1
|
Uyama T, Sasaki S, Okada-Iwabu M, Murakami M. Recent Progress in N-Acylethanolamine Research: Biological Functions and Metabolism Regulated by Two Distinct N-Acyltransferases: cPLA 2ε and PLAAT Enzymes. Int J Mol Sci 2025; 26:3359. [PMID: 40244184 PMCID: PMC11989323 DOI: 10.3390/ijms26073359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
N-Acylethanolamines (NAEs) are a class of lipid mediators that consist of long-chain fatty acids condensed with ethanolamine and exert various biological activities depending on their fatty acyl groups. NAEs are biosynthesized from membrane phospholipids by two-step reactions or alternative multi-step reactions. In the first reaction, N-acyltransferases transfer an acyl chain from the sn-1 position of phospholipids to the amino group (N position) of phosphatidylethanolamine (PE), generating N-acyl-PE (NAPE), a precursor of NAE. So far, two types of N-acyltransferases have been identified with different levels of Ca2+-dependency: cytosolic phospholipase A2 ε (cPLA2ε) as a Ca2+-dependent N-acyltransferase and phospholipase A and acyltransferase (PLAAT) enzymes as Ca2+-independent N-acyltransferases. Recent in vivo studies using knockout mice with cPLA2ε and PLAAT enzymes, combined with lipidomic approaches, have clarified their roles in the skin and brain and in other physiological events. In this review, we summarize the current understanding of the functions and properties of these enzymes.
Collapse
Affiliation(s)
- Toru Uyama
- Department of Biochemistry, School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki 761-0793, Kagawa, Japan; (T.U.); (S.S.); (M.O.-I.)
| | - Sumire Sasaki
- Department of Biochemistry, School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki 761-0793, Kagawa, Japan; (T.U.); (S.S.); (M.O.-I.)
| | - Miki Okada-Iwabu
- Department of Biochemistry, School of Medicine, Kagawa University, 1750-1 Ikenobe, Miki 761-0793, Kagawa, Japan; (T.U.); (S.S.); (M.O.-I.)
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
2
|
Gizer M, Önen S, Erol ÖD, Aerts-Kaya F, Reçber T, Nemutlu E, Korkusuz P. Endocannabinoid system upregulates the enrichment and differentiation of human iPSC- derived spermatogonial stem cells via CB2R agonism. Biol Res 2025; 58:13. [PMID: 40069895 PMCID: PMC11900634 DOI: 10.1186/s40659-025-00596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Male factor infertility (MFI) is responsible for 50% of infertility cases and in 15% of the cases sperm is absent due to germ cell aplasia. Human induced pluripotent stem cell (hiPSC)-derived spermatogonial stem cells (hSSCs) could serve as an autologous germ cell source for MFI in patients with an insufficient sperm yield for assisted reproductive technology (ART). The endocannabinoid system (ECS) has been implicated to play a role in mouse embryonic stem cells (mESCs) and the human testicular environment. However, the contribution of the ECS in hiPSCs and hiPSC-derived hSSCs is currently unknown. Here, we aimed to assess whether hiPSCs and hiPSC-derived hSSCs are regulated by components of the ECS and whether manipulation of the ECS could increase the yield of hiPSC-derived SSCs and serve as an autologous cell-based source for treatment of MFI. METHODS We reprogrammed human dermal fibroblasts (hDFs) to hiPSCs, induced differentiation of hSSC from hiPSCs and evaluated the presence of ECS ligands (AEA, 2-AG) by LC/MS, receptors (CB1R, CB2R, TRPV1, GPR55) by qPCR, flow cytometry and immunofluorescent labeling. We then examined the efficacy of endogenous and synthetic selective ligands (ACPA, CB65, CSP, ML184) on proliferation of hiPSCs using real-time cell analysis (RTCA) and assessed the effects of on CB2R agonism on hiPSC pluripotency and differentiation to hSSCs. RESULTS hiPSCs from hDFs expressed the pluripotency markers OCT4, SOX2, NANOG, SSEA4 and TRA-1-60; and could be differentiated into ID4+, PLZF + hSSCs. hiPSCs and hiPSC-derived hSSCs secreted AEA and 2-AG at 10- 10 - 10- 9 M levels. Broad expression of all ECS receptors was observed in both hiPSCs and hiPSC-derived hSSCs, with a higher CB2R expression in hSSCs in comparison to hiPSCs. CB2R agonist CB65 promoted proliferation and differentiation of hiPSCs to hiPSC-hSSCs in comparison to AEA, 2-AG, ACPA, CSP and ML184. The EC50 of CB65 was determined to be 2.092 × 10- 8 M for support of pluripotency and preservation of stemness on hiPSCs from 78 h. CB65 stimulation at EC50 also increased the yield of ID4 + hSSCs, PLZF + SSPCs and SCP3 + spermatocytes from day 10 to 12. CONCLUSIONS We demonstrated here for the first time that stimulation of CB2R results in an increased yield of hiPSCs and hiPSC-derived hSSCs. CB65 is a potent CB2R agonist that can be used to increase the yield of hiPSC-derived hSSCs offering an alternative source of autologous male germ cells for patients with MFI. Increasing the male germ/stem cell pool by CB65 supplementation could be part of the ART-associated protocols in MFI patients with complete germ cell aplasia.
Collapse
Affiliation(s)
- Merve Gizer
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, 06100, Turkey
- METU MEMS Center, Ankara, 06530, Turkey
| | | | - Özgür Doğuş Erol
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, 06100, Turkey
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, 06100, Turkey
- Hacettepe University Advanced Technologies Application and Research Center (HÜNİTEK), Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, 06100, Turkey
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, 06100, Turkey
- Hacettepe University Advanced Technologies Application and Research Center (HÜNİTEK), Ankara, Turkey
- Hacettepe University Laboratory Animals Research and Research Center (HÜDHAM), Ankara, Turkey
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, 06100, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Ankara, 06100, Turkey
| | - Petek Korkusuz
- METU MEMS Center, Ankara, 06530, Turkey.
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06100, Turkey.
| |
Collapse
|
3
|
Sikder MM, Sasaki S, Miki Y, Nagasaki Y, Ohta KI, Hussain Z, Saiga H, Ohmura-Hoshino M, Hoshino K, Ueno M, Okada-Iwabu M, Murakami M, Ueda N, Uyama T. PLAAT5 as an N-acyltransferase responsible for the generation of anti-inflammatory N-acylethanolamines in testis. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159583. [PMID: 39592057 DOI: 10.1016/j.bbalip.2024.159583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
N-Acylethanolamines (NAEs) are a class of lipid mediators that exhibit anti-inflammatory and appetite-suppressive activities. Among them, palmitoylethanolamide (PEA) and arachidonoylethanolamide (AEA) bind to peroxisomal proliferator-activated receptor (PPAR) α and cannabinoid receptor CB1, respectively. N-Acyl-phosphatidylethanolamine (NAPE) as a precursor of NAEs is biosynthesized from membrane phospholipids by N-acyltransferases, which consist of group IVE cytosolic phospholipase A2ε (cPLA2ε) and PLAAT (phospholipase A and acyltransferase) family enzymes. While cPLA2ε is responsible for the production of NAEs not only in specific tissues, including muscle, skin, and the stomach, but also under pathological conditions, such as psoriasis and brain ischemia, the involvement of the PLAAT family in vivo remains unclear. Considering the specific expression of PLAAT5 in testes, we investigated the potential role of PLAAT5 in the formation of NAEs in testes using PLAAT5-deficient (Plaat5-/-) mice. High-performance liquid chromatography coupled with tandem mass spectrometry showed that PLAAT5 deficiency decreased the total level of NAEs by 61 %, with PEA and AEA being reduced by 64 % and 87 %, respectively. Following a treatment with cadmium chloride, an environmental toxin that induces testicular inflammation, the expression of inflammatory genes (Il6, Tnf, and Nos2) in testes was markedly higher in Plaat5-/- mice than in Plaat5+/+ mice, and their expression was attenuated by the administration of PEA and AEA. Furthermore, these anti-inflammatory effects were canceled by a co-treatment with the antagonists of PPARα or CB1. These results suggest that PLAAT5 is responsible for the biosynthesis of anti-inflammatory NAEs in testes.
Collapse
Affiliation(s)
| | - Sumire Sasaki
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Yoshimi Miki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Nagasaki
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken-Ichi Ohta
- Department of Anatomy and Neurobiology, Kagawa University School of Medicine, Kagawa, Japan
| | - Zahir Hussain
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Hiroyuki Saiga
- Department of Immunology, Kagawa University School of Medicine, Kagawa, Japan
| | - Mari Ohmura-Hoshino
- Department of Immunology, Kagawa University School of Medicine, Kagawa, Japan; Department of Medical Technology, School of Nursing and Medical Care, Yokkaichi Nursing and Medical Care University, Mie, Japan
| | - Katsuaki Hoshino
- Department of Immunology, Kagawa University School of Medicine, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Kagawa University School of Medicine, Kagawa, Japan
| | - Miki Okada-Iwabu
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Makoto Murakami
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, Kagawa, Japan.
| |
Collapse
|
4
|
Chen Y, Li H, Liu J, Ni J, Deng Q, He H, Wu P, Wan Y, Seeram NP, Liu C, Ma H, Zhu W. Cytotoxicity of natural and synthetic cannabinoids and their synergistic antiproliferative effects with cisplatin in human ovarian cancer cells. Front Pharmacol 2024; 15:1496131. [PMID: 39660007 PMCID: PMC11629013 DOI: 10.3389/fphar.2024.1496131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Cannabinoids are reported to suppress the growth of ovarian cancer cells, but it is unclear whether structural modifications can improve their cytotoxic effects. Methods Herein, an investigation into the antiproliferative effects of natural cannabinoids on human ovarian cancer Caov-3 cells identified cannabidiol (CBD) as the most promising cannabinoid. Furthermore, chemical modifications of CBD yielded a group of derivatives with enhanced cytotoxicity in Caov-3 cells. Results Two CBD piperazinyl derivatives (19 and 21) showed augmented antiproliferative effects with an IC50 of 5.5 and 4.1 µM, respectively, compared to CBD's IC50 of 22.9 µM. Further studies suggest that modulation of apoptosis and ferroptosis may contribute to the cytotoxic effects of CBD and its derivatives. In addition, CBD and its derivatives (19 and 21) were explored for their potential synergistic antiproliferative effects in combination with chemotherapeutic agent cisplatin. Compounds 19 or 21 (5 µM) combined with cisplatin (1 µM) showed a synergistic effect with a combination index of 0.23 and 0.72, respectively. This effect was supported by elevated levels of reactive oxygen species in Caov-3 cells treated with cisplatin combined with 19 or 21. Discussion Findings from this study suggest that CBD derivatives with enhanced antiproliferative effects may exert synergistic effects with chemotherapeutic drugs, providing insight into the development of cannabinoid-based adjuvant agents for the management of ovarian cancer.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Huifang Li
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Jia Liu
- Department of Operation Room, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Ni
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qicheng Deng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Haotian He
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Panpan Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yinsheng Wan
- Department of Biology, Providence College, Providence, RI, United States
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Weipei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
5
|
Baláži A, Svoradová A, Kováčik A, Vašíček J, Chrenek P. The Effects of Adding Hempseed Cake on Sperm Traits, Body Weight, Haematological and Biochemical Parameters in Rabbit Males. Vet Sci 2024; 11:509. [PMID: 39453101 PMCID: PMC11512224 DOI: 10.3390/vetsci11100509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Incorporating of agro-industrial co-products into animal nutrition could represent an opportunity to lessen the environmental impact of the food production chain. One such co-product is a hempseed cake originating from cold pressing hemp seeds to extract oil for human consumption. The aim of the present study was to evaluate the action of hempseed cake in the diet on male rabbit reproductive and some non-reproductive indexes. Male rabbits were fed either a standard diet (control group; C; n = 10) or a diet enriched with hempseed cake (experimental group E5 with 5% of a hempseed cake; n = 10, and experimental group E10 with 10% of a hempseed cake; n = 10) in 100 kg of the milled complete feed mixture. Rabbit weight gain, sperm concentration, motility, progressive motility, and sperm quality were evaluated using CASA and flow cytometry. Feeding with a hempseed cake, given at both tested concentrations, had no effect on weight gain per week and the total average weight gain compared to the control group (p > 0.05). Hempseed cake addition had no effect on sperm concentration in ejaculate, sperm motility, and progressive motility (p > 0.05). Selected haematological and biochemical indexes were examined. The E5 group showed positive tendencies in hepatic profile parameters, while in the E10 group the tendencies were opposite, though within the reference values. Based on our results, no negative effects of hempseed cake feeding on rabbit reproduction and health status were found, and we can recommend the use of hempseed cake at doses up to 10% in the nutrition and feeding of rabbits. Therefore, agro-industrial co-products can decrease the feeding cost.
Collapse
Affiliation(s)
- Andrej Baláži
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.S.); (J.V.)
| | - Andrea Svoradová
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.S.); (J.V.)
- Faculty of AgriSciences, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Anton Kováčik
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia;
| | - Jaromír Vašíček
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.S.); (J.V.)
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia;
| | - Peter Chrenek
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovakia; (A.S.); (J.V.)
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia;
| |
Collapse
|
6
|
Nobili S, Micheli L, Lucarini E, Toti A, Ghelardini C, Di Cesare Mannelli L. Ultramicronized N-palmitoylethanolamine associated with analgesics: Effects against persistent pain. Pharmacol Ther 2024; 258:108649. [PMID: 38615798 DOI: 10.1016/j.pharmthera.2024.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
Current epidemiological data estimate that one in five people suffers from chronic pain with considerable impairment of health-related quality of life. The pharmacological treatment is based on first- and second-line analgesic drugs, including COX-2 selective and nonselective nonsteroidal anti-inflammatory drugs, paracetamol, antidepressants, anti-seizure drugs and opioids, that are characterized by important side effects. N-palmitoylethanolamine (PEA) is a body's own fatty-acid ethanolamide belonging to the family of autacoid local injury antagonist amides. The anti-inflammatory and pain-relieving properties of PEA have been recognized for decades and prompted to depict its role in the endogenous mechanisms of pain control. Together with its relative abundance in food sources, this opened the way to the use of PEA as a pain-relieving nutritional intervention. Naïve PEA is a large particle size lipid molecule with low solubility and bioavailability. Reducing particle size is a useful method to increase surface area, thereby improving dissolution rate and bioavailability accordingly. Micron-size formulations of PEA (e.g., ultramicronized and co-(ultra)micronized) have shown higher oral efficacy compared to naïve PEA. In particular, ultramicronized PEA has been shown to efficiently cross the intestinal wall and, more importantly, the blood-brain and blood-spinal cord barrier. Several preclinical and clinical studies have shown the efficacy, safety and tolerability of ultramicronized PEA. This narrative review summarizes the available pharmacokinetic/pharmacodynamic data on ultramicronized PEA and focuses to its contribution to pain control, in particular as 'add-on' nutritional intervention. Data showing the ability of ultramicronized PEA to limit opioid side effects, including the development of tolerance, have also been reviewed.
Collapse
Affiliation(s)
- Stefania Nobili
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
| |
Collapse
|
7
|
Zufferey F, Buitrago E, Rahban R, Senn A, Stettler E, Rudaz S, Nef S, Donzé N, Thomas A, Rossier MF. Gonadotropin axis and semen quality in young Swiss men after cannabis consumption: Effect of chronicity and modulation by cannabidiol. Andrology 2024; 12:56-67. [PMID: 37042163 DOI: 10.1111/andr.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/13/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND While cannabis is the most widely used recreational drug in the world, the effects of phytocannabinoids on semen parameters and reproductive hormones remain controversial. Cannabinoid receptors are activated by these compounds at each level of the hypothalamus-pituitary-gonadotropic axis. OBJECTIVES To assess the impact of the consumption of Δ-9-tetrahydrocannabinol and cannabidiol on semen parameters, as well as on male reproductive hormone and endocannabinoid levels, in a cohort of young Swiss men. MATERIALS AND METHODS The individuals in a Swiss cohort were divided according to their cannabis consumption. In the cannabis user group, we determined the delay between the last intake of cannabis and sample collection, the chronicity of use and the presence of cannabidiol in the consumed product. Urinary Δ-9-tetrahydrocannabinol metabolites were quantified via gas chromatography-mass spectrometry. Blood phytocannabinoids, endocannabinoids and male steroids were determined via liquid chromatography-mass spectrometry/mass spectrometry, and other hypothalamus-pituitary-gonadotropic axis hormones were determined via immunoassays. Semen parameters such as sperm concentration and motility were recorded using computer-assisted sperm analysis. RESULTS Anandamide, N-palmitoyl ethanolamide, androgens, estradiol and sex hormone binding globulin levels were all higher in cannabis users, particularly in chronic, recent and cannabidiol-positive consumers. Gonadotropin levels were not significantly different in these user subpopulations, whereas prolactin and albumin concentrations were lower. In addition, cannabis users had a more basic semen pH and a higher percentage of spermatozoa with progressive motility. However, the two latter observations seem to be related to a shorter period of sexual abstinence in this group rather than to the use of cannabis. CONCLUSIONS Because both cannabidiol and Δ-9-tetrahydrocannabinol are frequently used by men of reproductive age, it is highly relevant to elucidate the potential effects they may have on human reproductive health. This study demonstrates that the mode of cannabis consumption must be considered when evaluating the effect of cannabis on semen quality.
Collapse
Affiliation(s)
- Fanny Zufferey
- Service of Clinical Chemistry and Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland
| | - Elina Buitrago
- Service of Clinical Chemistry and Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland
| | - Rita Rahban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Alfred Senn
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Eric Stettler
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, Universities of Geneva and Lausanne, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Nicolas Donzé
- Service of Clinical Chemistry and Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland
| | - Aurélien Thomas
- Forensic Toxicology and Chemistry Unit, CURML, Lausanne University Hospital, Geneva University Hospital, Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Michel F Rossier
- Service of Clinical Chemistry and Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland
- Department of Internal Medicine, Geneva University Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
8
|
Amir Hamzah K, Toms LM, Kucharski N, Orr J, Turner NP, Hobson P, Nichols DS, Ney LJ. Sex-dimorphism in human serum endocannabinoid and n-acyl ethanolamine concentrations across the lifespan. Sci Rep 2023; 13:23059. [PMID: 38155287 PMCID: PMC10754838 DOI: 10.1038/s41598-023-50426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
The endocannabinoid (ECB) system has recently been considered a potential treatment target for various clinical disorders. However, research around age- and sex-related changes within the ECB system is relatively limited. To improve our understanding of these changes, the current study measured arachidonoyl ethanolamide (AEA), 2-arachidonoyl glycerol (2-AG), oleoylethanolamine (OEA), palmitoylethanolamine (PEA), arachidonic acid (AA), cortisol, and progesterone in pooled serum samples stratified by sex (male and female) and age groups (5-15; 15-30; 30-45; 45-60; 60-75; 85+), using liquid-chromatography tandem mass spectrometry. Serum progesterone levels significantly increased in females of the 15-30 and 30-45 age groups, before declining. Significantly higher cortisol, AEA, 2-AG, OEA, and PEA were found in males and in older age, while significantly higher AA was found in females. Our results indicate that ECBs and related hormones exhibit sexual dimorphism in the age ranges that correspond with female pregnancy, menopause, and post menopause. Male testosterone levels most likely influences male ECB changes throughout the lifespan. Future research could capitalise on these findings by performing repeated measurements in individuals in a longitudinal style, to further refine the temporal profile of age-specific changes to the ECB system identified here.
Collapse
Affiliation(s)
- Khalisa Amir Hamzah
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, 149 Victoria Park Road, Kelvin Grove, Brisbane, 4059, Australia.
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Nathaniel Kucharski
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Julia Orr
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Woolloongabba, QLD, Australia
| | - Natalie P Turner
- The Centre for Children's Health Research (CCHR), Queensland University of Technology, 62 Graham Street, South Brisbane, QLD, 4101, Australia
| | - Peter Hobson
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Woolloongabba, QLD, Australia
- Sullivan and Nicolaides Pathology, 24 Hurworth Street, Bowen Hills, QLD, 4006, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Sydney, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, 149 Victoria Park Road, Kelvin Grove, Brisbane, 4059, Australia
| |
Collapse
|
9
|
Sooda K, Allison SJ, Javid FA. Investigation of the cytotoxicity induced by cannabinoids on human ovarian carcinoma cells. Pharmacol Res Perspect 2023; 11:e01152. [PMID: 38100640 PMCID: PMC10723784 DOI: 10.1002/prp2.1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 12/17/2023] Open
Abstract
Cannabinoids have been shown to induce anti-tumor activity in a variety of carcinoma cells such as breast, prostate, and brain. The aim of the present study is to investigate the anti-tumor activity of cannabinoids, CBD (cannbidiol), and CBG (cannabigerol) in ovarian carcinoma cells sensitive and resistant to chemotherapeutic drugs. Sensitive A2780 cells and resistant A2780/CP70 carcinoma cells and non-carcinoma cells were exposed to varying concentrations of CBD, CBG, carboplatin or CB1 and CB2 receptor antagonists, AM251 and AM630, respectively, alone or in combination, at different exposure times and cytotoxicity was measured by MTT assay. The mechanism of action of CBD and CB in inducing cytotoxicity was investigated involving a variety of apoptotic and cell cycle assays. Treatment with CBD and CBG selectively, dose and time dependently reduced cell viability and induced apoptosis. The effect of CBD was stronger than CBG in all cell lines tested. Both CBD and CBG induced stronger cytotoxicity than afforded by carboplatin in resistant cells. The cytotoxicity induced by CBD was not CB1 or CB2 receptor dependent in both carcinoma cells, however, CBG-induced cytotoxicity may involve CB1 receptor activity in cisplatin-resistant carcinoma cells. A synergistic effect was observed when cannabinoids at sublethal doses were combined with carboplatin in both carcinoma cells. The apoptotic event may involve loss of mitochondrial membrane potential, Annexin V, caspase 3/7, ROS activities, and cell cycle arrest. Further studies are required to investigate whether these results are translatable in the clinic. Combination therapies with conventional cancer treatments using cannabinoids are suggested.
Collapse
Affiliation(s)
- Kartheek Sooda
- Department of Pharmacy, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Simon J. Allison
- Department of Biological & Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Farideh A. Javid
- Department of Pharmacy, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| |
Collapse
|
10
|
Hitzler M, Matits L, Gumpp AM, Bach AM, Ziegenhain U, Gao W, Kolassa IT, Behnke A. Longitudinal course of endocannabinoids and N-acylethanolamines in hair of mothers and their children in the first year postpartum: investigating the relevance of maternal childhood maltreatment experiences. Psychol Med 2023; 53:7446-7457. [PMID: 37198936 PMCID: PMC10719681 DOI: 10.1017/s0033291723001204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Childhood maltreatment (CM) exerts long-lasting psychological and biological alterations in affected individuals and might also affect the endocannabinoid (eCB) system which modulates inflammation and the endocrine stress response. Here, we investigated the eCB system of women with and without CM and their infants using hair samples representing eCB levels accumulated during the last trimester of pregnancy and 10-12 months postpartum. METHODS CM exposure was assessed with the Childhood Trauma Questionnaire. At both timepoints, 3 cm hair strands were collected from mothers and children (N = 170 resp. 150) to measure anandamide (AEA), 2/1-arachidonoylglycerol (2-AG/1-AG), stearoylethanolamide (SEA), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA). RESULTS Maternal hair levels of 2-AG/1-AG increased and SEA levels decreased from late pregnancy to one year postpartum. Maternal CM was associated with lower SEA levels in late pregnancy, but not one year later. In the children's hair, levels of 2-AG/1-AG increased while levels of SEA, OEA, and PEA decreased from late pregnancy to one year later. Maternal CM was not consistently associated with the eCB levels measured in children's hair. CONCLUSIONS We provide first evidence for longitudinal change in the eCB system of mothers and infants from pregnancy to one year later. While maternal CM influenced the maternal eCB system, we found no consistent intergenerational effects on early regulation of the eCB system in children. Longitudinal research on the importance of the eCB system for the course and immunoregulation of pregnancy as well as for the children's development.
Collapse
Affiliation(s)
- Melissa Hitzler
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Lynn Matits
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
- Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, Ulm, Germany
| | - Anja M. Gumpp
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexandra M. Bach
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Ute Ziegenhain
- Department of Child and Adolescent Psychiatry, Ulm University Hospital, Ulm, Germany
| | - Wei Gao
- Department of Biopsychology, Technische Universität Dresden, Dresden, Germany
| | - Iris-Tatjana Kolassa
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Alexander Behnke
- Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
11
|
Eubler K, Caban KM, Dissen GA, Berg U, Berg D, Herrmann C, Kreitmair N, Tiefenbacher A, Fröhlich T, Mayerhofer A. TRPV2, a novel player in the human ovary and human granulosa cells. Mol Hum Reprod 2023; 29:gaad029. [PMID: 37610352 PMCID: PMC10493183 DOI: 10.1093/molehr/gaad029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/29/2023] [Indexed: 08/24/2023] Open
Abstract
The cation channel 'transient receptor potential vanilloid 2' (TRPV2) is activated by a broad spectrum of stimuli, including mechanical stretch, endogenous and exogenous chemical compounds, hormones, growth factors, reactive oxygen species, and cannabinoids. TRPV2 is known to be involved in inflammatory and immunological processes, which are also of relevance in the ovary. Yet, neither the presence nor possible roles of TRPV2 in the ovary have been investigated. Data mining indicated expression, for example, in granulosa cells (GCs) of the human ovary in situ, which was retained in cultured GCs derived from patients undergoing medical reproductive procedures. We performed immunohistochemistry of human and rhesus monkey ovarian sections and then cellular studies in cultured GCs, employing the preferential TRPV2 agonist cannabidiol (CBD). Immunohistochemistry showed TRPV2 staining in GCs of large antral follicles and corpus luteum but also in theca, endothelial, and stromal cells. TRPV2 transcript and protein levels increased upon administration of hCG or forskolin. Acutely, application of the agonist CBD elicited transient Ca2+ fluxes, which was followed by the production and secretion of several inflammatory factors, especially COX2, IL6, IL8, and PTX3, in a time- and dose-dependent manner. CBD interfered with progesterone synthesis and altered both the proteome and secretome, as revealed by a proteomic study. While studies are somewhat hampered by the lack of highly specific TRPV2 agonist or antagonists, the results pinpoint TRPV2 as a modulator of inflammation with possible roles in human ovarian (patho-)physiology. Finally, as TRPV2 is activated by cannabinoids, their possible ovarian actions should be further evaluated.
Collapse
Affiliation(s)
- Katja Eubler
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| | - Karolina M Caban
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU Munich, Munich, Germany
| | - Gregory A Dissen
- Molecular Virology Core, Oregon Health & Science University (OHSU), Oregon National Primate Research Center, Beaverton, OR, USA
| | | | | | - Carola Herrmann
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| | - Nicole Kreitmair
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| | - Astrid Tiefenbacher
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU Munich, Munich, Germany
| | - Artur Mayerhofer
- Biomedical Center Munich (BMC), Cell Biology, Anatomy III, Faculty of Medicine, Ludwig-Maximilian-University (LMU) Munich, Planegg-Martinsried, Germany
| |
Collapse
|
12
|
Cañumil VA, de la Cruz Borthiry FL, Scheffer F, Herrero Y, Scotti L, Bogetti ME, Parborell F, Meresman GF, Franchi AM, Beltrame JS, Ribeiro ML. A physiological concentration of anandamide promotes the migration of human endometrial fibroblast and the interaction with endothelial cells invitro. Placenta 2023; 139:99-111. [PMID: 37354692 DOI: 10.1016/j.placenta.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/26/2023]
Abstract
INTRODUCTION The mechanisms that govern fibroblast behavior during the vascular adaptations of the uterus at early pregnancy remain unknown. Anandamide, an endocannabinoid, binds to cannabinoid receptors (CBs), and regulates gestation and angiogenesis. Its tone is regulated by fatty acid amide hydrolase (FAAH) within the uterus. We investigated the role of anandamide in endometrial fibroblasts migration and whether anandamide modulates fibroblasts-endothelial crosstalk. METHODS T-hESC and EA.hy926 cell lines were used as models of endometrial stromal and endothelial cells, respectively. T-hESC were incubated with anandamide plus different agents. Migration was tested (wound healing assay and phalloidin staining). Protein expression and localization were studied by Western blot and immunofluorescence. To test fibroblast-endothelial crosstalk, EA.hy926 cells were incubated with fibroblast conditioned media obtained after T-hESC migration. RESULTS Anandamide 1 nM increased T-hESC migration via CB1 and CB2. Cyclooxygenase-2 participated in anandamide-stimulated fibroblast migration. Prostaglandin F2alpha, and not prostaglandin E2, increased fibroblast wound closure. CB1, CB2, cyclooxygenase-2 and FAAH were expressed in T-hESC. Anandamide did not alter cyclooxygenase-2 localization but induced its cytoplasmic and nuclear expression through CB1 and CB2. URB-597, a FAAH selective inhibitor, also increased T-hESC migration via both CBs, and augmented cyclooxygenase-2 expression. Conditioned media from anandamide-induced T-hESC wound healing closure stimulated endothelial migration and did not alter their proliferation. Soluble factors from cyclooxygenase-2 were secreted by T-hESC and participated in T-hESC-induced EA.hy926 migration. Although anandamide-conditioned media augmented in EA.hy926 the expression of γH2AX, a marker of DNA damage, cyclooxygenase-2 was not involved in this effect. DISCUSSION Our results provide novel evidence about an active role of anandamide on endometrial fibroblast behavior as a mechanism regulating uterine vascular adaptations in early gestation.
Collapse
Affiliation(s)
- Vanesa A Cañumil
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Paraguay 2155, CP(1121ABG), CABA, Argentina
| | - Fernanda L de la Cruz Borthiry
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Paraguay 2155, CP(1121ABG), CABA, Argentina
| | - Frida Scheffer
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Paraguay 2155, CP(1121ABG), CABA, Argentina
| | - Yamila Herrero
- Laboratorio de Estudios de la Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IByME), CONICET, Vuelta de Obligado 2490, CP (C1428ADN), CABA, Argentina
| | - Leopoldina Scotti
- Laboratorio de Estudios de la Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IByME), CONICET, Vuelta de Obligado 2490, CP (C1428ADN), CABA, Argentina
| | - María Eugenia Bogetti
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Paraguay 2155, CP(1121ABG), CABA, Argentina
| | - Fernanda Parborell
- Laboratorio de Estudios de la Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IByME), CONICET, Vuelta de Obligado 2490, CP (C1428ADN), CABA, Argentina
| | - Gabriela F Meresman
- Laboratorio de Fisiopatología Endometrial, Instituto de Biología y Medicina Experimental (IByME), CONICET, Vuelta de Obligado 2490, CP (C1428ADN), CABA, Argentina
| | - Ana M Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, CABA, Argentina
| | - Jimena S Beltrame
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Paraguay 2155, CP(1121ABG), CABA, Argentina
| | - María L Ribeiro
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), CONICET-UBA, Paraguay 2155, CP(1121ABG), CABA, Argentina.
| |
Collapse
|
13
|
Emerging Roles of Endocannabinoids as Key Lipid Mediators for a Successful Pregnancy. Int J Mol Sci 2023; 24:ijms24065220. [PMID: 36982295 PMCID: PMC10048990 DOI: 10.3390/ijms24065220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
In recent years, Cannabis use/misuse for treating pregnancy-related symptoms and other chronic conditions has increased among pregnant women, favored by decriminalization and/or legalization of its recreational uses in addition to its easy accessibility. However, there is evidence that prenatal Cannabis exposure might have adverse consequences on pregnancy progression and a deleterious impact on proper neurodevelopmental trajectories in the offspring. Maternal Cannabis use could interfere with the complex and finely controlled role performed by the endocannabinoid system in reproductive physiology, impairing multiple gestational processes from blastocyst implantation to parturition, with long-lasting intergenerational effects. In this review, we discuss current clinical and preclinical evidence regarding the role of endocannabinoids in development, function, and immunity of the maternal–fetal interface, focusing on the impact of Cannabis constituents on each of these gestational processes. We also discuss the intrinsic limitations of the available studies and the future perspectives in this challenging research field.
Collapse
|
14
|
Truong VB, Davis OS, Gracey J, Neal MS, Khokhar JY, Favetta LA. Sperm capacitation and transcripts levels are altered by in vitro THC exposure. BMC Mol Cell Biol 2023; 24:6. [PMID: 36823609 PMCID: PMC9951432 DOI: 10.1186/s12860-023-00468-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Delta-9-tetrahydrocannabinol (THC) is the primary phytocannabinoid responsible for the psychoactive properties of cannabis and is known to interact with the endocannabinoid system, which is functionally present in the male reproductive system. Since cannabis consumption is the highest among reproductive aged males, the current study aimed to further investigate the effects of THC exposure to phenotypical, physiological, and molecular parameters in sperm. Bull sperm of known fertility were used as a translational model for human sperm and subjected to in vitro treatment with physiologically relevant experimental doses of THC. Sperm parameters, capacitation, apoptosis, and transcript levels were evaluated following treatment. RESULTS Motility, morphology, and viability of bovine sperm was unaltered from THC exposure. However, 0.32µM of THC caused an increased proportion of capacitating sperm (p < 0.05) compared to control and vehicle group sperm. Transcriptome analysis revealed that 39 genes were found to be differentially expressed by 0.032µM THC exposure, 196 genes were differentially expressed by 0.32µM THC exposure, and 33 genes were differentially expressed by 3.2µM THC. Secondary analysis reveals pathways involving development, nucleosomes, ribosomes and translation, and cellular metabolism to be significantly enriched. CONCLUSION Phytocannabinoid exposure to sperm may adversely affect sperm function by stimulating premature capacitation. These findings also show for the first time that spermatozoal transcripts may be altered by THC exposure. These results add to previous research demonstrating the molecular effects of cannabinoids on sperm and warrant further research into the effects of cannabis on male fertility.
Collapse
Affiliation(s)
- Vivien B Truong
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd. East, N1G 2W1, Guelph, ON, Canada
| | - Ola S Davis
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd. East, N1G 2W1, Guelph, ON, Canada
| | - Jade Gracey
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd. East, N1G 2W1, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Laura A Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd. East, N1G 2W1, Guelph, ON, Canada.
| |
Collapse
|
15
|
Svobodova A, Vrkoslav V, Smeringaiova I, Jirsova K. Distribution of an analgesic palmitoylethanolamide and other N-acylethanolamines in human placental membranes. PLoS One 2023; 18:e0279863. [PMID: 36638082 PMCID: PMC9838831 DOI: 10.1371/journal.pone.0279863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 12/09/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Human amniotic and amniochorionic membranes (AM, ACM) represent the most often used grafts accelerating wound healing. Palmitoylethanolamide, oleoylethanolamide and anandamide are endogenous bioactive lipid molecules, generally referred as N-acylethanolamines. They express analgesic, nociceptive, neuroprotective and anti-inflammatory properties. We assessed the distribution of these lipid mediators in placental tissues, as they could participate on analgesic and wound healing effect of AM/ACM grafts. METHODS Seven placentas were collected after caesarean delivery and fresh samples of AM, ACM, placental disc, umbilical cord, umbilical serum and vernix caseosa, and decontaminated samples (antibiotic solution BASE 128) of AM and ACM have been prepared. Ultra-high-performance liquid chromatography-tandem mass spectrometry was used for N-acylethanolamines analysis. RESULTS N-acylethanolamines were present in all studied tissues, palmitoylethanolamide being the most abundant and the anandamide the least. For palmitoylethanolamide the maximum average concentration was detected in AM (350.33 ± 239.26 ng/g), while oleoylethanolamide and anandamide were most abundant in placenta (219.08 ± 79.42 ng/g and 30.06 ± 7.77 ng/g, respectively). Low levels of N-acylethanolamines were found in serum and vernix. A significant increase in the levels of N-acylethanolamines (3.1-3.6-fold, P < 0.001) was observed in AM when the tissues were decontaminated using antibiotic solution. The increase in decontaminated ACM was not statistically significant. CONCLUSIONS The presence of N-acylethanolamines, particularly palmitoylethanolamide in AM and ACM allows us to propose these lipid mediators as the likely factors responsible for the anti-hyperalgesic, but also anti-inflammatory and neuroprotective, effects of AM/ACM grafts in wound healing treatment. The increase of N-acylethanolamines levels in AM and ACM after tissue decontamination indicates that tissue processing is an important factor in maintaining the analgesic effect.
Collapse
Affiliation(s)
- Alzbeta Svobodova
- First Faculty of Medicine, 2 Department of Surgery–Department of Cardiovascular Surgery, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Vladimir Vrkoslav
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ingrida Smeringaiova
- First Faculty of Medicine, Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Katerina Jirsova
- First Faculty of Medicine, Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, Charles University and General University Hospital in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
16
|
Przybycień P, Gąsior-Perczak D, Placha W. Cannabinoids and PPAR Ligands: The Future in Treatment of Polycystic Ovary Syndrome Women with Obesity and Reduced Fertility. Cells 2022; 11:cells11162569. [PMID: 36010645 PMCID: PMC9406585 DOI: 10.3390/cells11162569] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Cannabinoids (CBs) are used to treat chronic pain, chemotherapy-induced nausea and vomiting, and multiple sclerosis spasticity. Recently, the medicinal use of CBs has attracted increasing interest as a new therapeutic in many diseases. Data indicate a correlation between CBs and PPARs via diverse mechanisms. Both the endocannabinoid system (ECS) and peroxisome proliferator-activated receptors (PPARs) may play a significant role in PCOS and PCOS related disorders, especially in disturbances of glucose-lipid metabolism as well as in obesity and fertility. Taking into consideration the ubiquity of PCOS in the human population, it seems indispensable to search for new potential therapeutic targets for this condition. The aim of this review is to examine the relationship between metabolic disturbances and obesity in PCOS pathology. We discuss current and future therapeutic interventions for PCOS and related disorders, with emphasis on the metabolic pathways related to PCOS pathophysiology. The link between the ECS and PPARs is a promising new target for PCOS, and we examine this relationship in depth.
Collapse
Affiliation(s)
- Piotr Przybycień
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Krakow, Poland
- Endocrinology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Danuta Gąsior-Perczak
- Endocrinology Clinic, Holycross Cancer Centre, 25-734 Kielce, Poland
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Wojciech Placha
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 31-034 Krakow, Poland
- Correspondence: ; Tel.: +48-12-422-74-00
| |
Collapse
|
17
|
Xiao W, Chen Y. TRPV1 in male reproductive system: focus on sperm function. Mol Cell Biochem 2022; 477:2567-2579. [PMID: 35595954 DOI: 10.1007/s11010-022-04469-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a receptor used to perceive external noxious stimuli and participates in the regulation of various pathophysiological mechanisms in vivo by integrating multiple signals. The explosive growth in knowledge of TRPV1 stemmed from research on neuronal pain and heat sensation over the last decades and is being expanded tremendously in peripheral tissue research. The discovery that TRPV1 is functionally active in male animal and human reproductive tissues have attracted increasing attention in recent years. Indeed, many studies have indicated that TRPV1 is an endocannabinoid receptor that mediates Anandamide's regulation of sperm function. Other characteristics of the TRPV1 channel itself, such as calcium penetration and temperature sensitivity, have also been investigated, especially the possibility that TRPV1 could act as a mediator for sperm thermotaxis. In addition, some reproductive diseases appear to be related to the protective effects of TRPV1 on oxidative stress and heat stress. A better understanding of TRPV1 in these areas should provide strategies for tackling male infertility. This paper is the first to review the expression and mechanism of TRPV1 in the male reproductive system from molecular and cellular perspectives. A focus is given on sperm function, including calcium homeostasis, crosstalk with endocannabinoid system, participation in cholesterol-related sperm maturation, and thermotaxis, hoping to capture the current situation of this rapidly developing field.
Collapse
Affiliation(s)
- Wanglong Xiao
- Institute of Life Science and School of Life Science, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, 330031, Jiangxi, People's Republic of China
| | - Ying Chen
- Institute of Life Science and School of Life Science, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, 330031, Jiangxi, People's Republic of China.
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
18
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 3 - spatiotemporal, multivariable and causal inferential pathfinding and exploratory analyses of prostate and ovarian cancers. Arch Public Health 2022; 80:101. [PMID: 35354499 PMCID: PMC8969240 DOI: 10.1186/s13690-022-00813-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/29/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The epidemiology of cannabinoid-related cancerogenesis has not been studied with cutting edge epidemiological techniques. Building on earlier bivariate papers in this series we aimed to conduct pathfinding studies to address this gap in two tumours of the reproductive tract, prostate and ovarian cancer. METHODS Age-standardized cancer incidence data for 28 tumour types (including "All (non-skin) Cancer") was sourced from Centres for Disease Control and National Cancer Institute using SEER*Stat software across US states 2001-2017. Drug exposure was sourced from the nationally representative household survey National Survey of Drug Use and Health conducted annually by the Substance Abuse and Mental Health Services Administration 2003-2017 with response rate 74.1%. Federal seizure data provided cannabinoid concentration data. US Census Bureau provided income and ethnicity data. Inverse probability weighted mixed effects, robust and panel regression together with geospatiotemporal regression analyses were conducted in R. E-Values were also calculated. RESULTS 19,877 age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Inverse probability weighted regressions for prostate and ovarian cancers confirmed causal associations robust to adjustment. Cannabidiol alone was significantly associated with prostate cancer (β-estimate = 1.61, (95%C.I. 0.99, 2.23), P = 3.75 × 10- 7). In a fully adjusted geospatiotemporal model at one spatial and two temporal years lags cannabidiol was significantly independently associated with prostate cancer (β-estimate = 2.08, (1.19, 2.98), P = 5.20 × 10- 6). Cannabidiol alone was positively associated with ovarian cancer incidence in a geospatiotemporal model (β-estimate = 0.36, (0.30, 0.42), P < 2.20 × 10- 16). The cigarette: THC: cannabidiol interaction was significant in a fully adjusted geospatiotemporal model at six years of temporal lag (β-estimate = 1.93, (1.07, 2.78), P = 9.96 × 10- 6). Minimal modelled polynomial E-Values for prostate and ovarian cancer ranged up to 5.59 × 1059 and 1.92 × 10125. Geotemporospatial modelling of these tumours showed that the cannabidiol-carcinogenesis relationship was supra-linear and highly sigmoidal (P = 1.25 × 10- 45 and 12.82 × 10- 52 for linear v. polynomial models). CONCLUSION Cannabinoids including THC and cannabidiol are therefore important community carcinogens additive to the effects of tobacco and greatly exceeding those of alcohol. Reproductive tract carcinogenesis necessarily implies genotoxicity and epigenotoxicity of the germ line with transgenerational potential. Pseudoexponential and causal dose-response power functions are demonstrated.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| |
Collapse
|
19
|
Misner MJ, Taborek A, Dufour J, Sharifi L, Khokhar JY, Favetta LA. Effects of Delta-9 Tetrahydrocannabinol (THC) on Oocyte Competence and Early Embryonic Development. FRONTIERS IN TOXICOLOGY 2022; 3:647918. [PMID: 35295104 PMCID: PMC8915882 DOI: 10.3389/ftox.2021.647918] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022] Open
Abstract
Recent changes in legal status and public perception of cannabis have contributed to an increase use amongst women of reproductive age. Concurrently, there is inadequate evidence-based knowledge to guide clinical practice regarding cannabis and its effects on fertility and early embryonic development. This study aimed to evaluate the effects of the primary psychoactive component of cannabis, delta-9 tetrahydrocannabinol (THC), during oocyte maturation, and its impact on the developing embryo. Bovine oocytes were matured in vitro for 24 h under clinically relevant doses of THC mimicking plasma levels achieved after therapeutic (0.032 μM) and recreational (0.32 and 3.2 μM) cannabis use. THC-treated oocytes were assessed for development and quality parameters at both the oocyte and embryo level. Characteristics of oocytes treated with cannabinoid receptor antagonists were also assessed. Oocytes treated with 0.32 and 3.2 μM THC, were significantly less likely to reach metaphase II (p < 0.01) and consequently had lower cleavage rates at day 2 post-fertilization (p < 0.0001). Treatment with cannabinoid receptor antagonists restored this effect (p < 0.05). Oocytes that did reach MII showed no differences in spindle morphology. Oocytes treated with 0.032 μM THC had significantly lower connexin mRNA (p < 0.05) (correlated with decreased quality), but this was not confirmed at the protein level. At the blastocyst stage there were no significant differences in developmental rates or the proportion of trophectoderm to inner cell mass cells between the control and treatment groups. These blastocysts, however, displayed an increased level of apoptosis in the 0.32 and 3.2 μM groups (p < 0.0001). Our findings suggest a possible disruptive effect of cannabis on oocyte maturation and early embryonic development.
Collapse
Affiliation(s)
- Megan J Misner
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Afton Taborek
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jaustin Dufour
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Lea Sharifi
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Laura A Favetta
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
20
|
Tao R, Huang S, Zhou J, Ye L, Shen X, Wu J, Qian L. Neonatal Supplementation of Oleamide During Suckling Promotes Learning Ability and Memory in Adolescent Mice. J Nutr 2022; 152:889-898. [PMID: 34967906 DOI: 10.1093/jn/nxab442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Fatty acid amides (FAMs) are present in breast milk. Oleamide (ODA), a member of the FAM family, has been reported to affect learning and memory-related abilities in animal experiments. OBJECTIVES This study aimed to characterize the temporal changes of FAMs in human milk and sought to examine the effect of ODA supplementation during suckling on postweaning cognitive performance in mice. METHODS FAMs were measured in human milk (postpartum 1-24 wk) by ultra-performance liquid chromatography-triple quadruple mass spectrometry (UPLC-TQ-MS) analysis. We supplemented neonatal C57BL/6J mice of both sexes with vehicle (control), 5 mg/(kg · day) ODA (L-ODA), or 25 mg/(kg · day) ODA (H-ODA) throughout suckling by oral gavage. After weaning, the Morris water maze test and novel object recognition test were performed. Neurogenesis, spinal morphogenesis in the dentate gyrus (DG) region, and hippocampal expression of synaptic markers were analyzed. Data were analyzed by ANOVA and repeated-measures ANOVA. RESULTS ODA (0.566-1.31 mg/L) was the most abundant FAM in breast milk, followed by palmitamide (0.135-0.269 mg/L) and linoleamide (0.046-0.242 mg/L). Compared with the control group, the H-ODA group demonstrated shorter escape latency, shorter travel distance, 113% more platform crossing, and 48% greater discrimination index in behavioral tests (P < 0.05). Additionally, the H-ODA group showed a higher density of 5-ethynyl-2'-deoxyuridine (EdU)+ and EdU+& doublecortin (DCX)+ cells (62% and 53%, respectively), and 52% greater spine density in the DG region than the control group (P < 0.05). The synaptic markers, postsynaptic density protein 95 (PSD95) and synaptophysin (SYP), were upregulated in the H-ODA group compared with the control group (P < 0.05). The L-ODA group also showed shorter escape latency in behavioral tests and 27% greater spine density in the DG region than the control group (P < 0.05). CONCLUSIONS ODA is the most common FAM in human milk. ODA supplementation during suckling promotes learning and memory-related abilities in adolescent mice by augmenting hippocampal neuronal proliferation and boosting synaptic plasticity.
Collapse
Affiliation(s)
- Ranran Tao
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Shanshan Huang
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jiefei Zhou
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lin Ye
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Xiuhua Shen
- Department of Nutrition, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Wu
- Department of Nutrition, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Linxi Qian
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
21
|
Sayed TS, Balasinor NH, Nishi K. Diverse role of endocannabinoid system in mammalian male reproduction. Life Sci 2021; 286:120035. [PMID: 34637799 DOI: 10.1016/j.lfs.2021.120035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022]
Abstract
Endocannabinoid system (ECS) is known for its modulatory role in numerous physiological processes in the body. Endocannabinoids (eCBs) are endogenous lipid molecules which function both centrally and peripherally. The ECS is best studied in the central nervous system (CNS), immune system as well as in the metabolic system. The role of ECS in male reproductive system is emerging and the presence of a complete enzymatic machinery to synthesize and metabolize eCBs has been demonstrated in male reproductive tract. Endocannabinoid concentrations and alterations in their levels have been reported to affect the functioning of spermatozoa. A dysfunctional ECS has also been linked to the development of prostate cancer, the leading cause of cancer related mortality among male population. This review is an attempt to provide an insight into the significant role of endocannabinoids in male reproduction and further summarize recent findings that demonstrate the manner in which the endocannabinoid system impacts male sexual behavior and fertility.
Collapse
Affiliation(s)
- Tahseen S Sayed
- Department of Biotechnology, R.D. and S.H. National College and S.W.A Science College, Mumbai 400050, India
| | - Nafisa H Balasinor
- Neuroendocrinology Division, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India.
| | - Kumari Nishi
- Neuroendocrinology Division, ICMR-National Institute for Research in Reproductive Health, Parel, Mumbai 400012, India.
| |
Collapse
|
22
|
The Impact of Early Life Exposure to Cannabis: The Role of the Endocannabinoid System. Int J Mol Sci 2021; 22:ijms22168576. [PMID: 34445282 PMCID: PMC8395329 DOI: 10.3390/ijms22168576] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
Cannabis use during pregnancy has continued to rise, particularly in developed countries, as a result of the trend towards legalization and lack of consistent, evidence-based knowledge on the matter. While there is conflicting data regarding whether cannabis use during pregnancy leads to adverse outcomes such as stillbirth, preterm birth, low birthweight, or increased admission to neonatal intensive care units, investigations into long-term effects on the offspring’s health are limited. Historically, studies have focused on the neurobehavioral effects of prenatal cannabis exposure on the offspring. The effects of cannabis on other physiological aspects of the developing fetus have received less attention. Importantly, our knowledge about cannabinoid signaling in the placenta is also limited. The endocannabinoid system (ECS) is present at early stages of development and represents a potential target for exogenous cannabinoids in utero. The ECS is expressed in a broad range of tissues and influences a spectrum of cellular functions. The aim of this review is to explore the current evidence surrounding the effects of prenatal exposure to cannabinoids and the role of the ECS in the placenta and the developing fetus.
Collapse
|
23
|
Gimeno I, García-Manrique P, Carrocera S, López-Hidalgo C, Valledor L, Martín-González D, Gómez E. The Metabolic Signature of In Vitro Produced Bovine Embryos Helps Predict Pregnancy and Birth after Embryo Transfer. Metabolites 2021; 11:484. [PMID: 34436426 PMCID: PMC8399324 DOI: 10.3390/metabo11080484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/28/2022] Open
Abstract
In vitro produced (IVP) embryos show large metabolic variability induced by breed, culture conditions, embryonic stage and sex and gamete donors. We hypothesized that the birth potential could be accurately predicted by UHPLC-MS/MS in culture medium (CM) with the discrimination of factors inducing metabolic variation. Day-6 embryos were developed in single CM (modified synthetic oviduct fluid) for 24 h and transferred to recipients as fresh (28 ETs) or frozen/thawed (58 ETs) Day-7 blastocysts. Variability was induced with seven bulls, slaughterhouse oocyte donors, culture conditions (serum + Bovine Serum Albumin [BSA] or BSA alone) prior to single culture embryonic stage records (Day-6: morula, early blastocyst, blastocyst; Day-7: expanding blastocyst; fully expanded blastocysts) and cryopreservation. Retained metabolite signals (6111) were analyzed as a function of pregnancy at Day-40, Day-62 and birth in a combinatorial block study with all fixed factors. We identified 34 accumulated metabolites through 511 blocks, 198 for birth, 166 for Day-62 and 147 for Day-40. The relative abundance of metabolites was higher within blocks from non-pregnant (460) than from pregnant (51) embryos. Taxonomy classified lipids (12 fatty acids and derivatives; 224 blocks), amino acids (12) and derivatives (3) (186 blocks), benzenoids (4; 58 blocks), tri-carboxylic acids (2; 41 blocks) and 5-Hydroxy-l-tryptophan (2 blocks). Some metabolites were effective as single biomarkers in 95 blocks (Receiver Operating Characteristic - Area Under the Curve [ROC-AUC]: 0.700-1.000). In contrast, more accurate predictions within the largest data sets were obtained with combinations of 2, 3 and 4 single metabolites in 206 blocks (ROC-AUC = 0.800-1.000). Pregnancy-prone embryos consumed more amino acids and citric acid, and depleted less lipids and cis-aconitic acid. Big metabolic differences between embryos support efficient pregnancy and birth prediction when analyzed in discriminant conditions.
Collapse
Affiliation(s)
- Isabel Gimeno
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| | - Pablo García-Manrique
- Molecular Mass Spectrometry Unit, Scientific and Technical Services, University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain;
| | - Susana Carrocera
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| | - Cristina López-Hidalgo
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain; (C.L.-H.); (L.V.)
| | - Luis Valledor
- Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Catedrático Rodrigo Uria s/n, 33006 Oviedo, Spain; (C.L.-H.); (L.V.)
| | - David Martín-González
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| | - Enrique Gómez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Centro de Biotecnología Animal, Camino de Rioseco 1225, 33394 Gijón, Spain; (I.G.); (S.C.); (D.M.-G.)
| |
Collapse
|
24
|
Ramal-Sanchez M, Bernabò N, Valbonetti L, Cimini C, Taraschi A, Capacchietti G, Machado-Simoes J, Barboni B. Role and Modulation of TRPV1 in Mammalian Spermatozoa: An Updated Review. Int J Mol Sci 2021; 22:4306. [PMID: 33919147 PMCID: PMC8122410 DOI: 10.3390/ijms22094306] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
Based on the abundance of scientific publications, the polymodal sensor TRPV1 is known as one of the most studied proteins within the TRP channel family. This receptor has been found in numerous cell types from different species as well as in spermatozoa. The present review is focused on analyzing the role played by this important channel in the post-ejaculatory life of spermatozoa, where it has been described to be involved in events such as capacitation, acrosome reaction, calcium trafficking, sperm migration, and fertilization. By performing an exhaustive bibliographic search, this review gathers, for the first time, all the modulators of the TRPV1 function that, to our knowledge, were described to date in different species and cell types. Moreover, all those modulators with a relationship with the reproductive process, either found in the female tract, seminal plasma, or spermatozoa, are presented here. Since the sperm migration through the female reproductive tract is one of the most intriguing and less understood events of the fertilization process, in the present work, chemotaxis, thermotaxis, and rheotaxis guiding mechanisms and their relationship with TRPV1 receptor are deeply analyzed, hypothesizing its (in)direct participation during the sperm migration. Last, TRPV1 is presented as a pharmacological target, with a special focus on humans and some pathologies in mammals strictly related to the male reproductive system.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo, 00015 Rome, Italy
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo, 00015 Rome, Italy
| | - Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario 1, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Juliana Machado-Simoes
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| |
Collapse
|
25
|
Oultram JMJ, Pegler JL, Bowser TA, Ney LJ, Eamens AL, Grof CPL. Cannabis sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC. Biomedicines 2021; 9:biomedicines9030234. [PMID: 33652704 PMCID: PMC7996784 DOI: 10.3390/biomedicines9030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa (Cannabis) is one of the world’s most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to produce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, we go on to highlight the parallels to previous research conducted in another medically relevant and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research outside of the medical biology aspects of its well-characterised constituents and explores additional avenues for the potential improvement of the medical potential of the Cannabis plant.
Collapse
Affiliation(s)
- Jackson M. J. Oultram
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Joseph L. Pegler
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Timothy A. Bowser
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
| | - Luke J. Ney
- School of Psychological Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Christopher P. L. Grof
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
- Correspondence: ; Tel.: +612-4921-5858
| |
Collapse
|
26
|
Manzo E, Schiano Moriello A, Tinto F, Verde R, Allarà M, De Petrocellis L, Pagano E, Izzo AA, Di Marzo V, Petrosino S. A Glucuronic Acid-Palmitoylethanolamide Conjugate (GLUPEA) Is an Innovative Drug Delivery System and a Potential Bioregulator. Cells 2021; 10:450. [PMID: 33672574 PMCID: PMC7924038 DOI: 10.3390/cells10020450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Palmitoylethanolamide (PEA) is an endogenous anti-inflammatory lipid mediator and a widely used nutraceutical. In this study, we designed, realized, and tested a drug-carrier conjugate between PEA (the active drug) and glucuronic acid (the carrier). The conjugate, named GLUPEA, was characterized for its capability of increasing PEA levels and exerting anti-inflammatory activity both in vitro and in vivo. GLUPEA treatment, compared to the same concentration of PEA, resulted in higher cellular amounts of PEA and the endocannabinoid 2-arachidonoyl glycerol (2-AG), and increased 2-AG-induced transient receptor potential vanilloid type 1 (TRPV1) channel desensitization to capsaicin. GLUPEA inhibited pro-inflammatory monocyte chemoattractant protein 2 (MCP-2) release from stimulated keratinocytes, and it was almost as efficacious as ultra-micronized PEA at reducing colitis in dinitrobenzene sulfonic acid (DNBS)-injected mice when using the same dose. GLUPEA is a novel pro-drug able to efficiently mimic the anti-inflammatory and endocannabinoid enhancing actions of PEA.
Collapse
Affiliation(s)
- Emiliano Manzo
- Istituto di Chimica Biomolecolare, CNR, 80078 Pozzuoli, Napoli, Italy; (E.M.); (A.S.M.); (F.T.); (R.V.); (M.A.); (L.D.P.)
| | - Aniello Schiano Moriello
- Istituto di Chimica Biomolecolare, CNR, 80078 Pozzuoli, Napoli, Italy; (E.M.); (A.S.M.); (F.T.); (R.V.); (M.A.); (L.D.P.)
- Endocannabinoid Research Group, 80078 Pozzuoli, Napoli, Italy; (E.P.); (A.A.I.)
- Epitech Group S.p.A., 35030 Saccolongo, Padova, Italy
| | - Francesco Tinto
- Istituto di Chimica Biomolecolare, CNR, 80078 Pozzuoli, Napoli, Italy; (E.M.); (A.S.M.); (F.T.); (R.V.); (M.A.); (L.D.P.)
| | - Roberta Verde
- Istituto di Chimica Biomolecolare, CNR, 80078 Pozzuoli, Napoli, Italy; (E.M.); (A.S.M.); (F.T.); (R.V.); (M.A.); (L.D.P.)
- Endocannabinoid Research Group, 80078 Pozzuoli, Napoli, Italy; (E.P.); (A.A.I.)
| | - Marco Allarà
- Istituto di Chimica Biomolecolare, CNR, 80078 Pozzuoli, Napoli, Italy; (E.M.); (A.S.M.); (F.T.); (R.V.); (M.A.); (L.D.P.)
- Endocannabinoid Research Group, 80078 Pozzuoli, Napoli, Italy; (E.P.); (A.A.I.)
- Epitech Group S.p.A., 35030 Saccolongo, Padova, Italy
| | - Luciano De Petrocellis
- Istituto di Chimica Biomolecolare, CNR, 80078 Pozzuoli, Napoli, Italy; (E.M.); (A.S.M.); (F.T.); (R.V.); (M.A.); (L.D.P.)
- Endocannabinoid Research Group, 80078 Pozzuoli, Napoli, Italy; (E.P.); (A.A.I.)
| | - Ester Pagano
- Endocannabinoid Research Group, 80078 Pozzuoli, Napoli, Italy; (E.P.); (A.A.I.)
- Dipartimento di Farmacia, Università di Napoli Federico II, 80138 Naples, Napoli, Italy
| | - Angelo A. Izzo
- Endocannabinoid Research Group, 80078 Pozzuoli, Napoli, Italy; (E.P.); (A.A.I.)
- Dipartimento di Farmacia, Università di Napoli Federico II, 80138 Naples, Napoli, Italy
| | - Vincenzo Di Marzo
- Istituto di Chimica Biomolecolare, CNR, 80078 Pozzuoli, Napoli, Italy; (E.M.); (A.S.M.); (F.T.); (R.V.); (M.A.); (L.D.P.)
- Endocannabinoid Research Group, 80078 Pozzuoli, Napoli, Italy; (E.P.); (A.A.I.)
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF-Centre NUTRISS, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Quebéc, QC G1V 0A6, Canada
| | - Stefania Petrosino
- Istituto di Chimica Biomolecolare, CNR, 80078 Pozzuoli, Napoli, Italy; (E.M.); (A.S.M.); (F.T.); (R.V.); (M.A.); (L.D.P.)
- Endocannabinoid Research Group, 80078 Pozzuoli, Napoli, Italy; (E.P.); (A.A.I.)
- Epitech Group S.p.A., 35030 Saccolongo, Padova, Italy
| |
Collapse
|
27
|
The Complex Interplay between Endocannabinoid System and the Estrogen System in Central Nervous System and Periphery. Int J Mol Sci 2021; 22:ijms22020972. [PMID: 33478092 PMCID: PMC7835826 DOI: 10.3390/ijms22020972] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid system (ECS) is a lipid cell signaling system involved in the physiology and homeostasis of the brain and peripheral tissues. Synaptic plasticity, neuroendocrine functions, reproduction, and immune response among others all require the activity of functional ECS, with the onset of disease in case of ECS impairment. Estrogens, classically considered as female steroid hormones, regulate growth, differentiation, and many other functions in a broad range of target tissues and both sexes through the activation of nuclear and membrane estrogen receptors (ERs), which leads to genomic and non-genomic cell responses. Since ECS function overlaps or integrates with many other cell signaling systems, this review aims at updating the knowledge about the possible crosstalk between ECS and estrogen system (ES) at both central and peripheral level, with focuses on the central nervous system, reproduction, and cancer.
Collapse
|
28
|
Fonseca BM, Moreira-Pinto B, Costa L, Felgueira E, Oliveira P, Rebelo I. Concentrations of the endocannabinoid N-arachidonoylethanolamine in the follicular fluid of women with endometriosis: the role of M1 polarised macrophages. Reprod Fertil Dev 2021; 33:270-278. [DOI: 10.1071/rd20247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023] Open
Abstract
Although N-arachidonoylethanolamine (AEA; also known as anandamide) is present in human follicular fluid (FF), its regulation remains unknown. Therefore, the aims of the present study were to: (1) investigate the relationships between FF AEA concentrations in women undergoing assisted reproductive technology and their age, body mass index, ART characteristics and fertility treatment outcomes; and (2) assess how different inflammatory patterns may trigger AEA production by human granulosa cells (hGCs). FF AEA concentrations were higher in women undergoing IVF than in those undergoing intracytoplasmic sperm injection group. FF AEA median concentrations were lower in women undergoing ART because of male factor infertility than in women with endometriosis (1.6 vs 2.5nM respectively), but not women with tubal, hormonal or unexplained infertility (1.6, 2.4 and 1.9nM respectively). To evaluate the effects of macrophages on AEA production by hGCs, hGCs were cocultured with monocyte-derived macrophages. The conditioned medium from M1 polarised macrophages increased AEA production by hGCs. This was accompanied by an increase in AEA-metabolising enzymes, particularly N-acyl phosphatidylethanolamine-specific phospholipase D. The results of the present study show that high FF AEA concentrations in patients with endometriosis may be associated with the recruitment of inflammatory chemokines within the ovary, which together may contribute to the decreased reproductive potential of women with endometriosis. Collectively, these findings add a new player to the hormone and cytokine networks that regulate fertility in women.
Collapse
|
29
|
Taylor AH, Tortolani D, Ayakannu T, Konje JC, Maccarrone M. (Endo)Cannabinoids and Gynaecological Cancers. Cancers (Basel) 2020; 13:E37. [PMID: 33375539 PMCID: PMC7795647 DOI: 10.3390/cancers13010037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Gynaecological cancers can be primary neoplasms, originating either from the reproductive tract or the products of conception, or secondary neoplasms, representative of metastatic disease. For some of these cancers, the exact causes are unknown; however, it is recognised that the precise aetiopathogeneses for most are multifactorial and include exogenous (such as diet) and endogenous factors (such as genetic predisposition), which mutually interact in a complex manner. One factor that has been recognised to be involved in the pathogenesis and progression of gynaecological cancers is the endocannabinoid system (ECS). The ECS consists of endocannabinoids (bioactive lipids), their receptors, and metabolic enzymes responsible for their synthesis and degradation. In this review, the impact of plant-derived (Cannabis species) cannabinoids and endocannabinoids on gynaecological cancers will be discussed within the context of the complexity of the proteins that bind, transport, and metabolise these compounds in reproductive and other tissues. In particular, the potential of endocannabinoids, their receptors, and metabolic enzymes as biomarkers of specific cancers, such as those of the endometrium, will be addressed. Additionally, the therapeutic potential of targeting selected elements of the ECS as new action points for the development of innovative drugs will be presented.
Collapse
Affiliation(s)
- Anthony H. Taylor
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (T.A.)
- Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Daniel Tortolani
- European Centre for Brain Research, IRCCS Santa Lucia Foundation, 00164 Rome, Italy;
| | - Thangesweran Ayakannu
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (T.A.)
- Gynaecology Oncology Cancer Centre, Liverpool Women’s NHS Foundation Trust, Liverpool Women’s Hospital, Liverpool L8 7SS, UK
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3GB, UK
| | - Justin C. Konje
- Endocannabinoid Research Group, Reproductive Sciences Section, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 7RH, UK; (A.H.T.); (T.A.)
| | - Mauro Maccarrone
- European Centre for Brain Research, IRCCS Santa Lucia Foundation, 00164 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
30
|
Petrosino S, Schiano Moriello A. Palmitoylethanolamide: A Nutritional Approach to Keep Neuroinflammation within Physiological Boundaries-A Systematic Review. Int J Mol Sci 2020; 21:E9526. [PMID: 33333772 PMCID: PMC7765232 DOI: 10.3390/ijms21249526] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is a physiological response aimed at maintaining the homodynamic balance and providing the body with the fundamental resource of adaptation to endogenous and exogenous stimuli. Although the response is initiated with protective purposes, the effect may be detrimental when not regulated. The physiological control of neuroinflammation is mainly achieved via regulatory mechanisms performed by particular cells of the immune system intimately associated with or within the nervous system and named "non-neuronal cells." In particular, mast cells (within the central nervous system and in the periphery) and microglia (at spinal and supraspinal level) are involved in this control, through a close functional relationship between them and neurons (either centrally, spinal, or peripherally located). Accordingly, neuroinflammation becomes a worsening factor in many disorders whenever the non-neuronal cell supervision is inadequate. It has been shown that the regulation of non-neuronal cells-and therefore the control of neuroinflammation-depends on the local "on demand" synthesis of the endogenous lipid amide Palmitoylethanolamide and related endocannabinoids. When the balance between synthesis and degradation of this bioactive lipid mediator is disrupted in favor of reduced synthesis and/or increased degradation, the behavior of non-neuronal cells may not be appropriately regulated and neuroinflammation exceeds the physiological boundaries. In these conditions, it has been demonstrated that the increase of endogenous Palmitoylethanolamide-either by decreasing its degradation or exogenous administration-is able to keep neuroinflammation within its physiological limits. In this review the large number of studies on the benefits derived from oral administration of micronized and highly bioavailable forms of Palmitoylethanolamide is discussed, with special reference to neuroinflammatory disorders.
Collapse
Affiliation(s)
- Stefania Petrosino
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy;
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| | - Aniello Schiano Moriello
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Napoli, Italy;
- Epitech Group SpA, Via Einaudi 13, 35030 Padova, Italy
| |
Collapse
|
31
|
Baratta AM, Rathod RS, Plasil SL, Seth A, Homanics GE. Exposure to drugs of abuse induce effects that persist across generations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:217-277. [PMID: 33461664 PMCID: PMC8167819 DOI: 10.1016/bs.irn.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Substance use disorders are highly prevalent and continue to be one of the leading causes of disability in the world. Notably, not all people who use addictive drugs develop a substance use disorder. Although substance use disorders are highly heritable, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Vulnerability to developing drug addiction depends on the interplay between genetics and environment. Additionally, evidence from the past decade has pointed to the role of epigenetic inheritance in drug addiction. This emerging field focuses on how environmental perturbations, including exposure to addictive drugs, induce epigenetic modifications that are transmitted to the embryo at fertilization and modify developmental gene expression programs to ultimately impact subsequent generations. This chapter highlights intergenerational and transgenerational phenotypes in offspring following a history of parental drug exposure. Special attention is paid to parental preconception exposure studies of five drugs of abuse (alcohol, cocaine, nicotine, cannabinoids, and opiates) and associated behavioral and physiological outcomes in offspring. The highlighted studies demonstrate that parental exposure to drugs of abuse has enduring effects that persist into subsequent generations. Understanding the contribution of epigenetic inheritance in drug addiction may provide clues for better treatments and therapies for substance use disorders.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richa S Rathod
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sonja L Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amit Seth
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
32
|
Forner-Piquer I, Beato S, Piscitelli F, Santangeli S, Di Marzo V, Habibi HR, Maradonna F, Carnevali O. Effects of BPA on zebrafish gonads: Focus on the endocannabinoid system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114710. [PMID: 32417572 DOI: 10.1016/j.envpol.2020.114710] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a monomer used for polycarbonate manufacture, has been widely reported as an endocrine-disrupting chemical (EDC). Among other alterations, BPA induces reproductive dysfunctionalities. Changes in the endocannabinoid system (ECS) have been recently shown to be associated with reproductive disorders. The ECS is a lipid-based signaling system (cannabinoid receptors, endocannabinoids and enzymatic machinery) involved in several physiological functions. The main goal of the present study was to assess the effects of two environmental concentrations of BPA (10 and 20 μg/L) on the ECS in 1-year old zebrafish gonads. In males, BPA increased the gonadosomatic index (GSI) and altered testicular levels of endocannabinoids as well as reduced the testicular area occupied by spermatogonia. In male liver, exposure to 20 μg/L BPA significantly increased vitellogenin (vtg) transcript levels. In female zebrafish, BPA altered ovarian endocannabinoid levels, elevated hepatic vtg mRNA levels as well as increased the percentage of vitellogenic oocytes in the ovaries. In conclusion, exposure to two environmentally relevant concentrations of BPA altered the ECS and consequently, gonadal function in both male and female zebrafish.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Silvia Beato
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy
| | - Stefania Santangeli
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei, 80078, Pozzuoli, Italy; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136, Roma, Italy
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131, Ancona, Italy; INBB - Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136, Roma, Italy.
| |
Collapse
|
33
|
Lone SA, Mohanty TK, Bhakat M, Paray AR, Baithalu RK, Yadav HP, Sinha R. Supplementing extender with anandamide enhances quality of low sperm doses during cryopreservation in bulls. Andrologia 2020; 52:e13782. [PMID: 32721053 DOI: 10.1111/and.13782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 11/27/2022] Open
Abstract
The present study explored the effect of anandamide supplementation in the extender on quality of low sperm doses during cryopreservation in Sahiwal bulls. Each fresh semen sample was split into eight aliquots (I, II, III, IV, V, VI, VII and VIII). The aliquots I, II, III and IV were taken as control and diluted to 20, 15, 10 and 5 million spermatozoa/0.25 ml respectively. The aliquots V, VI, VII and VIII were diluted with extender (supplemented with anandamide at 1 µM/ml of extender) to 20, 15, 10 and 5 million spermatozoa/0.25 ml respectively. This was followed by filling of diluted semen into French mini straws, equilibrated at 4°C of 4 hr and cryopreserved. The results revealed that the proportions of motile spermatozoa, live spermatozoa and live acrosome intact spermatozoa were significantly (p < .05) higher in all anandamide-treated sperm doses compared to control. The proportions of moribund spermatozoa, dead acrosome intact spermatozoa and capacitated spermatozoa were significantly (p < .05) reduced in all anandamide-treated sperm doses compared to control, with no difference in proportion of dead acrosome-reacted spermatozoa. In conclusion, anandamide supplementation in the extender increases the post-thaw quality of low sperm doses during cryopreservation in bulls.
Collapse
Affiliation(s)
- Shabir A Lone
- Animal Reproduction, Gynaecology & Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Tushar K Mohanty
- Animal Reproduction, Gynaecology & Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Mukesh Bhakat
- Livestock Production and Management Section, ICAR-National Dairy Research Institute, Karnal, India
| | - Adil R Paray
- Livestock Production and Management Section, ICAR-National Dairy Research Institute, Karnal, India
| | - Rubina K Baithalu
- Animal Reproduction, Gynaecology & Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Hanuman P Yadav
- Animal Reproduction, Gynaecology & Obstetrics, ICAR-National Dairy Research Institute, Karnal, India
| | - Ranjana Sinha
- Livestock Production and Management Section, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
34
|
D’Amico R, Impellizzeri D, Cuzzocrea S, Di Paola R. ALIAmides Update: Palmitoylethanolamide and Its Formulations on Management of Peripheral Neuropathic Pain. Int J Mol Sci 2020; 21:ijms21155330. [PMID: 32727084 PMCID: PMC7432736 DOI: 10.3390/ijms21155330] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain results from lesions or diseases of the somatosensory nervous system and it remains largely difficult to treat. Peripheral neuropathic pain originates from injury to the peripheral nervous system (PNS) and manifests as a series of symptoms and complications, including allodynia and hyperalgesia. The aim of this review is to discuss a novel approach on neuropathic pain management, which is based on the knowledge of processes that underlie the development of peripheral neuropathic pain; in particular highlights the role of glia and mast cells in pain and neuroinflammation. ALIAmides (autacoid local injury antagonist amides) represent a group of endogenous bioactive lipids, including palmitoylethanolamide (PEA), which play a central role in numerous biological processes, including pain, inflammation, and lipid metabolism. These compounds are emerging thanks to their anti-inflammatory and anti-hyperalgesic effects, due to the down-regulation of activation of mast cells. Collectively, preclinical and clinical studies support the idea that ALIAmides merit further consideration as therapeutic approach for controlling inflammatory responses, pain, and related peripheral neuropathic pain.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA
- Correspondence: ; Tel.: +39-90-6765208
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| |
Collapse
|
35
|
Fukui M, Tsutsumi T, Yamamoto-Mikami A, Morito K, NaokoTakahashi, Tanaka T, Iwasa T, Kuwahara A, Irahara M, Tokumura A. Distinct contributions of two choline-producing enzymatic activities to lysophosphatidic acid production in human amniotic fluid from pregnant women in the second trimester and after parturition. Prostaglandins Other Lipid Mediat 2020; 150:106471. [PMID: 32585250 DOI: 10.1016/j.prostaglandins.2020.106471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/22/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to clarify whether human amniotic fluid (AF) contains a significant level of bioactive lysophosphatidic acid (LPA) and, whether autotaxin (ATX) is involved in the production of LPA, if present. Using LC-MS/MS, we found a higher ratio of levels of LPA and its precursor lysophosphatidylcholine (LPC) in AF collected after parturition than that in AF collected at the middle stage of pregnancy. We detected significant choline-producing enzymatic activity toward an exogenous LPC in AF at the middle stage of pregnancy, about half of which was ascribable to ATX. In AF collected after parturition, the ATX-independent choline-producing activity of glycerophosphcholine phosphodiesterase coupled to lysophospholipase A activity was increased in relative to the lysophospholipase D activity of ATX. These results suggest that the increased LPA/LPC ratio in AF at the term of pregnancy was due to not only a moderate increase in the level of LPC, but also an unknown mechanism involving epithelial cells bathed with AF.
Collapse
Affiliation(s)
- Midori Fukui
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Toshihiko Tsutsumi
- Faculty of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, 882-8508, Japan
| | - Aimi Yamamoto-Mikami
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Katsuya Morito
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - NaokoTakahashi
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan; Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Institute of Health Biosciences, University of Tokushima School of Medicine, Tokushima 770-8503, Japan
| | - Akira Kuwahara
- Department of Obstetrics and Gynecology, Institute of Health Biosciences, University of Tokushima School of Medicine, Tokushima 770-8503, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Institute of Health Biosciences, University of Tokushima School of Medicine, Tokushima 770-8503, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan; Faculty of Pharmacy, Yasuda Women's University, Hiroshima 731-0153, Japan.
| |
Collapse
|
36
|
Palmitoylethanolamide and Related ALIAmides: Prohomeostatic Lipid Compounds for Animal Health and Wellbeing. Vet Sci 2020; 7:vetsci7020078. [PMID: 32560159 PMCID: PMC7355440 DOI: 10.3390/vetsci7020078] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/07/2023] Open
Abstract
Virtually every cellular process is affected by diet and this represents the foundation of dietary management to a variety of small animal disorders. Special attention is currently being paid to a family of naturally occurring lipid amides acting through the so-called autacoid local injury antagonism, i.e., the ALIA mechanism. The parent molecule of ALIAmides, palmitoyl ethanolamide (PEA), has being known since the 1950s as a nutritional factor with protective properties. Since then, PEA has been isolated from a variety of plant and animal food sources and its proresolving function in the mammalian body has been increasingly investigated. The discovery of the close interconnection between ALIAmides and the endocannabinoid system has greatly stimulated research efforts in this field. The multitarget and highly redundant mechanisms through which PEA exerts prohomeostatic functions fully breaks with the classical pharmacology view of “one drug, one target, one disease”, opening a new era in the management of animals’ health, i.e., an according-to-nature biomodulation of body responses to different stimuli and injury. The present review focuses on the direct and indirect endocannabinoid receptor agonism by PEA and its analogues and also targets the main findings from experimental and clinical studies on ALIAmides in animal health and wellbeing.
Collapse
|
37
|
Delta-9 THC can be detected and quantified in the semen of men who are chronic users of inhaled cannabis. J Assist Reprod Genet 2020; 37:1497-1504. [PMID: 32356125 PMCID: PMC7311607 DOI: 10.1007/s10815-020-01762-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The purpose of this proof-of-concept study was to determine whether delta-9-tetrahydrocannabinol (THC) and THC metabolites (11-OH THC and THC-COOH) can be detected in semen. METHODS Twelve healthy men aged 18-45 years who identified as chronic and heavy users of inhaled cannabis were recruited. THC and THC metabolite levels were measured in serum, urine, and semen of the participants. Semen analyses were performed. Serum reproductive hormones were measured. RESULTS The median age and BMI of participants were 27.0 years and 24.7 kg/m2, respectively. Over half the participants were daily users of cannabis for over 5 years. Serum reproductive hormones were generally within normal ranges, except prolactin, which was elevated in 6 of 12 participants (mean 13.9 ng/mL). The median sperm concentration, motility, and morphology were 75.5 million/mL, 69.5%, and 5.5%, respectively. Urinary THC-COOH was detected in all 12 participants, and at least one serum THC metabolite was present in 10 of 12 participants. Two semen samples had insufficient volume to be analyzed. THC was above the reporting level of 0.50 ng/mL in the semen of two of the remaining participants. Seminal THC was moderately correlated with serum levels of THC (r = 0.66), serum 11-OH THC (r = 0.57), and serum THC-COOH (r = 0.67). Seminal delta-9 THC was not correlated with urinary cannabinoid levels or semen analysis parameters. CONCLUSION This is the first study to identify and quantify THC in human semen, demonstrating that THC can cross the blood-testis barrier in certain individuals. Seminal THC was found to be moderately correlated with serum THC and THC metabolites.
Collapse
|
38
|
The effect of N-stearoylethanolamine on the lipid composition of the rat testes and testosterone level during the early stages of streptozotocin-іnduced diabetes. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Zufferey F, Donzé N, Rahban R, Senn A, Stettler E, Rudaz S, Nef S, Rossier MF. Semen endocannabinoids are correlated to sperm quality in a cohort of 200 young Swiss men. Andrology 2020; 8:1126-1135. [PMID: 32167658 DOI: 10.1111/andr.12785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND A role for endocannabinoids in the male and female reproductive systems has been highlighted during the recent decades. Some of these compounds bind the cannabinoid CB1 receptor, which is abundantly expressed in the central nervous system but also present in the reproductive system, while others act as 'entourage compounds' modulators. OBJECTIVES The present study aimed at evaluating the relationship between sperm quality and endocannabinoid profiles in a cohort of 200 young Swiss men and whether the presence of specific xenobiotics could influence these profiles. MATERIALS AND METHODS Semen analysis was performed according to WHO guidelines. Endocannabinoid profiles in blood and semen, as well as bisphenol A and S in urine, were determined by LC-MSMS methods. The presence of selected drugs was tested in urine by immunological screening, and urinary tetrahydrocannabinol (THC) metabolites were quantified by GC-MS. RESULTS Anandamide concentrations in seminal fluid and oleoylethanolamide (OEA) concentrations in blood serum appeared inversely correlated with sperm motility, while semen palmytoylethanolamide (PEA) was positively linked to sperm concentration. Moreover, OEA and PEA in seminal fluid were associated with better sperm morphology. Interestingly, the concentrations of the same endocannabinoids measured in both blood and semen were not correlated, and the presence of THC metabolites in some individuals was linked to lower concentrations of endocannabinoids. CONCLUSIONS In the context of the general decline of the sperm count observed within the male population, endocannabinoids in semen constitute a class of promising biochemical markers that open new perspectives as a complement for the usual evaluation of semen quality or for the toxicological screening of individuals' exposure to putative endocrine disruptors.
Collapse
Affiliation(s)
- Fanny Zufferey
- Service of Clinical Chemistry & Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland
| | - Nicolas Donzé
- Service of Clinical Chemistry & Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland
| | - Rita Rahban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Alfred Senn
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Eric Stettler
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Serge Rudaz
- School of Pharmaceutical Sciences, Universities of Geneva and Lausanne, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Michel F Rossier
- Service of Clinical Chemistry & Toxicology, Central Institute of Hospitals, Hospital of Valais, Sion, Switzerland.,Department of Internal Medicine, Geneva University Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
40
|
Hazem NM, Zalata A, Alghobary M, Comhaire F, Elabbasy LM. Evaluation of cannabinoid receptors Type 1 and Type 2 mRNA expression in mature versus immature spermatozoa from fertile and infertile males. Andrologia 2020; 52:e13532. [PMID: 32064664 DOI: 10.1111/and.13532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 12/16/2022] Open
Abstract
The expression of the main cannabinoid receptors (CBR1 and CBR2) was investigated to evaluate the possible association with the sperm maturation from fertile and infertile individuals. One hundred subjects were classified into fertile (n = 50) and infertile groups (n = 50). Fresh semen samples were collected. Computer-assisted semen analysis and acrosin activity test were done. RNA was extracted from mature and immature sperm pellets. Reverse transcriptase reaction and real-time PCR were done to assess the levels of both CBR1 and CBR2 genes expression in all samples. Mature spermatozoa from both groups showed significantly higher levels of both CBR1 and CBR2 compared with the immature spermatozoa (p < .05). This increment was significantly more important in the fertile group (p < .05). In mature spermatozoa, CBR1 expression was significantly related to variation in sperm morphology, and CBR2 was significantly related to both sperm morphology and linearity index. In conclusion, CBR1 and CBR2 mRNA expression may closely direct the sperm maturation at different steps of the reproductive process.
Collapse
Affiliation(s)
- Noha M Hazem
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Adel Zalata
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Moheiddin Alghobary
- Dermatology and Andrology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Frank Comhaire
- Emeritus Professor of Andrology, Ghent University Hospital, Ghent, Belgium
| | - Lamiaa M Elabbasy
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
41
|
Navarrete F, García-Gutiérrez MS, Gasparyan A, Austrich-Olivares A, Femenía T, Manzanares J. Cannabis Use in Pregnant and Breastfeeding Women: Behavioral and Neurobiological Consequences. Front Psychiatry 2020; 11:586447. [PMID: 33240134 PMCID: PMC7667667 DOI: 10.3389/fpsyt.2020.586447] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 01/21/2023] Open
Abstract
Nowadays, cannabis is the most consumed illicit drug. The global prevalence of the use of cannabis in 2017 was estimated in 188 million of people, 3.8% of worldwide population. Importantly, the legalization of cannabis in different countries, together with the increase in the apparent safety perception, may result in a great variety of health problems. Indeed, an important concern is the increase in cannabis use among pregnant and breastfeeding women, especially since the content of delta9-tetrahidrocannabinol (THC) is currently around 2-fold higher than it was 15-20 years ago. The purpose of this study was to review cannabis use during pregnancy and breastfeeding including epidemiological aspects, therapeutic or preventive strategies, and experimental considerations and results from animal models of perinatal cannabis exposure to analyze the underlying neurobiological mechanisms and to identify new therapeutic approaches. A recent report revealed that among pregnant women aged 15-44, last month cannabis use prevalence was over 4.9%, raising to 8.5% in the 18-25-year-old age range. Pre- and post-natal exposure to cannabis may be associated with critical alterations in the newborn infants that are prolonged throughout childhood and adolescence. Briefly, several reports revealed that perinatal cannabis exposure was associated with low birth weight, reduction in the head circumference, cognitive deficits (attention, learning, and memory), disturbances in emotional response leading to aggressiveness, high impulsivity, or affective disorders, and higher risk to develop a substance use disorder. Furthermore, important neurobiological alterations in different neuromodulatory and neurotransmission systems have been associated with cannabis consumption during pregnancy and lactation. In spite of the evidences pointing out the negative behavioral and neurobiological consequences of cannabis use in pregnant and breastfeeding women, there are still limitations to identify biomarkers that could help to establish preventive or therapeutic approaches. It is difficult to define the direct association specifically with cannabis, avoiding other confusing factors, co-occurrence of other drugs consumption (mainly nicotine and alcohol), lifestyle, or socioeconomic factors. Therefore, it is necessary to progress in the characterization of short- and long-term cannabis exposure-related disturbances.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Teresa Femenía
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
42
|
Verhaeghe F, Di Pizio P, Bichara C, Berby B, Rives A, Jumeau F, Sétif V, Sibert L, Rondanino C, Rives N. Cannabis consumption might exert deleterious effects on sperm nuclear quality in infertile men. Reprod Biomed Online 2019; 40:270-280. [PMID: 32001159 DOI: 10.1016/j.rbmo.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 11/25/2022]
Abstract
RESEARCH QUESTION Can cannabis consumption alter sperm nuclear integrity in infertile men? DESIGN A retrospective cross-sectional study conducted between July 2003 and December 2013, which included 54 men who consulted for male-factor infertility. Twenty-seven infertile men who were regular cannabis users were matched to 27 infertile men who were cannabis non-users. To complement the conventional semen parameter and plasma hormone level assessments, sperm nuclear alterations were explored using fluorescence in-situ hybridization to assess numerical chromosomal abnormalities, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling to investigate DNA fragmentation, aniline blue staining to examine chromatin condensation and a motile sperm organelle morphology examination to detect vacuoles in sperm heads. RESULTS The rates of sperm aneuploidy (P = 0.0044), diploidy (P = 0.037), total chromosome abnormalities (P = 0.0027) and DNA fragmentation (P = 0.027) were significantly higher in cannabis users than in non-cannabis users. CONCLUSIONS Cannabis consumption might have deleterious effects on sperm nuclear quality in infertile men by increasing numerical chromosome abnormalities and DNA fragmentation. Cannabis consumption induces these detrimental effects on the progression of spermatogenesis from meiotic stages to spermiogenesis and potentially on post-testicular sperm maturation in infertile men. Any potential findings, however, need to be validated with larger sample size, and our data are only exploratory findings.
Collapse
Affiliation(s)
- France Verhaeghe
- Normandie Université, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen Normandy University Hospital, Reproductive Biology Laboratory-CECOS, Assisted Reproductive Center, Rouen F 76000, France
| | - Pierre Di Pizio
- Normandie Université, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen Normandy University Hospital, Reproductive Biology Laboratory-CECOS, Assisted Reproductive Center, Rouen F 76000, France
| | - Cynthia Bichara
- Normandie Université, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen Normandy University Hospital, Reproductive Biology Laboratory-CECOS, Assisted Reproductive Center, Rouen F 76000, France
| | - Benoit Berby
- Normandie Université, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen Normandy University Hospital, Reproductive Biology Laboratory-CECOS, Assisted Reproductive Center, Rouen F 76000, France
| | - Aurélie Rives
- Normandie Université, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen Normandy University Hospital, Reproductive Biology Laboratory-CECOS, Assisted Reproductive Center, Rouen F 76000, France
| | - Fanny Jumeau
- Normandie Université, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen Normandy University Hospital, Reproductive Biology Laboratory-CECOS, Assisted Reproductive Center, Rouen F 76000, France
| | - Véronique Sétif
- Normandie Université, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen Normandy University Hospital, Reproductive Biology Laboratory-CECOS, Assisted Reproductive Center, Rouen F 76000, France
| | - Louis Sibert
- Normandie Université, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen Normandy University Hospital, Department of Urology, Assisted Reproductive Center, Rouen F 76000, France
| | - Christine Rondanino
- Normandie Université, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen Normandy University Hospital, Reproductive Biology Laboratory-CECOS, Assisted Reproductive Center, Rouen F 76000, France
| | - Nathalie Rives
- Normandie Université, UNIROUEN, EA 4308 'Gametogenesis and Gamete Quality', Rouen Normandy University Hospital, Reproductive Biology Laboratory-CECOS, Assisted Reproductive Center, Rouen F 76000, France.
| |
Collapse
|
43
|
Brown SG, Publicover SJ, Barratt CLR, Martins da Silva SJ. Human sperm ion channel (dys)function: implications for fertilization. Hum Reprod Update 2019; 25:758-776. [PMID: 31665287 PMCID: PMC6847974 DOI: 10.1093/humupd/dmz032] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Intensive research on sperm ion channels has identified members of several ion channel families in both mouse and human sperm. Gene knock-out studies have unequivocally demonstrated the importance of the calcium and potassium conductances in sperm for fertility. In both species, the calcium current is carried by the highly complex cation channel of sperm (CatSper). In mouse sperm, the potassium current has been conclusively shown to be carried by a channel consisting of the pore forming subunit SLO3 and auxiliary subunit leucine-rich repeat-containing 52 (LRRC52). However, in human sperm it is controversial whether the pore forming subunit of the channel is composed of SLO3 and/or SLO1. Deciphering the role of the proton-specific Hv1 channel is more challenging as it is only expressed in human sperm. However, definitive evidence for a role in, and importance for, human fertility can only be determined through studies using clinical samples. OBJECTIVE AND RATIONALE This review aims to provide insight into the role of sperm ion channels in human fertilization as evidenced from recent studies of sperm from infertile men. We also summarize the key discoveries from mouse ion channel knock-out models and contrast the properties of mouse and human CatSper and potassium currents. We detail the evidence for, and consequences of, defective ion channels in human sperm and discuss hypotheses to explain how defects arise and why affected sperm have impaired fertilization potential. SEARCH METHODS Relevant studies were identified using PubMed and were limited to ion channels that have been characterized in mouse and human sperm. Additional notable examples from other species are included as appropriate. OUTCOMES There are now well-documented fundamental differences between the properties of CatSper and potassium channel currents in mouse and human sperm. However, in both species, sperm lacking either channel cannot fertilize in vivo and CatSper-null sperm also fail to fertilize at IVF. Sperm-lacking potassium currents are capable of fertilizing at IVF, albeit at a much lower rate. However, additional complex and heterogeneous ion channel dysfunction has been reported in sperm from infertile men, the causes of which are unknown. Similarly, the nature of the functional impairment of affected patient sperm remains elusive. There are no reports of studies of Hv1 in human sperm from infertile men. WIDER IMPLICATIONS Recent studies using sperm from infertile men have given new insight and critical evidence supporting the supposition that calcium and potassium conductances are essential for human fertility. However, it should be highlighted that many fundamental questions remain regarding the nature of molecular and functional defects in sperm with dysfunctional ion channels. The development and application of advanced technologies remains a necessity to progress basic and clinical research in this area, with the aim of providing effective screening methodologies to identify and develop treatments for affected men in order to help prevent failed ART cycles. Conversely, development of drugs that block calcium and/or potassium conductances in sperm is a plausible strategy for producing sperm-specific contraceptives.
Collapse
Affiliation(s)
- Sean G Brown
- School of Applied Sciences, Abertay University, Dundee DD11HG, UK
| | | | - Christopher L R Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Sarah J Martins da Silva
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| |
Collapse
|
44
|
Characterisation and localisation of the endocannabinoid system components in the adult human testis. Sci Rep 2019; 9:12866. [PMID: 31537814 PMCID: PMC6753062 DOI: 10.1038/s41598-019-49177-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Heavy use of cannabis (marijuana) has been associated with decreased semen quality, which may reflect disruption of the endocannabinoid system (ECS) in the male reproductive tract by exogenous cannabinoids. Components of ECS have been previously described in human spermatozoa and in the rodent testis but there is little information on the ECS expression within the human testis. In this study we characterised the main components of the ECS by immunohistochemistry (IHC) on archived testis tissue samples from 15 patients, and by in silico analysis of existing transcriptome datasets from testicular cell populations. The presence of 2-arachidonoylglycerol (2-AG) in the human testis was confirmed by matrix-assisted laser desorption ionization imaging analysis. Endocannabinoid-synthesising enzymes; diacylglycerol lipase (DAGL) and N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), were detected in germ cells and somatic cells, respectively. The cannabinoid receptors, CNR1 and CNR2 were detected at a low level in post-meiotic germ cells and Leydig- and peritubular cells. Different transcripts encoding distinct receptor isoforms (CB1, CB1A, CB1B and CB2A) were also differentially distributed, mainly in germ cells. The cannabinoid-metabolising enzymes were abundantly present; the α/β-hydrolase domain-containing protein 2 (ABHD2) in all germ cell types, except early spermatocytes, the monoacylglycerol lipase (MGLL) in Sertoli cells, and the fatty acid amide hydrolase (FAAH) in late spermatocytes and post-meiotic germ cells. Our findings are consistent with a direct involvement of the ECS in regulation of human testicular physiology, including spermatogenesis and Leydig cell function. The study provides new evidence supporting observations that recreational cannabis can have possible deleterious effects on human testicular function.
Collapse
|
45
|
Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic Efficacy of Palmitoylethanolamide and Its New Formulations in Synergy with Different Antioxidant Molecules Present in Diets. Nutrients 2019; 11:E2175. [PMID: 31514292 PMCID: PMC6769461 DOI: 10.3390/nu11092175] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022] Open
Abstract
The use of a complete nutritional approach seems increasingly promising to combat chronic inflammation. The choice of healthy sources of carbohydrates, fats, and proteins, associated with regular physical activity and avoidance of smoking is essential to fight the war against chronic diseases. At the base of the analgesic, anti-inflammatory, or antioxidant action of the diets, there are numerous molecules, among which some of a lipidic nature very active in the inflammatory pathway. One class of molecules found in diets with anti-inflammatory actions are ALIAmides. Among all, one is particularly known for its ability to counteract the inflammatory cascade, the Palmitoylethanolamide (PEA). PEA is a molecular that is present in nature, in numerous foods, and is endogenously produced by our body, which acts as a balancer of inflammatory processes, also known as endocannabionoid-like. PEA is often used in the treatment of both acute and chronic inflammatory pathologies, either alone or in association with other molecules with properties, such as antioxidants or analgesics. This review aims to illustrate an overview of the different diets that are involved in the process of opposition to the inflammatory cascade, focusing on capacity of PEA and new formulations in synergy with other molecules.
Collapse
Affiliation(s)
- Alessio Filippo Peritore
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
- Department of Pharmacological and Physiological Sciences, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
46
|
Role of Major Endocannabinoid-Binding Receptors during Mouse Oocyte Maturation. Int J Mol Sci 2019; 20:ijms20122866. [PMID: 31212770 PMCID: PMC6627642 DOI: 10.3390/ijms20122866] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 01/02/2023] Open
Abstract
Endocannabinoids are key-players of female fertility and potential biomarkers of reproductive dysfunctions. Here, we investigated localization and expression of cannabinoid receptor type-1 and -2 (CB1R and CB2R), G-protein coupled receptor 55 (GPR55), and transient receptor potential vanilloid type 1 channel (TRPV1) in mouse oocytes collected at different stages of in vivo meiotic maturation (germinal vesicle, GV; metaphase I, MI; metaphase II, MII) through qPCR, confocal imaging, and western blot. Despite the significant decrease in CB1R, CB2R, and GPR55 mRNAs occurring from GV to MII, CB2R and GPR55 protein contents increased during the same period. At GV, only CB1R was localized in oolemma, but it completely disappeared at MI. TRPV1 was always undetectable. When oocytes were in vitro matured with CB1R and CB2R but not GPR55 antagonists, a significant delay of GV breakdown occurred, sustained by elevated intraoocyte cAMP concentration. Although CBRs antagonists did not affect polar body I emission or chromosome alignment, GPR55 antagonist impaired in ~75% of oocytes the formation of normal-sized MI and MII spindles. These findings open a new avenue to interrogate oocyte pathophysiology and offer potentially new targets for the therapy of reproductive alterations.
Collapse
|
47
|
Gaitán AV, Wood JT, Solomons NW, Donohue JA, Ji L, Liu Y, Nikas SP, Zhang F, Allen LH, Makriyannis A, Lammi-Keefe CJ. Endocannabinoid Metabolome Characterization of Milk from Guatemalan Women Living in the Western Highlands. Curr Dev Nutr 2019; 3:nzz018. [PMID: 31111118 PMCID: PMC6517780 DOI: 10.1093/cdn/nzz018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recognized as the gold-standard ideal fare, human milk has a unique composition that meets infants' needs throughout development. Endocannabinoids and endocannabinoid-like compounds [endocannabinoid metabolome (ECM)] are endogenous lipid mediators derived from long-chain polyunsaturated fatty acids. Based on animal models, it has been proposed that endocannabinoid arachidonoyl glycerol (AG) plays a role in establishing the suckling response during lactation. In addition, endocannabinoid ethanolamides have been shown to stimulate food intake. The mechanisms of action and the role of the ECM in human milk are not fully understood. OBJECTIVES The present study aimed to characterize and quantify the ECM in human milk samples from an underserved population in Guatemala. METHODS Human milk samples were collected from lactating women (n = 26) for ECM characterization and quantification. Samples were taken at 3 different time points between 4 and 6 mo of lactation during maternal fasting. Human milk samples were analyzed by liquid chromatography-mass spectrometry. Identified members of the ECM were: arachidonoyl ethanolamide, palmitoyl ethanolamide (PEA), oleoyl ethanolamide, docosahexaenoyl ethanolamide, eicoapentaenoyl ethanolamide, eicosenoyl ethanolamide, AG, palmitoyl glycerol, oleoyl glycerol, docosahexaenoyl glycerol, eicosapentaenoyl glycerol, eicosenoyl glycerol, arachidonic acid (ARA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA). RESULTS Overall, concentrations in the ethanolamide group were lower than the glycerols. A time effect was observed for ARA, DHA, EPA, and PEA across the 3 time points (P ≤ 0.05). CONCLUSIONS Our study identified the ECM in mature human milk and provides the first report for a population with health disparities within a developing country. The few studies available have been conducted in developed countries. Hypotheses for future studies can be developed based on this study's data to help elucidate specific roles for members of the ECM and how this biological system modulates infant health and development.
Collapse
Affiliation(s)
- Adriana V Gaitán
- Louisiana State University, Baton Rouge, LA
- Agricultural Center, Louisiana State University, Baton Rouge, LA
| | - JodiAnne T Wood
- Center for Drug Discovery, Northeastern University, Boston, MA
| | - Noel W Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism, Guatemala
| | - Juliana A Donohue
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center; University of California, Davis, CA
| | - Lipin Ji
- Center for Drug Discovery, Northeastern University, Boston, MA
| | - Yingpeng Liu
- Center for Drug Discovery, Northeastern University, Boston, MA
| | - Spyros P Nikas
- Center for Drug Discovery, Northeastern University, Boston, MA
| | - Fan Zhang
- Louisiana State University, Baton Rouge, LA
- Agricultural Center, Louisiana State University, Baton Rouge, LA
| | - Lindsay H Allen
- US Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center; University of California, Davis, CA
| | | | - Carol J Lammi-Keefe
- Louisiana State University, Baton Rouge, LA
- Agricultural Center, Louisiana State University, Baton Rouge, LA
- Pennington Biomedical Research Center, Baton Rouge, LA
| |
Collapse
|
48
|
Luschnig P, Schicho R. Cannabinoids in Gynecological Diseases. Med Cannabis Cannabinoids 2019; 2:14-21. [PMID: 34676329 DOI: 10.1159/000499164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/25/2019] [Indexed: 11/19/2022] Open
Abstract
The endocannabinoid system (ECS) is a multifunctional homeostatic system involved in many physiological and pathological conditions. The ligands of the ECS are the endo-cannabinoids, whose actions are mimicked by exogenous cannabinoids, such as phytocannabinoids and synthetic cannabinoids. Responses to the ligands of the ECS are mediated by numerous receptors like the classical cannabinoid receptors (CB1 and CB2) as well as ECS-related receptors, e.g., G protein-coupled receptors 18 and 55 (GPR18 and GPR55), transient receptor potential ion channels, and nuclear peroxisome proliferator-activated receptors. The ECS regulates almost all levels of female reproduction, starting with oocyte production through to parturition. Dysregulation of the ECS is associated with the development of gynecological disorders from fertility disorders to cancer. Cannabinoids that act at the ECS as specific agonists or antagonists may potentially influence dysregulation and, therefore, represent new therapeutic options for the therapy of gynecological disorders.
Collapse
Affiliation(s)
- Petra Luschnig
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|
49
|
Martínez-León E, Osycka-Salut C, Signorelli J, Kong M, Morales P, Pérez-Martínez S, Díaz ES. Fibronectin modulates the endocannabinoid system through the cAMP/PKA pathway during human sperm capacitation. Mol Reprod Dev 2019; 86:224-238. [PMID: 30582781 DOI: 10.1002/mrd.23097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 12/14/2018] [Indexed: 11/11/2022]
Abstract
Fibronectin (Fn) enhances human sperm capacitation via the cAMP/PKA pathway, and the endocannabinoid system participates in this process. Moreover, Fn has been linked to endocannabinoid system components in different cellular models, even though no evidence of such interactions in human sperm is available. Normal semen samples were evaluated over a 4-year period. Our findings suggest that (a) the capacitating effects of Fn were reversed by preincubating the sperm with a cannabinoid receptor 1 (CB1) or transient receptor potential cation channel subfamily V member 1 (TRPV1) antagonist ( p < 0.001 and p < 0.05, respectively); (b) cooperation between CB1 and TRPV1 may exist ( p < 0.01); (c) the activity of specific fatty acid amide hydroxylase (FAAH) decreased after 1 min ( p < 0.01) and increased after 60 min ( p < 0.01) of capacitation in the presence of Fn; (d) the effects of Fn on FAAH activity were prevented by preincubating spermatozoa with a protein kinase A (PKA) inhibitor ( p < 0.01); (e) Fn modulated both the cyclic adenosine monophosphate concentration and PKA activity ( p < 0.05) during early capacitation; and (f) FAAH was a PKA substrate modulated by phosphorylation. These findings indicate that Fn stimulates human sperm capacitation via the cAMP/PKA pathway through modulation of the endocannabinoid system. Understanding the functional competence of human spermatozoa is essential for facilitating clinical advances in infertility treatment and for developing novel contraceptive strategies.
Collapse
Affiliation(s)
- Eduardo Martínez-León
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia Osycka-Salut
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de estudios Farmacológicos y Botánicos (CEFyBO-CONICET/UBA), Buenos Aires, Argentina
| | - Janetti Signorelli
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Milene Kong
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Patricio Morales
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile.,Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Silvina Pérez-Martínez
- Laboratorio de Biología de la Reproducción en Mamíferos, Centro de estudios Farmacológicos y Botánicos (CEFyBO-CONICET/UBA), Buenos Aires, Argentina
| | - Emilce Silvina Díaz
- Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
50
|
|