1
|
Naylor DE. In the fast lane: Receptor trafficking during status epilepticus. Epilepsia Open 2023; 8 Suppl 1:S35-S65. [PMID: 36861477 PMCID: PMC10173858 DOI: 10.1002/epi4.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Status epilepticus (SE) remains a significant cause of morbidity and mortality and often is refractory to standard first-line treatments. A rapid loss of synaptic inhibition and development of pharmacoresistance to benzodiazepines (BZDs) occurs early during SE, while NMDA and AMPA receptor antagonists remain effective treatments after BZDs have failed. Multimodal and subunit-selective receptor trafficking within minutes to an hour of SE involves GABA-A, NMDA, and AMPA receptors and contributes to shifts in the number and subunit composition of surface receptors with differential impacts on the physiology, pharmacology, and strength of GABAergic and glutamatergic currents at synaptic and extrasynaptic sites. During the first hour of SE, synaptic GABA-A receptors containing γ2 subunits move to the cell interior while extrasynaptic GABA-A receptors with δ subunits are preserved. Conversely, NMDA receptors containing N2B subunits are increased at synaptic and extrasynaptic sites, and homomeric GluA1 ("GluA2-lacking") calcium permeant AMPA receptor surface expression also is increased. Molecular mechanisms, largely driven by NMDA receptor or calcium permeant AMPA receptor activation early during circuit hyperactivity, regulate subunit-specific interactions with proteins involved with synaptic scaffolding, adaptin-AP2/clathrin-dependent endocytosis, endoplasmic reticulum (ER) retention, and endosomal recycling. Reviewed here is how SE-induced shifts in receptor subunit composition and surface representation increase the excitatory to inhibitory imbalance that sustains seizures and fuels excitotoxicity contributing to chronic sequela such as "spontaneous recurrent seizures" (SRS). A role for early multimodal therapy is suggested both for treatment of SE and for prevention of long-term comorbidities.
Collapse
Affiliation(s)
- David E Naylor
- VA Greater Los Angeles Healthcare System, Department of Neurology, David Geffen School of Medicine at UCLA, and The Lundquist Institute at Harbor-UCLA Medical Center, Los Angeles, California, USA
| |
Collapse
|
2
|
Stem bark chloroform extract of Bombax costatum Pellegr. & Vuillet exhibit anticonvulsant and neuroprotective effects in pentylenetetrazole-induced seizures in rats. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:233-247. [PMID: 36220462 DOI: 10.1016/j.pharma.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
AIM OF THE STUDY The study aimed at evaluating the potentials of stem bark extracts of Bombax costatum (B. costatum) on seizure, pentylenetetrazole (PTZ) induced kindling and associated changes in wistar albino rats. MATERIALS AND METHODS Phase 1 evaluated which extract of B. costatum (chloroform, ethanol and n-hexane) is most effective in preventing seizure in acute PTZ-induced (85mg/kg) seizure in rats. Phase 2 evaluated the potentials of stem bark chloroform extract of B. costatum in PTZ-kindled rats at a dose 250 and 500mg/kg in comparison to diazepam. As its effects on memory, oxidative stress markers, neurotransmitters and brain histology were evaluated. Phase 3 determined the probable curative effects of B. costatum on fully kindled rats. RESULTS In phase 1, Chloroform extract of B. coststum 500mg/kg is the most effective (P<0.05) in preventing seizure as compared to ethanol and n-hexane extracts. In phase 2, chloroform extract of B. costatum delayed the development of kindling, improved kindling associated cognitive impairment and alterations of glutamate and gamma-aminobutyric acid (GABA). Further, it attenuated oxidative stress besides the maintenance of neuronal architecture of the hippocampus. CONCLUSION Conclusively, chloroform stem bark extract of B. costatum antagonizes PTZ-induced seizure progression, protects against kindling induced cognitive impairment and oxidative stress. Additionally, it also increases the brain level of GABA at high dose and prevented against kindling-induced hippocampal disruptions. Hence, this justifies its use traditionally in the treatment of epileptic seizures.
Collapse
|
3
|
ISX-9 potentiates CaMKIIδ-mediated BMAL1 activation to enhance circadian amplitude. Commun Biol 2022; 5:750. [PMID: 35902736 PMCID: PMC9334596 DOI: 10.1038/s42003-022-03725-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Circadian dysregulation associates with numerous diseases including metabolic dysfunction, sleep disorder, depression and aging. Given that declined circadian amplitude is a trait commonly found with compromised health, interventions that design in precluding circadian amplitude from dampening will aid to mitigate complex, circadian-related diseases. Here we identify a neurogenic small molecule ISX-9 that is able to support persistent and higher amplitude of circadian oscillations. ISX-9 improves diurnal metabolic rhythms in middle-aged mice. Moreover, the ISX-9-treated mice show better sleep homeostasis with increased delta power during the day time and higher locomotive activity in the dark period. ISX-9 augments CaMKIIδ expression and increases BMAL1 activity via eliciting CaMKIIδ-mediated phosphorylation on BMAL1 residues S513/S515/S516, accordingly composes a positive feedback effect on enhancing circadian amplitude. CaMKIIδ-targeting, and the use of ISX-9 may serve as decent choices for treating circadian-related disorders.
Collapse
|
4
|
Mele M, Vieira R, Correia B, De Luca P, Duarte FV, Pinheiro PS, Duarte CB. Transient incubation of cultured hippocampal neurons in the absence of magnesium induces rhythmic and synchronized epileptiform-like activity. Sci Rep 2021; 11:11374. [PMID: 34059735 PMCID: PMC8167095 DOI: 10.1038/s41598-021-90486-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
Cell culture models are important tools to study epileptogenesis mechanisms. The aim of this work was to characterize the spontaneous and synchronized rhythmic activity developed by cultured hippocampal neurons after transient incubation in zero Mg2+ to model Status Epilepticus. Cultured hippocampal neurons were transiently incubated with a Mg2+-free solution and the activity of neuronal networks was evaluated using single cell calcium imaging and whole-cell current clamp recordings. Here we report the development of synchronized and spontaneous [Ca2+]i transients in cultured hippocampal neurons immediately after transient incubation in a Mg2+-free solution. Spontaneous and synchronous [Ca2+]i oscillations were observed when the cells were then incubated in the presence of Mg2+. Functional studies also showed that transient incubation in Mg2+-free medium induces neuronal rhythmic burst activity that was prevented by antagonists of glutamate receptors. In conclusion, we report the development of epileptiform-like activity, characterized by spontaneous and synchronized discharges, in cultured hippocampal neurons transiently incubated in the absence of Mg2+. This model will allow studying synaptic alterations contributing to the hyperexcitability that underlies the development of seizures and will be useful in pharmacological studies for testing new drugs for the treatment of epilepsy.
Collapse
Affiliation(s)
- Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Ricardo Vieira
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - Bárbara Correia
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
| | - Pasqualino De Luca
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Filipe V Duarte
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Paulo S Pinheiro
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.,Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
5
|
Deshpande LS, DeLorenzo RJ, Churn SB, Parsons JT. Neuronal-Specific Inhibition of Endoplasmic Reticulum Mg 2+/Ca 2+ ATPase Ca 2+ Uptake in a Mixed Primary Hippocampal Culture Model of Status Epilepticus. Brain Sci 2020; 10:brainsci10070438. [PMID: 32664397 PMCID: PMC7407863 DOI: 10.3390/brainsci10070438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022] Open
Abstract
Loss of intracellular calcium homeostasis is an established mechanism associated with neuronal dysfunction and status epilepticus. Sequestration of free cytosolic calcium into endoplasmic reticulum by Mg2+/Ca2+ adenosinetriphosphatase (ATPase) is critical for maintenance of intracellular calcium homeostasis. Exposing hippocampal cultures to low-magnesium media is a well-accepted in vitro model of status epilepticus. Using this model, it was shown that endoplasmic reticulum Ca2+ uptake was significantly inhibited in homogenates from cultures demonstrating electrophysiological seizure phenotypes. Calcium uptake was mainly neuronal. However, glial Ca2+ uptake was also significantly inhibited. Viability of neurons exposed to low magnesium was similar to neurons exposed to control solutions. Finally, it was demonstrated that Ca2+ uptake inhibition and intracellular free Ca2+ levels increased in parallel with increasing incubation in low magnesium. The results suggest that inhibition of Mg2+/Ca2+ ATPase-mediated endoplasmic reticulum Ca2+ sequestration contributes to loss of intracellular Ca2+ homeostasis associated with status epilepticus. This study describes for the first time inhibition of endoplasmic reticulum Mg2+/Ca2+ ATPase in a mixed primary hippocampal model of status epilepticus. In combination with animal models of status epilepticus, the cell culture model provides a powerful tool to further elucidate mechanisms that result in inhibition of Mg2+/Ca2+ ATPase and downstream consequences of decreased enzyme activity.
Collapse
Affiliation(s)
- Laxmikant S. Deshpande
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; (L.S.D.); (R.J.D.); (S.B.C.)
| | - Robert J. DeLorenzo
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; (L.S.D.); (R.J.D.); (S.B.C.)
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Biochemistry and Molecular Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Severn B. Churn
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; (L.S.D.); (R.J.D.); (S.B.C.)
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Physiology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - J. Travis Parsons
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA; (L.S.D.); (R.J.D.); (S.B.C.)
- Correspondence:
| |
Collapse
|
6
|
Xu Y, Li Z, Yao L, Zhang X, Gan D, Jiang M, Wang N, Chen G, Wang X. Altered Norbin Expression in Patients with Epilepsy and a Rat Model. Sci Rep 2017; 7:13970. [PMID: 29070854 PMCID: PMC5656659 DOI: 10.1038/s41598-017-13248-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
Norbin is widely distributed in neuronal tissues, is a regulator of Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation. Norbin is also an important endogenous modulator of metabotropic glutamate receptor 5 (mGluR5) signaling, and nervous system-specific homozygous gene disruptions, result in epileptic seizures. In this study, we aimed to investigate norbin expression patterns in epilepsy and to elucidate the relationships between norbin and mGluR5 and p-CaMKII in epilepsy. Double-immunolabeling, immunohistochemistry and immunoblotting studies showed that norbin was downregulated in the temporal neocortex of patients with temporal lobe epilepsy (TLE) compared with control subjects. Moreover, in a rat model of lithium chloride-pilocarpine-induced epilepsy, norbin expression began to decrease at 6 h after the onset of status epilepticus and remained at a low level until 60 days. In addition, p-CaMKII expression was significantly increased in both patients with TLE and in animal model. Norbin and mGluR5 were found to be co-expressed in neurons of epileptic tissues. Finally, norbin over-expression facilitated by injections of adeno-associated viral vector into the rat hippocampus increased latency and survival in the lithium chloride-pilocarpine model. Thus, our results indicate norbin participates in the pathogenesis of epilepsy, perhaps by modulating mGluR5 signaling, regulating CaMKII phosphorylation, and may exert antiepileptic effects.
Collapse
Affiliation(s)
- Yali Xu
- Department of Geriatrics, Chongqing General Hospital, 104 Pipashan Street, Chongqing, China.,Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Zengyou Li
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Li Yao
- Health Checkup Center, Chongqing General Hospital, 104 Pipashan Street, Chongqing, China
| | - Xingping Zhang
- Department of Geriatrics, Chongqing General Hospital, 104 Pipashan Street, Chongqing, China
| | - Dan Gan
- Department of Geriatrics, Chongqing General Hospital, 104 Pipashan Street, Chongqing, China
| | - Manchun Jiang
- Department of Geriatrics, Chongqing General Hospital, 104 Pipashan Street, Chongqing, China
| | - Na Wang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Guojun Chen
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 1 Youyi Road, Chongqing, China
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital, Chongqing Medical University, 1 Youyi Road, Chongqing, China.
| |
Collapse
|
7
|
Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII α in epileptic hippocampal neurons. PLoS One 2014; 9:e102161. [PMID: 25010576 PMCID: PMC4092074 DOI: 10.1371/journal.pone.0102161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 06/15/2014] [Indexed: 11/19/2022] Open
Abstract
Purpose To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II α expression in a model of epileptic neurons were investigated. Method Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II α protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope. Results The CaMK II α expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes. Conclusion GLP may inhibit calcium overload and promote CaMK II α expression to protect epileptic neurons.
Collapse
|
8
|
Murck H. Ketamine, magnesium and major depression--from pharmacology to pathophysiology and back. J Psychiatr Res 2013; 47:955-65. [PMID: 23541145 DOI: 10.1016/j.jpsychires.2013.02.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/14/2013] [Accepted: 02/26/2013] [Indexed: 01/08/2023]
Abstract
UNLABELLED The glutamatergic mechanism of antidepressant treatments is now in the center of research to overcome the limitations of monoamine-based approaches. There are several unresolved issues. For the action of the model compound, ketamine, NMDA-receptor block, AMPA-receptor activation and BDNF release appear to be involved in a mechanism, which leads to synaptic sprouting and strengthened synaptic connections. The link to the pathophysiology of depression is not clear. An overlooked connection is the role of magnesium, which acts as physiological NMDA-receptor antagonist: 1. There is overlap between the actions of ketamine with that of high doses of magnesium in animal models, finally leading to synaptic sprouting. 2. Magnesium and ketamine lead to synaptic strengthening, as measured by an increase in slow wave sleep in humans. 3. Pathophysiological mechanisms, which have been identified as risk factors for depression, lead to a reduction of (intracellular) magnesium. These are neuroendocrine changes (increased cortisol and aldosterone) and diabetes mellitus as well as Mg(2+) deficiency. 4. Patients with therapy refractory depression appear to have lower CNS Mg(2+) levels in comparison to health controls. 5. Experimental Mg(2+) depletion leads to depression- and anxiety like behavior in animal models. 6. Ketamine, directly or indirectly via non-NMDA glutamate receptor activation, acts to increase brain Mg(2+) levels. Similar effects have been observed with other classes of antidepressants. 7. Depressed patients with low Mg(2+) levels tend to be therapy refractory. Accordingly, administration of Mg(2+) either alone or in combination with standard antidepressants acts synergistically on depression like behavior in animal models. CONCLUSION On the basis of the potential pathophysiological role of Mg(2+)-regulation, it may be possible to predict the action of ketamine and of related compounds based on Mg(2+) levels. Furthermore, screening for compounds to increase neuronal Mg(2+) concentration could be a promising instrument to identify new classes of antidepressants. Overall, any discussion of the glutamatergic system in affective disorders should consider the role of Mg(2+).
Collapse
|
9
|
Risbud RM, Porter BE. Changes in microRNA expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus. PLoS One 2013; 8:e53464. [PMID: 23308228 PMCID: PMC3538591 DOI: 10.1371/journal.pone.0053464] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/30/2012] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs regulate protein synthesis by binding non-translated regions of mRNAs and suppressing translation and/or increasing mRNA degradation. MicroRNAs play an important role in the nervous system including controlling synaptic plasticity. Their expression is altered in disease states including stroke, head injury and epilepsy. To better understand microRNA expression changes that might contribute to the development of epilepsy, microRNA arrays were performed on rat hippocampus 4 hours, 48 hours and 3 weeks following an episode of pilocarpine induced status epilepticus. Eighty microRNAs increased at one or more of the time points. No microRNAs decreased at 4 hours, and only a few decreased at 3 weeks, but 188 decreased 48 hours after status epilepticus. The large number of microRNAs with altered expression following status epilepticus suggests that microRNA regulation of translation has the potential to contribute to changes in protein expression during epileptogenesis. We carried out a second set of array's comparing microRNA expression at 48 hours in synaptoneurosome and nuclear fractions of the hippocampus. In control rat hippocampi multiple microRNAs were enriched in the synaptoneurosomal fraction as compared to the nuclear fraction. In contrast, 48 hours after status epilepticus only one microRNA was enriched in the synaptoneurosome fraction. The loss of microRNAs enriched in the synaptoneurosomal fraction implies a dramatic change in translational regulation in synapses 48 hours after status epilepticus.
Collapse
Affiliation(s)
- Rashmi M. Risbud
- Division of Pediatric Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Brenda E. Porter
- Division of Pediatric Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Division of Pediatric Neurology, Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Saito R, Kaneko E, Tanaka Y, Honda K, Matsuda T, Baba A, Komuro I, Kita S, Iwamoto T, Takano Y. Involvement of Na+/Ca2+ exchanger in pentylenetetrazol-induced convulsion by use of Na+/Ca2+ exchanger knockout mice. Biol Pharm Bull 2010; 32:1928-30. [PMID: 19881311 DOI: 10.1248/bpb.32.1928] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Involvement of Na+/Ca2+ exchanger (NCX) in pentylenetetrazol (PTZ)-induced convulsion by use of NCX knockout mice and the selective ligand SEA0400 to NCX was examined. In the SEA0400-administered group, the latency to clonic convulsion was extended into 210 s, although the latency to clonic convulsion was observed until 100 s in control group. SEA0400 had little effect on bicuculline-induced clonic seizure nicotine-induced wild running and 4-aminopyridine-induced tonic flexion, respectively. Tonic flexion convulsion was occurred three fifth in the wild type mice group by administration of PTZ, but tonic flexion was not observed in NCX1 knockout mice groups. These results suggest that NCX is involved in inhibitory action in PTZ-induced convulsion.
Collapse
Affiliation(s)
- Ryo Saito
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1Nanakuma, Sawara-ku, Fukuoka 814-0180, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zha XM, Dailey ME, Green SH. Role of Ca2+/calmodulin-dependent protein kinase II in dendritic spine remodeling during epileptiform activity in vitro. J Neurosci Res 2009; 87:1969-79. [PMID: 19235894 PMCID: PMC2694514 DOI: 10.1002/jnr.22033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Epileptiform activity (EA) in vivo and in vitro induces a loss of dendritic spines and synapses. Because CaMKII has been implicated in synaptogenesis and synaptic plasticity, we investigated the role of CaMKII in the effects of EA on spines, using rat hippocampal slice cultures. To visualize dendrites and postsynaptic densities (PSDs) in pyramidal neurons in the slices, we used biolistic transfection to express either free GFP or a PSD95-YFP construct that specifically labels PSDs. This allowed us to distinguish two classes of dendritic protrusions: spines that contain PSDs, and filopodia that lack PSDs and that are, on average, longer than spines. By these criteria, 48 hr of EA caused a decrease specifically in the number of spines. Immunoblots showed that EA increased CaMKII activity in the slices. Inhibition of CaMKII by expression of AIP, a specific peptide inhibitor of CaMKII, reduced spine number under basal conditions and failed to prevent EA-induced spine loss. However, under EA conditions, AIP increased the number of filopodia and the number of PSDs on the dendritic shaft. These data show at least two roles for CaMKII activity in maintenance and remodeling of dendritic spines under basal or EA conditions. First, CaMKII activity promotes the maintenance of spines and spine PSDs. Second, CaMKII activity suppresses EA-induced formation of filopodia and suppresses an increase in shaft PSDs, apparently by promoting translocation of PSDs from dendritic shafts to spines and/or selectively stabilizing spine rather than shaft PSDs.
Collapse
Affiliation(s)
- Xiang-ming Zha
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324, USA
| | | | | |
Collapse
|
12
|
Blair RE, Sombati S, Churn SB, Delorenzo RJ. Epileptogenesis causes an N-methyl-d-aspartate receptor/Ca2+-dependent decrease in Ca2+/calmodulin-dependent protein kinase II activity in a hippocampal neuronal culture model of spontaneous recurrent epileptiform discharges. Eur J Pharmacol 2008; 588:64-71. [PMID: 18495112 PMCID: PMC2819419 DOI: 10.1016/j.ejphar.2008.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 04/01/2008] [Accepted: 04/09/2008] [Indexed: 11/20/2022]
Abstract
Alterations in the function of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) have been observed in both in vivo and in vitro models of epileptogenesis; however the molecular mechanism mediating the effects of epileptogenesis on CaM kinase II has not been elucidated. This study was initiated to evaluate the molecular pathways involved in causing the long-lasting decrease in CaM kinase II activity in the hippocampal neuronal culture model of low Mg2+-induced spontaneous recurrent epileptiform discharges (SREDs). We show here that the decrease in CaM kinase II activity associated with SREDs in hippocampal cultures involves a Ca2+/N-methyl-d-aspartate (NMDA) receptor-dependent mechanism. Low Mg2+-induced SREDs result in a significant decrease in Ca2+/calmodulin-dependent substrate phosphorylation of the synthetic peptide autocamtide-2. Reduction of extracellular Ca2+ levels (0.2 mM in treatment solution) or the addition of dl-2-amino-5-phosphonovaleric acid (APV) 25 microM blocked the low Mg2+-induced decrease in CaM kinase II-dependent substrate phosphorylation. Antagonists of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainic acid receptor or L-type voltage sensitive Ca2+ channel had no effect on the low Mg2+-induced decrease in CaM kinase II-dependent substrate phosphorylation. The results of this study demonstrate that the decrease in CaM kinase II activity associated with this model of epileptogenesis involves a selective Ca2+/NMDA receptor-dependent mechanism and may contribute to the production and maintenance of SREDs in this model.
Collapse
Affiliation(s)
- Robert E Blair
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia 23298-0599, United States.
| | | | | | | |
Collapse
|
13
|
DeLorenzo RJ, Sun DA, Blair RE, Sombati S. An in vitro model of Stroke‐Induced Epilepsy: Elucidation of The roles of Glutamate and Calcium in The induction and Maintenance of Stroke‐Induced Epileptogenesis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 81:59-84. [PMID: 17433918 DOI: 10.1016/s0074-7742(06)81005-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Stroke is a major risk factor for developing acquired epilepsy (AE). Although the underlying mechanisms of ischemia-induced epileptogenesis are not well understood, glutamate has been found to be associated with both epileptogenesis and ischemia-induced injury in several research models. This chapter discusses the development of an in vitro model of epileptogenesis induced by glutamate injury in hippocampal neurons, as found in a clinical stroke, and the implementation of this model of stroke-induced AE to evaluate calcium's role in the induction and maintenance of epileptogenesis. To monitor the acute effects of glutamate on neurons and chronic alterations in neuronal excitability up to 8 days after glutamate exposure, whole-cell current-clamp electrophysiology was employed. Various durations and concentrations of glutamate were applied to primary hippocampal cultures. A single 30-min, 5-microM glutamate exposure produced a subset of neurons that died or had a stroke-like injury, and a larger population of injured neurons that survived. Neurons that survived the injury manifested spontaneous, recurrent, epileptiform discharges (SREDs) in neural networks characterized by paroxysmal depolarizing shifts (PDSs) and high-frequency spike firing that persisted for the life of the culture. The neuronal injury produced in this model was evaluated by determining the magnitude of the prolonged, reversible membrane depolarization, loss of synaptic activity, and neuronal swelling. The permanent epileptiform phenotype expressed as SREDs that resulted from glutamate injury was found to be dependent on the presence of extracellular calcium. The "epileptic" neurons manifested elevated intracellular calcium levels when compared to control neurons, independent of neuronal activity and seizure discharge, demonstrating that alterations in calcium homeostatic mechanisms occur in association with stroke-induced epilepsy. Findings from this investigation present the first in vitro model of glutamate injury-induced epileptogenesis that may help elucidate some of the mechanisms that underlie stroke-induced epilepsy.
Collapse
Affiliation(s)
- Robert J DeLorenzo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
14
|
Carter DS, Haider SN, Blair RE, Deshpande LS, Sombati S, DeLorenzo RJ. Altered calcium/calmodulin kinase II activity changes calcium homeostasis that underlies epileptiform activity in hippocampal neurons in culture. J Pharmacol Exp Ther 2006; 319:1021-31. [PMID: 16971505 DOI: 10.1124/jpet.106.110403] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is characterized by the occurrence of spontaneous recurrent epileptiform discharges (SREDs) in neurons. A decrease in calcium/calmodulin-dependent protein kinase II (CaMK-II) activity has been shown to occur with the development of SREDs in a hippocampal neuronal culture model of acquired epilepsy, and altered calcium (Ca(2+)) homeostasis has been implicated in the development of SREDs. Using antisense oligonucleotides, this study was conducted to determine whether selective suppression of CaMK-II activity, with subsequent induction of SREDs, was associated with altered Ca(2+) homeostasis in hippocampal neurons in culture. Antisense knockdown resulted in the development of SREDs and a decrease in both immunocytochemical staining and enzyme activity of CaMK-II. Evaluation of [Ca(2+)](i) using Fura indicators revealed that antisense-treated neurons manifested increased basal [Ca(2+)](i), whereas missense-treated neurons showed no change in basal [Ca(2+)](i). Antisense suppression of CaMK-II was also associated with an inability of neurons to restore a Ca(2+) load. Upon removal of oligonucleotide treatment, CaMK-II suppression and Ca(2+) homeostasis recovered to control levels and SREDs were abolished. To our knowledge, the results demonstrate the first evidence that selective suppression of CaMK-II activity results in alterations in Ca(2+) homeostasis and the development of SREDs in hippocampal neurons and suggest that CaMK-II suppression may be causing epileptogenesis by altering Ca(2+) homeostatic mechanisms.
Collapse
Affiliation(s)
- Dawn S Carter
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, P.O. Box 980599, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
15
|
DeLorenzo RJ, Sun DA, Deshpande LS. Erratum to "Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintenance of epilepsy." [Pharmacol. Ther. 105(3) (2005) 229-266]. Pharmacol Ther 2006; 111:288-325. [PMID: 16832874 DOI: 10.1016/j.pharmthera.2004.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury [central nervous system (CNS) insult]. (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels ([Ca(2+)](i)) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but the share a common molecular mechanism for producing brain damage--an increase in extracellular glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J DeLorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, 23298-0599, USA.
| | | | | |
Collapse
|
16
|
Sanchez RM, Dai W, Levada RE, Lippman JJ, Jensen FE. AMPA/kainate receptor-mediated downregulation of GABAergic synaptic transmission by calcineurin after seizures in the developing rat brain. J Neurosci 2006; 25:3442-51. [PMID: 15800199 PMCID: PMC6724904 DOI: 10.1523/jneurosci.0204-05.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypoxia is the most common cause of perinatal seizures and can be refractory to conventional anticonvulsant drugs, suggesting an age-specific form of epileptogenesis. A model of hypoxia-induced seizures in immature rats reveals that seizures result in immediate activation of the phosphatase calcineurin (CaN) in area CA1 of hippocampus. After seizures, CA1 pyramidal neurons exhibit a downregulation of GABA(A) receptor (GABA(A)R)-mediated inhibition that was reversed by CaN inhibitors. CaN activation appears to be dependent on seizure-induced activation of Ca2+-permeable AMPA receptors (AMPARs), because the upregulation of CaN activation and GABA(A)R inhibition were attenuated by GYKI 52466 [1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride] or Joro spider toxin. GABA(A)R beta2/3 subunit protein was dephosphorylated at 1 h after seizures, suggesting this subunit as a possible substrate of CaN in this model. Finally, in vivo administration of the CaN inhibitor FK-506 significantly suppressed hypoxic seizures, and posttreatment with NBQX (2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline) or FK-506 blocked the hypoxic seizure-induced increase in CaN expression. These data suggest that Ca2+-permeable AMPARs and CaN regulate inhibitory synaptic transmission in a novel plasticity pathway that may play a role in epileptogenesis in the immature brain.
Collapse
Affiliation(s)
- Russell M Sanchez
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | |
Collapse
|
17
|
Yamagata Y, Imoto K, Obata K. A mechanism for the inactivation of Ca2+/calmodulin-dependent protein kinase II during prolonged seizure activity and its consequence after the recovery from seizure activity in rats in vivo. Neuroscience 2006; 140:981-92. [PMID: 16632208 DOI: 10.1016/j.neuroscience.2006.02.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 02/18/2006] [Accepted: 02/23/2006] [Indexed: 11/18/2022]
Abstract
Seizure is a form of excessive neuronal excitation and seizure-induced neuronal damage has profound effects on the prognosis of epilepsy. In various seizure models, the inactivation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) occurs during seizure activity preceding neuronal cell death. CaMKII is a multifunctional protein kinase enriched in the brain and involved in various ways the regulation of neuronal activity. CaMKII inactivation during seizure activity may modify neuronal cell survival after seizure. However, the mechanism for CaMKII inactivation and its consequence after seizure recovery remain to be elucidated yet. In the present study, we employed a prolonged seizure model by systemic injection of kainic acid into rats and biochemically examined the activity state of CaMKII. In status epilepticus induced by kainic acid, not only the inactivation of CaMKII in brain homogenate, but also a shift in the distribution of CaMKII protein from the soluble to particulate fraction occurred in both hippocampus and parietal cortex. The particulate CaMKII showed a large decrease in the specific activity and a concurrent large increase in the autophosphorylation ratio at Thr-286 (alpha) and at Thr-287 (beta). In contrast, the soluble CaMKII showed normal or rather decreased specific activity and autophosphorylation ratio. After 24 h of recovery from kainic acid-induced status epilepticus, all such changes had disappeared. On the other hand, the total amount of CaMKII was decreased by 35% in hippocampus and 20% in parietal cortex, but the existing CaMKII was indistinguishable from those of controls in terms of the autonomous activity ratio, specific activity and autophosphorylation ratio. Thus, CaMKII inactivation in kainic acid-induced status epilepticus seems to be derived not from simple degradation of the enzyme, but from the formation of the autophosphorylated, inactivated and sedimentable CaMKII. Such a form of CaMKII may be important during pathological conditions in vivo in preventing excessive CaMKII activation due to Ca2+ overload.
Collapse
Affiliation(s)
- Y Yamagata
- Laboratory of Neurochemistry National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8787, Japan.
| | | | | |
Collapse
|
18
|
Merrill MA, Chen Y, Strack S, Hell JW. Activity-driven postsynaptic translocation of CaMKII. Trends Pharmacol Sci 2005; 26:645-53. [PMID: 16253351 DOI: 10.1016/j.tips.2005.10.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/19/2005] [Accepted: 10/06/2005] [Indexed: 01/25/2023]
Abstract
Ca2+ influx through the NMDA receptor and subsequent activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) are crucial for learning and one of its physiological correlates, long-term potentiation (LTP). Ca2+/calmodulin promotes CaMKII binding to several postsynaptic proteins, including the NMDA receptor. These interactions strategically place CaMKII at locations where Ca2+ influx through the NMDA receptor is highest for further activation of CaMKII and for phosphorylation of nearby AMPA receptors and of other proteins that are important for LTP. Ca2+-dependent postsynaptic CaMKII clustering is of specific interest because LTP is synapse specific: only synapses that experience LTP-inducing high-frequency activity exhibit LTP. Ca2+-driven protein binding ensures that CaMKII accumulates only at those synapses undergoing LTP. This selectivity is economical and could contribute to the synapse specificity of LTP because downstream effects of CaMKII will occur mainly at synapses that accumulate CaMKII. In this article, we provide an overview of recent progress in postsynaptic CaMKII anchoring and discuss its implication in synaptic plasticity and the etiology and potential treatments of neurological diseases.
Collapse
Affiliation(s)
- Michelle A Merrill
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, USA
| | | | | | | |
Collapse
|
19
|
Li X, Yang Q, Kuang H, Jiang N, Hu Y. Involvement of Scn1b and Kcna1 ion channels in audiogenic seizures and PTZ-induced epilepsy. Epilepsy Res 2005; 66:155-63. [PMID: 16157473 DOI: 10.1016/j.eplepsyres.2005.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 08/02/2005] [Accepted: 08/08/2005] [Indexed: 11/18/2022]
Abstract
We have undertaken chemical genetic approach using Qingyangshenylycosides (QYS), a natural product compound, to explore the molecular mechanisms underlying different types of epilepsy models. Two animal models were used for these studies, i.e., audiogenic seizure (AGS) and pentylenetetrazol (PTZ)-induced generalized epilepsy in DBA/2J mice. We show that the latency of AGS is prolonged and the severity of seizures (the percentages of the tonus, Tonus_%) is reduced in the QYS-treated animals. These results indicate that QYS has anticonvulsant effect on the AGS model. However, we find that administration of QYS has an opposite effects on PTZ-induced generalized epilepsy. Both the latency of the generalized epilepsy and the latency of death are decreased after QYS treatment in PTZ-induced epilepsy. We examine the molecular basis of the distinct roles of QYS in these two epilepsy models by using gene expression data. Our results show that a voltage-gated sodium channel (Scn1b) and a voltage-gated potassium channel (Kcna1) are differentially expressed in AGS and PTZ-induced epilepsy models as well as in QYS-treated animals. Our results demonstrate that a chemical genetic approach may help to reveal both the molecular mechanisms of different epilepsies and the mechanism of action of the antiepileptic drugs.
Collapse
MESH Headings
- Age Factors
- Analysis of Variance
- Animals
- Anticonvulsants/pharmacology
- Behavior, Animal
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Interactions
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Epilepsy/chemically induced
- Epilepsy/drug therapy
- Epilepsy/metabolism
- Epilepsy/physiopathology
- Epilepsy, Reflex/drug therapy
- Epilepsy, Reflex/metabolism
- Epilepsy, Reflex/physiopathology
- Gene Expression Regulation/drug effects
- Kv1.1 Potassium Channel/metabolism
- Mice
- Mice, Inbred DBA
- Pentylenetetrazole
- RNA, Messenger/biosynthesis
- Reaction Time/drug effects
- Reaction Time/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sodium Channels/metabolism
Collapse
Affiliation(s)
- Xianchun Li
- Key Lab of Brain Functional Genomics, MOE&STCSM, Shanghai Institute of Brain Functional Genomics, East China Normal University, 3663 Zhongshan Road, N. Shanghai 200062, China
| | | | | | | | | |
Collapse
|
20
|
Delorenzo RJ, Sun DA, Deshpande LS. Cellular mechanisms underlying acquired epilepsy: the calcium hypothesis of the induction and maintainance of epilepsy. Pharmacol Ther 2005; 105:229-66. [PMID: 15737406 PMCID: PMC2819430 DOI: 10.1016/j.pharmthera.2004.10.004] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 10/12/2004] [Indexed: 01/22/2023]
Abstract
Epilepsy is one of the most common neurological disorders. Although epilepsy can be idiopathic, it is estimated that up to 50% of all epilepsy cases are initiated by neurological insults and are called acquired epilepsy (AE). AE develops in 3 phases: (1) the injury (central nervous system [CNS] insult), (2) epileptogenesis (latency), and (3) the chronic epileptic (spontaneous recurrent seizure) phases. Status epilepticus (SE), stroke, and traumatic brain injury (TBI) are 3 major examples of common brain injuries that can lead to the development of AE. It is especially important to understand the molecular mechanisms that cause AE because it may lead to innovative strategies to prevent or cure this common condition. Recent studies have offered new insights into the cause of AE and indicate that injury-induced alterations in intracellular calcium concentration levels [Ca(2+)](i) and calcium homeostatic mechanisms play a role in the development and maintenance of AE. The injuries that cause AE are different, but they share a common molecular mechanism for producing brain damage-an increase in extracellular glutamate concentration that causes increased intracellular neuronal calcium, leading to neuronal injury and/or death. Neurons that survive the injury induced by glutamate and are exposed to increased [Ca(2+)](i) are the cellular substrates to develop epilepsy because dead cells do not seize. The neurons that survive injury sustain permanent long-term plasticity changes in [Ca(2+)](i) and calcium homeostatic mechanisms that are permanent and are a prominent feature of the epileptic phenotype. In the last several years, evidence has accumulated indicating that the prolonged alteration in neuronal calcium dynamics plays an important role in the induction and maintenance of the prolonged neuroplasticity changes underlying the epileptic phenotype. Understanding the role of calcium as a second messenger in the induction and maintenance of epilepsy may provide novel insights into therapeutic advances that will prevent and even cure AE.
Collapse
Affiliation(s)
- Robert J Delorenzo
- Department of Neurology, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298-0599, USA.
| | | | | |
Collapse
|
21
|
Sun DA, Sombati S, Blair RE, DeLorenzo RJ. Long-lasting alterations in neuronal calcium homeostasis in an in vitro model of stroke-induced epilepsy. Cell Calcium 2004; 35:155-63. [PMID: 14706289 DOI: 10.1016/j.ceca.2003.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Altered calcium homeostatic mechanisms have been implicated in the development of acquired epilepsy in numerous models. Stroke is one of the leading brain injuries that cause acquired epilepsy, yet little is known concerning the molecular mechanisms underlying stroke-induced epileptogenesis. Recently an in vitro model of stroke-induced epilepsy was developed and characterized as a powerful tool to study the pathophysiology of injury and stroke-induced epileptogenesis. Using this glutamate injury-induced epileptogenesis model, we have investigated the role of altered calcium homeostatic mechanisms in the development and maintenance of stroke-induced epilepsy. Epileptic neurons manifested elevated intracellular calcium levels compared to control neurons independent of neuronal activity and seizure discharge for the remainder of the life of the neurons in culture. In addition, epileptic neurons were found to have alterations in the ability to reduce intracellular calcium levels following a calcium load. These long-term epileptic changes in calcium homeostasis were dependent on calcium during the initial glutamate injury. The data demonstrate that significant alterations in calcium homeostatic mechanisms occur in association with stroke-induced epilepsy and suggest that these changes may play a role in both the induction and maintenance of the epileptic phenotype in this model.
Collapse
Affiliation(s)
- David A Sun
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | | | | | | |
Collapse
|
22
|
Blair RE, Sombati S, Lawrence DC, McCay BD, DeLorenzo RJ. Epileptogenesis causes acute and chronic increases in GABAA receptor endocytosis that contributes to the induction and maintenance of seizures in the hippocampal culture model of acquired epilepsy. J Pharmacol Exp Ther 2004; 310:871-80. [PMID: 15084648 DOI: 10.1124/jpet.104.068478] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Altered GABAergic inhibitory tone has been observed in association with a number of both acute and chronic models of epilepsy and is believed to be the result, in part, of a decrease in function of the postsynaptic GABAA receptor (GABAAR). This study was carried out to investigate if alterations in receptor internalization contribute to the decrease in GABAAR function observed with epilepsy, utilizing the hippocampal neuronal culture model of low-Mg2+-induced spontaneous recurrent epileptiform discharges (SREDs). Analysis of GABAAR function in "epileptic" cultures showed a 62% reduction in [3H]flunitrazepam binding to the GABAA alpha receptor subunit and a 50% decrease in GABA currents when compared with controls. Confocal microscopy analysis of immunohistochemical staining of GABAAR beta2/beta3 subunit expression revealed approximately a 30% decrease of membrane staining in hippocampal cultures displaying SREDs immediately after low-Mg2+ treatment and in the chronic epileptic state. Low-Mg2+-treated cultures internalized antibody labeled GABAA receptor with an increase in rate of 68% from control. Inhibition of GABAAR endocytosis in epileptic cultures resulted in both a recovery to control levels of membrane GABAA beta2/beta3 immunostaining and a total blockade of SREDs. These results indicate that altered GABAAR endocytosis contributes to the decrease in GABAAR expression and function observed in this in vitro model of epilepsy and plays a role in causing and maintaining SREDs. Understanding the mechanisms underlying altered GABAA R recycling may offer new insights into the pathophysiology of epilepsy and provide novel therapeutic strategies to treat this major neurological condition.
Collapse
Affiliation(s)
- Robert E Blair
- Department of Neurology, Virginia Commonwealth University, School of Medicine, P.O. Box 980599, Richmond, VA 23298, USA.
| | | | | | | | | |
Collapse
|
23
|
Gardoni F, Pagliardini S, Setola V, Bassanini S, Cattabeni F, Battaglia G, Di Luca M. The NMDA receptor complex is altered in an animal model of human cerebral heterotopia. J Neuropathol Exp Neurol 2003; 62:662-75. [PMID: 12834111 DOI: 10.1093/jnen/62.6.662] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Double intraperitoneal injections of methylazoxymethanol (MAM) in pregnant rats induce developmental brain dysgenesis with nodular heterotopia similar to human periventricular nodular heterotopia (PNH) and composed of hyperexcitable neurons. Here we analyzed the NMDA receptor complex and associated proteins in the heterotopic neurons of 2- to 3-month-old MAM-treated rats by means of a combined immunocytochemical/molecular approach. Our data demonstrated a clear reduction of p286-active form of alphaCaMKII and a selective impairment of both the targeting and the CaMKII-dependent phosphorylation of NR2A/B subunits in the postsynaptic membranes of the MAM-induced heterotopia. The reduced NR2A/B immunofluorescence of the cellular membrane was not due to reduced expression since it was decreased only in postsynaptic fractions but not in the homogenate. NMDA-NR1 and AMPA-GluR2/3 subunits, as well as PSD-95 and total alphaCaMKII protein levels, were not affected in MAM-treated rats, thus revealing that the overall composition of the postsynaptic fraction was not altered. These data clearly suggest that the molecular organization of the NMDA/alphaCaMKII complex is selectively altered in the postsynaptic compartment of heterotopic neurons. This alteration can play a role in determining the hyperexcitability of brain heterotopia in MAM rats as well as in human patients affected by PNH.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Center of Excellence on Neurodegenerative Diseases, Department of Pharmacological Sciences, University of Milano, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Cao HY, Jiang YW, Liu ZW, Wu XR. Effect of recurrent epileptiform discharges induced by magnesium-free treatment on developing cortical neurons in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:1-6. [PMID: 12694939 DOI: 10.1016/s0165-3806(03)00005-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As seizures in infants and children often originate from the neocortex, neocortical epilepsy models may be appropriate for studying epileptiform activity and seizure-induced injury in the developing nervous system. However, the characterization of epileptiform activity or seizure-induced injury in cultured developing cortical neurons has seldom been reported. Therefore, We attempted to establish a cultured developing cortical neuronal epilepsy model, and to study the subsequent effect on neurons. Cultures were exposed to Mg(2+)-free media for 3 h, and then returned to regular media. Using whole-cell patch-clamp intracellular recording techniques, we found that spontaneously recurrent epileptiform discharges for at least 72 h could be induced after transient Mg(2+)-free treatment. Neuron morphology following Mg(2+)-free treatment demonstrated no prominent alterations. At different time points (6, 24 and 72 h) after Mg(2+)-free treatment, neuronal viability, identified by trypan blue staining and LDH activity, and apoptosis, measured by flow cytometry, showed modest but non-significant (P>0.05) changes compared with the age-matched control group after various culture periods (6 and 17 days) in vitro. Mitochondrial metabolic activity, measured by MTT assay, significantly decreased by 15% at 6 h after Mg(2+)-free treatment (P<0.05) in neurons cultured for 6 days, and at 24 h showed a 29% decrease in neurons cultured for 17 days (P<0.05). In conclusion, brief Mg(2+)-free treatment constitutes a cultured developing cortical neuron 'seizure' model, and can induce transient mitochondrial dysfunction without cell loss.
Collapse
Affiliation(s)
- Hai-Yan Cao
- Division of Child Neurology, Department of Pediatrics, Peking University First Hospital, No. 1, Xi'anmen Dajie, Beijing 100034, PR China
| | | | | | | |
Collapse
|
25
|
Yechikhov S, Shchipakina T, Savina T, Kalemenev S, Levin S, Godukhin O. The role of Ca2+/calmodulin-dependent protein kinase II in mechanisms underlying neuronal hyperexcitability induced by repeated, brief exposure to hypoxia or high K+ in rat hippocampal slices. Neurosci Lett 2002; 335:21-4. [PMID: 12457733 DOI: 10.1016/s0304-3940(02)01154-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Analysis of extracellular recordings of evoked excitatory postsynaptic potentials and population spikes from rat hippocampal slices has previously revealed that repeated, brief exposures to high extracellular K(+) or to episodes of hypoxia induce a sustained (more than 3 h) hyperexcitability of CA1 pyramidal neurons accompanied with epileptiform activity which was dependent on activation of L-type Ca(2+) channels and N-methyl-D-aspartate receptors. Using in vitro phosphorylation assay we have found the significant increase of Ca(2+)-independent activity of Ca(2+)/calmodulin-dependent protein kinase II in CA1 region of hippocampal slices 60 min after the high extracellular K(+) and 60-80 min after the hypoxic episodes. These data suggest possible involvement of Ca(2+)/calmodulin-dependent protein kinase II in Ca(2+)-dependent mechanisms of the maintenance phase of the observed epileptiform activity.
Collapse
Affiliation(s)
- Sergey Yechikhov
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | | | |
Collapse
|
26
|
Sun DA, Sombati S, Blair RE, DeLorenzo RJ. Calcium-dependent epileptogenesis in an in vitro model of stroke-induced "epilepsy". Epilepsia 2002; 43:1296-305. [PMID: 12423378 DOI: 10.1046/j.1528-1157.2002.09702.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Stroke is the most common cause of acquired epilepsy. The purpose of this investigation was to characterize the role of calcium in the in vitro, glutamate injury-induced epileptogenesis model of stoke-induced epilepsy. METHODS Fura-2 calcium imaging and whole-cell current clamp electrophysiology techniques were used to measure short-term changes in neuronal free intracellular calcium concentration and long-term alterations in neuronal excitability in response to epileptogenic glutamate injury (20 microM, 10 min) under various extracellular calcium conditions and in the presence of different glutamate-receptor antagonists. RESULTS Glutamate injury-induced epileptogenesis was associated with prolonged, reversible elevations of free intracellular calcium concentration during and immediately after injury and chronic hyperexcitability manifested as spontaneous recurrent epileptiform discharges for the remaining life of the cultures. Epileptogenic glutamate exposure performed in solutions containing low extracellular calcium, barium substituted for calcium, or N-methyl-d-aspartate (NMDA)-receptor antagonists reduced the duration of intracellular calcium elevation and inhibited epileptogenesis. Antagonism of non-NMDA-receptor subtypes had no effect on glutamate injury-induced calcium changes or the induction epileptogenesis. The duration of the calcium elevation and the total calcium load statistically correlated with the development of epileptogenesis. Comparable elevations in neuronal calcium induced by non-glutamate receptor-mediated pathways did not cause epileptogenesis. CONCLUSIONS This investigation indicates that the glutamate injury-induced epileptogenesis model of stroke-induced epilepsy is calcium dependent and requires NMDA-receptor activation. Further, these experiments suggest that prolonged, reversible elevations in neuronal free intracellular calcium initiate the long-term plasticity changes that underlie the development of injury-induced epilepsy.
Collapse
Affiliation(s)
- David A Sun
- Departments of Pharmacology and Toxicology, and the Graduate Program in Neuroscience, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
27
|
Battaglia G, Pagliardini S, Ferrario A, Gardoni F, Tassi L, Setola V, Garbelli R, LoRusso G, Spreafico R, Di Luca M, Avanzini G. AlphaCaMKII and NMDA-receptor subunit expression in epileptogenic cortex from human periventricular nodular heterotopia. Epilepsia 2002; 43 Suppl 5:209-16. [PMID: 12121323 DOI: 10.1046/j.1528-1157.43.s.5.38.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE Periventricular nodular heterotopia (PNH) is the most common human brain dysgenesis, very frequently characterized by focal drug-resistant epilepsy. To understand the cellular mechanisms underlying its intrinsic hyperexcitability, we investigated the expression of glutamate-receptor subunits and related proteins in four human patients affected by PNH. METHODS PNH was diagnosed by means of magnetic resonance imaging. The epileptogenic area was revealed by depth electrode recordings and removed during epilepsy surgery. Sections from the removed cerebral tissue were analyzed by means of immunocytochemistry (ICC), with antibodies directed against N-methyl-d-aspartate (NMDA)-receptor subunits, the alpha subunit of the Ca2+/calmodulin-dependent kinase II (alphaCaMKII), and its active phosphorylated form. RESULTS The ICC data demonstrated that the subcortical heterotopic nodules were consistently characterized by lower expression of alphaCaMKII and its activated form. In more pronounced cases (i.e., when the extension of the nodules to the neocortex determined clear layering abnormalities), the heterotopic tissue also was characterized by a decreased expression of NMDA-receptor subunits, which was particularly evident in the dendritic compartment. CONCLUSIONS These data suggest the existence of an alteration of alphaCaMKII and the NMDA-receptor complex in the epileptogenic brain tissue of human PNH, which may play a role in the basic mechanisms of hyperexcitability associated with this brain dysgenesis.
Collapse
Affiliation(s)
- Giorgio Battaglia
- Molecular Neuroanatomy Laboratory, Department of Experimental Neurophysiology, C. Besta Neurological Institute, Via Celoria 11, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liang D, Seyfried TN. Genes differentially expressed in the kindled mouse brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 96:94-102. [PMID: 11731014 DOI: 10.1016/s0169-328x(01)00287-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Kindling involves long-term changes in brain excitability and is considered a model of epilepsy and neuroplasticity. Differentially expressed genes in the kindled mouse brain were screened using an reverse transcription-polymerase chain reaction (RT-PCR) differential display (DD) method. C3H male mice were kindled with 40 stimuli in the hippocampus at 5-min intervals. Hippocampal RNA was isolated for DD from mice at 0.5 h, 1 day, 1 week, and 1 month after kindling and from sham-operated controls. About 30,000 bands were screened and of these, 50 were displayed differentially. Northern blot analysis confirmed that 26 of the 50 bands were differentially expressed following rapid kindling. Further sequence analysis revealed that 14 of the genes were previously identified and 12 were novel. The novel genes are referred to as King (1-12) genes because of their association with kindling. According to their temporal and quantitative pattern of expression in forebrain, the 26 genes were grouped into five types. Expression of five of the DD genes, one from each expression type, was further analyzed in hippocampus, forebrain, brainstem, and cerebellum of the kindled mice. Differential expression of these genes was observed in hippocampus and forebrain, but not in brainstem or cerebellum. Only one gene, a regulator of G-protein signaling 4 (RGS4), showed prolonged changes in expression in response to kindling. Our results show that rapid kindling produces spatial and temporal changes in gene expression that may influence kindling-associated neuroplasticity.
Collapse
Affiliation(s)
- D Liang
- Department of Biology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
29
|
Parsons JT, Churn SB, DeLorenzo RJ. Chronic inhibition of cortex microsomal Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in the rat pilocarpine model following epileptogenesis. J Neurochem 2001; 79:319-27. [PMID: 11677260 DOI: 10.1046/j.1471-4159.2001.00576.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the rat pilocarpine model, 1 h of status epilepticus caused significant inhibition of Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in cortex endoplasmic reticulum (microsomes) isolated immediately after the status episode. The rat pilocarpine model is also an established model of acquired epilepsy. Several weeks after the initial status epilepticus episode, the rats develop spontaneous recurrent seizures, or epilepsy. To determine whether inhibition of Ca(2+) uptake persists after the establishment of epilepsy, Ca(2+) uptake was studied in cortical microsomes isolated from rats displaying spontaneous recurrent seizures for 1 year. The initial rate and total Ca(2+) uptake in microsomes from epileptic animals remained significantly inhibited 1 year after the expression of epilepsy compared to age-matched controls. The inhibition of Ca(2+) uptake was not due to individual seizures nor an artifact of increased Ca(2+) release from epileptic microsomes. In addition, the decreased Ca(2+) uptake was not due to either selective isolation of damaged epileptic microsomes from the homogenate or decreased Mg(2+)/Ca(2+) ATPase protein in the epileptic microsomes. The data demonstrate that inhibition of microsomal Mg(2+)/Ca(2+) ATPase-mediated Ca(2+) uptake in the pilocarpine model may underlie some of the long-term plasticity changes associated with epileptogenesis.
Collapse
Affiliation(s)
- J T Parsons
- Department of Neurology, Medical College of Virginia Commonwealth University, Richmond, Virginia 23298-0599, USA.
| | | | | |
Collapse
|
30
|
Yechikhov S, Morenkov E, Chulanova T, Godukhin O, Shchipakina T. Involvement of cAMP- and Ca(2+)/calmodulin-dependent neuronal protein phosphorylation in mechanisms underlying genetic predisposition to audiogenic seizures in rats. Epilepsy Res 2001; 46:15-25. [PMID: 11395284 DOI: 10.1016/s0920-1211(01)00255-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It was shown that increased excitability in neurons underlying epilepsies would be maintained by abnormalities in protein phosphorylation systems. This study was initiated to compare the functioning of Ca(2+)/calmodulin- and cAMP-dependent systems of protein phosphorylation in homogenates of neocortex and hippocampus in three animal groups: genetically prone to audiogenic seizures (GPAS) rats, GPAS rats exposed to daily repeated audiogenic seizures (AGPAS rats) and nonepileptic Wistar ones. We found significant differences in phosphorylation of 270, 58, 54 and 42 kDa proteins in neocortex and hippocampus of GPAS rats in comparison with Wistar ones. Daily repeated seizures induced further modifications of phosphorylation of these proteins in only hippocampus of AGPAS rats as compared with GPAS ones. Ca(2+)-independent, functional CAMKII activity was considerably increased in hippocampus but decreased in neocortex of GPAS rats in comparison with Wistar ones. The activity of PKA was increased both in neocortex and hippocampus of GPAS rats. Daily repeated audiogenic seizures induced the decrease of Ca(2+)-independent CAMKII activity in hippocampus and the increase of PKA activity in neocortex of AGPAS rats in comparison with GPAS ones. The present results indicate that modification of 270, 58, 54, and 42 kDa proteins phosphorylation as well as altered CAMKII and PKA activities might be involved in mechanisms of genetic predisposition to audiogenic seizures.
Collapse
Affiliation(s)
- S Yechikhov
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow, Moscow Region, 142292, Russia.
| | | | | | | | | |
Collapse
|
31
|
Raza M, Pal S, Rafiq A, DeLorenzo RJ. Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy. Brain Res 2001; 903:1-12. [PMID: 11382382 DOI: 10.1016/s0006-8993(01)02127-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The pilocarpine model of temporal lobe epilepsy is an animal model that shares many of the clinical and pathophysiological characteristics of temporal lobe or limbic epilepsy in humans. This model of acquired epilepsy produces spontaneous recurrent seizure discharges following an initial brain injury produced by pilocarpine-induced status epilepticus. Understanding the molecular mechanisms mediating these long lasting changes in neuronal excitability would provide an important insight into developing new strategies for the treatment and possible prevention of this condition. Our laboratory has been studying the role of alterations in calcium and calcium-dependent systems in mediating some of the long-term neuroplasticity changes associated with epileptogenesis. In this study, [Ca(2+)](i) imaging fluorescence microscopy was performed on CA1 hippocampal neurons acutely isolated from control and chronically epileptic animals at 1 year after the induction of epileptogenesis with two different fluorescent dyes (Fura-2 and Fura-FF) having high and low affinities for [Ca(2+)](i). The high affinity Ca(2+) indicator Fura-2 was utilized to evaluate [Ca(2+)](i) levels up to 900 nM and the low affinity indicator Fura-FF was employed for evaluating [Ca(2+)](i) levels above this range. Baseline [Ca(2+)](i) levels and the ability to restore resting [Ca(2+)](i) levels after a brief exposure to several glutamate concentrations in control and epileptic neurons were evaluated. Epileptic neurons demonstrated a statistically significantly higher baseline [Ca(2+)](i) level in comparison to age-matched control animals. This alteration in basal [Ca(2+)](i) levels persisted up to 1 year after the induction of epileptogenesis. In addition, the epileptic neurons were unable to rapidly restore [Ca(2+)](i) levels to baseline following the glutamate-induced [Ca(2+)](i) loads. These changes in Ca(2+) regulation were not produced by a single seizure and were not normalized by controlling the seizures in the epileptic animals with anticonvulsant treatment. Peak [Ca(2+)](i) levels in response to different concentrations of glutamate were the same in both epileptic and control neurons. Thus, glutamate produced the same initial [Ca(2+)](i) load in both epileptic and control neurons. Characterization of the viability of acutely isolated neurons from control and epileptic animals utilizing standard techniques to identify apoptotic or necrotic neurons demonstrated that epileptic neurons had no statistically significant difference in viability compared to age-matched controls. These results provide the first direct measurement of [Ca(2+)](i) levels in an intact model of epilepsy and indicate that epileptogenesis in this model produced long-lasting alterations in [Ca(2+)](i) homeostatic mechanisms that persist for up to 1 year after induction of epileptogenesis. These observations suggest that altered [Ca(2+)](i) homeostatic mechanisms may underlie some aspects of the epileptic phenotype and contribute to the persistent neuroplasticity changes associated with epilepsy.
Collapse
Affiliation(s)
- M Raza
- Department of Neurology, Medical College of Virginia, Virginia Commonwealth University, P.O. Box 980599, Richmond, VA 23298-0599, USA
| | | | | | | |
Collapse
|
32
|
Baldy-Moulinier M, Crespel A. [Pathophysiology of epileptic seizures and status epilepticus]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 2001; 20:97-107. [PMID: 11270245 DOI: 10.1016/s0750-7658(00)00280-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Primary and secondary epileptogenesis involves multiple genetic and acquired factors. Epileptogenesis is a complex result of combined factors including membrane factors, neurotransmitter and environmental factors. Ion channel-related diseases, GABA and glutamate dysfunction, and glial reaction intervene in different epileptic conditions. The understanding of the mechanisms which emphasize initiation and maintenance of status epilepticus (SE) are in progress. Prognosis of SE is related to the duration of epileptic activity and to the acute cerebral and systemic consequences. Delayed cellular and molecular alterations after SE are responsible for secondary epileptogenesis. Glutamate receptor activation is the main key point leading to an excessive intraneuronal accumulation of ionic calcium by which a cascade of reactions is induced. Apoptotic neuronal death, glial reaction axonal sprouting and neurogenesis contribute to a state of hyperexcitability and hypersynchrony. A better understanding of underlying mechanisms of epileptogenesis may serve the development of new drugs with both anticonvulsant and antiepileptic (prevention or neuroprotection) actions.
Collapse
Affiliation(s)
- M Baldy-Moulinier
- Service explorations neurologiques et épileptologie, hôpital Gui-de-Chauliac, 34295 Montpellier, France.
| | | |
Collapse
|
33
|
Churn SB, Kochan LD, DeLorenzo RJ. Chronic inhibition of Ca(2+)/calmodulin kinase II activity in the pilocarpine model of epilepsy. Brain Res 2000; 875:66-77. [PMID: 10967300 DOI: 10.1016/s0006-8993(00)02623-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of symptomatic epilepsy is a model of long-term plasticity changes in the central nervous system. The rat pilocarpine model of epilepsy was utilized to study persistent alterations in calcium/calmodulin-dependent kinase II (CaM kinase II) activity associated with epileptogenesis. CaM kinase II-dependent substrate phosphorylation and autophosphorylation were significantly inhibited for up to 6 weeks following epileptogenesis in both the cortex and hippocampus, but not in the cerebellum. The net decrease in CaM kinase II autophosphorylation and substrate phosphorylation was shown to be due to decreased kinase activity and not due to increased phosphatase activity. The inhibition in CaM kinase II activity and the development of epilepsy were blocked by pretreating seizure rats with MK-801 indicating that the long-lasting decrease in CaM kinase II activity was dependent on N-methyl-D-aspartate receptor activation. In addition, the inhibition of CaM kinase II activity was associated in time and regional localization with the development of spontaneous recurrent seizure activity. The decrease in enzyme activity was not attributed to a decrease in the alpha or beta kinase subunit protein expression level. Thus, the significant inhibition of the enzyme occurred without changes in kinase protein expression, suggesting a long-lasting, post-translational modification of the enzyme. This is the first published report of a persistent, post-translational alteration of CaM kinase II activity in a model of epilepsy characterized by spontaneous recurrent seizure activity.
Collapse
Affiliation(s)
- S B Churn
- Department of Neurology, The Medical College of Virginia, Virginia Commonwealth University, P.O. Box 980599, MCV Station, Richmond, VA 23298, USA.
| | | | | |
Collapse
|
34
|
Churn SB, Sombati S, Jakoi ER, Severt L, DeLorenzo RJ, Sievert L. Inhibition of calcium/calmodulin kinase II alpha subunit expression results in epileptiform activity in cultured hippocampal neurons. Proc Natl Acad Sci U S A 2000; 97:5604-9. [PMID: 10779547 PMCID: PMC25875 DOI: 10.1073/pnas.080071697] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/1999] [Accepted: 02/17/2000] [Indexed: 11/18/2022] Open
Abstract
Several models that develop epileptiform discharges and epilepsy have been associated with a decrease in the activity of calmodulin-dependent kinase II. However, none of these studies has demonstrated a causal relationship between a decrease in calcium/calmodulin kinase II activity and the development of seizure activity. The present study was conducted to determine the effect of directly reducing calcium/calmodulin-dependent kinase activity on the development of epileptiform discharges in hippocampal neurons in culture. Complimentary oligonucleotides specific for the alpha subunit of the calcium/calmodulin kinase were used to decrease the expression of the enzyme. Reduction in kinase expression was confirmed by Western analysis, immunocytochemistry, and exogenous substrate phosphorylation. Increased neuronal excitability and frank epileptiform discharges were observed after a significant reduction in calmodulin kinase II expression. The epileptiform activity was a synchronous event and was not caused by random neuronal firing. Furthermore, the magnitude of decreased kinase expression correlated with the increased neuronal excitability. The data suggest that decreased calmodulin kinase II activity may play a role in epileptogenesis and the long-term plasticity changes associated with the development of pathological seizure activity and epilepsy.
Collapse
Affiliation(s)
- S B Churn
- Department of Neurology, Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|