chemicals that act through the aryl hydrocarbon receptor pathway, permanently alters sexually differentiated neural functions in animal models. In this review, we focus on mechanisms through which dioxins disrupt neuroendocrine development as exemplified by effects on a brain region critical for ovulation in rodents. We also provide evidence that dysregulation of GABAergic neural development may be a general mechanism underlying a broad spectrum of effects seen after perinatal dioxin exposure.
Collapse
Affiliation(s)
- Sandra L Petersen
- Department of Biology, University of Massachusetts-Amherst, Amherst, Massachusetts 01003 USA.
| | | | | |
Collapse
|
36
|
Ziegler DR, Gallagher M. Spatial memory in middle-aged female rats: assessment of estrogen replacement after ovariectomy. Brain Res 2005; 1052:163-73. [PMID: 16023091 DOI: 10.1016/j.brainres.2005.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Revised: 05/31/2005] [Accepted: 06/05/2005] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that estrogen influences diverse aspects of neuronal function and morphology and modulates acquisition of various memory tasks in young adult female rodents. It is not clear whether estrogen is critical for optimal memory function in middle-aged female animals, i.e. when cyclicity gradually declines. We trained young adult (5 months) and older (10 months) female Long-Evans rats on a win-shift (delay) 12-arm radial maze (7 arms blocked pre-delay). Rats were preoperatively trained to criterion (< or =2 errors/trial for 3 days) with no delay then with a 60 s delay. All rats were ovariectomized when the age groups were 9 (Y) and 14 months (MA), respectively. Following recovery and retraining to criterion, each rat underwent consecutive treatment cycles with vehicle (Oil) or 17-beta-estradiol benzoate (E). Each 6-day acute treatment cycle, modeled after protocols previously shown to induce morphological and electrophysiological plasticity in the hippocampus at 24-48 h after estrogen injection, consisted of two consecutive daily injections of 10 microg E or Oil (0.1 ml subcutaneously) on Days 1-2 (Oil-Oil or E-E), testing on Days 3-4 at 60 s or 6 h delays, with Days 5-6 comprising of washout days. Each rat received a total of 4 treatment cycles, alternating between Oil and E cycles, in counterbalanced order. Estrogen treatment had no effect in either age group on pre-delay or post-delay errors at either 60 s or 6 h delays. The data indicate that the cyclic estrogen replacement regimen does not influence spatial memory function in young or middle-aged animals in the hippocampal-dependent appetitive radial maze task. Discussion of these unexpected results includes consideration of important experimental design factors that differ between our study and some previous reports, such as the extensive training and task experience our subject received prior to testing for estrogen effects.
Collapse
Affiliation(s)
- Dana R Ziegler
- Department Psychological and Brain Sciences, John Hopkins University, Baltimore, MD 21218, USA.
| | | |
Collapse
|
37
|
Kofler J, Hurn PD, Traystman RJ. SOD1 overexpression and female sex exhibit region-specific neuroprotection after global cerebral ischemia due to cardiac arrest. J Cereb Blood Flow Metab 2005; 25:1130-7. [PMID: 15843790 DOI: 10.1038/sj.jcbfm.9600119] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiac arrest is often associated with poor neurologic outcome since therapeutic options are limited. We tested the hypothesis that overexpression of CuZn superoxide dismutase (SOD+/-) is neuroprotective in a new murine model of cardiac arrest and cardiopulmonary resuscitation (CPR). Second, we investigated if female and male mice sustain similar injury and if sex-specific outcomes are altered by SOD overexpression. Neuronal injury was quantified 3 days after 8 mins of KCl-induced cardiac arrest by calculating the percentage of ischemic neurons for caudoputamen and hippocampal CA1 region. In rostral caudoputamen, less neuronal cell loss was found for SOD+/- mice (31%+/-22%) when compared with wild-type (WT) mice (47%+/-31%, P<0.05). Superoxide dismutase overexpression did not reduce injury in the caudal caudoputamen. No sex-linked protection was evident in either genotype in the caudoputamen. Female WT mice had less CA1 injury than male WT mice (26%+/-31% versus 54%+/-30%, P<0.05), whereas no sex difference was found in SOD+/- mice (female: 42%+/-29%; male: 37%+/-37%). Comparison of hippocampal injury between genotypes revealed no differences for either males or females. In conclusion, SOD1 overexpression and female sex were associated with significant neuroprotection in this murine cardiac arrest model. However, no additive neuroprotection was observed, and these beneficial effects were restricted to specific brain regions.
Collapse
Affiliation(s)
- Julia Kofler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | |
Collapse
|
38
|
Tanapat P, Hastings NB, Gould E. Ovarian steroids influence cell proliferation in the dentate gyrus of the adult female rat in a dose- and time-dependent manner. J Comp Neurol 2005; 481:252-65. [PMID: 15593136 DOI: 10.1002/cne.20385] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In previous work, we have demonstrated that cell proliferation in the adult hippocampal formation is regulated by estrogen under both natural and experimental conditions. To determine the extent to which this regulation is affected by the dose or schedule of hormone treatment, or progesterone administration, we examined the impact of different acute and chronic ovarian hormone replacement regimens on cell production using the S-phase marker bromodeoxyuridine. Additionally, we investigated the long-term impact of surgical ovarian hormone depletion on the capacity of estrogen to stimulate cell proliferation and the production of new cells that express either TuJ1 (a marker of neuronal phenotype) or glial fibrillary acidic protein (GFAP; a marker of astroglial phenotype). Acute treatment with a moderate, but not a low or a high, dose of estrogen rapidly increased cell proliferation in ovariectomized (OVX) animals, an effect that was reversed by the administration of progesterone. In contrast, OVX animals that were chronically replaced with either estrogen alone (continuous or cyclic) or estrogen plus progesterone (cyclic) did not exhibit an estrogen-induced increase in cell proliferation 3 weeks following the onset of hormone replacement. In animals that were subjected to a prolonged absence of ovarian hormones, acute treatment with the moderate dose of estrogen failed to stimulate cell proliferation, and a decrease in the number of new cells expressing a neuronal phenotype was evident. Collectively, these results indicate that a prolonged reduction in ovarian hormones results in 1) a diminished responsiveness to estrogen over time in this system and 2) a decrease in neuron production that is unlikely to be reversible by standard regimens of hormone replacement.
Collapse
Affiliation(s)
- Patima Tanapat
- Department of Psychology and Program in Neuroscience, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | |
Collapse
|
39
|
Nakamura NH, Rosell DR, Akama KT, McEwen BS. Estrogen and ovariectomy regulate mRNA and protein of glutamic acid decarboxylases and cation-chloride cotransporters in the adult rat hippocampus. Neuroendocrinology 2005; 80:308-23. [PMID: 15677881 DOI: 10.1159/000083657] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 10/28/2004] [Indexed: 12/22/2022]
Abstract
17beta-Estradiol spatiotemporally regulates the gamma-aminobutyric acid (GABAergic) tone in the adult hippocampus. However, the complex estrogenic effect on the GABAergic system is still unclear. In adult central nervous system (CNS) neurons, GABA can induce both inhibitory and excitatory actions, which are predominantly controlled by the cation-chloride cotransporters NKCC1 and KCC2. We therefore studied the estrogenic regulation of two glutamate decarboxylase (GAD) isoforms, GAD65 and GAD67, as well as NKCC1 and KCC2 in the adult female rat hippocampus by immunohistochemistry and in situ hybridization. First, we focused on the duration after ovariectomy (OVX) and its effects on GAD65 protein levels. The basal number of GAD65-immunoreactive cells decreased after long-term (10 days) OVX compared to short-term (3 days) OVX. We found that, only after long-term OVX but not after short-term OVX, estradiol increased the number of GAD65-immunoreactive cells in the CA1 pyramidal cell layer. Furthermore, estradiol did not alter the GAD65-immunoreactive cell population in any other CA1 subregion. Second, we therefore focused on long-term OVX and the estrogenic regulation of GAD and cation-chloride cotransporter mRNA levels. In the pyramidal cell layer, estradiol affected GAD65, GAD67 and NKCC1 mRNA levels, but not KCC2 mRNA levels. Both GAD65 and NKCC1 mRNA levels increased within 24 h after estradiol treatment, followed by a subsequent increase in GAD67 mRNA levels. These findings suggest that basal levels of estrogen might contribute to a balance between the excitatory and inhibitory synaptic transmission onto CA1 pyramidal cells by regulating perisomatic GAD and NKCC1 expression in the adult hippocampus.
Collapse
Affiliation(s)
- Nozomu H Nakamura
- Laboratory of Neuroendocrinology, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
40
|
Nakamura NH, McEwen BS. Changes in interneuronal phenotypes regulated by estradiol in the adult rat hippocampus: A potential role for neuropeptide Y. Neuroscience 2005; 136:357-69. [PMID: 16198490 DOI: 10.1016/j.neuroscience.2005.07.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/30/2005] [Accepted: 07/26/2005] [Indexed: 01/07/2023]
Abstract
Ovarian hormones regulate pyramidal cell synapse formation and excitability and interneuronal GABAergic tone in the CA1 region of the adult female rat hippocampus. The role of 17beta-estradiol in these effects is complex and appears to involve a subset of hippocampal interneurons, which express different calcium-binding protein and neuropeptide phenotypes and nuclear estrogen receptor alpha. We found that, in the hippocampus, nuclear estrogen receptor alpha-immunoreactive interneurons co-express neuropeptide Y, calbindin-D28k and calretinin but do not parvalbumin or cholecystokinin. Moreover, a proportion of neuropeptide Y-immunoreactive interneurons co-expresses calbindin-D28k and calretinin. This pattern is similar in the presence or absence of 17beta-estradiol treatment in ovariectomized rats. We then used immunohistochemistry and in situ hybridization to determine whether 17beta-estradiol treatment regulates expression of CA1 interneuronal phenotypic markers via nuclear estrogen receptor alpha activation. We found that 17beta-estradiol treatment of ovariectomized rats increased neuropeptide Y mRNA levels (25%) and the neuropeptide Y mRNA-associated grain density per cell (11%), as well as the number of neuropeptide Y-immunoreactive cells (11%), predominantly in the pyramidal cell layer (stratum pyramidale). Treatment with CI628, a selective estrogen response modulator that acts as an antagonist for nuclear estrogen receptor, blocked 17beta-estradiol-induced increase of neuropeptide Y mRNA levels. 17beta-Estradiol treatment did not alter the number of parvalbumin, calretinin, and cholecystokinin immunoreactive cells, nor mRNA levels for parvalbumin and cholecystokinin. Therefore, the present study has identified neuropeptide Y expression as the main interneuronal phenotype that co-expresses nuclear estrogen receptor alpha and shown that neuropeptide Y is responsive to 17beta-estradiol in CA1 pyramidal cell layer. We suggest that 17beta-estradiol may regulate neuropeptide Y expression mediated by nuclear estrogen receptor alpha-dependent activation in a subset of hippocampal interneurons, and we speculate that subsequent neuropeptide Y release may indirectly contribute to regulate glutamate-dependent neuronal activity in the adult rat hippocampus.
Collapse
Affiliation(s)
- N H Nakamura
- Laboratory of Neuroendocrinology, The Rockefeller University, Box 165, 1230 York Avenue, New York, NY 10021-6399, USA.
| | | |
Collapse
|
41
|
Takase K, Mitsushima D, Masuda J, Mogi K, Funabashi T, Endo Y, Kimura F. Feeding with powdered diet after weaning affects sex difference in acetylcholine release in the hippocampus in rats. Neuroscience 2005; 136:593-9. [PMID: 16226386 DOI: 10.1016/j.neuroscience.2005.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Accepted: 08/04/2005] [Indexed: 11/23/2022]
Abstract
We have reported in the past that female rats fed a powdered diet showed better spatial learning and memory functions than female rats a fed pelleted diet. In the present study, we examined the effects of feeding with powdered diet on acetylcholine release in the hippocampus in both sexes of rats. After weaning (3 weeks of age), rats were fed either standard pelleted diet or powdered diet, and after maturation (9-12 weeks of age), they were used in an in vivo microdialysis study, in which no eserine (a cholinesterase inhibitor) was added to the perfusate. The dialysate was collected from the dorsal hippocampus at 20-min intervals under freely moving conditions for more than 24 h. Acetylcholine in the dialysate was measured by high performance liquid chromatography. As we reported previously, the acetylcholine release showed a clear daily rhythm in both sexes, and males showed significantly greater acetylcholine release in the hippocampus than females in rats fed pelleted diet. Conversely, in rats fed powdered diet, no sex difference in the acetylcholine release was observed, since feeding with powdered diet significantly increased the acetylcholine release only in females. To further examine the number of cholinergic neurons in the medial septum and horizontal limb of the diagonal band of Broca, immunocytochemistry for choline acetyltransferase was performed in both sexes of rats fed either standard pelleted diet or powdered diet. However, neither sex nor feeding conditions affect the number of choline acetyltransferase immunoreactive cells in the areas. These results suggest that powdered diet after weaning enhances spontaneous acetylcholine release in the hippocampus in female rats without changes in the number of cholinergic neurons in the areas. It is possible that this effect of feeding contributes to improve the performance in spatial learning and memory functions in female rats fed powdered diet.
Collapse
Affiliation(s)
- K Takase
- Department of Neuroendocrinology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawaku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Hahn JD, Coen CW. Comparative study of the sources of neuronal projections to the site of gonadotrophin-releasing hormone perikarya and to the anteroventral periventricular nucleus in female rats. J Comp Neurol 2005; 494:190-214. [PMID: 16304687 DOI: 10.1002/cne.20803] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The rat ovulatory cycle is dependent on the preoptic region encompassing the gonadotrophin-releasing hormone (GnRH) perikarya and the anteroventral periventricular nucleus (AVPV). Retrograde tract tracing was used to identify and compare the sources of inputs to these sites in female rats. Within the telencephalon and diencephalon, the incidence of retrograde labelling from both sites was moderate to abundant in the ventral lateral septum, posteromedial bed nucleus of the stria terminalis, amygdalohippocampal area and the periventricular, medial preoptic, anterodorsal preoptic, dorsomedial suprachiasmatic, arcuate, and posterior ventrolateral ventromedial hypothalamic nuclei. In these regions, the incidence of retrograde labelling was either greater from the AVPV than from the GnRH perikarya site or similar from both sites. In the medial amygdaloid, parastrial, striohypothalamic, and ventral premammillary nuclei, the retrograde labelling from the AVPV greatly exceeded the sparse incidence from the GnRH perikarya site. In contrast, retrograde labelling from the GnRH perikarya site predominated in the median preoptic, lateroanterior and dorsomedial hypothalamic nuclei, subparaventricular zone, and retrochiasmatic area; it was abundant in the AVPV. Caudal to the diencephalon, retrograde labelling from either site was sparse, except in the lateral parabrachial nucleus, which displayed a particularly high incidence from the GnRH perikarya site. Other mesencephalic regions labelled from either site included the periaqueductal gray and dorsal and median raphe nuclei. The most caudal labelling was found in the ventrolateral medulla and region of the solitary tract nucleus; this was almost exclusively from the GnRH perikarya site. These findings further elucidate the neuroanatomical connections underlying the control of the ovulatory cycle.
Collapse
Affiliation(s)
- Joel D Hahn
- School of Biomedical Sciences, King's College London, SE1 1UL, United Kingdom
| | | |
Collapse
|
43
|
Lee E, Mun GH, Oh CS, Chung YH, Cha CL, Lee YS, Shin DH. A subcellular distribution of estrogen receptor-alpha is changed during artificially induced senescence of PC12 pheochromocytoma cells. Neurosci Lett 2004; 372:80-4. [PMID: 15531092 DOI: 10.1016/j.neulet.2004.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 08/18/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
Although estrogen has been considered as a sex hormone for decades, recent reports suggest that estrogen might modulate the development and physiological function of the brain. In addition, the subcellular localization of estrogen receptors (ERs) has shown their presence within both the perinuclear cytoplasm and nuclei, suggesting that these ERs may differ functionally. We, therefore, assayed changes in the subcellular localization of ER-alpha immunoreactivity (IR) in rat pheochromocytoma PC12 cells during the artificial senescence induced by the telomerase inhibitor, 3'-azido-3'-deoxythymidine (AZT). After 2 months of culture with AZT, PC12 cells showed morphological and biochemical characteristics of cellular senescence. In the cells showing artificial senescence, the ER-alpha IR was mainly localized within the cytoplasm, whereas in control cells, ER-alpha IR was found only in the nuclei. Since senescence was induced by AZT, which inhibits the action of telomerase whenever the cells divide, the change in subcellular distribution of ER-alpha IR may be correlated with the length of the telomere.
Collapse
Affiliation(s)
- Eunju Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, 388-1 Poongnap-dong, Songpa-gu, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Perez S, Sendera TJ, Kordower JH, Mufson EJ. Estrogen receptor alpha containing neurons in the monkey forebrain: lack of association with calcium binding proteins and choline acetyltransferase. Brain Res 2004; 1019:55-63. [PMID: 15306238 DOI: 10.1016/j.brainres.2004.05.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2004] [Indexed: 11/29/2022]
Abstract
The present study used single and dual immunohistochemistry to determine the topography and chemical phenotype of ERalpha containing neurons within the monkey forebrain utilizing antibodies directed against the full-length human ERalpha (NCL-ER-6F11), calcium-binding proteins calbindin-D(28k), and parvalbumin as well as choline acetyltransferase (ChAT). Our findings demonstrate for the first time ERalpha immunoreactive (-ir) cells in the monkey cerebral cortex (layers I-II) and in the claustrum. In addition, ERalpha-ir cells were seen in the septum, basal forebrain, amygdala and hypothalamus. Double-labeled cells for ERalpha and calbindin-D(28k) were seen only in the ventrolateral part of the ventromedial hypothalamic nucleus. In contrast, the co-localization of ERalpha and parvalbumin or ChAT was not seen in any of the areas of the monkey forebrain examined. These observations suggest that estrogens, at least in part, via ERalpha regulate calbindin-D(28k) hypothalamic but not parvalbumin or ChAT containing neurons in select monkey forebrain regions.
Collapse
Affiliation(s)
- Sylvia Perez
- Department of Neurological Sciences, Rush University Medical Center, 1735 West Harrison St., Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
45
|
Somponpun SJ, Johnson AK, Beltz T, Sladek CD. Estrogen receptor-α expression in osmosensitive elements of the lamina terminalis: regulation by hypertonicity. Am J Physiol Regul Integr Comp Physiol 2004; 287:R661-9. [PMID: 15142833 DOI: 10.1152/ajpregu.00136.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subfornical organ (SFO), median preoptic nucleus (MnPO), and organum vasculosum lamina terminalis (OVLT), which are associated with the lamina terminalis, are important in the control of body fluid balance. Neurons in these regions express estrogen receptor (ER)-α, but whether the ER-α neurons are activated by hypertonicity and whether hypertonicity regulates ER-α expression are not known. Using fluorescent, double-label immunocytochemistry, we examined the expression of ER-α-immunoreactivity (ir) and Fos-ir in control and water-deprived male rats. In control animals, numerous ER-α-positive neurons were expressed in the periphery of the SFO, in both the dorsal and ventral MnPO, and in the dorsal cap of the OVLT. Fos-positive neurons were sparse in euhydrated rats but were numerous in the SFO, MnPO, and the dorsal cap of the OVLT after 48-h water deprivation. Most ER-α-ir neurons in these areas were positive for Fos, indicating a significant degree of colocalization. To examine the effect of dehydration on ER-α expression, animals with and without lesions surrounding the anterior and ventral portion of the 3rd ventricle (AV3V) were water deprived for 48 h. Water deprivation resulted in a moderate increase in ER-α-ir in the SFO of sham-lesioned rats ( P = 0.03) and a dramatic elevation in AV3V-lesioned animals ( P < 0.05). This was probably induced by the significant increase in plasma osmolality in both dehydrated groups ( P < 0.001) rather than a decrease in blood volume, because hematocrit was significantly increased only in the dehydrated sham-lesioned animals. Thus these studies implicate the osmosensitive regions of the lamina terminalis as possible targets for sex steroid effects on body fluid homeostasis.
Collapse
Affiliation(s)
- Suwit J Somponpun
- Department of Physiology and Biophysics, University of Colorado Health Science Center, 4200 E. Ninth Ave. Box C240, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
46
|
Dominguez R, Jalali C, de Lacalle S. Morphological effects of estrogen on cholinergic neurons in vitro involves activation of extracellular signal-regulated kinases. J Neurosci 2004; 24:982-90. [PMID: 14749443 PMCID: PMC3182120 DOI: 10.1523/jneurosci.2586-03.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study, we examined the ability of estrogen to enhance cholinergic neurite arborization in vitro and identified the signal transduction cascade associated with this effect. Basal forebrain primordia collected from rat pups on postnatal day 1 were cultured for 2 weeks and then treated with 5 nm 17beta-estradiol for 24 hr. Cholinergic neurons were identified immunocytochemically with an antibody against the vesicular acetylcholine transporter and digitally photographed. Morphological analysis indicated that female cultures respond to estrogen treatment with an increase in total neurite length per neuron (4.5-fold over untreated controls) and in total branch segment number per neuron (2.3-fold over controls). In contrast, there was no change in total neurite length per neuron in male cultures, and we also observed a decrease in total branch segment number per neuron (0.5-fold below controls). Detailed histograms indicated that estrogen increases primary and secondary branch length and number and also increases terminal neuritic branches to the seventh order in female cultures. In a second set of experiments, we investigated the signal transduction cascade involved in this response, and found that an upstream extracellular signal-regulated kinase (ERK) inhibitor blocked the ability of estrogen to enhance outgrowth in female cultures. Our study provides strong evidence in support of the fact that the ERK pathway is required for estrogen-induced structural plasticity in the cholinergic system of female rats. Understanding the intracellular processes that underlie the response of cholinergic neurons to estrogen provides a necessary step in elucidating how cholinergic neurons can be particularly susceptible to degeneration in postmenopausal women.
Collapse
Affiliation(s)
- Reymundo Dominguez
- Department of Biological Sciences, California State University, Los Angeles, California 90032, USA
| | | | | |
Collapse
|
47
|
Blurton-Jones M, Kuan PN, Tuszynski MH. Anatomical evidence for transsynaptic influences of estrogen on brain-derived neurotrophic factor expression. J Comp Neurol 2004; 468:347-60. [PMID: 14681930 DOI: 10.1002/cne.10989] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several studies have demonstrated that estrogen modulates brain-derived neurotrophic factor (BDNF) mRNA and protein within the adult hippocampus and cortex. However, mechanisms underlying this regulation are unknown. Although an estrogen response element (ERE)-like sequence has been identified within the BDNF gene, such a classical mechanism of estrogen-induced transcriptional activation requires the colocalized expression of estrogen receptors within cells that produce BDNF. Developmental studies have demonstrated such a relationship, but to date no studies have examined colocalization of estrogen receptors and BDNF within the adult brain. By utilizing double-label immunohistochemistry for BDNF, estrogen receptor-alpha (ER-alpha), and estrogen receptor-beta (ER-beta), we found only sparse colocalization between ER-alpha and BDNF in the hypothalamus, amygdala, prelimbic cortex, and ventral hippocampus. Furthermore, ER-beta and BDNF do not colocalize in any brain region. Given the recent finding that cortical ER-beta is almost exclusively localized to parvalbumin-immunoreactive GABAergic neurons, we performed BDNF/parvalbumin double labeling and discovered that axons from cortical ER-beta-expressing inhibitory neurons terminate on BDNF-immunoreactive pyramidal cells. Collectively, these findings support a potential transsynaptic relationship between estrogen state and cortical BDNF: By directly modulating GABAergic interneurons, estrogen may indirectly influence the activity and expression of BDNF-producing cortical neurons.
Collapse
Affiliation(s)
- M Blurton-Jones
- Department of Neurosciences, University of California-San Diego, La Jolla, California 92093-0626, USA
| | | | | |
Collapse
|
48
|
Sandstrom NJ, Williams CL. Spatial memory retention is enhanced by acute and continuous estradiol replacement. Horm Behav 2004; 45:128-35. [PMID: 15019800 DOI: 10.1016/j.yhbeh.2003.09.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Revised: 07/21/2003] [Accepted: 09/09/2003] [Indexed: 10/26/2022]
Abstract
Estradiol replacement to ovariectomized female rats causes dramatic changes in hippocampal structure and function as well as in performance on hippocampally dependent tasks. Using a delayed matching-to-place version of the water maze, the present study examines the time course of estradiol-induced enhancements in memory retention as well as the effectiveness of acute and continuous patterns of replacement. One 10-microg injection of estradiol administered on each of two successive days resulted in significant improvements in memory retention that persisted for approximately 4 days following the second injection. When estradiol administration continued for 10 consecutive days, these improvements in memory retention persisted. These findings indicate that estradiol replacement can improve memory retention and that these improvements can be maintained by continuous replacement for at least 10 days.
Collapse
Affiliation(s)
- Noah J Sandstrom
- Department of Psychology, Williams College, Bronfman Science Center, Williamstown, MA 01267, USA.
| | | |
Collapse
|
49
|
Kompoliti K, Chu Y, Polish A, Roberts J, McKay H, Mufson EJ, Leurgans S, Morrison JH, Kordower JH. Effects of estrogen replacement therapy on cholinergic basal forebrain neurons and cortical cholinergic innervation in young and aged ovariectomized rhesus monkeys. J Comp Neurol 2004; 472:193-207. [PMID: 15048687 DOI: 10.1002/cne.20050] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Estrogen modulates the function of cholinergic basal forebrain neurons in aged female rats. The present study tested the hypothesis that estrogen enhances the phenotype of cholinergic basal forebrain neurons and their cortical cholinergic innervation in young adult and aged ovariectomized rhesus monkeys. Sixteen monkeys (9 young and 7 aged) received two injections of estradiol cypionate or vehicle separated by 3 weeks. All monkeys were killed 1 day after the last injection. Quantitative immunofluorescence in the vertical limb of the diagonal band (VLDB) revealed enhanced optical density for choline acetyltransferase (ChAT) in both young and aged monkeys treated with estrogen. In contrast, optical density for low-affinity p75 neurotrophin receptor immunoreactivity in the VLDB did not change after estrogen treatment in either aged or young animals. Quantitative immunofluorescence for either ChAT or the low-affinity p75 neurotrophin receptor in the nucleus basalis Meynert failed to reveal differences between vehicle and estrogen treatment in either age group. Quantitative estimates of acetylcholinesterase (AChE) fiber density revealed that estrogen-treated aged monkeys but not their younger counterparts had decreased numbers of AChE-positive fibers in layer II of frontal, insular, and cingulate cortices. These data indicate that estrogen administered in a manner simulating natural hormonal cyclicity produces modest age-specific chemical phenotypic and regional changes in select neuronal subfields of the cholinergic basal forebrain and their cortical projection sites in nonhuman primates.
Collapse
Affiliation(s)
- Katie Kompoliti
- Department of Neurological Sciences, Rush University Medical Center, Rush University, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pérez SE, Chen EY, Mufson EJ. Distribution of estrogen receptor alpha and beta immunoreactive profiles in the postnatal rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 145:117-39. [PMID: 14519499 DOI: 10.1016/s0165-3806(03)00223-2] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study was conducted to identify the localization and possible contribution of the two estrogen receptor (ER) subtypes in the rat brain at postnatal (P) days 3, 7 and 14. Evaluation of the distribution of ERalpha and ERbeta immunoreactive (ir) nuclei did not reveal gender differences at the developmental point times examined. With the exception of the cerebral cortex, the pattern of staining for these ERs was unchanged across the postnatal ages examined. The distribution of ERalpha-ir nuclei was wider than ERbeta-ir during brain development. From P3, ERbeta and ERalpha-ir nuclei were found in different regions of the cerebral cortex, basal forebrain, amygdala, thalamus, hypothalamus, mesencephalon, pons, cerebellum and medulla oblongata. In addition, ERalpha-ir nuclei were exclusively detected in the hippocampal subfields, epithalamus and in several circumventricular organs. ERalpha and ERbeta dual immunofluorescence revealed positive nuclei in the medial part of the bed nucleus of the stria terminalis, periventricular preoptic nucleus and in caudal aspects of the ventrolateral part of the ventromedial hypothalamic nucleus. Although the functional significance of the dual expression of both ERs within the same nuclei remains unknown, it is possible that ERs play different roles in gene regulation within the same cell. The presence of ERs in diverse brain regions through early postnatal periods supports a potential role for estrogens in neural differentiation.
Collapse
Affiliation(s)
- Sylvia E Pérez
- Neurological Sciences, Rush Presbyterian St. Luke's Medical Center, Chicago, IL 60612, USA
| | | | | |
Collapse
|