1
|
Sarkar S, Porel P, Kosey S, Aran KR. Diverse role of S100 calcium-binding protein B in alzheimer's disease: pathological mechanisms and therapeutic implications. Inflammopharmacology 2025; 33:1803-1816. [PMID: 40057929 DOI: 10.1007/s10787-025-01697-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 04/13/2025]
Abstract
S100 calcium-binding protein B, a member of the S100 protein family, plays an important role in the pathogenesis of Alzheimer's disease. Alzheimer's disease, a neurodegenerative disorder, is characterized by amyloid-beta plaques, neurofibrillary tangles, progressive dementia, and severe neuroinflammation. S100 calcium-binding protein B, predominantly secreted by astrocytes, exhibits a dual role in Alzheimer's disease, where at low (nanomolar) concentrations, it exhibits neurotrophic and neuroprotective effects and enhances synaptic plasticity, while at higher concentrations, it contributes to neuroinflammation and neuronal damage. In addition to its pathological roles in Alzheimer's disease, S100 calcium-binding protein B is also considered a potential biomarker, as increased levels correlate with cognitive decline and disease progression in cerebrospinal fluid. Targeting S100 calcium-binding protein B and/or its interaction with the receptor for advanced glycation end-products seems to be a potential target for therapeutic intervention. The development of multiple treatment approaches, such as pharmacological inhibitors, immunotherapy, and modulation of S100 calcium-binding protein B / receptor for advanced glycation end-products signalling pathways, might help to reduce neuroinflammation and amyloid-beta deposition effectively. This review aims to provide an overview of the role of S100 calcium-binding protein B in Alzheimer's disease and to explore its potential as a treatment target, well-grounded in its dual nature. Understanding S100 calcium-binding protein B's involvement in the pathogenesis of Alzheimer's disease may advance its application as a biomarker and help in the development of new treatment strategies, ultimately improving patients' quality of life.
Collapse
Affiliation(s)
- Sampriti Sarkar
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Pratyush Porel
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sourabh Kosey
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Khadga Raj Aran
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Zhang W, Zhang J, Wang Y, Wang S, Wu Y, Zhang W, Wu M, Wang L, Xu G, Deng F, Liu W, Liu Z, Chen L, Xiao K, Zhang L. In Vitro Detection of S100B and Severity Evaluation of Traumatic Brain Injury Based on Biomimetic Peptide-Modified Nanochannels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306809. [PMID: 38009781 DOI: 10.1002/smll.202306809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Indexed: 11/29/2023]
Abstract
The diagnosis and evaluation of traumatic brain injury (TBI) are crucial steps toward the treatment and prognosis of patients. A common question remains as to whether it is possible to introduce an ideal device for signal detection and evaluation that can directly connect digital signals with TBI, thereby enabling prompt response of the evaluation signal and sensitive and specific functioning of the detection process. Herein, a method is presented utilizing polymetric porous membranes with TRTK-12 peptide-modified nanochannels for the detection of S100B (a TBI biomarker) and assessment of TBI severity. The method leverages the specific bonding force between TRTK-12 peptide and S100B protein, along with the nanoconfinement effect of nanochannels, to achieve high sensitivity (LOD: 0.002 ng mL-1) and specificity (∆I/I0: 44.7%), utilizing ionic current change as an indicator. The proposed method, which is both sensitive and specific, offers a simple yet responsive approach for real-time evaluation of TBI severity. This innovative technique provides valuable scientific insights into the advancement of future diagnostic and therapeutic integration devices.
Collapse
Affiliation(s)
- Wenyuan Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, P. R. China
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Jianrui Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yijun Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Senyao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Yitian Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wenchang Zhang
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Minghui Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Guoheng Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Fuan Deng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Wenchao Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Zhengwei Liu
- Shenzhen Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, 518000, P. R. China
- Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen, 518116, P. R. China
| | - Lu Chen
- School of Materials and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, P. R. China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
3
|
The Crosstalk between the Blood–Brain Barrier Dysfunction and Neuroinflammation after General Anaesthesia. Curr Issues Mol Biol 2022; 44:5700-5717. [PMID: 36421670 PMCID: PMC9689502 DOI: 10.3390/cimb44110386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As we know, with continuous medical progress, the treatment of many diseases can be conducted via surgery, which often relies on general anaesthesia for its satisfactory performance. With the widespread use of general anaesthetics, people are beginning to question the safety of general anaesthesia and there is a growing interest in central nervous system (CNS) complications associated with anaesthetics. Recently, abundant evidence has suggested that both blood–brain barrier (BBB) dysfunction and neuroinflammation play roles in the development of CNS complications after anaesthesia. Whether there is a crosstalk between BBB dysfunction and neuroinflammation after general anaesthesia, and whether this possible crosstalk could be a therapeutic target for CNS complications after general anaesthesia needs to be clarified by further studies.
Collapse
|
4
|
Chu C, Zhong R, Cai M, Li N, Lin W. Elevated Blood S100B Levels in Patients With Migraine: A Systematic Review and Meta-Analysis. Front Neurol 2022; 13:914051. [PMID: 35911929 PMCID: PMC9329586 DOI: 10.3389/fneur.2022.914051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: In recent years, a growing number of researches indicate that S100B may act in migraine, but the relationship between S100B and migraine remains controversial. Therefore, the current study aimed to perform a meta-analysis to quantitatively summarize S100B levels in migraine patients. Methods We used Stata 12.0 software to summarize eligible studies from PubMed, EMBASE, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), and Wanfang databases. We applied standardized mean differences (SMDs) with 95% confidence intervals (95%CIs) to appraise the association between S100B and migraine. Results The combined results of nine case-control studies indicated that compared with healthy controls, overall migraine patients had significantly increased S100B levels in peripheral blood (SMD = 0.688, 95%CI: 0.341–1.036, P < 0.001). The S100B levels in migraineurs during ictal periods (SMD =1.123, 95%CI: 0.409–1.836, P = 0.002) and interictal periods (SMD = 0.487, 95%CI: 0313–0.661, P < 0.001), aura (SMD = 0.999, 95%CI: 0.598–1.400, P < 0.001) and without aura (SMD = 0.534, 95%CI: 0.286–0.783, P < 0.001) were significantly higher than those in the controls. The subgroup analyses by age, country, migraine assessment, and assay method of S100B also illustrated a statistically obvious association between S100B levels and migraine, indicating that age may be the most important source of heterogeneity. Sensitivity analysis showed that no individual study has a significant influence on the overall association between S100B and migraine. Conclusion This meta-analysis demonstrates that the level of S100B in peripheral blood of patients with migraine was significantly increased. Migraine may be associated with pathological reactions involving S100B, which is instrumental for the clinical diagnosis of migraine and therapy that considers S100B as a potential target.
Collapse
|
5
|
Costas-Ferreira C, Durán R, Faro LRF. Toxic Effects of Glyphosate on the Nervous System: A Systematic Review. Int J Mol Sci 2022; 23:4605. [PMID: 35562999 PMCID: PMC9101768 DOI: 10.3390/ijms23094605] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
Glyphosate, a non-selective systemic biocide with broad-spectrum activity, is the most widely used herbicide in the world. It can persist in the environment for days or months, and its intensive and large-scale use can constitute a major environmental and health problem. In this systematic review, we investigate the current state of our knowledge related to the effects of this pesticide on the nervous system of various animal species and humans. The information provided indicates that exposure to glyphosate or its commercial formulations induces several neurotoxic effects. It has been shown that exposure to this pesticide during the early stages of life can seriously affect normal cell development by deregulating some of the signaling pathways involved in this process, leading to alterations in differentiation, neuronal growth, and myelination. Glyphosate also seems to exert a significant toxic effect on neurotransmission and to induce oxidative stress, neuroinflammation and mitochondrial dysfunction, processes that lead to neuronal death due to autophagy, necrosis, or apoptosis, as well as the appearance of behavioral and motor disorders. The doses of glyphosate that produce these neurotoxic effects vary widely but are lower than the limits set by regulatory agencies. Although there are important discrepancies between the analyzed findings, it is unequivocal that exposure to glyphosate produces important alterations in the structure and function of the nervous system of humans, rodents, fish, and invertebrates.
Collapse
Affiliation(s)
| | | | - Lilian R. F. Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, Universidade de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain; (C.C.-F.); (R.D.)
| |
Collapse
|
6
|
Zaręba-Kozioł M, Burdukiewicz M, Wysłouch-Cieszyńska A. Intracellular Protein S-Nitrosylation—A Cells Response to Extracellular S100B and RAGE Receptor. Biomolecules 2022; 12:biom12050613. [PMID: 35625541 PMCID: PMC9138530 DOI: 10.3390/biom12050613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Human S100B is a small, multifunctional protein. Its activity, inside and outside cells, contributes to the biology of the brain, muscle, skin, and adipocyte tissues. Overexpression of S100B occurs in Down Syndrome, Alzheimer’s disease, Creutzfeldt–Jakob disease, schizophrenia, multiple sclerosis, brain tumors, epilepsy, melanoma, myocardial infarction, muscle disorders, and sarcopenia. Modulating the activities of S100B, related to human diseases, without disturbing its physiological functions, is vital for drug and therapy design. This work focuses on the extracellular activity of S100B and one of its receptors, the Receptor for Advanced Glycation End products (RAGE). The functional outcome of extracellular S100B, partially, depends on the activation of intracellular signaling pathways. Here, we used Biotin Switch Technique enrichment and mass-spectrometry-based proteomics to show that the appearance of the S100B protein in the extracellular milieu of the mammalian Chinese Hamster Ovary (CHO) cells, and expression of the membrane-bound RAGE receptor, lead to changes in the intracellular S-nitrosylation of, at least, more than a hundred proteins. Treatment of the wild-type CHO cells with nanomolar or micromolar concentrations of extracellular S100B modulates the sets of S-nitrosylation targets inside cells. The cellular S-nitrosome is tuned differently, depending on the presence or absence of stable RAGE receptor expression. The presented results are a proof-of-concept study, suggesting that S-nitrosylation, like other post-translational modifications, should be considered in future research, and in developing tailored therapies for S100B and RAGE receptor-related diseases.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Science, Pasteura 3, 02-093 Warsaw, Poland
| | - Michał Burdukiewicz
- Clinical Research Centre, Medical University of Białystok, Kilińskiego 1, 15-369 Białystok, Poland;
| | - Aleksandra Wysłouch-Cieszyńska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
7
|
Michetti F, Di Sante G, Clementi ME, Sampaolese B, Casalbore P, Volonté C, Romano Spica V, Parnigotto PP, Di Liddo R, Amadio S, Ria F. Growing role of S100B protein as a putative therapeutic target for neurological- and nonneurological-disorders. Neurosci Biobehav Rev 2021; 127:446-458. [PMID: 33971224 DOI: 10.1016/j.neubiorev.2021.04.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023]
Abstract
S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms. In general, deletion/inactivation of the protein causes the improvement of the disease, whereas its over-expression/administration induces a worse clinical presentation. This scenario reasonably proposes S100B as a common therapeutic target for several different disorders, also offering new clues to individuate possible unexpected connections among these diseases.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy.
| | - Gabriele Di Sante
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| | - Maria Elisabetta Clementi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Beatrice Sampaolese
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" SCITEC-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Patrizia Casalbore
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Cinzia Volonté
- Institute for Systems Analysis and Computer Science, IASI-CNR, Largo Francesco Vito 1, 00168 Rome, Italy; Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Vincenzo Romano Spica
- Department of Movement, Human and Health Sciences, Laboratory of Epidemiology and Biotechnologies, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135, Rome, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy.
| | - Rosa Di Liddo
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, Padua, Italy; Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Italy.
| | - Susanna Amadio
- Cellular Neurobiology Unit, Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 65, 00143 Rome, Italy.
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 1-8, 00168 Rome, Italy.
| |
Collapse
|
8
|
Wang Z, Guo W, Yi F, Zhou T, Li X, Feng Y, Guo Q, Xu H, Song X, Cao L. The Regulatory Effect of SIRT1 on Extracellular Microenvironment Remodeling. Int J Biol Sci 2021; 17:89-96. [PMID: 33390835 PMCID: PMC7757024 DOI: 10.7150/ijbs.52619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The sirtuins family is well known by its unique nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase function. The most-investigated member of the family, Sirtuin 1 (SIRT1), accounts for deacetylating a broad range of transcription factors and coregulators, such as p53, the Forkhead box O (FOXO), and so on. It serves as a pivotal regulator in various intracellular biological processes, including energy metabolism, DNA damage response, genome stability maintenance and tumorigenesis. Although the most attention has been focused on its intracellular functions, the regulatory effect on extracellular microenvironment remodeling of SIRT1 has been recognized by researchers recently. SIRT1 can regulate cell secretion process and participate in glucose metabolism, neuroendocrine function, inflammation and tumorigenesis. Here, we review the advances in the understanding of SIRT1 on remodeling the extracellular microenvironment, which may provide new ideas for pathogenesis investigation and guidance for clinical treatment.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Wendong Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Fei Yi
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Tingting Zhou
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoman Li
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Yanling Feng
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Qiqiang Guo
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Hongde Xu
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Xiaoyu Song
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| | - Liu Cao
- College of Basic Medical Science, Institute of Translational Medicine, Key Laboratory of Medical Cell Biology, Ministry of Education, Key Laboratory of Liaoning Province, China Medical University, Shenyang, Liaoning Province, P.R. China, 110122
| |
Collapse
|
9
|
Zhang X, Lao K, Qiu Z, Rahman MS, Zhang Y, Gou X. Potential Astrocytic Receptors and Transporters in the Pathogenesis of Alzheimer's Disease. J Alzheimers Dis 2020; 67:1109-1122. [PMID: 30741675 DOI: 10.3233/jad-181084] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by the progressive loss of memory and cognition in the aging population. However, the etiology of and therapies for AD remain far from understood. Astrocytes, the most abundant neuroglia in the brain, have recently aroused substantial concern due to their involvement in synaptotoxicity, amyloidosis, neuroinflammation, and oxidative stress. In this review, we summarize the candidate molecules of astrocytes, especially receptors and transporters, that may be involved in AD pathogenesis. These molecules include excitatory amino acid transporters (EAATs), metabotropic glutamate receptor 5 (mGluR5), the adenosine 2A receptor (A2AR), the α7-nicotinic acetylcholine receptor (α7-nAChR), the calcium-sensing receptor (CaSR), S100β, and cannabinoid receptors. We describe the characteristics of these molecules and the neurological and pharmacological underpinnings of these molecules in AD. Among these molecules, EAATs, A2AR, and mGluR5 are strongly related to glutamate-mediated synaptotoxicity and are involved in glutamate transmission or the clearance of extrasynaptic glutamate in the AD brain. The α7-nAChR, CaSR, and mGluR5 are receptors of Aβ and can induce a plethora of toxic effects, such as the production of excess Aβ, synaptotoxicity, and NO production triggered by changes in intracellular calcium signaling. Antagonists or positive allosteric modulators of these receptors can repair cognitive ability and modify neurobiological changes. Moreover, blocking S100β or activating cannabinoid receptors reduces neuroinflammation, oxidative stress, and reactive astrogliosis. Thus, targeting these molecules might provide alternative approaches for treating AD.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Kejing Lao
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Zhongying Qiu
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Md Saidur Rahman
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China.,Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Yuelin Zhang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, P.R. China
| |
Collapse
|
10
|
Michetti F, D'Ambrosi N, Toesca A, Puglisi MA, Serrano A, Marchese E, Corvino V, Geloso MC. The S100B story: from biomarker to active factor in neural injury. J Neurochem 2018; 148:168-187. [DOI: 10.1111/jnc.14574] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/19/2018] [Accepted: 08/15/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
- IRCCS San Raffaele Scientific Institute; Università Vita-Salute San Raffaele; Milan Italy
| | - Nadia D'Ambrosi
- Department of Biology; Università degli Studi di Roma Tor Vergata; Rome Italy
| | - Amelia Toesca
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | | | - Alessia Serrano
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology; Università Cattolica del Sacro Cuore; Rome Italy
| |
Collapse
|
11
|
Kuehn S, Meißner W, Grotegut P, Theiss C, Dick HB, Joachim SC. Intravitreal S100B Injection Leads to Progressive Glaucoma Like Damage in Retina and Optic Nerve. Front Cell Neurosci 2018; 12:312. [PMID: 30319357 PMCID: PMC6169322 DOI: 10.3389/fncel.2018.00312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
The glial protein S100B, which belongs to a calcium binding protein family, is up-regulated in neurological diseases, like multiple sclerosis or glaucoma. In previous studies, S100B immunization led to retinal ganglion cell (RGC) loss in an experimental autoimmune glaucoma (EAG) model. Now, the direct degenerative impact of S100B on the retina and optic nerve was evaluated. Therefore, 2 μl of S100B was intravitreally injected in two concentrations (0.2 and 0.5 μg/μl). At day 3, 14 and 21, retinal neurons, such as RGCs, amacrine and bipolar cells, as well as apoptotic mechanisms were analyzed. Furthermore, neurofilaments, myelin fibers and axons of optic nerves were evaluated. In addition, retinal function and immunoglobulin G (IgG) level in the serum were measured. At day 3, RGCs were unaffected in the S100B groups, when compared to the PBS group. Later, at days 14 and 21, the RGC number as well as the β-III tubulin protein level was reduced in the S100B groups. Only at day 14, active apoptotic mechanisms were noted. The number of amacrine cells was first affected at day 21, while the bipolar cell amount remained comparable to the PBS group. Also, the optic nerve neurofilament structure was damaged from day 3 on. At day 14, numerous swollen axons were observed. The intraocular injection of S100B is a new model for a glaucoma like degeneration. Although the application site was the eye, the optic nerve degenerated first, already at day 3. From day 14 on, retinal damage and loss of function was noted. The RGCs in the middle part of the retina were first affected. At day 21, the damage expanded and RGCs had degenerated in all areas of the retina as well as amacrine cells. Furthermore, elevated IgG levels in the serum were measured at day 21, which could be a sign of a late and S100B independet immune response. In summary, S100B had a direct destroying impact on the axons of the optic nerve. The damage of the retinal cell bodies seems to be a consequence of this axon loss.
Collapse
Affiliation(s)
- Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Wilhelm Meißner
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Pia Grotegut
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Skvarc DR, Berk M, Byrne LK, Dean OM, Dodd S, Lewis M, Marriott A, Moore EM, Morris G, Page RS, Gray L. Post-Operative Cognitive Dysfunction: An exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev 2017; 84:116-133. [PMID: 29180259 DOI: 10.1016/j.neubiorev.2017.11.011] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/16/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
Post-Operative Cognitive Dysfunction (POCD) is a highly prevalent condition with significant clinical, social and financial impacts for patients and their communities. The underlying pathophysiology is becoming increasingly understood, with the role of neuroinflammation and oxidative stress secondary to surgery and anaesthesia strongly implicated. This review aims to describe the putative mechanisms by which surgery-induced inflammation produces cognitive sequelae, with a focus on identifying potential novel therapies based upon their ability to modify these pathways.
Collapse
Affiliation(s)
- David R Skvarc
- School of Psychology, Deakin University, Melbourne, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia.
| | - Michael Berk
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Linda K Byrne
- School of Psychology, Deakin University, Melbourne, Australia.
| | - Olivia M Dean
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Seetal Dodd
- Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia
| | - Matthew Lewis
- School of Psychology, Deakin University, Melbourne, Australia; Aged Psychiatry Service, Caulfield Hospital, Alfred Health, Caulfield, Australia
| | - Andrew Marriott
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia; Deakin University, School of Medicine, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Eileen M Moore
- Department of Anaesthesia, Perioperative Medicine & Pain Management, Barwon Health, Geelong, Australia; Deakin University, Innovations in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, Barwon Health, Geelong, Australia
| | | | - Richard S Page
- Deakin University, School of Medicine, Geelong, Australia; Department of Orthopaedics, Barwon Health, Geelong, Australia
| | - Laura Gray
- Deakin University, School of Medicine, Geelong, Australia.
| |
Collapse
|
13
|
Ganina KK, Dugina YL, Zhavbert KS, Ertuzun IA, Epshtein OI, Abdurasulova IN. Release-Active Antibodies to S100 Protein Can Correct the Course of Experimental Allergic Encephalomyelitis. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11055-016-0380-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
S100B raises the alert in subarachnoid hemorrhage. Rev Neurosci 2016; 27:745-759. [DOI: 10.1515/revneuro-2016-0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022]
Abstract
AbstractSubarachnoid hemorrhage (SAH) is a devastating disease with high mortality and mobility, the novel therapeutic strategies of which are essentially required. The calcium binding protein S100B has emerged as a brain injury biomarker that is implicated in pathogenic process of SAH. S100B is mainly expressed in astrocytes of the central nervous system and functions through initiating intracellular signaling or via interacting with cell surface receptor, such as the receptor of advanced glycation end products. The biological roles of S100B in neurons have been closely associated with its concentrations, resulting in either neuroprotection or neurotoxicity. The levels of S100B in the blood have been suggested as a biomarker to predict the progress or the prognosis of SAH. The role of S100B in the development of cerebral vasospasm and brain damage may result from the induction of oxidative stress and neuroinflammation after SAH. To get further insight into mechanisms underlying the role of S100B in SAH based on this review might help us to find novel therapeutic targets for SAH.
Collapse
|
15
|
Peña-Ortega F, Rivera-Angulo AJ, Lorea-Hernández JJ. Pharmacological Tools to Study the Role of Astrocytes in Neural Network Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 949:47-66. [DOI: 10.1007/978-3-319-40764-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Kabadi SV, Stoica BA, Zimmer DB, Afanador L, Duffy KB, Loane DJ, Faden AI. S100B inhibition reduces behavioral and pathologic changes in experimental traumatic brain injury. J Cereb Blood Flow Metab 2015; 35:2010-20. [PMID: 26154869 PMCID: PMC4671122 DOI: 10.1038/jcbfm.2015.165] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 01/13/2023]
Abstract
Neuroinflammation following traumatic brain injury (TBI) is increasingly recognized to contribute to chronic tissue loss and neurologic dysfunction. Circulating levels of S100B increase after TBI and have been used as a biomarker. S100B is produced by activated astrocytes and can promote microglial activation; signaling by S100B through interaction with the multiligand advanced glycation end product-specific receptor (AGER) has been implicated in brain injury and microglial activation during chronic neurodegeneration. We examined the effects of S100B inhibition in a controlled cortical impact model, using S100B knockout mice or administration of neutralizing S100B antibody. Both interventions significantly reduced TBI-induced lesion volume, improved retention memory function, and attenuated microglial activation. The neutralizing antibody also significantly reduced sensorimotor deficits and improved neuronal survival in the cortex. However, S100B did not alter microglial activation in BV2 cells or primary microglial cultures stimulated by lipopolysaccharide or interferon gamma. Further, proximity ligation assays did not support direct interaction in the brain between S100B and AGER following TBI. Future studies are needed to elucidate specific pathways underlying S100B-mediated neuroinflammatory actions after TBI. Our results strongly implicate S100B in TBI-induced neuroinflammation, cell loss, and neurologic dysfunction, thereby indicating that it is a potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Shruti V Kabadi
- Center for Shock, Trauma and Anesthesiology Research (STAR) and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bogdan A Stoica
- Center for Shock, Trauma and Anesthesiology Research (STAR) and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Danna B Zimmer
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lauriaselle Afanador
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kara B Duffy
- Center for Biomolecular Therapeutics and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - David J Loane
- Center for Shock, Trauma and Anesthesiology Research (STAR) and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alan I Faden
- Center for Shock, Trauma and Anesthesiology Research (STAR) and Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Ganina KK, Dugina YL, Zhavbert ES, Ertuzun IA, Epstein OI, Abdurasulova IN. [Release-active antibodies to S100 protein are able to improve the experimental allergic encephalomyelitis]. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115:78-82. [PMID: 26356401 DOI: 10.17116/jnevro20151156178-82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIM To reveal the effects of release-active antibodies to S100 protein in an animal model of multiple sclerosis. MATERIAL AND METHODS Sixty female Wistar rats, aged 12 weeks, were included in the study. The pathology was induced by subcutaneous injection of the spinal cord homogenate. Afterwards the rats received a water solution of release-active antibodies to S100 protein (2,5 ml/kg/day, tenoten) or distilled water intragastrically during 30 days. Intramuscular injections of glatiramer acetate (4 mg/kg/day, copaxone) were used as a positive control. RESULTS AND CONCLUSION Release-active antibodies to S100 protein enhanced the latency period of the disease, reduced its peak intensity and compensated the loss of body weight of the animals. The experimental drug effect was similar to the results of copaxone injections.
Collapse
|
18
|
Li Y, Zhang L, Kallakuri S, Cohen A, Cavanaugh JM. Correlation of mechanical impact responses and biomarker levels: A new model for biomarker evaluation in TBI. J Neurol Sci 2015; 359:280-6. [PMID: 26671128 DOI: 10.1016/j.jns.2015.08.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 12/19/2022]
Abstract
A modified Marmarou impact acceleration model was used to help screen biomarkers to assess brain injury severity. Anesthetized male Sprague-Dawley rats were subjected to a closed head injury from 1.25, 1.75 and 2.25 m drop heights. Linear and angular responses of the head were measured in vivo. 24h after impact, cerebrospinal fluid (CSF) and serum were collected. CSF and serum levels of phosphorylated neurofilament heavy (pNF-H), glial fibrillary acidic protein (GFAP), interleukin 6 (IL-6), and amyloid beta (Aβ) 1-42 were assessed by enzyme-linked immunosorbent assay (ELISA). Compared to controls, significantly higher CSF and serum pNF-H levels were observed in all impact groups, except between 1.25 m and control in serum. Furthermore, CSF and serum pNF-H levels were significantly different between the impact groups. For GFAP, both CSF and serum levels were significantly higher at 2.25 m compared to 1.75 m, 1.25 m and controls. There was no significant difference in CSF and serum GFAP levels between 1.75 m and 1.25 m, although both groups were significantly higher than control. TBI rats also showed significantly higher levels of IL-6 versus control in both CSF and serum, but no significant difference was observed between each impact group. Levels of Aβ were not significantly different between groups. Pearson's correlation analysis showed pNF-H and GFAP levels in CSF and serum had positive correlation with power (rate of impact energy), followed by average linear acceleration and surface righting (p<0.01), which were good predictors for traumatic axonal injury according to histologic assessment in our previous study, suggesting that they are directly related to the injury mechanism. The model used in this study showed a unique ability in elucidating the relationship between biomarker levels and severity of the mechanical trauma to the brain.
Collapse
Affiliation(s)
- Yan Li
- Department of Biomedical Engineering, Wayne State University, 818 W. Hancock Street, Detroit, MI 48201, United States
| | - Liying Zhang
- Department of Biomedical Engineering, Wayne State University, 818 W. Hancock Street, Detroit, MI 48201, United States.
| | - Srinivasu Kallakuri
- Department of Biomedical Engineering, Wayne State University, 818 W. Hancock Street, Detroit, MI 48201, United States
| | - Abigail Cohen
- Department of Biomedical Engineering, Wayne State University, 818 W. Hancock Street, Detroit, MI 48201, United States
| | - John M Cavanaugh
- Department of Biomedical Engineering, Wayne State University, 818 W. Hancock Street, Detroit, MI 48201, United States
| |
Collapse
|
19
|
Gao Q, Fan Y, Mu LY, Ma L, Song ZQ, Zhang YN. S100B and ADMA in cerebral small vessel disease and cognitive dysfunction. J Neurol Sci 2015; 354:27-32. [DOI: 10.1016/j.jns.2015.04.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 04/06/2015] [Accepted: 04/21/2015] [Indexed: 12/26/2022]
|
20
|
Shin JH, Kim YN, Kim IY, Choi DH, Yi SS, Seong JK. Increased Cell Proliferations and Neurogenesis in the Hippocampal Dentate Gyrus of Ahnak Deficient Mice. Neurochem Res 2015; 40:1457-62. [DOI: 10.1007/s11064-015-1615-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 10/23/2022]
|
21
|
Inflammatory Response in Patients under Coronary Artery Bypass Grafting Surgery and Clinical Implications: A Review of the Relevance of Dexmedetomidine Use. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/905238] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the fact that coronary artery bypass grafting surgery (CABG) with cardiopulmonary bypass (CPB) prolongs life and reduces symptoms in patients with severe coronary artery diseases, these benefits are accompanied by increased risks. Morbidity associated with cardiopulmonary bypass can be attributed to the generalized inflammatory response induced by blood-xenosurfaces interactions during extracorporeal circulation and the ischemia/reperfusion implications, including exacerbated inflammatory response resembling the systemic inflammatory response syndrome (SIRS). The use of specific anesthetic agents with anti-inflammatory activity can modulate the deleterious inflammatory response. Consequently, anti-inflammatory anesthetics may accelerate postoperative recovery and better outcomes than classical anesthetics. It is known that the stress response to surgery can be attenuated by sympatholytic effects caused by activation of central (α-)2-adrenergic receptor, leading to reductions in blood pressure and heart rate, and more recently, that they can have anti-inflammatory properties. This paper discusses the clinical significance of the dexmedetomidine use, a selective (α-)2-adrenergic agonist, as a coadjuvant in general anesthesia. Actually, dexmedetomidine use is not in anesthetic routine, but this drug can be considered a particularly promising agent in perioperative multiple organ protection.
Collapse
|
22
|
Abstract
The S100 protein family consists of 24 members functionally distributed into three main subgroups: those that only exert intracellular regulatory effects, those with intracellular and extracellular functions and those which mainly exert extracellular regulatory effects. S100 proteins are only expressed in vertebrates and show cell-specific expression patterns. In some instances, a particular S100 protein can be induced in pathological circumstances in a cell type that does not express it in normal physiological conditions. Within cells, S100 proteins are involved in aspects of regulation of proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation and migration/invasion through interactions with a variety of target proteins including enzymes, cytoskeletal subunits, receptors, transcription factors and nucleic acids. Some S100 proteins are secreted or released and regulate cell functions in an autocrine and paracrine manner via activation of surface receptors (e.g. the receptor for advanced glycation end-products and toll-like receptor 4), G-protein-coupled receptors, scavenger receptors, or heparan sulfate proteoglycans and N-glycans. Extracellular S100A4 and S100B also interact with epidermal growth factor and basic fibroblast growth factor, respectively, thereby enhancing the activity of the corresponding receptors. Thus, extracellular S100 proteins exert regulatory activities on monocytes/macrophages/microglia, neutrophils, lymphocytes, mast cells, articular chondrocytes, endothelial and vascular smooth muscle cells, neurons, astrocytes, Schwann cells, epithelial cells, myoblasts and cardiomyocytes, thereby participating in innate and adaptive immune responses, cell migration and chemotaxis, tissue development and repair, and leukocyte and tumor cell invasion.
Collapse
Affiliation(s)
- R Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Kleindienst A, Grünbeck F, Buslei R, Emtmann I, Buchfelder M. Intraperitoneal treatment with S100B enhances hippocampal neurogenesis in juvenile mice and after experimental brain injury. Acta Neurochir (Wien) 2013; 155:1351-60. [PMID: 23649988 DOI: 10.1007/s00701-013-1720-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/08/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Neurogenesis is documented in adult mammals including humans, is promoted by neurotrophic factors, and constitutes an innate repair mechanism following brain injury. The glial neurotrophic protein S100B is released following various types of brain injuries, enhances hippocampal neurogenesis and improves cognitive function following brain injury in rats when applied intrathecally. The present study was designed to elucidate whether the beneficial effect of S100B on injury-induced neurogenesis can be confirmed in mice when applied intraperitoneally (i.p.), and whether this effect is dose-dependent. METHODS Male juvenile mice were subjected to a unilateral parietal cryolesion or sham injury, and treated with S100B at 20nM, 200nM or vehicle i.p. once daily. Hippocampal progenitor cell proliferation was quantified following labelling with bromo-deoxyuridine (BrdU, 50 mg/KG i.p.) in the germinative area of the dentate gyrus, the subgranular zone (SGZ), on day 4 as well as on cell survival and migration to the granular cell layer (GCL) on day 28. Progenitor cell differentiation was assessed following colabelling with the glial marker GFAP and the neuronal marker NeuN. RESULTS S100B enhanced significantly the early progenitor cell proliferation in the SGZ as well as cell survival and migration to the GCL, and promoted neuronal differentiation. While these effects were predominately dose-dependent, 200nM S100B failed to enhance the proliferation in the SGZ on day 4 post-injury. CONCLUSION We conclude that S100B participates in hippocampal neurogenesis after injury at lower nanomolar concentrations. Therefore S100B may serve as a potential adjunct treatment to promote neuroregeneration following brain damage.
Collapse
Affiliation(s)
- Andrea Kleindienst
- Departments of Neurosurgery and Neuropathology, Friedrich-Alexander University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
24
|
Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, Gazzolo D. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem 2012; 120:644-659. [PMID: 22145907 DOI: 10.1111/j.1471-4159.2011.07612.x] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
S100B is a calcium-binding protein concentrated in glial cells, although it has also been detected in definite extra-neural cell types. Its biological role is still debated. When secreted, S100B is believed to have paracrine/autocrine trophic effects at physiological concentrations, but toxic effects at higher concentrations. Elevated S100B levels in biological fluids (CSF, blood, urine, saliva, amniotic fluid) are thus regarded as a biomarker of pathological conditions, including perinatal brain distress, acute brain injury, brain tumors, neuroinflammatory/neurodegenerative disorders, psychiatric disorders. In the majority of these conditions, high S100B levels offer an indicator of cell damage when standard diagnostic procedures are still silent. The key question remains as to whether S100B is merely leaked from injured cells or is released in concomitance with both physiological and pathological conditions, participating at high concentrations in the events leading to cell injury. In this respect, S100B levels in biological fluids have been shown to increase in physiological conditions characterized by stressful physical and mental activity, suggesting that it may be physiologically regulated and raised during conditions of stress, with a putatively active role. This possibility makes this protein a candidate not only for a biomarker but also for a potential therapeutic target.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica Sacro Cuore, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
25
|
Cirillo C, Sarnelli G, Esposito G, Turco F, Steardo L, Cuomo R. S100B protein in the gut: The evidence for enteroglial-sustained intestinal inflammation. World J Gastroenterol 2011; 17:1261-6. [PMID: 21455324 PMCID: PMC3068260 DOI: 10.3748/wjg.v17.i10.1261] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Glial cells in the gut represent the morphological and functional equivalent of astrocytes and microglia in the central nervous system (CNS). In recent years, the role of enteric glial cells (EGCs) has extended from that of simple nutritive support for enteric neurons to that of being pivotal participants in the regulation of inflammatory events in the gut. Similar to the CNS astrocytes, the EGCs physiologically express the S100B protein that exerts either trophic or toxic effects depending on its concentration in the extracellular milieu. In the CNS, S100B overexpression is responsible for the initiation of a gliotic reaction by the release of pro-inflammatory mediators, which may have a deleterious effect on neighboring cells. S100B-mediated pro-inflammatory effects are not limited to the brain: S100B overexpression is associated with the onset and maintenance of inflammation in the human gut too. In this review we describe the major features of EGCs and S100B protein occurring in intestinal inflammation deriving from such.
Collapse
|
26
|
Bianchi R, Kastrisianaki E, Giambanco I, Donato R. S100B protein stimulates microglia migration via RAGE-dependent up-regulation of chemokine expression and release. J Biol Chem 2011; 286:7214-26. [PMID: 21209080 PMCID: PMC3044978 DOI: 10.1074/jbc.m110.169342] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 12/29/2010] [Indexed: 01/11/2023] Open
Abstract
The Ca(2+)-binding protein of the EF-hand type, S100B, is abundantly expressed in and secreted by astrocytes, and release of S100B from damaged astrocytes occurs during the course of acute and chronic brain disorders. Thus, the concept has emerged that S100B might act an unconventional cytokine or a damage-associated molecular pattern protein playing a role in the pathophysiology of neurodegenerative disorders and inflammatory brain diseases. S100B proinflammatory effects require relatively high concentrations of the protein, whereas at physiological concentrations S100B exerts trophic effects on neurons. Most if not all of the extracellular (trophic and toxic) effects of S100B in the brain are mediated by the engagement of RAGE (receptor for advanced glycation end products). We show here that high S100B stimulates murine microglia migration in Boyden chambers via RAGE-dependent activation of Src kinase, Ras, PI3K, MEK/ERK1/2, RhoA/ROCK, Rac1/JNK/AP-1, Rac1/NF-κB, and, to a lesser extent, p38 MAPK. Recruitment of the adaptor protein, diaphanous-1, a member of the formin protein family, is also required for S100B/RAGE-induced migration of microglia. The S100B/RAGE-dependent activation of diaphanous-1/Rac1/JNK/AP-1, Ras/Rac1/NF-κB and Src/Ras/PI3K/RhoA/diaphanous-1 results in the up-regulation of expression of the chemokines, CCL3, CCL5, and CXCL12, whose release and activity are required for S100B to stimulate microglia migration. Lastly, RAGE engagement by S100B in microglia results in up-regulation of the chemokine receptors, CCR1 and CCR5. These results suggests that S100B might participate in the pathophysiology of brain inflammatory disorders via RAGE-dependent regulation of several inflammation-related events including activation and migration of microglia.
Collapse
Affiliation(s)
- Roberta Bianchi
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | - Eirini Kastrisianaki
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | - Ileana Giambanco
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| | - Rosario Donato
- From the Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, 06122 Perugia, Italy
| |
Collapse
|
27
|
Sorci G, Bianchi R, Riuzzi F, Tubaro C, Arcuri C, Giambanco I, Donato R. S100B Protein, A Damage-Associated Molecular Pattern Protein in the Brain and Heart, and Beyond. Cardiovasc Psychiatry Neurol 2010; 2010:656481. [PMID: 20827421 PMCID: PMC2933911 DOI: 10.1155/2010/656481] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 06/08/2010] [Indexed: 12/15/2022] Open
Abstract
S100B belongs to a multigenic family of Ca(2+)-binding proteins of the EF-hand type and is expressed in high abundance in the brain. S100B interacts with target proteins within cells thereby altering their functions once secreted/released with the multiligand receptor RAGE. As an intracellular regulator, S100B affects protein phosphorylation, energy metabolism, the dynamics of cytoskeleton constituents (and hence, of cell shape and migration), Ca(2+) homeostasis, and cell proliferation and differentiation. As an extracellular signal, at low, physiological concentrations, S100B protects neurons against apoptosis, stimulates neurite outgrowth and astrocyte proliferation, and negatively regulates astrocytic and microglial responses to neurotoxic agents, while at high doses S100B causes neuronal death and exhibits properties of a damage-associated molecular pattern protein. S100B also exerts effects outside the brain; as an intracellular regulator, S100B inhibits the postinfarction hypertrophic response in cardiomyocytes, while as an extracellular signal, (high) S100B causes cardiomyocyte death, activates endothelial cells, and stimulates vascular smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Roberta Bianchi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Claudia Tubaro
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Cataldo Arcuri
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Ileana Giambanco
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|
28
|
Cristóvão AC, Saavedra A, Fonseca CP, Campos F, Duarte EP, Baltazar G. Microglia of rat ventral midbrain recovers its resting state over time in vitro: let microglia rest before work. J Neurosci Res 2010; 88:552-62. [PMID: 19739250 DOI: 10.1002/jnr.22219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cortical or total brain cultures of microglia are commonly used as a model to study the inflammatory processes in Parkinson's disease. Here we characterize microglia cultures from rat ventral midbrain and evaluate their response to zymosan A. We used specific markers of microglia and evaluated the morphology, the phagocytic activity and reactive oxygen species (ROS) levels of the cells. During the first 10 days in vitro (DIV), cultures presented predominantly cells with a round morphology, expressing CD68 and with high phagocytic activity and ROS production. After 13 DIV, this tendency was reversed, with cultures showing higher number of ramified cells and fewer CD68(+) cells along with lower phagocytic and ROS production capability, suggesting that microglia must be kept in vitro for at least 13 days to recover its resting state. The exposure of cultures with less than 10 DIV to zymosan A significantly decreased cell viability. Exposure of cultures with 13 DIV to zymosan A (0.05, 0.5, or 5 microg/ml) increased the total cell number, the percentage of CD68(+) cells, and the phagocytic activity. Concentrations of zymosan A higher than 5 microg/ml were also effective in activating microglia but significantly decreased the number of viable cells. In summary, microglial cells remain in the activated state for several days after the isolation process and, thus, stimulation of microglia recently isolated can compromise interpretation of the results. However, upon 13 DIV, cells achieve properties of nonactivated microglia and present a characteristic response to a proinflammatory agent.
Collapse
Affiliation(s)
- Ana Clara Cristóvão
- Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | | | | | | | | | | |
Collapse
|
29
|
Cirillo C, Sarnelli G, Esposito G, Grosso M, Petruzzelli R, Izzo P, Calì G, D'Armiento FP, Rocco A, Nardone G, Iuvone T, Steardo L, Cuomo R. Increased mucosal nitric oxide production in ulcerative colitis is mediated in part by the enteroglial-derived S100B protein. Neurogastroenterol Motil 2009; 21:1209-e112. [PMID: 19558426 DOI: 10.1111/j.1365-2982.2009.01346.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the central nervous system glial-derived S100B protein has been associated with inflammation via nitric oxide (NO) production. As the role of enteroglial cells in inflammatory bowel disease has been poorly investigated in humans, we evaluated the association of S100B and NO production in ulcerative colitis (UC). S100B mRNA and protein expression, inducible NO synthase (iNOS) expression, and NO production were evaluated in rectal biopsies from 30 controls and 35 UC patients. To verify the correlation between S100B and NO production, biopsies were exposed to S100B, in the presence or absence of specific receptor for advanced glycation end-products (RAGE) blocking antibody, to measure iNOS expression and nitrite production. S100B and iNOS expression were evaluated after incubation of biopsies with lipopolysaccharides (LPS) + interferon-gamma (IFN-gamma) in the presence of anti-RAGE or anti-S100B antibodies or budesonide. S100B mRNA and protein expression, iNOS expression and NO production were significantly higher in the rectal mucosa of patients compared to that of controls. Exogenous S100B induced a significant increase in both iNOS expression and NO production in controls and UC patients; this increase was inhibited by specific anti-RAGE blocking antibody. Incubation with LPS + IFN-gamma induced a significant increase in S100B mRNA and protein expression, together with increased iNOS expression and NO production. LPS + IFN-gamma-induced S100B up-regulation was not affected by budesonide, while iNOS expression and NO production were significantly inhibited by both specific anti-RAGE and anti-S100B blocking antibodies. Enteroglial-derived S100B up-regulation in UC participates in NO production, involving RAGE in a steroid insensitive pathway.
Collapse
Affiliation(s)
- C Cirillo
- Department of Clinical and Experimental Medicine, Gastroenterological Unit, University Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Agoston DV, Gyorgy A, Eidelman O, Pollard HB. Proteomic biomarkers for blast neurotrauma: targeting cerebral edema, inflammation, and neuronal death cascades. J Neurotrauma 2009; 26:901-11. [PMID: 19397421 DOI: 10.1089/neu.2008.0724] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Proteomics for blast traumatic brain injury (bTBI) research represents an exciting new approach that can greatly help to address the complex pathology of this condition. Antibody-based platforms, antibody microarrays (AbMA), and reverse capture protein microarrays (RCPM) can complement the classical methods based on 2D gel electrophoresis and mass spectrometry (2DGE/MS). These new technologies can address problematic issues, such as sample complexity, sensitivity, quantitation, reproducibility, and analysis time, which are typically associated with 2DGE/MS. Combined with bioinformatics analysis and interpretation of primary microarray data, these methods will generate a new level of understanding about bTBI at the level of systems biology. As biological and clinical knowledge and the availability of these systems become more widely established, we expect that AbMA and RCPM will be used routinely in clinical diagnostics, and also for following therapeutic progress. At the technical level, we anticipate that these platforms will evolve to accommodate comprehensive, high-speed, label-free analysis on a human proteome-wide scale.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, Program in Neuroscience, Neurosurgery Program National Capital Consortium, Uniformed Services University School of Medicine (USU), 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | | | | | | |
Collapse
|
31
|
Immunohistochemical analysis of brain lesions using S100B and glial fibrillary acidic protein antibodies in arundic acid- (ONO-2506) treated stroke-prone spontaneously hypertensive rats. J Neural Transm (Vienna) 2009; 116:1209-19. [PMID: 19657585 PMCID: PMC2744804 DOI: 10.1007/s00702-009-0278-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 07/17/2009] [Indexed: 11/21/2022]
Abstract
Stroke-prone spontaneously hypertensive rats (SHRSP) used as a model of essential hypertension cause a high incidence of brain stroke on the course of hypertension. Incidences and sizes of brain lesions are known to relate to the astrocyte activities. Therefore, relation between brain damage and the expression profile of the astrocytes was investigated with morphometric and immunohistochemical analyses using astrocyte marker antibodies of S100B and glial fibrillary acidic protein (GFAP) with or without arundic acid administration, a suppressor on the activation of astrocytes. Arundic acid extended the average life span of SHRSP. An increase in brain tissue weight was inhibited concomitant with a lower rate of gliosis/hemosiderin deposit/scarring in brain lesions. S100B- or GFAP-positive dot and filamentous structures were decreased in arundic acid-treated SHRSP, and this effect was most pronounced in the cerebral cortex, white matter, and pons, and less so in the hippocampus, diencephalon, midbrain, and cerebellum. Blood pressure decreased after administration of arundic acid in the high-dose group (100 mg/kg/day arundic acid), but not in the low-dose group (30 mg/kg/day). These data indicate that arundic acid can prevent hypertension-induced stroke, and may inhibit the enlargement of the stroke lesion by preventing the inflammatory changes caused by overproduction of the S100B protein in the astrocytes.
Collapse
|
32
|
Cerutti SM, Gomide VC, de Moraes Ferrari EA, Chadi G. Long-Term Astroglial Reaction and Neuronal Plasticity in the Subcortical Visual Pathways After a Complete Ablation of Telencephalon in Pigeons (Columba livia). Int J Neurosci 2009; 119:384-403. [DOI: 10.1080/00207450802480291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Agoston DV, Gyorgy A, Eidelman O, Pollard HB. Proteomic Biomarkers for Blast Neurotrauma: Targeting Cerebral Edema, Inflammation, and Neuronal Death Cascades. J Neurotrauma 2009. [DOI: 10.1089/neu.2008.0724 [doi]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetics, School of Medicine
| | - Andrea Gyorgy
- Department of Anatomy, Physiology and Genetics, School of Medicine
| | - Ofer Eidelman
- Center for Medical Proteomics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Harvey B. Pollard
- Center for Medical Proteomics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
34
|
Bialowas-McGoey LA, Lesicka A, Whitaker-Azmitia PM. Vitamin E increases S100B-mediated microglial activation in an S100B-overexpressing mouse model of pathological aging. Glia 2009; 56:1780-90. [PMID: 18649404 DOI: 10.1002/glia.20727] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
S100B is a calcium-binding protein released by astroglial cells of the brain capable of producing numerous extracellular effects. Although the direct molecular mechanism remains unknown, these effects can be trophic including differentiation, growth, recovery, and survival of neurons when the S100B protein is mainly oxidized and neurotoxic including apoptosis and neuroinflammatory processes marked by microglial activation when in a reduced state. S100B and its receptor RAGE (receptor for advanced glycation end products) have been found to be increased in Alzheimer's disease, Down syndrome, with tissue trauma and ischemia. In the current study, we examined the binding of the S100B receptor (RAGE) on microglial cells and the developmental effects of the antioxidant vitamin E on microglial activation and the upregulation of RAGE in an S100B over-expressing mouse model of pathological aging. We report that RAGE is co-localized on activated microglial cells and vitamin E induced dramatic increases in microglial activation as well as total microglial relative optical density that was accompanied by upregulation of the RAGE receptor, particularly in the CA1 region of the hippocampus. Our findings suggest further investigation into the potential role of vitamin E in reducing the oxidation state of the S100B protein and its influence on neuroinflammatory processes marked by microglial activation in vivo.
Collapse
|
35
|
Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, Tubaro C, Giambanco I. S100B's double life: intracellular regulator and extracellular signal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:1008-22. [PMID: 19110011 DOI: 10.1016/j.bbamcr.2008.11.009] [Citation(s) in RCA: 546] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/12/2008] [Accepted: 11/21/2008] [Indexed: 12/22/2022]
Abstract
The Ca2+-binding protein of the EF-hand type, S100B, exerts both intracellular and extracellular functions. Recent studies have provided more detailed information concerning the mechanism(s) of action of S100B as an intracellular regulator and an extracellular signal. Indeed, intracellular S100B acts as a stimulator of cell proliferation and migration and an inhibitor of apoptosis and differentiation, which might have important implications during brain, cartilage and skeletal muscle development and repair, activation of astrocytes in the course of brain damage and neurodegenerative processes, and of cardiomyocyte remodeling after infarction, as well as in melanomagenesis and gliomagenesis. As an extracellular factor, S100B engages RAGE (receptor for advanced glycation end products) in a variety of cell types with different outcomes (i.e. beneficial or detrimental, pro-proliferative or pro-differentiative) depending on the concentration attained by the protein, the cell type and the microenvironment. Yet, RAGE might not be the sole S100B receptor, and S100B's ability to engage RAGE might be regulated by its interaction with other extracellular factors. Future studies using S100B transgenic and S100B null mice might shed more light on the functional role(s) of the protein.
Collapse
Affiliation(s)
- Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, Section Anatomy, University of Perugia, Via del Giochetto C.P. 81 Succ. 3, 06122 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bianchi R, Giambanco I, Donato R. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging 2008; 31:665-77. [PMID: 18599158 DOI: 10.1016/j.neurobiolaging.2008.05.017] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 05/09/2008] [Accepted: 05/18/2008] [Indexed: 12/16/2022]
Abstract
Extracellular S100B is known to affect astrocytic, neuronal and microglial activities, with different effects depending on its concentration. Whereas at relatively low concentrations S100B exerts trophic effects on neurons and astrocytes, at relatively high concentrations the protein causes neuronal apoptosis and activates astrocytes and microglia, thus potentially representing an endogenous factor implicated in neuroinflammation. We have reported that RAGE ligation by S100B in BV-2 microglia results in the upregulation of expression of the pro-inflammatory cyclo-oxygenase 2 (COX-2) via parallel Ras-Cdc42-Rac1-dependent activation of c-Jun NH(2) terminal protein kinase (JNK) and Ras-Rac1-dependent stimulation of NF-kappaB transcriptional activity. We show here that: (1) S100B also stimulates AP-1 transcriptional activity in microglia via RAGE-dependent activation of JNK; (2) S100B upregulates IL-1beta and TNF-alpha expression in microglia via RAGE engagement; and (3) S100B/RAGE-induced upregulation of COX-2, IL-1beta and TNF-alpha expression requires the concurrent activation of NF-kappaB and AP-1. We also show that S100B synergizes with IL-1beta and TNF-alpha to upregulate on COX-2 expression in microglia. Given the crucial roles of COX-2, IL-1beta and TNF-alpha in the inflammatory response, we propose that, by engaging RAGE, S100B might play an important role in microglia activation in the course of brain damage.
Collapse
Affiliation(s)
- Roberta Bianchi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, C.P. 81 Succ. 3, 06122 Perugia, Italy
| | | | | |
Collapse
|
37
|
Darlington LG, Mackay GM, Forrest CM, Stoy N, George C, Stone TW. Altered kynurenine metabolism correlates with infarct volume in stroke. Eur J Neurosci 2007; 26:2211-21. [PMID: 17892481 DOI: 10.1111/j.1460-9568.2007.05838.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inflammation and oxidative stress are involved in brain damage following stroke, and tryptophan oxidation along the kynurenine pathway contributes to the modulation of oxidative stress partly via the glutamate receptor agonist quinolinic acid and antagonist kynurenic acid, and via redox-active compounds such as 3-hydroxyanthranilic acid. We have confirmed that following a stroke, patients show early elevations of plasma neopterin, S100B and peroxidation markers, the latter two correlating with infarct volume assessed from computed tomography (CT) scans, and being consistent with a rapid inflammatory response. We now report that the kynurenine pathway of tryptophan metabolism was also activated, with an increased kynurenine : tryptophan ratio, but with a highly significant decrease in the ratio of 3-hydroxyanthranilic acid : anthranilic acid, which was strongly correlated with infarct volume. Levels of kynurenic acid were significantly raised in patients who died within 21 days compared with those who survived. The results suggest that increased tryptophan catabolism is initiated before or immediately after a stroke, and is related to the inflammatory response and oxidative stress, with a major change in 3-hydroxyanthranilic acid levels. Together with previous evidence that inhibiting the kynurenine pathway reduces brain damage in animal models of stroke and cerebral inflammation, and that increased kynurenine metabolism directly promotes oxidative stress, it is proposed that oxidative tryptophan metabolism may contribute to the oxidative stress and brain damage following stroke. Some form of anti-inflammatory intervention between the rise of S100B and the activation of microglia, including inhibition of the kynurenine pathway, may be valuable in modifying patient morbidity and mortality.
Collapse
|
38
|
Besson V, Brault V, Duchon A, Togbe D, Bizot JC, Quesniaux VFJ, Ryffel B, Hérault Y. Modeling the monosomy for the telomeric part of human chromosome 21 reveals haploinsufficient genes modulating the inflammatory and airway responses. Hum Mol Genet 2007; 16:2040-52. [PMID: 17591625 DOI: 10.1093/hmg/ddm152] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monosomy 21 is a rare human disease due to gene dosage errors disturbing a variety of physiological and morphological systems including brain, skeletal, immune and respiratory functions. Most of the human condition corresponds to partial or mosaic monosomy suggesting that Monosomy 21 may be lethal. In order to search for dosage-sensitive genes involved in the human pathology, we generated by chromosomal engineering a monosomic mouse for the Prmt2-Col6a1 interval corresponding to the most telomeric part of human chromosome 21. Haploinsufficiency of the 13 genes, located in the 0.5 Mb genetic interval and conserved in man and mouse, caused apparently no morphological defect as observed in patients. However, monosomic mice displayed an enhanced inflammatory response after local intranasal lipopolysaccharide administration with enhanced recruitment of neutrophils and secretion of cytokines such as tumor necrosis factor-alpha (TNF-alpha), IL-1beta, IL-12p70 and IFN-gamma in the lung as well increased TNF-alpha production after systemic administration. Further analysis demonstrates that monosomic macrophages were involved and that a few genes, Prmt2, Pcnt2, Mcm3ap and Lss located in the region were candidate for the inflammatory response. Altogether, these results demonstrate the existence of dosage-sensitive genes in the Prmt2-Col6a1 region that control the inflammation and the lung function. Furthermore, they point out that similar partial Monosomies 21 in human might have eluded the diagnosis due to the very specific defects observed in this murine model.
Collapse
Affiliation(s)
- Vanessa Besson
- Institut de Tansgenose, Molecular Immunology and Embryology, Université Orléans, Férollerie, Orléans, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kleindienst A, Hesse F, Bullock MR, Buchfelder M. The neurotrophic protein S100B: value as a marker of brain damage and possible therapeutic implications. PROGRESS IN BRAIN RESEARCH 2007; 161:317-25. [PMID: 17618987 DOI: 10.1016/s0079-6123(06)61022-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We provide a critical analysis of the value of S100B as a marker of brain damage and possible therapeutic implications. The early assessment of the injury severity and the consequent prognosis are of major concern for physicians treating patients suffering from traumatic brain injury (TBI). A reliable indicator to accurately determine the extent of the brain damage has to meet certain requirements: (i) to originate in the central nervous system (CNS) with no contribution from extracerebral sources; (ii) a passive release from damaged neurons and/or glial cells without any stimulated active release; (iii) a lack of specific effects on neurons and/or glial cells interfering with the initial injury; (iv) an unlimited passage through the blood-brain barrier (BBB). The measurement of putative biochemical markers, such as the S100B protein, has been proposed in this role. Over the past decade, numerous studies have reported a positive correlation of S100B serum levels with a poor outcome following TBI. However, some studies raise doubt whether the serum measurement of S100B is a valid biochemical marker of brain damage. We summarize the specific properties of S100B and analyze whether they support or counteract the necessary requirements to designate this protein as an indicator of brain damage. Finally, we report recent experimental findings suggesting a possible therapeutic potential of S100B.
Collapse
Affiliation(s)
- Andrea Kleindienst
- Department of Neurosurgery, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany.
| | | | | | | |
Collapse
|
40
|
Bianchi R, Adami C, Giambanco I, Donato R. S100B binding to RAGE in microglia stimulates COX-2 expression. J Leukoc Biol 2006; 81:108-18. [PMID: 17023559 DOI: 10.1189/jlb.0306198] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Besides exerting regulatory roles within astrocytes, the Ca2+-modulated protein of the EF-hand type S100B is released into the brain extracellular space, thereby affecting astrocytes, neurons, and microglia. However, extracellular effects of S100B vary, depending on the concentration attained and the protein being trophic to neurons up to nanomolar concentrations and causing neuronal apoptosis at micromolar concentrations. Effects of S100B on neurons are transduced by receptor for advanced glycation end products (RAGE). At high concentrations, S100B also up-regulates inducible NO synthase in and stimulates NO release by microglia by synergizing with bacterial endotoxin and IFN-gamma, thereby participating in microglia activation. We show here that S100B up-regulates cyclo-oxygenase-2 expression in microglia in a RAGE-dependent manner in the absence of cofactors through independent stimulation of a Cdc42-Rac1-JNK pathway and a Ras-Rac1-NF-kappaB pathway. Thus, S100B can be viewed as an astrocytic endokine, which might participate in the inflammatory response in the course of brain insults, once liberated into the brain extracellular space.
Collapse
Affiliation(s)
- Roberta Bianchi
- department of Experimental Medicine and Biochemical Sciences, Sect. Anatomy, University of Perugia, Via del Giochetto C.P. 81 Succ. 3, 06122 Perugia, Italy
| | | | | | | |
Collapse
|
41
|
Kleindienst A, Ross Bullock M. A Critical Analysis of the Role of the Neurotrophic Protein S100B in Acute Brain Injury. J Neurotrauma 2006; 23:1185-200. [PMID: 16928177 DOI: 10.1089/neu.2006.23.1185] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We provide a critical analysis of the relevance of S100B in acute brain injury emphazising the beneficial effect of its biological properties. S100B is a calcium-binding protein, primarily produced by glial cells, and exerts auto- and paracrine functions. Numerous reports indicate, that S100B is released after brain insults and serum levels are positively correlated with the degree of injury and negatively correlated with outcome. However, new data suggest that the currently held view, that serum measurement of S100B is a valid "biomarker" of brain damage in traumatic brain injury (TBI), does not acknowlege the multifaceted release pattern and effect of the blood-brain barrier disruption upon S100B levels in serum. In fact, serum and brain S100B levels are poorly correlated, with serum levels dependent primarily on the integrity of the blood-brain barrier, and not the level of S100B in the brain. The time profile of S100B release following experimental TBI, both in vitro and in vivo, suggests a role of S100B in delayed reparative processes. Further, recent findings provide evidence, that S100B may decrease neuronal injury and/or contribute to repair following TBI. Hence, S100B, far from being a negative determinant of outcome, as suggested previously in the human TBI and ischemia literature, is of potential therapeutic value that could improve outcome in patients who sustain various forms of acute brain damage.
Collapse
Affiliation(s)
- Andrea Kleindienst
- Department of Neurosurgery, Georg August University, Göttingen, Germany.
| | | |
Collapse
|
42
|
Businaro R, Leone S, Fabrizi C, Sorci G, Donato R, Lauro GM, Fumagalli L. S100B protects LAN-5 neuroblastoma cells against Abeta amyloid-induced neurotoxicity via RAGE engagement at low doses but increases Abeta amyloid neurotoxicity at high doses. J Neurosci Res 2006; 83:897-906. [PMID: 16477616 DOI: 10.1002/jnr.20785] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
At the concentrations normally found in the brain extracellular space the glial-derived protein, S100B, protects neurons against neurotoxic agents by interacting with the receptor for advanced glycation end products (RAGE). It is known that at relatively high concentrations S100B is neurotoxic causing neuronal death via excessive stimulation of RAGE. S100B is detected within senile plaques in Alzheimer's disease, where its role is unknown. The present study was undertaken to evaluate a putative neuroprotective role of S100B against Abeta amyloid-induced neurotoxicity. We treated LAN-5 neuroblastoma cultures with toxic amounts of Abeta25-35 amyloid peptide. Our results show that at nanomolar concentrations S100B protects cells against Abeta-mediated cytotoxicity, as assessed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and terminal deoxynucleotidyl transferase-mediated dUTP-fluorescein isothiocyanate nick end-labeling (TUNEL) experiments, by countering the Abeta-mediated decrease in the expression of the anti-apoptotic factor Bcl-2. This effect depends on S100B binding to RAGE because S100B is unable to contrast Abeta-mediated neurotoxicity in neurons overexpressing a signaling-deficient RAGE mutant lacking the cytosolic and transducing domain. Our data suggest that at nanomolar doses S100B counteracts Abeta peptide neurotoxicity in a RAGE-mediated manner. However, at micromolar doses S100B is toxic to LAN-5 cells and its toxicity adds to that of the Abeta peptide, suggesting that additional molecular mechanisms may be involved in the neurotoxic process.
Collapse
Affiliation(s)
- R Businaro
- Department of Cardiovascular Sciences, University La Sapienza, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
43
|
Watkins LR, Wieseler-Frank J, Milligan ED, Johnston I, Maier SF. Chapter 22 Contribution of glia to pain processing in health and disease. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:309-23. [PMID: 18808844 DOI: 10.1016/s0072-9752(06)80026-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Tanga FY, Raghavendra V, Nutile-McMenemy N, Marks A, Deleo JA. Role of astrocytic S100β in behavioral hypersensitivity in rodent models of neuropathic pain. Neuroscience 2006; 140:1003-10. [PMID: 16600520 DOI: 10.1016/j.neuroscience.2006.02.070] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/07/2006] [Accepted: 02/23/2006] [Indexed: 11/19/2022]
Abstract
S100beta is a calcium-binding peptide produced mainly by astrocytes that exerts paracrine and autocrine effects on neurons and glia. We have previously shown that S100beta is markedly elevated at the mRNA level in the spinal cord following peripheral inflammation, intraplantar administration of complete Freund's adjuvant in the rat. The purpose of the present study was to further investigate the role of astrocytic S100beta in mediating behavioral hypersensitivity in rodent models of persistent pain. First, we assessed the lumbar spinal cord expression of S100beta at the mRNA and protein level using real-time RT-PCR, Western blot and immunohistochemistry analysis following L5 spinal nerve transection in rats, a rodent model of neuropathic pain. Second, we assessed behavioral hypersensitivity (mechanical allodynia) in wild type and genetically modified mice lacking or overexpressing S100beta following L5 spinal nerve transection. Third, we assessed the expression level of S100beta protein in the CD1 wild type mice after nerve injury. We report that lumbar spinal S100beta mRNA steadily increased from days 4-28 after nerve injury. S100beta protein in the lumbar spinal cord was significantly increased in both rats and mice at day 14 following nerve injury as compared with sham control groups. S100beta genetically deficient mice displayed significantly increased tactile thresholds (reduced response to non-noxious stimuli) after nerve injury as compared with the wild type group. S100beta overexpressing mice displayed significantly decreased tactile threshold responses (enhanced response to non-noxious stimuli). Together, these results from both series of experiments using a peripheral nerve injury model in two different species implicate the involvement of glial-derived S100beta in the pathophysiology of neuropathic pain.
Collapse
Affiliation(s)
- F Y Tanga
- Department of Anesthesiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
45
|
Esposito G, De Filippis D, Cirillo C, Sarnelli G, Cuomo R, Iuvone T. The astroglial-derived S100beta protein stimulates the expression of nitric oxide synthase in rodent macrophages through p38 MAP kinase activation. Life Sci 2005; 78:2707-15. [PMID: 16376947 DOI: 10.1016/j.lfs.2005.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Accepted: 10/22/2005] [Indexed: 10/25/2022]
Abstract
S100beta is an astroglial-derived Ca2+ -binding protein having neurotrophic role on neurons and glial cells. An aberrant S100beta production has been observed in neurodegenerative disease, as Alzheimer's disease and Down syndrome. S100beta is responsible to start up a gliotic reaction by the release of pro-inflammatory mediators, including nitric oxide (NO) and cytokines from microglia and astrocytes, which are, in turn, deleterious for neurons. Interestingly, pro-inflammatory effect of S100beta seems not be restricted into the brain. Macrophages play a pivotal role in inflammatory diseases, occurring both in the brain and in the periphery. In this study, we tested the hypothesis that S100beta may affect macrophage functions, amplifying thus the inflammatory process. Our results demonstrate that S100beta stimulates both NO production and iNOS protein transcription and expression in J774 and rat peritoneal macrophages. NO production was concentration and time-dependently inhibited by two iNOS inhibitors, L-NAME and SMT. We also demonstrated that S100beta induced oxidative stress by increasing H2O2 production and lipid peroxidation of cell membrane in both macrophage types. The pro-oxidant potential of S100beta activates p38 MAP kinase (MAPK), which has been described to directly activate NF-kappaB. In our study, SB203580, a p38 MAPK inhibitor, and two NF-kappaB inhibitors, TLCK and BAY 11-7082, decreased both NO production and iNOS protein transcription and expression in S100beta-stimulated J774 and peritoneal rat macrophages. Moreover, additional studies demonstrated that S100beta affected also TNF-alpha protein expression in J774 macrophages. In conclusion, our results highlight the potential role of S100beta during an inflammatory scenario identifying macrophages as a novel S100beta-responsive cell-type.
Collapse
Affiliation(s)
- Giuseppe Esposito
- Department of Experimental Pharmacology, Faculty of Pharmacy, University of Naples Federico II Naples, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Kleindienst A, Tolias CM, Corwin FD, Müller C, Marmarou A, Fatouros P, Bullock MR. Assessment of cerebral S100B levels by proton magnetic resonance spectroscopy after lateral fluid-percussion injury in the rat. J Neurosurg 2005; 102:1115-21. [PMID: 16028772 DOI: 10.3171/jns.2005.102.6.1115] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. After traumatic brain injury (TBI), S100B protein is released by astrocytes. Furthermore, cerebrospinal fluid (CSF) and serum S100B levels have been correlated to outcome. Given that no data exist about the temporal profile of cerebral S100B levels following TBI and their correlation to serum levels, the authors examined whether proton magnetic resonance (MR) spectroscopy is capable of measuring S100B.
Methods. Results of in vitro proton MR spectroscopy experiments (2.35-tesla magnet, 25 G/cm, point-resolved spatially localized spectroscopy) revealed an S100B-specific peak at 4.5 ppm and confirmed a positive correlation between different S100B concentrations (10 nM–1 µM) and the area under the curve (AUC) for the S100B peak (r = 0.991, p < 0.001). Thereafter, proton MR spectroscopy was performed in male Sprague—Dawley rats (7 × 5 × 5—mm voxel in each hemisphere, TR 3000 msec, TE 30 msec, 256 acquisitions). Exogenously increased CSF S100B levels (∼ 200 ng/ml) through the intraventricular infusion of S100B increased the AUC of the S100B peak from 0.06 ± 0.02 to 0.44 ± 0.06 (p < 0.05), whereas serum S100B levels remained normal. Two hours after lateral fluid-percussion injury, serum S100B levels increased to 0.61 ± 0.09 ng/ml (p < 0.01) and rapidly returned to normal levels, whereas the AUC of the S100B peak increased to 0.19 ± 0.04 at 2 hours postinjury and 0.41 ± 0.07 (p < 0.05) on Day 5 postinjury.
Conclusions. Proton MR spectroscopy proves a strong correlation between the AUC of the S100B peak and S100B concentrations. Following experimental TBI, serum S100B levels increased for only a very short period, whereas cerebral S100B levels were increased up to Day 5 postinjury. Given that experimental data indicate that S100B is actively released following TBI, proton MR spectroscopy may represent a new tool to identify increased cerebral S100B levels in patients after injury, thus allowing its biological function to be better understood.
Collapse
Affiliation(s)
- Andrea Kleindienst
- Department of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0508, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Reali C, Scintu F, Pillai R, Donato R, Michetti F, Sogos V. S100b counteracts effects of the neurotoxicant trimethyltin on astrocytes and microglia. J Neurosci Res 2005; 81:677-86. [PMID: 15986416 DOI: 10.1002/jnr.20584] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Central nervous system degenerative diseases are often characterized by an early, strong reaction of astrocytes and microglia. Both these cell types can play a double role, protecting neurons against degeneration through the synthesis and secretion of trophic factors or inducing degeneration through the secretion of toxic molecules. Therefore, we studied the effects of S100B and trimethyltin (TMT) on human astrocytes and microglia with two glial models, primary cultures of human fetal astrocytes and a microglia cell line. After treatment with 10(-5) M TMT, astrocytes showed morphological alterations associated with an increase in glial fibrillary acidic protein (GFAP) expression and changes in GFAP filament organization. Administration of S100B before TMT treatment prevented TMT-induced changes in morphology and GFAP expression. A decrease in inducible nitric oxide synthase expression was observed in astrocytes treated with TMT, whereas the same treatment induced iNOS expression in microglia. In both cases, S100B prevented TMT-induced changes. Tumor necrosis factor-alpha mRNA expression in astrocytes was not modified by TMT treatment, whereas it was increased in microglia cells. S100B pretreatment blocked the TMT-induced increase in TNF-alpha expression in microglia. To trace the mechanisms involved in S100B activity, the effect of BAY 11-7082, an inhibitor of nuclear factor-kappaB (NF-kappaB) activation, and of PD98059, an inhibitor of MEK-ERK1/2, were investigated. Results showed that the protective effects of S100B against TMT toxicity in astrocytes depend on NF-kappaB, but not on ERK1/2 activation. These results might help in understanding the role played by glial cells in brain injury after exposure to chemical neurotoxicants and support the view that S100B may protect brain cells in case of injury. (c) 2005 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Camilla Reali
- Department of Cytomorphology, University of Cagliari, Monserrato, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Adami C, Bianchi R, Pula G, Donato R. S100B-stimulated NO production by BV-2 microglia is independent of RAGE transducing activity but dependent on RAGE extracellular domain. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1742:169-77. [PMID: 15590067 DOI: 10.1016/j.bbamcr.2004.09.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 08/31/2004] [Accepted: 09/10/2004] [Indexed: 11/19/2022]
Abstract
The Ca(2+)-modulated protein, S100B, is expressed in high abundance in and released by astrocytes. At the low levels normally found in the brain, extracellular S100B acts as a trophic factor, protecting neurons against oxidative stress and stimulating neurite outgrowth through its binding to the receptor for advanced glycation end products (RAGE). However, upon accumulation in the brain extracellular space, S100B might be detrimental to neurons. At relatively high concentrations, S100B stimulates NO release by microglia in the presence of lipid A or interferon-gamma (IFN-gamma). We analyzed further the S100B-microglia interaction to elucidate the molecular mechanism by which the protein brings about this effect. We found that S100B increased NO release by BV-2 microglia by stimulating reactive oxygen species (ROS) production and activating the stress-activated kinases, p38 and JNK. However, S100B stimulated NO production to the same extent in microglia overexpressing a transduction-incompetent mutant of RAGE and in microglia overexpressing full-length RAGE, with a significantly smaller effect in mock-transfected microglia. This suggests that the RAGE transducing activity has little or no role in S100B-stimulated NO production by microglia, whereas RAGE extracellular domain is important, probably serving to concentrate S100B on the BV-2 cell surface. On the other hand, S100B stimulated NF-kappaB transcriptional activity in BV-2 microglia in a manner that was strictly dependent on RAGE transducing activity, pointing to additional, RAGE-mediated effects of the protein on microglia that remain to be investigated.
Collapse
Affiliation(s)
- Cecilia Adami
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, C.P. 81 Succ. 3, 06122 Perugia, Italy
| | | | | | | |
Collapse
|
49
|
Kleindienst A, Harvey HB, Rice AC, Müller C, Hamm RJ, Gaab MR, Bullock MR. Intraventricular Infusion of the Neurotrophic Protein S100B Improves Cognitive Recovery after Fluid Percussion Injury in the Rat. J Neurotrauma 2004; 21:541-7. [PMID: 15165362 DOI: 10.1089/089771504774129874] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Elevated serum S100B levels have been shown to be a predictor of poor outcome after traumatic brain injury (TBI). Experimental data, on the other hand, demonstrate a neuroprotective and neurotrophic effect of this calcium-binding protein. The purpose of this study was to examine the role of increased S100B levels on functional outcome after TBI. Following lateral fluid percussion or sham injury in male Sprague Dawley rats (n = 56), we infused S100B (50 ng/h) or vehicle into the cerebrospinal fluid of the ipsilateral ventricle for 7 days using an osmotic mini-pump. Assessment of cognitive performance by the Morris water maze on days 30-34 after injury revealed an improved performance of injured animals after S100B infusion (p < 0.05), when compared to vehicle infusion. Blood samples for analysis of clinical markers of brain damage, S100B and neuron specific enolase, taken at 30 min, 3 h, 4 h, 2 days, or 5 days showed a typical peak 3 h after injury (p < 0.01), and higher serum levels correlated significantly with an impaired cognitive recovery (p < 0.01). The correlation of higher serum S100B levels with poor water maze performance may result from injury induced opening of the blood-brain barrier, allowing the passage of S100B into serum. Thus while higher serum levels of S100B seem to reflect the degree of blood-brain barrier opening and severity of injury, a beneficial effect of intraventricular S100B administration on long-term functional recovery after TBI has been demonstrated for the first time. The exact mechanism by which S100B exerts its neuroprotective or neurotrophic influence remains unknown and needs to be elucidated by further investigation.
Collapse
Affiliation(s)
- Andrea Kleindienst
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298-0508, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Sorci G, Riuzzi F, Agneletti AL, Marchetti C, Donato R. S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner. J Cell Physiol 2004; 199:274-83. [PMID: 15040010 DOI: 10.1002/jcp.10462] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
S100B, a Ca(2+)-modulated protein with both intracellular and extracellular regulatory roles, is most abundant in astrocytes, is expressed in various amounts in several non-nervous cells and is also found in normal serum. Astrocytes secrete S100B, and extracellular S100B exerts trophic and toxic effects on neurons depending on its concentration, in part by interacting with the receptor for advanced glycation end products (RAGE). The presence of S100B in normal serum and elevation of its serum concentration in several non-nervous pathological conditions suggest that S100B-expressing cells outside the brain might release the protein and S100B might affect non-nervous cells. Recently we reported that at picomolar to nanomolar doses S100B inhibits rat L6 myoblast differentiation via inactivation of p38 kinase in a RAGE-independent manner. We show here that at >or=5 nM in the absence of and at >100 nM in the presence of serum S100B causes myoblast apoptosis via stimulation of reactive oxygen species (ROS) production and inhibition of the pro-survival kinase, extracellular signal-regulated kinase (ERK)1/2, again in a RAGE-independent manner. Together with our previous data, the present results suggest that S100B might participate in the regulation of muscle development and regeneration by two independent mechanism, i.e., by inhibiting crucial steps of the myogenic program at the physiological levels found in serum and by causing elevation of ROS production and myoblast apoptosis following accumulation in serum and/or muscle extracellular space. Our data also suggest that RAGE has no role in the transduction of S100B effects on myoblasts, implying that S100B can interact with more than one receptor to affect its target cells.
Collapse
Affiliation(s)
- Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, Section of Anatomy, University of Perugia, Perugia, Italy
| | | | | | | | | |
Collapse
|