1
|
Carvalho DN, Gonçalves C, Sousa RO, Reis RL, Oliveira JM, Silva TH. Extraction and Purification of Biopolymers from Marine Origin Sources Envisaging Their Use for Biotechnological Applications. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1079-1119. [PMID: 39254780 PMCID: PMC11541305 DOI: 10.1007/s10126-024-10361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Biopolymers are a versatile and diverse class of materials that has won high interest due to their potential application in several sectors of the economy, such as cosmetics, medical materials/devices, and food additives. In the last years, the search for these compounds has explored a wider range of marine organisms that have proven to be a great alternative to mammal sources for these applications and benefit from their biological properties, such as low antigenicity, biocompatibility, and biodegradability, among others. Furthermore, to ensure the sustainable exploitation of natural marine resources and address the challenges of 3R's policies, there is a current necessity to valorize the residues and by-products obtained from food processing to benefit both economic and environmental interests. Many extraction methodologies have received significant attention for the obtention of diverse polysaccharides, proteins, and glycosaminoglycans to accomplish the increasing demands for these products. The present review gives emphasis to the ones that can be obtained from marine biological resources, as agar/agarose, alginate and sulfated polysaccharides from seaweeds, chitin/chitosan from crustaceans from crustaceans, collagen, and some glycosaminoglycans such as chondroitin sulfate and hyaluronic acids from fish. It is offered, in a summarized and easy-to-interpret arrangement, the most well-established extraction and purification methodologies used for obtaining the referred marine biopolymers, their chemical structure, as well as the characterization tools that are required to validate the extracted material and respective features. As supplementary material, a practical guide with the step-by-step isolation protocol, together with the various materials, reagents, and equipment, needed for each extraction is also delivered is also delivered. Finally, some remarks are made on the needs still observed, despite all the past efforts, to improve the current extraction and purification procedures to achieve more efficient and green methodologies with higher yields, less time-consuming, and decreased batch-to-batch variability.
Collapse
Affiliation(s)
- Duarte Nuno Carvalho
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cristiana Gonçalves
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rita O Sousa
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B´S Research Group, I3B´s - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark 4805-017, Barco, Guimarães, Portugal.
- ICVS/3B´s - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
2
|
Rodrigues VJ, Jouanneau D, Fernandez-Fuentes N, Onime LA, Huws SA, Odaneth AA, Adams JMM. Biochemical characterisation of a PL24 ulvan lyase from seaweed-associated Vibrio sp. FNV38. JOURNAL OF APPLIED PHYCOLOGY 2023; 36:697-711. [PMID: 38765689 PMCID: PMC11101340 DOI: 10.1007/s10811-023-03136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 05/22/2024]
Abstract
Ulvan is a green macroalgal cell wall polysaccharide that has tremendous potential for valorisation due to its unique composition of sulphated rhamnose, glucuronic acid, iduronic acid and xylose. Several potential applications such as production of biofuels, bioplastics and other value-added products necessitate the breakdown of the polysaccharide to oligomers or monomers. Research on ulvan saccharifying enzymes has been continually increasing over the last decade, with the increasing focus on valorisation of seaweed biomass for a biobased economy. Lyases are the first of several enzymes that are involved in saccharifying the polysaccharide and several ulvan lyases have been structurally and biochemically characterised to enable their effective use in the valorisation processes. This study investigates the whole genome of Vibrio sp. FNV38, an ulvan metabolising organism and biochemical characteristics of a PL24 ulvan lyase that it possesses. The genome of Vibrio sp. FNV38 has a diverse CAZy profile with several genes involved in the metabolism of ulvan, cellulose, agar, and alginate. The enzyme exhibits optimal activity at pH 8.5 in 100 mM Tris-HCl buffer and 30 °C. However, its thermal stability is poor with significant loss of activity after 2 h of incubation at temperatures above 25 °C. Breakdown product analysis reveals that the enzyme depolymerised the polysaccharide predominantly to disaccharides and tetrasaccharides. Supplementary Information The online version contains supplementary material available at 10.1007/s10811-023-03136-3.
Collapse
Affiliation(s)
- Valerie J. Rodrigues
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE United Kingdom
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai, 400019 Maharashtra India
| | - Diane Jouanneau
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, 29688 Roscoff, Bretagne France
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, Bretagne, France
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE United Kingdom
| | - Lucy A. Onime
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE United Kingdom
| | - Sharon A. Huws
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE United Kingdom
- Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL United Kingdom
| | - Annamma A. Odaneth
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai, 400019 Maharashtra India
| | - Jessica M. M. Adams
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE United Kingdom
| |
Collapse
|
3
|
Li C, Tang T, Jiang J, Yao Z, Zhu B. Biochemical characterization of a new ulvan lyase and its applicability in utilization of ulvan and preparation of ulva oligosaccharides. Glycobiology 2023; 33:837-845. [PMID: 37593920 DOI: 10.1093/glycob/cwad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Ulva is globally distributed specie and has a high economic value. Ulvan is one of the main active substances in Ulva, which has a variety of biological properties. Ulvan lyase degrades ulvan through a β-elimination mechanism which cleaves the β-glycosidic bond between Rha3S and GlcA or IdoA. The complex monosaccharide composition of ulvan makes it promising for use in food and pharmaceutical applications. This thesis explores a putative ulvan lyase from Alteromonas sp. KUL_42. We expressed and purified the protein, performed a series of characterizations and signal peptide had been removed. The results showed that the protein molecular weight of ULA-2 was 53.97 kDa, and it had the highest catalytic activity at 45 °C and pH 8.0 in Tris-HCl buffer. The Km and Vmax values were 2.24 mg · mL-1 and 2.048 μmol · min-1 · mL-1, respectively. The activity of ULA-2 was able to maintain more than 80% at 20 ~ 30 °C. ESI-MS analysis showed that the primary end-products were mainly disaccharides to tetrasaccharides. The study of ULA-2 enriches the ulvan lyase library, promotes the development and high-value utilization of Ulva resources, and facilitates further research applications of ulvan lyase in ulva oligosaccharides.
Collapse
Affiliation(s)
- Chen Li
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Tiancheng Tang
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Jinju Jiang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Brightmoon Seaweed Group Co Ltd, 777 Mingyue Road, Qingdao 266400, China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, 30 Puzhunan Road, Nanjing 211816, China
| |
Collapse
|
4
|
Tran VHN, Mikkelsen MD, Truong HB, Vo HNM, Pham TD, Cao HTT, Nguyen TT, Meyer AS, Thanh TTT, Van TTT. Structural Characterization and Cytotoxic Activity Evaluation of Ulvan Polysaccharides Extracted from the Green Algae Ulva papenfussii. Mar Drugs 2023; 21:556. [PMID: 37999380 PMCID: PMC10672449 DOI: 10.3390/md21110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Ulvan, a sulfated heteropolysaccharide with structural and functional properties of interest for various uses, was extracted from the green seaweed Ulva papenfussii. U. papenfussii is an unexplored Ulva species found in the South China Sea along the central coast of Vietnam. Based on dry weight, the ulvan yield was ~15% (w/w) and the ulvan had a sulfate content of 13.4 wt%. The compositional constitution encompassed L-Rhamnose (Rhap), D-Xylose (Xylp), D-Glucuronic acid (GlcAp), L-Iduronic acid (IdoAp), D-Galactose (Galp), and D-Glucose (Glcp) with a molar ratio of 1:0.19:0.35:0.52:0.05:0.11, respectively. The structure of ulvan was determined using High-Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectroscopy (FT-IR), and Nuclear Magnetic Resonance spectroscopy (NMR) methods. The results showed that the extracted ulvan comprised a mixture of two different structural forms, namely ("A3s") with the repeating disaccharide [→4)-β-D-GlcAp-(1→4)-α-L-Rhap 3S-(1→]n, and ("B3s") with the repeating disaccharide [→4)-α-L-IdoAp-(1→4)-α-L-Rhap 3S(1→]n. The relative abundance of A3s, and B3s was 1:1.5, respectively. The potential anticarcinogenic attributes of ulvan were evaluated against a trilogy of human cancer cell lineages. Concomitantly, Quantitative Structure-Activity Relationship (QSAR) modeling was also conducted to predict potential adverse reactions stemming from pharmacological interactions. The ulvan showed significant antitumor growth activity against hepatocellular carcinoma (IC50 ≈ 90 µg/mL), human breast cancer cells (IC50 ≈ 85 µg/mL), and cervical cancer cells (IC50 ≈ 67 µg/mL). The QSAR models demonstrated acceptable predictive power, and seven toxicity indications confirmed the safety of ulvan, warranting its candidacy for further in vivo testing and applications as a biologically active pharmaceutical source for human disease treatment.
Collapse
Affiliation(s)
- Vy Ha Nguyen Tran
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Maria Dalgaard Mikkelsen
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (M.D.M.); (A.S.M.)
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam;
- Faculty of Applied Technology, School of Technology, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam
| | - Hieu Nhu Mai Vo
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Thinh Duc Pham
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Thuan Thi Nguyen
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Anne S. Meyer
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (M.D.M.); (A.S.M.)
| | - Thuy Thu Thi Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi 10000, Vietnam;
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| |
Collapse
|
5
|
Wang S, Zhang B, Chang X, Zhao H, Zhang H, Zhao T, Qi H. Potential use of seaweed polysaccharides as prebiotics for management of metabolic syndrome: a review. Crit Rev Food Sci Nutr 2023; 64:7707-7727. [PMID: 36971135 DOI: 10.1080/10408398.2023.2191135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Seaweed polysaccharides (SPs) obtained from seaweeds are a class of functional prebiotics. SPs can regulate glucose and lipid anomalies, affect appetite, reduce inflammation and oxidative stress, and therefore have great potential for managing metabolic syndrome (MetS). SPs are poorly digested by the human gastrointestinal tract but are available to the gut microbiota to produce metabolites and exert a series of positive effects, which may be the mechanism by which SPs render their anti-MetS effects. This article reviews the potential of SPs as prebiotics in the management of MetS-related metabolic disturbances. The structure of SPs and studies related to the process of their degradation by gut bacteria and their therapeutic effects on MetS are highlighted. In summary, this review provides new perspectives on SPs as prebiotics to prevent and treat MetS.
Collapse
Affiliation(s)
- Shaopeng Wang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Xintao Chang
- Department of Pharmacy, People's Hospital of Zhangqiu District, Jinan, Shandong, PR China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Huimin Qi
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
| |
Collapse
|
6
|
Cao S, Yang Y, Liu S, Shao Z, Chu X, Mao W. Immunomodulatory Activity In Vitro and In Vivo of a Sulfated Polysaccharide with Novel Structure from the Green Alga Ulvaconglobata Kjellman. Mar Drugs 2022; 20:md20070447. [PMID: 35877740 PMCID: PMC9320874 DOI: 10.3390/md20070447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Algae accumulate large amounts of polysaccharides in their cell walls or intercellular regions. Polysaccharides from algae possess high potential as promising candidates for marine drug development. In this study, a sulfated polysaccharide, UCP, from the green alga Ulva conglobata Kjellman was obtained by water extraction, anion-exchange, and size-exclusion chromatography purification, and its structure was characterized by a combination of chemical and spectroscopic methods. UCP mainly consisted of →4)-α/β-l-Rhap-(1→, →4)-β-d-Xylp-(1→ and →4)-β-d-GlcAp-(1→ residues. Sulfate ester groups were substituted mainly at C-3 of →4)-l-Rhap-(1→ and C-2 of →4)-β-d-Xylp-(1→. Partial glycosylation was at C-2 of →4)-α-l-Rhap-(1→ residues. UCP possessed a potent immunomodulatory effect in vitro, evaluated by the assays of lymphocyte proliferation and macrophage phagocytosis. The immunomodulatory activity of UCP in vivo was further investigated using immunosuppressive mice induced by cyclophosphamide. The results showed that UCP markedly increased the spleen and thymus indexes and ameliorated the cyclophosphamide-induced damage to the spleen and thymus. UCP could increase the levels of white blood cells, lymphocytes, and platelets, and improve the hematopoietic inhibition caused by cyclophosphamide. Moreover, UCP significantly promoted the secretions of the immunoglobulin (Ig)G, IgE, and IgM. The data demonstrated that UCP is a novel sulfated polysaccharide and may be a promising immunomodulatory agent.
Collapse
Affiliation(s)
- Sujian Cao
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China;
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Shan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Zhuling Shao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Xiao Chu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
- Correspondence: ; Tel.: +86-532-8203-1560
| |
Collapse
|
7
|
Seaweed Exhibits Therapeutic Properties against Chronic Diseases: An Overview. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052638] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seaweeds or marine macroalgae are known for producing potentially bioactive substances that exhibit a wide range of nutritional, therapeutic, and nutraceutical properties. These compounds can be applied to treat chronic diseases, such as cancer, cardiovascular disease, osteoporosis, neurodegenerative diseases, and diabetes mellitus. Several studies have shown that consumption of seaweeds in Asian countries, such as Japan and Korea, has been correlated with a lower incidence of chronic diseases. In this study, we conducted a review of published papers on seaweed consumption and chronic diseases. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method for this study. We identified and screened research articles published between 2000 and 2021. We used PubMed and ScienceDirect databases and identified 107 articles. This systematic review discusses the potential use of bioactive compounds of seaweed to treat chronic diseases and identifies gaps where further research in this field is needed. In this review, the therapeutic and nutraceutical properties of seaweed for the treatment of chronic diseases such as neurodegenerative diseases, obesity, diabetes, cancer, liver disease, cardiovascular disease, osteoporosis, and arthritis were discussed. We concluded that further study on the identification of bioactive compounds of seaweed, and further study at a clinical level, are needed.
Collapse
|
8
|
Wang D, Li Y, Han L, Yin C, Fu Y, Zhang Q, Zhao X, Li G, Han F, Yu W. Biochemical Properties of a New Polysaccharide Lyase Family 25 Ulvan Lyase TsUly25B from Marine Bacterium Thalassomonas sp. LD5. Mar Drugs 2022; 20:168. [PMID: 35323467 PMCID: PMC8955879 DOI: 10.3390/md20030168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/21/2023] Open
Abstract
Marine macroalgae, contributing much to the bioeconomy, have inspired tremendous attention as sustainable raw materials. Ulvan, as one of the main structural components of green algae cell walls, can be degraded by ulvan lyase through the β-elimination mechanism to obtain oligosaccharides exhibiting several good physiological activities. Only a few ulvan lyases have been characterized until now. This thesis explores the properties of a new polysaccharide lyase family 25 ulvan lyase TsUly25B from the marine bacterium Thalassomonas sp. LD5. Its protein molecular weight was 54.54 KDa, and it was most active under the conditions of 60 °C and pH 9.0. The Km and kcat values were 1.01 ± 0.05 mg/mL and 10.52 ± 0.28 s-1, respectively. TsUly25B was salt-tolerant and NaCl can significantly improve its thermal stability. Over 80% of activity can be preserved after being incubated at 30 °C for two days when the concentration of NaCl in the solution is above 1 M, while 60% can be preserved after incubation at 40 °C for 10 h with 2 M NaCl. TsUly25B adopted an endolytic manner to degrade ulvan polysaccharides, and the main end-products were unsaturated ulvan disaccharides and tetrasaccharides. In conclusion, our research enriches the ulvan lyase library and advances the utilization of ulvan lyases in further fundamental research as well as ulvan oligosaccharides production.
Collapse
Affiliation(s)
- Danni Wang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Yujiao Li
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Lu Han
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Chengying Yin
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Yongqing Fu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Qi Zhang
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Xia Zhao
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Guoyun Li
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Feng Han
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Key Laboratory of Marine Drugs, Ministry of Education, 5 Yushan Road, Qingdao 266003, China
- Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, Department of Science & Technology of Shandong Province, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
9
|
Li J, He Z, Liang Y, Peng T, Hu Z. Insights into Algal Polysaccharides: A Review of Their Structure, Depolymerases, and Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1749-1765. [PMID: 35124966 DOI: 10.1021/acs.jafc.1c05365] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, marine macroalgae with extensive biomass have attracted the attention of researchers worldwide. Furthermore, algal polysaccharides have been widely studied in the food, pharmaceutical, and cosmetic fields because of their various kinds of bioactivities. However, there are immense barriers to their application as a result of their high molecular size, poor solubility, hydrocolloid nature, and low physiological activities. Unique polysaccharides, such as laminarin, alginate, fucoidan, agar, carrageenan, porphyran, ulvan, and other complex structural polysaccharides, can be digested by marine bacteria with many carbohydrate-active enzymes (CAZymes) by breaking down the limitation of glycosidic bonds. However, structural elucidation of algal polysaccharides, metabolic pathways, and identification of potential polysaccharide hydrolases that participate in different metabolic pathways remain major obstacles restricting the efficient utilization of algal oligosaccharides. This review focuses on the structure, hydrolase families, metabolic pathways, and potential applications of seven macroalgae polysaccharides. These results will contribute to progressing our understanding of the structure of algal polysaccharides and their metabolic pathways and will be valuable for clearing the way for the compelling utilization of bioactive oligosaccharides.
Collapse
Affiliation(s)
- Jin Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhixiao He
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Yumei Liang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, People's Republic of China
| |
Collapse
|
10
|
Glasson CRK, Luiten CA, Carnachan SM, Daines AM, Kidgell JT, Hinkley SFR, Praeger C, Andrade Martinez M, Sargison L, Magnusson M, de Nys R, Sims IM. Structural characterization of ulvans extracted from blade (Ulva ohnoi) and filamentous (Ulva tepida and Ulva prolifera) species of cultivated Ulva. Int J Biol Macromol 2022; 194:571-579. [PMID: 34813787 DOI: 10.1016/j.ijbiomac.2021.11.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 11/05/2022]
Abstract
Ulvans from Ulva ohnoi, Ulva tepida and Ulva prolifera were extracted under mild acidic conditions, isolated and their composition and structure determined. The ulvans contained mostly rhamnose (31.6-46.7 mol%) and glucuronic acid (26.6-37.5 mol%), with smaller amounts of xylose (3.4-10.4 mol%) and iduronic acid (3.1-7.6 mol%). In addition, the ulvan samples also contained galactose (4.4-26.0 mol%). Glycosyl linkage analysis showed that ulvan from U. ohnoi contained mostly →4)-GlcpA-(1→ and →3,4)-Rhap-(1→. Preparation of partially methylated alditol acetate standards of idose showed that U. ohnoi contained →4)-IdopA-(1→. In addition to these residues, glycosyl linkage analysis of U. tepida and U. prolifera showed the presence of →2,3,4)-Rhap-(1→, →4)-Xylp-(1→, →2,4)-GlcpA-(1→ and →3,4)-GlcpA-(1→. These two species also contained galactose linkages. These data, together with nuclear magnetic resonance (NMR) spectroscopy indicated that U. ohnoi comprised mostly of type A3S ulvanobiuronic acid repeats [→4)-β-D-GlcpA-(1→4)-α-L-Rhap3S-(1→], together with smaller amounts of type B3S ulvanobiuronic acid repeats [→4)-α-L-IdopA-(1→4)-α-L-Rhap3S-(1→] and ulvanobiose (U3S [→4)-β-D-Xylp-(1→4)-α-L-Rhap3S-(1→]). NMR spectra of U. tepida and U. prolifera showed resonances not detected in U. ohnoi, highlighting the complexity of the ulvans from these species. Regardless of the structural diversity of the ulvan samples there was very little antioxidant or inhibitory activity detected on enzymatic processes investigated.
Collapse
Affiliation(s)
- Christopher R K Glasson
- MACRO - The Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Australia; Environmental Research Institute, School of Science, University of Waikato, Tauranga 3110, New Zealand.
| | - Cara A Luiten
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand.
| | - Susan M Carnachan
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand.
| | - Alison M Daines
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand.
| | - Joel T Kidgell
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand; Environmental Research Institute, School of Science, University of Waikato, Tauranga 3110, New Zealand.
| | - Simon F R Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Christina Praeger
- MACRO - The Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Australia; Environmental Research Institute, School of Science, University of Waikato, Tauranga 3110, New Zealand.
| | - Maria Andrade Martinez
- MACRO - The Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Australia.
| | - Liam Sargison
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand.
| | - Marie Magnusson
- Environmental Research Institute, School of Science, University of Waikato, Tauranga 3110, New Zealand.
| | - Rocky de Nys
- MACRO - The Centre for Macroalgal Resources and Biotechnology, College of Marine and Environmental Sciences, James Cook University, Townsville 4811, Australia.
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand.
| |
Collapse
|
11
|
Rosmarinic Acid and Ulvan from Terrestrial and Marine Sources in Anti-Microbial Bionanosystems and Biomaterials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to increase their sustainability, antimicrobial renewable molecules are fundamental additions to consumer goods. Rosmarinic acid is extracted from several terrestrial plants and represents an effective anti-microbial agent. Ulvan, extracted from algae, is an anti-microbial polysaccharide. The present review is dedicated to discussing the sources and the extraction methodologies for obtaining rosmarinic acid and ulvan. Moreover, the preparation of bioanosystems, integrating the two molecules with organic or inorganic substrates, are reviewed as methodologies to increase their effectiveness and stability. Finally, the possibility of preparing functional biomaterials and anti-microbial final products is discussed, considering scientific literature. The performed analysis indicated that the production of both molecules is not yet performed with mature industrial technologies. Nevertheless, both molecules could potentially be used in the packaging, biomedical, pharmaceutical, cosmetic, sanitary and personal care sectors, despite some research being required for developing functional materials with specific properties to pave the way for many more applications.
Collapse
|
12
|
Bäumgen M, Dutschei T, Bartosik D, Suster C, Reisky L, Gerlach N, Stanetty C, Mihovilovic MD, Schweder T, Hehemann JH, Bornscheuer UT. A new carbohydrate-active oligosaccharide dehydratase is involved in the degradation of ulvan. J Biol Chem 2021; 297:101210. [PMID: 34547290 PMCID: PMC8511951 DOI: 10.1016/j.jbc.2021.101210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/28/2022] Open
Abstract
Marine algae catalyze half of all global photosynthetic production of carbohydrates. Owing to their fast growth rates, Ulva spp. rapidly produce substantial amounts of carbohydrate-rich biomass and represent an emerging renewable energy and carbon resource. Their major cell wall polysaccharide is the anionic carbohydrate ulvan. Here, we describe a new enzymatic degradation pathway of the marine bacterium Formosa agariphila for ulvan oligosaccharides involving unsaturated uronic acid at the nonreducing end linked to rhamnose-3-sulfate and glucuronic or iduronic acid (Δ-Rha3S-GlcA/IdoA-Rha3S). Notably, we discovered a new dehydratase (P29_PDnc) acting on the nonreducing end of ulvan oligosaccharides, i.e., GlcA/IdoA-Rha3S, forming the aforementioned unsaturated uronic acid residue. This residue represents the substrate for GH105 glycoside hydrolases, which complements the enzymatic degradation pathway including one ulvan lyase, one multimodular sulfatase, three glycoside hydrolases, and the dehydratase P29_PDnc, the latter being described for the first time. Our research thus shows that the oligosaccharide dehydratase is involved in the degradation of carboxylated polysaccharides into monosaccharides.
Collapse
Affiliation(s)
- Marcus Bäumgen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Theresa Dutschei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Daniel Bartosik
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
| | - Christoph Suster
- Institute of Applied Synthetic Chemistry, TU Wien, Vienna, Austria
| | - Lukas Reisky
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Nadine Gerlach
- Max Planck-Institute for Marine Microbiology, Bremen, Germany; Center for Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany
| | | | | | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany
| | - Jan-Hendrik Hehemann
- Max Planck-Institute for Marine Microbiology, Bremen, Germany; Center for Marine Environmental Sciences (MARUM), University of Bremen, Bremen, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany.
| |
Collapse
|
13
|
Mazepa E, Noseda MD, Ferreira LG, de Carvalho MM, Gonçalves AG, Ducatti DRB, de L Bellan D, Gomes RP, da S Trindade E, Franco CRC, Pellizzari FM, Winnischofer SMB, Duarte MER. Chemical structure of native and modified sulfated heterorhamnans from the green seaweed Gayralia brasiliensis and their cytotoxic effect on U87MG human glioma cells. Int J Biol Macromol 2021; 187:710-721. [PMID: 34310994 DOI: 10.1016/j.ijbiomac.2021.07.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 01/16/2023]
Abstract
A water-soluble sulfated heterorhamnan (Gb1) was isolated from the green seaweed Gayralia brasiliensis and purified by ultrafiltration, yielding a homogeneous polysaccharide (Gb1r). Both fractions contained rhamnose, xylose, galacturonic and glucuronic acids, galactose, and glucose. Chemical and spectroscopic methods allowed the determination of Gb1 and Gb1r chemical structure. Their backbones were constituted by 3-, 2-, and 2,3-linked rhamnosyl units (1:0.49:0.13 and 1:0.58:0.17, respectively), which are unsulfated (13.5 and 14.6%), disulfated (16.6 and 17.8%) or monosulfated at C-2 (8 and 8.6%) and C-4 (24.5 and 23.4%). Gb1 was oversulfated giving rise to Gb1-OS, which presented ~2.5-fold higher content of disulfated rhamnosyl units than Gb1, as determined by methylation analyses and NMR spectroscopy. Gb1 and Gb1-OS potently reduced the viability of U87MG human glioblastoma cells. Gb1 caused cell cycle arrest in the G1 phase, increased annexin V-stained cells, and no DNA fragmentation, while Gb1-OS increased the percentage of cells in the S and G2 phases and the levels of fragmented DNA and cells double-stained with annexin V/propidium iodide, suggesting an apoptosis mechanism. The results suggest that the different effects of Gb1 and Gb1-OS were related to differences in the sulfate content and position of these groups along the polysaccharide chains.
Collapse
Affiliation(s)
- Ester Mazepa
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Miguel D Noseda
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; Department of Biochemistry and Molecular Biology, UFPR, Curitiba, Brazil.
| | - Luciana G Ferreira
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Mariana M de Carvalho
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Diogo R B Ducatti
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; Department of Biochemistry and Molecular Biology, UFPR, Curitiba, Brazil
| | - Daniel de L Bellan
- Postgraduate Program in Cellular and Molecular Biology, Sector of Biological Sciences, UFPR, Brazil
| | - Rafaela P Gomes
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Edvaldo da S Trindade
- Postgraduate Program in Cellular and Molecular Biology, Sector of Biological Sciences, UFPR, Brazil; Department of Cell Biology, UFPR, Brazil
| | - Célia R C Franco
- Postgraduate Program in Cellular and Molecular Biology, Sector of Biological Sciences, UFPR, Brazil; Department of Cell Biology, UFPR, Brazil
| | - Franciane M Pellizzari
- Phycology and Marine Water Quality Laboratory, Paraná State University (UNESPAR), Campus Paranaguá, PR, Brazil
| | - Sheila M B Winnischofer
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; Department of Biochemistry and Molecular Biology, UFPR, Curitiba, Brazil; Postgraduate Program in Cellular and Molecular Biology, Sector of Biological Sciences, UFPR, Brazil.
| | - Maria E R Duarte
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; Department of Biochemistry and Molecular Biology, UFPR, Curitiba, Brazil.
| |
Collapse
|
14
|
Shannon E, Conlon M, Hayes M. Seaweed Components as Potential Modulators of the Gut Microbiota. Mar Drugs 2021; 19:358. [PMID: 34201794 PMCID: PMC8303941 DOI: 10.3390/md19070358] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/11/2022] Open
Abstract
Macroalgae, or seaweeds, are a rich source of components which may exert beneficial effects on the mammalian gut microbiota through the enhancement of bacterial diversity and abundance. An imbalance of gut bacteria has been linked to the development of disorders such as inflammatory bowel disease, immunodeficiency, hypertension, type-2-diabetes, obesity, and cancer. This review outlines current knowledge from in vitro and in vivo studies concerning the potential therapeutic application of seaweed-derived polysaccharides, polyphenols and peptides to modulate the gut microbiota through diet. Polysaccharides such as fucoidan, laminarin, alginate, ulvan and porphyran are unique to seaweeds. Several studies have shown their potential to act as prebiotics and to positively modulate the gut microbiota. Prebiotics enhance bacterial populations and often their production of short chain fatty acids, which are the energy source for gastrointestinal epithelial cells, provide protection against pathogens, influence immunomodulation, and induce apoptosis of colon cancer cells. The oral bioaccessibility and bioavailability of seaweed components is also discussed, including the advantages and limitations of static and dynamic in vitro gastrointestinal models versus ex vivo and in vivo methods. Seaweed bioactives show potential for use in prevention and, in some instances, treatment of human disease. However, it is also necessary to confirm these potential, therapeutic effects in large-scale clinical trials. Where possible, we have cited information concerning these trials.
Collapse
Affiliation(s)
- Emer Shannon
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Michael Conlon
- CSIRO Health and Biosecurity, Kintore Avenue, Adelaide, SA 5000, Australia;
| | - Maria Hayes
- Food Biosciences, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| |
Collapse
|
15
|
The non-sulfated ulvanobiuronic acid of ulvans is the smallest active unit able to induce an oxidative burst in dicot cells. Carbohydr Polym 2021; 270:118338. [PMID: 34364593 DOI: 10.1016/j.carbpol.2021.118338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 06/13/2021] [Indexed: 11/23/2022]
Abstract
Ulvans from green algae are promising compounds for plant protection because they are environmentally friendly and induce plant defense responses. We analyzed the structure-function relationship of ulvan polymers and oligomers for their elicitor activity in suspension-cultured cells of three dicot species. The polysaccharide from Ulva fasciata was characterized regarding its monosaccharide composition, degree of sulfation, and molecular mass. The polymer was partially depolymerized using acid hydrolysis, and the oligomers were separated using size exclusion chromatography. The oligomeric fractions were analyzed revealing mostly sulfated and de-sulfated ulvan dimers. Both the polymer and the oligomer fractions induced an NADPH oxidase-dependent oxidative burst in plant cells. The elicitor activity of the ulvan dimers did not require sulfation. By identifying the smallest elicitor-active unit, HexA-Rha, we took an important next step to understand how the structure influences ulvan elicitor responses. The desulfated ulvan dimer is discussed as a promising agro-biologic for sustainable agriculture.
Collapse
|
16
|
Madub K, Goonoo N, Gimié F, Ait Arsa I, Schönherr H, Bhaw-Luximon A. Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering. Carbohydr Polym 2021; 251:117025. [DOI: 10.1016/j.carbpol.2020.117025] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 01/23/2023]
|
17
|
Ray B, Schütz M, Mukherjee S, Jana S, Ray S, Marschall M. Exploiting the Amazing Diversity of Natural Source-Derived Polysaccharides: Modern Procedures of Isolation, Engineering, and Optimization of Antiviral Activities. Polymers (Basel) 2020; 13:E136. [PMID: 33396933 PMCID: PMC7794815 DOI: 10.3390/polym13010136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring polysaccharide sulfates are highly diverse, owning variations in the backbone structure, linkage pattern and stereochemistry, branching diversity, sulfate content and positions of sulfate group(s). These structural characteristics bring about diverse sulfated polymers with dissimilar negative charge densities and structure-activity relationships. Herein, we start with a short discussion of techniques needed for extraction, purification, chemical sulfation, and structural characterization of polysaccharides. Processes of isolation and sulfation of plant-derived polysaccharides are challenging and usually involve two steps. In this context, we describe an integrated extraction-sulfation procedure that produces polysaccharide sulfates from natural products in one step, thereby generating additional pharmacological activities. Finally, we provide examples of the spectrum of natural source-derived polysaccharides possessing specific features of bioactivity, in particular focusing on current aspects of antiviral drug development and drug-target interaction. Thus, the review presents a detailed view on chemically engineered polysaccharides, especially sulfated derivatives, and underlines their promising biomedical perspectives.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Manfred Marschall
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| |
Collapse
|
18
|
de Carvalho MM, Noseda MD, Dallagnol JC, Ferreira LG, Ducatti DR, Gonçalves AG, de Freitas RA, Duarte MER. Conformational analysis of ulvans from Ulva fasciata and their anticoagulant polycarboxylic derivatives. Int J Biol Macromol 2020; 162:599-608. [DOI: 10.1016/j.ijbiomac.2020.06.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/27/2022]
|
19
|
Cao Q, Zhao J, Xing M, Xiao H, Zhang Q, Liang H, Ji A, Song S. Current Research Landscape of Marine-Derived Anti-Atherosclerotic Substances. Mar Drugs 2020; 18:md18090440. [PMID: 32854344 PMCID: PMC7551282 DOI: 10.3390/md18090440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic disease characterized by lipid accumulation and chronic inflammation of the arterial wall, which is the pathological basis for coronary heart disease, cerebrovascular disease and thromboembolic disease. Currently, there is a lack of low-cost therapeutic agents that effectively slow the progression of atherosclerosis. Therefore, the development of new drugs is urgently needed. The research and development of marine-derived drugs have gained increasing interest from researchers across the world. Many marine organisms provide a rich material basis for the development of atherosclerotic drugs. This review focuses on the latest technological advances in the structures and mechanisms of action of marine-derived anti-atherosclerotic substances and the challenges of the application of these substances including marine polysaccharides, proteins and peptides, polyunsaturated fatty acids and small molecule compounds. Here, we describe the theoretical basis of marine biological resources in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: (A.J.); (S.S.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- Correspondence: (A.J.); (S.S.)
| |
Collapse
|
20
|
Wahlström N, Steinhagen S, Toth G, Pavia H, Edlund U. Ulvan dialdehyde-gelatin hydrogels for removal of heavy metals and methylene blue from aqueous solution. Carbohydr Polym 2020; 249:116841. [PMID: 32933684 DOI: 10.1016/j.carbpol.2020.116841] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/30/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
Hydrogels based on the polysaccharide ulvan from the green macroalgae Ulva fenestrata were synthesized and evaluated as an adsorbent for heavy metals ions and methylene blue. Ulvan was extracted from Ulva fenestrata using diluted hydrochloric acid and recovered by precipitation with EtOH. The extracted ulvan was converted into ulvan dialdehyde via periodate-oxidation and subsequently combined with gelatin yielding hydrogels. The hydrogels showed good water-uptake capacity with a maximum swelling degree of 2400 % in water and 900 % in PBS buffer. Adsorption tests of methylene blue showed a maximum adsorption capacity of 465 mg/g. The adsorption data of methylene blue followed the pseudo-second order kinetics and agreed with the Langmuir adsorption isotherm. The maximum adsorption capacity of heavy metal ions was 14 mg/g for Cu2+, 7 mg/g for Co2+and 6 mg/g for Ni2+and Zn2+ indicating that the hydrogels have a stronger affinity for Cu2+ than for Co2+, Ni2+, and Zn2+.
Collapse
Affiliation(s)
- Niklas Wahlström
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44, Stockholm, Sweden
| | - Sophie Steinhagen
- Department of Marine Sciences, Lovén Centre for Marine Sciences - Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden
| | - Gunilla Toth
- Department of Marine Sciences, Lovén Centre for Marine Sciences - Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden
| | - Henrik Pavia
- Department of Marine Sciences, Lovén Centre for Marine Sciences - Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden
| | - Ulrica Edlund
- Fiber and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
21
|
Jin W, He X, Long L, Fang Q, Wei B, Sun J, Zhang W, Wang H, Zhang F, Linhardt RJ. Structural characterization and anti-lung cancer activity of a sulfated glucurono-xylo-rhamnan from Enteromorpha prolifera. Carbohydr Polym 2020; 237:116143. [PMID: 32241440 DOI: 10.1016/j.carbpol.2020.116143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/27/2020] [Accepted: 03/07/2020] [Indexed: 12/21/2022]
Abstract
A sulfated glucurono-xylo-rhamnan (EP-3-H) was purified from a green alga, Enteromorpha prolifera. EP-3-H and its oligomers were characterized by high performance liquid chromatography, mass spectrometry and one and two-dimensional nuclear magnetic resource spectroscopy. The structural analysis showed EP-3-H has a backbone of glucurono-xylo-rhamnan, branches with glucuronic acid and sulfated at C3 of rhamnose and/or C2 of xylose. The inhibition of EP-3-H on human lung cancer A549 cell proliferation in vitro and its therapeutic effects in BALB/c-nu mice in vivo were determined to evaluate the anti-lung cancer activity of EP-3-H. The tumor inhibition level was 59 %, suggesting that EP-3-H might be a good candidate for the treatment of lung cancer. Surface plasmon resonance (SPR) studies revealed the IC50 on the binding of fibroblast growth factors, (FGF1 and FGF2), to heparin were 0.85 and 1.47 mg/mL, respectively. These results suggest that EP-3-H inhibits cancer proliferation by interacting with these growth factors.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liufei Long
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiufu Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA; Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20878, USA
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
22
|
Wahlström N, Nylander F, Malmhäll-Bah E, Sjövold K, Edlund U, Westman G, Albers E. Composition and structure of cell wall ulvans recovered from Ulva spp. along the Swedish west coast. Carbohydr Polym 2020; 233:115852. [DOI: 10.1016/j.carbpol.2020.115852] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
|
23
|
Reisky L, Préchoux A, Zühlke MK, Bäumgen M, Robb CS, Gerlach N, Roret T, Stanetty C, Larocque R, Michel G, Song T, Markert S, Unfried F, Mihovilovic MD, Trautwein-Schult A, Becher D, Schweder T, Bornscheuer UT, Hehemann JH. A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nat Chem Biol 2019; 15:803-812. [PMID: 31285597 DOI: 10.1038/s41589-019-0311-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022]
Abstract
Marine seaweeds increasingly grow into extensive algal blooms, which are detrimental to coastal ecosystems, tourism and aquaculture. However, algal biomass is also emerging as a sustainable raw material for the bioeconomy. The potential exploitation of algae is hindered by our limited knowledge of the microbial pathways-and hence the distinct biochemical functions of the enzymes involved-that convert algal polysaccharides into oligo- and monosaccharides. Understanding these processes would be essential, however, for applications such as the fermentation of algal biomass into bioethanol or other value-added compounds. Here, we describe the metabolic pathway that enables the marine flavobacterium Formosa agariphila to degrade ulvan, the main cell wall polysaccharide of bloom-forming Ulva species. The pathway involves 12 biochemically characterized carbohydrate-active enzymes, including two polysaccharide lyases, three sulfatases and seven glycoside hydrolases that sequentially break down ulvan into fermentable monosaccharides. This way, the enzymes turn a previously unexploited renewable into a valuable and ecologically sustainable bioresource.
Collapse
Affiliation(s)
- Lukas Reisky
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Aurélie Préchoux
- Sorbonne Université, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Marie-Katherin Zühlke
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Marcus Bäumgen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Craig S Robb
- Max Planck-Institute for Marine Microbiology, Bremen, Germany.,University of Bremen, Center for Marine Environmental Sciences, Bremen, Germany
| | - Nadine Gerlach
- Max Planck-Institute for Marine Microbiology, Bremen, Germany.,University of Bremen, Center for Marine Environmental Sciences, Bremen, Germany
| | - Thomas Roret
- Sorbonne Université, CNRS, FR 2424, Station Biologique de Roscoff, Roscoff, France
| | | | - Robert Larocque
- Sorbonne Université, CNRS, FR 2424, Station Biologique de Roscoff, Roscoff, France
| | - Gurvan Michel
- Sorbonne Université, CNRS, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Tao Song
- Max Planck-Institute for Marine Microbiology, Bremen, Germany.,University of Bremen, Center for Marine Environmental Sciences, Bremen, Germany
| | - Stephanie Markert
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | - Frank Unfried
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany
| | | | | | - Dörte Becher
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Thomas Schweder
- Pharmaceutical Biotechnology, Institute of Pharmacy, University Greifswald, Greifswald, Germany. .,Institute of Marine Biotechnology, Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany.
| | - Jan-Hendrik Hehemann
- Max Planck-Institute for Marine Microbiology, Bremen, Germany. .,University of Bremen, Center for Marine Environmental Sciences, Bremen, Germany.
| |
Collapse
|
24
|
Abou El Azm N, Fleita D, Rifaat D, Mpingirika EZ, Amleh A, El-Sayed MMH. Production of Bioactive Compounds from the Sulfated Polysaccharides Extracts of Ulva lactuca: Post-Extraction Enzymatic Hydrolysis Followed by Ion-Exchange Chromatographic Fractionation. Molecules 2019; 24:molecules24112132. [PMID: 31195764 PMCID: PMC6600532 DOI: 10.3390/molecules24112132] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
This paper describes a novel combined post-extraction process for obtaining bioactive compounds from the aqueous high molecular weight sulfated polysaccharides (SPs) extracts of the green algae, Ulva lactuca. After extracting the SPs, they were enzymatically hydrolyzed then the hydrolysate (V45) was fractionated into eight different molecular weight fractions (F1–F8) using ion exchange chromatography. Crude SPs together with V45 and (F1–F8) were examined for their carbohydrate, protein, and sulfate contents. In addition, their degree of polymerization (DP) was estimated and they were characterized by Fourier Transform Infrared Spectroscopy (FTIR). Fractions S1, F4, F5, and F8 showed promising antioxidant and antitumor activities in vitro. In particular, the remarkable antitumor activity of F5 on three types of cancer cell lines could be attributed to its comparable contents of protein, carbohydrate, and sulfate, in addition to its comparable contents of rhamnose and glucuronic acid, and the same for glucose and arabinose. F5 also possessed the highest Hill coefficient among the four promising fractions indicating a higher degree of cooperativity in ligand binding. Other influencing factors including DP, composition, and type of characteristic functional groups were also discussed. The implications of this work could potentially benefit the industries of food supplements and pharmaceuticals.
Collapse
Affiliation(s)
- Nihal Abou El Azm
- Chemistry Department, American University in Cairo, AUC Avenue, New Cairo 11835, Egypt.
| | - Daisy Fleita
- Chemistry Department, American University in Cairo, AUC Avenue, New Cairo 11835, Egypt.
| | - Dalia Rifaat
- Chemistry Department, American University in Cairo, AUC Avenue, New Cairo 11835, Egypt.
| | - Eric Zadok Mpingirika
- Department of Biology, American University in Cairo, AUC Avenue, New Cairo 11835, Egypt.
| | - Asma Amleh
- Department of Biology, American University in Cairo, AUC Avenue, New Cairo 11835, Egypt.
| | - Mayyada M H El-Sayed
- Chemistry Department, American University in Cairo, AUC Avenue, New Cairo 11835, Egypt.
| |
Collapse
|
25
|
|
26
|
Tziveleka LA, Ioannou E, Roussis V. Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydr Polym 2019; 218:355-370. [PMID: 31221340 DOI: 10.1016/j.carbpol.2019.04.074] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
Abstract
Ulvan, a sulphated polysaccharide located in the cell walls of green algae that possesses unique structural properties albeit its repeating unit shares chemical affinity with glycosoaminoglycans, such as hyaluronan and chondroitin sulphate, has been increasingly studied over the years for applications in the pharmaceutical field. The increasing knowledge on ulvan's chemical properties and biological activities has triggered its utilization in hybrid materials, given its potential efficacy in biomedical applications. In the present review, the use of ulvan in the design of different biomaterials, including membranes, particles, hydrogels, 3D porous structures and nanofibers, is presented. The applications of these structures may vary from drug delivery to wound dressing or bone tissue engineering. In this context, general information regarding the structure and chemical variability, extraction processes, physicochemical properties, and biological activities of ulvan is reported.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| |
Collapse
|
27
|
Tanna B, Mishra A. Nutraceutical Potential of Seaweed Polysaccharides: Structure, Bioactivity, Safety, and Toxicity. Compr Rev Food Sci Food Saf 2019; 18:817-831. [DOI: 10.1111/1541-4337.12441] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Bhakti Tanna
- Division of Biotechnology and PhycologyCSIR—Central Salt and Marine Chemicals Research Inst. G. B. Marg Bhavnagar 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Avinash Mishra
- Division of Biotechnology and PhycologyCSIR—Central Salt and Marine Chemicals Research Inst. G. B. Marg Bhavnagar 364002 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
28
|
Geskovski N, Sazdovska SD, Goracinova K. Macroalgal Polysaccharides in Biomimetic Nanodelivery Systems. Curr Pharm Des 2019; 25:1265-1289. [PMID: 31020934 DOI: 10.2174/1381612825666190423155116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Imitating nature in the design of bio-inspired drug delivery systems resulted in several success stories. However, the practical application of biomimicry is still largely unrealized owing to the fact that we tend to copy the shape more often than the whole biology. Interesting chemistry of polysaccharides provides endless possibilities for drug complex formation and creation of delivery systems with diverse morphological and surface properties. However, the type of biological response, which may be induced by these systems, remains largely unexploited. METHODS Considering the most current research for the given topic, in this review, we will try to present the integrative approaches for the design of biomimetic DDS's with improved therapeutic or theranostic effects based on different algal polysaccharides that exert multiple biological functions. RESULTS Algal polysaccharides may provide building blocks for bioinspired drug delivery systems capable of supporting the mechanical properties of nanomedicines and mimicking various biological processes by molecular interactions at the nanoscale. Numerous research studies demonstrate the efficacy and safety of multifunctional nanoparticles integrating several functions in one delivery system, composed of alginate, carrageenan, ulvan, fucoidan and their derivatives, intended to be used as bioartificial microenvironment or for diagnosis and therapy of different diseases. CONCLUSION Nanodimensional structure of polysaccharide DDS's shows substantial influence on the bioactive motifs potential availability for interaction with a variety of biomolecules and cells. Evaluation of the nano dimensional structure-activity relationship is crucial for unlocking the full potential of the future application of polysaccharide bio-mimicking DDS in modern diagnostic and therapeutic procedures.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Simona Dimchevska Sazdovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of North Macedonia
| | | |
Collapse
|
29
|
Structure characterization of low molecular weight sulfate Ulva polysaccharide and the effect of its derivative on iron deficiency anemia. Int J Biol Macromol 2018; 126:747-754. [PMID: 30584945 DOI: 10.1016/j.ijbiomac.2018.12.214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/29/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022]
Abstract
Sulfate Ulva polysaccharide with low molecular weight was prepared by enzymatic method and name SUE. The structural characterization of SUE and the effect of its derivative SUE-iron (III) on iron deficiency anemia were studied. Results showed SUE with molecular weight of 178 kDa were consisted of 57.9% rhamnose, 12.1% glucose, 16.3% glucuronic acid, and 13.7% xylose. The backbone contained (1 → 3, 4)-linked rhamnose, (1 → 4)-linked xylose, (1 → 6)-linked glucose and sulfate substitution was at C-3 of rhamnose. Due to high contents of sulfate group (23.7 ± 1.1%) and uronic acid, SUE-iron (III) with 20.3% iron content was synthesized. In order to evaluate the effects of SUE-iron (III) supplementation, an IDA animal model was created. After iron supplement administration, the SUE‑iron (III) showed effective effect on returning hemoglobin, red blood cells, serum iron, and erythropoietin to the normal levels. The hematological index of rats showed no difference from that in positive group. Besides, SUE-iron (III) is beneficial to alleviate inflammatory damage caused by IDA. These suggest that SUE-iron (III) might be exploited as safe and effective new iron supplement.
Collapse
|
30
|
Patil NP, Le V, Sligar AD, Mei L, Chavarria D, Yang EY, Baker AB. Algal Polysaccharides as Therapeutic Agents for Atherosclerosis. Front Cardiovasc Med 2018; 5:153. [PMID: 30417001 PMCID: PMC6214344 DOI: 10.3389/fcvm.2018.00153] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Seaweed-derived polysaccharides including agar and alginate, have found widespread applications in biomedical research and medical therapeutic applications including wound healing, drug delivery, and tissue engineering. Given the recent increases in the incidence of diabetes, obesity and hyperlipidemia, there is a pressing need for low cost therapeutics that can economically and effectively slow the progression of atherosclerosis. Marine polysaccharides have been consumed by humans for millennia and are available in large quantities at low cost. Polysaccharides such as fucoidan, laminarin sulfate and ulvan have shown promise in reducing atherosclerosis and its accompanying risk factors in animal models. However, others have been tested in very limited context in scientific studies. In this review, we explore the current state of knowledge for these promising therapeutics and discuss the potential and challenges of using seaweed derived polysaccharides as therapies for atherosclerosis.
Collapse
Affiliation(s)
- Nikita P Patil
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Victoria Le
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Andrew D Sligar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Lei Mei
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Daniel Chavarria
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Emily Y Yang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, United States.,Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, United States.,Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
31
|
Konasani VR, Jin C, Karlsson NG, Albers E. A novel ulvan lyase family with broad-spectrum activity from the ulvan utilisation loci of Formosa agariphila KMM 3901. Sci Rep 2018; 8:14713. [PMID: 30279430 PMCID: PMC6168547 DOI: 10.1038/s41598-018-32922-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/17/2018] [Indexed: 11/19/2022] Open
Abstract
Ulvan, which is one of the major structural polysaccharides of the cell walls of green macroalgae, is degraded by ulvan lyases via the β-elimination mechanism with the release of oligosaccharides that have unsaturated 4-deoxy-L-threo-hex-4-enopyranosiduronic acid (∆) at the non-reducing end. These ulvan lyases belong to the PL24 or PL25 or PL28 family in the CAZy database. In this study, we identify and biochemically characterise a periplasmic novel broad-spectrum ulvan lyase from Formosa agariphila KMM 3901. The lyase was overexpressed in Escherichia coli, and the purified recombinant enzyme depolymerised ulvan in an endolytic manner with a Km of 0.77 mg/ml, and displayed optimum activity at 40 °C and pH 8. This lyase also degraded heparan sulphate and chondroitin sulphate. Detailed analyses of the end-products of the enzymatic degradation of ulvan using 1H- and 13C-NMR and LC-MS revealed an unsaturated disaccharide (∆Rha3S) and a tetrasaccharide (∆Rha3S-Xyl-Rha) as the principal end-products. In contrast to the previously described ulvan lyases, this novel lyase is mostly composed of α-helices that form an (α/α)6 incomplete toroid domain and displays a remarkably broad-spectrum activity. This novel lyase is the first member of a new family of ulvan lyases.
Collapse
Affiliation(s)
- Venkat Rao Konasani
- Industrial Biotechnology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Eva Albers
- Industrial Biotechnology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
32
|
Modification of ulvans via periodate-chlorite oxidation: Chemical characterization and anticoagulant activity. Carbohydr Polym 2018; 197:631-640. [DOI: 10.1016/j.carbpol.2018.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022]
|
33
|
Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901 T. Appl Microbiol Biotechnol 2018; 102:6987-6996. [PMID: 29948117 DOI: 10.1007/s00253-018-9142-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
Carbohydrates are the product of carbon dioxide fixation by algae in the ocean. Their polysaccharides are depolymerized by marine bacteria, with a vast array of carbohydrate-active enzymes. These enzymes are important tools to establish biotechnological processes based on algal biomass. Green tides, which cover coastal areas with huge amounts of algae from the genus Ulva, represent a globally rising problem, but also an opportunity because their biomass could be used in biorefinery processes. One major component of their cell walls is the anionic polysaccharide ulvan for which the enzymatic depolymerization remains largely unknown. Ulvan lyases catalyze the initial depolymerization step of this polysaccharide, but only a few of these enzymes have been described. Here, we report the cloning, overexpression, purification, and detailed biochemical characterization of the endolytic ulvan lyase from Formosa agariphila KMM 3901T which is a member of the polysaccharide lyase family PL28. The identified biochemical parameters of the ulvan lyase reflect adaptation to the temperate ocean where the bacterium was isolated from a macroalgal surface. The NaCl concentration has a high influence on the turnover number of the enzyme and the affinity to ulvan. Divalent cations were shown to be essential for enzyme activity with Ca2+ likely being the native cofactor of the ulvan lyase. This study contributes to the understanding of ulvan lyases, which will be useful for future biorefinery applications of the abundant marine polysaccharide ulvan.
Collapse
|
34
|
Qin HM, Xu P, Guo Q, Cheng X, Gao D, Sun D, Zhu Z, Lu F. Biochemical characterization of a novel ulvan lyase from Pseudoalteromonas sp. strain PLSV. RSC Adv 2018; 8:2610-2615. [PMID: 35541464 PMCID: PMC9077492 DOI: 10.1039/c7ra12294b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/29/2017] [Indexed: 11/21/2022] Open
Abstract
Ulvans, complex polysaccharides found in the ulvales (green seaweed) cell wall, contain predominantly 3-sulfated rhamnose (Rha3S) linked to either d-glucuronic acid, l-iduronic acid or d-xylose. The ulvan lyase endolytically cleaves the glycoside bond between Rha3S and uronic acid via a β-elimination mechanism. Ulvan lyase has been identified as belonging to the polysaccharide lyase family PL24 or PL25 in the carbohydrate active enzymes database, in which fewer members have been characterized. We present the cloning and characterization of a novel ulvan lyase from Pseudoalteromonas sp. strain PLSV (PsPL). The enzymes were heterologously expressed in Escherichia coli BL21 (DE3) and purified as the His-tag fusion protein using affinity chromatography, ion-exchange chromatography and size-exclusion chromatography. The degradation products were determined by thin-layer chromatography (TLC), liquid chromatography-mass spectrometry (LC-MS) to be mainly disaccharides and tetrasaccharides. Ulvan lyase provides an example of degrading ulvales into oligosaccharides. Arg265, His152 and Tyr249 were considered to serve as catalytic residues based on PsPL structural model analysis.
Collapse
Affiliation(s)
- Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education China +86-22-60602298 +86-22-60601958
- Tianjin Key Laboratory of Industrial Microbiology China
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Panpan Xu
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Qianqian Guo
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Xiaotao Cheng
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Dengke Gao
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Dengyue Sun
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Zhangliang Zhu
- College of Biotechnology, Tianjin University of Science and Technology China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education China +86-22-60602298 +86-22-60601958
- Tianjin Key Laboratory of Industrial Microbiology China
- College of Biotechnology, Tianjin University of Science and Technology China
- National Engineering Laboratory for Industrial Enzymes Tianjin 300457 People's Republic of China
| |
Collapse
|
35
|
Compositional and structural characteristics of sulfated polysaccharide from Enteromorpha prolifera. Carbohydr Polym 2017; 165:221-228. [DOI: 10.1016/j.carbpol.2017.02.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/26/2016] [Accepted: 02/02/2017] [Indexed: 11/17/2022]
|
36
|
Synytsya A, Choi DJ, Pohl R, Na YS, Capek P, Lattová E, Taubner T, Choi JW, Lee CW, Park JK, Kim WJ, Kim SM, Lee J, Park YI. Structural Features and Anti-coagulant Activity of the Sulphated Polysaccharide SPS-CF from a Green Alga Capsosiphon fulvescens. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:718-735. [PMID: 26337523 DOI: 10.1007/s10126-015-9643-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/16/2015] [Indexed: 06/05/2023]
Abstract
Previously, we reported that the sulphated polysaccharides (SPS)-CF, a water-soluble polysaccharide isolated and purified from Korean green alga Maesaengi (Capsosiphon fulvescens, Chlorophyta), is a glucuronogalactomannan based mainly on the monosaccharide composition determined by high-performance liquid chromatography (HPLC) analysis after 1-phenyl-3-methyl-5-pyrazolone (PMP) labelling of sugars in the acid (trifluoroacetic acid (TFA)) hydrolyzates of SPS-CF, which showed mannose (55.4 mol %), galactose (25.3 mol %) and glucuronic acid (16.3 mol %) as major sugars (Na et al., Int Immunopharmacol 10:364-370, 2010). However, the results of the present study re-performed for monosaccharide composition of this polysaccharide using, in addition to HPLC of PMP-labelled sugars, other separation methods, i.e. high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), gas chromatography with flame ionising detection (GC-FID) and thin-layer chromatography (TLC), clearly demonstrated that the most prominent neutral monosaccharides of SPS-CF are xylose (38.6-49.4 mol %) and rhamnose (39.6-45 mol %), while mannose and galactose are present at a much lesser extent or in negligible amount. These extensive monosaccharide analyses, correlation nuclear magnetic resonance (NMR), electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) measurements confirmed the sulphated glucuronorhamnoxylan (ulvan) type of SPS-CF polysaccharide, whose backbone is composed of alternating sequence of 4-linked L-rhamnose-3-sulphate and D-xylose residues (ulvobiose U3s) carrying monomeric D-glucuronic acid or D-glucuronic acid-3-sulphate on O-2 of some L-rhamnose-3-sulphate units as the side chains. The SPS-CF exhibited significant in vitro anti-coagulant activity by which the activated partial thromboplastin time (aPTT) and thrombin time (TT) were significantly prolonged. The results of this study demonstrated that the ulvan SPS-CF isolated from Korean Maesaengi C. fulvescens can be considered a potential anti-coagulant agent.
Collapse
Affiliation(s)
- Andriy Synytsya
- Department of Carbohydrate Chemistry and Technology, Institute of Chemical Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Doo Jin Choi
- Department of Biotechnology and The Research Centre for Biopharmaceutical Lead Molecule (GRRC), The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo sq. 2, 166 28, Prague 6, Czech Republic
| | - Ye Seul Na
- Department of Biotechnology and The Research Centre for Biopharmaceutical Lead Molecule (GRRC), The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Peter Capek
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Erika Lattová
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
| | - Tomáš Taubner
- Department of Carbohydrate Chemistry and Technology, Institute of Chemical Technology in Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Ji Won Choi
- Department of Biotechnology and The Research Centre for Biopharmaceutical Lead Molecule (GRRC), The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Chang Won Lee
- Department of Biotechnology and The Research Centre for Biopharmaceutical Lead Molecule (GRRC), The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Jae Kweon Park
- Department of Pharmaceutical Science, Gachon University, Yeonsu-gu, Incheon, 406-799, Republic of Korea
| | - Woo Jung Kim
- Department of Biotechnology and The Research Centre for Biopharmaceutical Lead Molecule (GRRC), The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Sung Min Kim
- Department of Biotechnology and The Research Centre for Biopharmaceutical Lead Molecule (GRRC), The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Jisun Lee
- Department of Biotechnology and The Research Centre for Biopharmaceutical Lead Molecule (GRRC), The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology and The Research Centre for Biopharmaceutical Lead Molecule (GRRC), The Catholic University of Korea, Bucheon, Gyeonggi-do, 420-743, Republic of Korea.
| |
Collapse
|
37
|
de Freitas MB, Ferreira LG, Hawerroth C, Duarte MER, Noseda MD, Stadnik MJ. Ulvans induce resistance against plant pathogenic fungi independently of their sulfation degree. Carbohydr Polym 2015; 133:384-90. [DOI: 10.1016/j.carbpol.2015.07.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 11/28/2022]
|
38
|
Production of sulfated oligosaccharides from the seaweed Ulva sp. using a new ulvan-degrading enzymatic bacterial crude extract. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Tako M, Tamanaha M, Tamashiro Y, Uechi S. Structure of Ulvan Isolated from the Edible Green Seaweed, Ulva pertusa. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.610068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Barros AAA, Alves A, Nunes C, Coimbra MA, Pires RA, Reis RL. Carboxymethylation of ulvan and chitosan and their use as polymeric components of bone cements. Acta Biomater 2013; 9:9086-97. [PMID: 23816652 DOI: 10.1016/j.actbio.2013.06.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/22/2013] [Accepted: 06/21/2013] [Indexed: 11/28/2022]
Abstract
Ulvan, extracted from the green algae Ulva lactuca, and chitosan, extracted from Loligo forbesis squid-pen, were carboxymethylated, yielding polysaccharides with an average degree of substitution of ∼98% (carboxymethyl ulvan, CMU) and ∼87% (carboxymethyl chitosan, N,O-CMC). The carboxymethylation was confirmed by Fourier transform infrared spectroscopy and quantified by conductimetric titration and 1H nuclear magnetic resonance. The average molecular weight increased with the carboxymethylation (chitosan, Mn 145→296 kDa and Mw 227→416 kDa; ulvan, Mn 139→261 kDa and Mw 368→640 kDa), indicating successful chemical modifications. Mixtures of the modified polysaccharides were tested in the formulation of polyacrylic acid-free glass-ionomer bone cements. Mechanical and in vitro bioactivity tests indicate that the inclusion of CMU in the cement formulation, i.e. 0.50:0.50 N,O-CMC:CMU, enhances its mechanical performance (compressive strength 52.4±8.0 MPa and modulus 2.3±0.3 GPa), generates non-cytotoxic cements and induces the diffusion of Ca and/or P-based moieties from the surface to the bulk of the cements.
Collapse
Affiliation(s)
- A A A Barros
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | | | | | | |
Collapse
|
41
|
Tabarsa M, Karnjanapratum S, Cho M, Kim JK, You S. Molecular characteristics and biological activities of anionic macromolecules from Codium fragile. Int J Biol Macromol 2013; 59:1-12. [DOI: 10.1016/j.ijbiomac.2013.04.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/25/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022]
|
42
|
Structural analysis of immunostimulating sulfated polysaccharides from Ulva pertusa. Carbohydr Res 2012; 361:141-7. [DOI: 10.1016/j.carres.2012.09.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/05/2012] [Accepted: 09/05/2012] [Indexed: 11/20/2022]
|
43
|
Costa C, Alves A, Pinto PR, Sousa RA, Borges da Silva EA, Reis RL, Rodrigues AE. Characterization of ulvan extracts to assess the effect of different steps in the extraction procedure. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.12.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
44
|
Qi H, Liu X, Zhang J, Duan Y, Wang X, Zhang Q. Synthesis and antihyperlipidemic activity of acetylated derivative of ulvan from Ulva pertusa. Int J Biol Macromol 2012; 50:270-2. [DOI: 10.1016/j.ijbiomac.2011.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 10/24/2011] [Accepted: 11/08/2011] [Indexed: 01/08/2023]
|
45
|
Simpson AJ, McNally DJ, Simpson MJ. NMR spectroscopy in environmental research: from molecular interactions to global processes. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2011; 58:97-175. [PMID: 21397118 DOI: 10.1016/j.pnmrs.2010.09.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/17/2010] [Indexed: 05/30/2023]
Affiliation(s)
- André J Simpson
- Environmental NMR Center, Department of Chemistry, University of Toronto, Ontario, Canada.
| | | | | |
Collapse
|
46
|
Toskas G, Hund RD, Laourine E, Cherif C, Smyrniotopoulos V, Roussis V. Nanofibers based on polysaccharides from the green seaweed Ulva Rigida. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.12.075] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
Courtois J. Oligosaccharides from land plants and algae: production and applications in therapeutics and biotechnology. Curr Opin Microbiol 2009; 12:261-73. [DOI: 10.1016/j.mib.2009.04.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/21/2009] [Accepted: 04/27/2009] [Indexed: 01/02/2023]
|
48
|
Cassolato JE, Noseda MD, Pujol CA, Pellizzari FM, Damonte EB, Duarte ME. Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma. Carbohydr Res 2008; 343:3085-95. [DOI: 10.1016/j.carres.2008.09.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/16/2008] [Accepted: 09/17/2008] [Indexed: 12/01/2022]
|
49
|
Michaud P, Da Costa A, Courtois B, Courtois J. Polysaccharide Lyases: Recent Developments as Biotechnological Tools. Crit Rev Biotechnol 2008; 23:233-66. [PMID: 15224891 DOI: 10.1080/07388550390447043] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Polysaccharide lyases, which are polysaccharide cleavage enzymes, act mainly on anionic polysaccharides. Produced by prokaryote and eukaryote organisms, these enzymes degrade (1,4) glycosidic bond by a beta elimination mechanism and have unsaturated oligosaccharides as major products. New polysaccharides are cleaved only by their specific polysaccharide lyases. From anionic polysaccharides controlled degradations, various biotechnological applications were investigated. This review catalogues the degradation of bacterial, plant and animal polysaccharides (neutral and anionic) by this family of carbohydrate acting enzymes.
Collapse
Affiliation(s)
- P Michaud
- Laboratoire des Glucides--LPMV, IUT/Génie Biologique, Université de Picardie Jules Verne, Avenue des Facultés, Le Bailly, 80025 Amiens Cedex, France.
| | | | | | | |
Collapse
|
50
|
Castro R, Piazzon MC, Noya M, Leiro JM, Lamas J. Isolation and molecular cloning of a fish myeloperoxidase. Mol Immunol 2008; 45:428-37. [PMID: 17659779 DOI: 10.1016/j.molimm.2007.05.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 05/29/2007] [Accepted: 05/31/2007] [Indexed: 11/25/2022]
Abstract
Myeloperoxidase (MPO) is a conspicuous enzyme in neutrophils of many fish species. Although the MPO gene has been identified in some fish species, the structure and functions of the protein remain to be determined in these vertebrates. In the present study, we isolated turbot neutrophil MPO from kidney cells by affinity chromatography, with Ulva rigida acidic sulphated polysaccharides (ASP), some of which resemble glycosaminoglycans, and Sepharose. The product obtained, of approximately 150kDa molecular weight and with peroxidase activity, was examined by SDS-page electrophoresis under reduced conditions and immunoblotting, and a single band of about 75kDa was observed. The results obtained suggest that turbot MPO is a dimer and that the band of 75kDa probably corresponds to a monomer generated by treatment of the samples with the reducing agent. The band was analysed by electromatrix-assisted laser desorption ionization-time-of flight-mass spectrometry (MALDI-TOF-MS) and liquid chromatography-electrospray ionization-ion trap mass spectrometry, dynamic exclusion mode (LC-ESI-IT DE), to determine the amino acid composition of some peptides. The peptides obtained were very similar to myeloperoxidases of other organisms, including other fish and mammals, and were used to design the primers for cDNA amplification. A 567bp product was amplified and the deduced amino acid sequence, which contains several putative N-glycosylation and O-glycosylation sites, was compared with other myeloperoxidases. As expected, turbot MPO was more similar to MPO from other fish species (67-86% identity), where the phylogenetic tree obtained agrees with the taxonomic hierarchy, than to MPO from mammals (55-57% identity) and other groups. The results obtained in the present study will also allow functional studies to be carried out with turbot neutrophil MPO enzyme, as well as analysis of MPO gene expression under different stimuli.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- DNA, Complementary/genetics
- Electrophoresis, Polyacrylamide Gel
- Flatfishes/genetics
- Immunoblotting
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Neutrophils/enzymology
- Peptides/chemistry
- Peptides/genetics
- Peroxidase/chemistry
- Peroxidase/genetics
- Peroxidase/isolation & purification
- Peroxidases/metabolism
- Phylogeny
- Polysaccharides/metabolism
- Seaweed/chemistry
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Electrospray Ionization
Collapse
Affiliation(s)
- Rosario Castro
- Instituto de Acuicultura y Departamento de Biología Celular y Ecología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|