1
|
Hart TL, Kris-Etherton PM, Petersen KS. Pecan Intake Improves Lipoprotein Particle Concentrations Compared with Usual Intake in Adults at Increased Risk of Cardiometabolic Diseases: A Randomized Controlled Trial. J Nutr 2025; 155:1459-1465. [PMID: 40113170 PMCID: PMC12121402 DOI: 10.1016/j.tjnut.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Pecan consumption consistently improves lipoproteins, but less research has investigated the effect of pecans on lipoprotein subfractions. OBJECTIVES The aim was to investigate the effect of substitution of usual snack foods with 57 g/d of pecans on lipoprotein particle subfractions and apolipoproteins compared with continuing usual intake after 12 wk. Exploratory analyses evaluated effects on early markers of insulin resistance including the Lipoprotein Insulin Resistance Index (LP-IR), Diabetes Risk Index, and GlycA. METHODS A 12-wk, randomized, 2-armed parallel trial in adults at risk of cardiometabolic disease was conducted. Participants were instructed to either consume 57 g/d of pecans in place of usual snacks or to continue their usual intake. Plasma samples collected at baseline and 12 wk were analyzed for lipoproteins, apolipoproteins, and GlycA by proton nuclear magnetic resonance spectroscopy. Between-group differences in the change from baseline were evaluated with linear regression. RESULTS In total, 138 participants were randomly assigned (n = 69 per group) and 130 participants (pecan group n = 62; usual diet group n = 68) completed the trial. The pecan group had a greater reduction from baseline in the concentrations of apolipoprotein B (apoB) [-4.38 mg/dL; 95% confidence interval (CI): -8.02, -0.73], total low-density lipoprotein particles (-75.3 nmol/L; 95% CI: -144, -6.93), total triglyceride-rich lipoprotein particles (TRL-P) (-20.4 nmol/L; 95% CI: -33.8, -7.03), large (-1.47 nmol/L; 95% CI: -2.69, -0.26) and small (-11.3 nmol/L; 95% CI: -22.4, -0.27) TRL-P and the LP-IR (-4.42 points; 95% CI: -8.14, -0.69), and greater increases from baseline in the concentration of large high-density lipoprotein particles (0.35 μmol/L; 95% CI: 0.07, 0.63) compared with the usual diet group. CONCLUSIONS Incorporating 57 g/d of pecans into the diet in place of usual snacks for 12 wk improved apoB, atherogenic lipoprotein subfractions, and the LP-IR in adults at risk of cardiometabolic diseases. This trial was registered at clinicaltrials.gov as NCT05071807.
Collapse
Affiliation(s)
- Tricia L Hart
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States
| | - Kristina S Petersen
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
2
|
Akcan T, Kraemer FB. HDL meets triglyceride. J Lipid Res 2025; 66:100796. [PMID: 40189208 DOI: 10.1016/j.jlr.2025.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
The study by Liu et al in this issue of the Journal of Lipid Research leverages data from the UK Biobank to explore the impact of HDL-TG on atherosclerotic cardiovascular disease risk. The investigators observed that elevated serum triglyceride levels were associated with reduced HDL particle diameter and with increased HDL-TG. Using observational and Mendelian randomization analyses, HDL-TG levels were independently associated with atherosclerotic cardiovascular disease risk even after adjusting for multiple confounders and other risk factors. The results emphasize the need for a broader evaluation of lipid parameters that extends beyond traditional measurements and suggest that incorporating metrics like HDL-TG could enhance risk stratification.
Collapse
Affiliation(s)
- Tugce Akcan
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, USA
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
3
|
Yang M, Wei Y, Wang Y, Liu J, Wang G. TSH is independently associated with remnant cholesterol in euthyroid adults: a cross-sectional study based on 29,708 individuals. Hormones (Athens) 2025; 24:231-239. [PMID: 39215946 DOI: 10.1007/s42000-024-00596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The study aims to investigate the relationship between thyroid-stimulating hormone (TSH) and remnant cholesterol (RC) in euthyroid adults. METHODS The adults who were recruited for the study had undergone physical examination at Beijing Chao-Yang Hospital. High RC levels were defined as the upper quartile of RC levels in males and females, respectively. The relationship between TSH and RC was assessed using the logistic and linear regression models. RESULTS A total of 29,708 adults (14,347 males and 15,361 females) were enrolled in this study. RC ≥ 0.77 mmol/L in males and RC ≥ 0.60 mmol/L in females were defined as high RC levels. With increasing serum TSH levels, the percentage of adults with high RC levels increased. The odds ratios (ORs (95% confidence intervals (CIs)) for high RC levels increased as TSH quartiles (Q) rose after full adjustments [males: Q2 1.11 (1.00-1.24), P < 0.05; Q3 1.03 (0.92-1.15), P > 0.05; Q4 1.25 (1.12-1.40), P < 0.001; and females: Q2 1.07 (0.96-1.20), P > 0.05; Q3 1.17 (1.05-1.31), P < 0.01, Q4 1.33 (1.20-1.48), P < 0.001, all P for trend < 0.001], using Q1 as the reference. CONCLUSION Higher TSH levels were independently associated with higher RC levels in euthyroid adults, this underscoring the significance of regulating TSH levels appropriately.
Collapse
Affiliation(s)
- Mengge Yang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Wei
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ying Wang
- Physical Examination Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
4
|
Liu K, Cooper ME, Chai Z, Liu F. High-Density Lipoprotein in Patients with Diabetic Kidney Disease: Friend or Foe? Int J Mol Sci 2025; 26:1683. [PMID: 40004147 PMCID: PMC11855193 DOI: 10.3390/ijms26041683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
High-density lipoprotein (HDL) exhibits multiple metabolic protective functions, such as facilitating cellular cholesterol efflux, antioxidant, anti-inflammatory, anti-apoptotic and anti-thrombotic properties, showing antidiabetic and renoprotective potential. Diabetic kidney disease (DKD) is considered to be associated with high-density lipoprotein cholesterol (HDL-C). The hyperglycemic environment, non-enzymatic glycosylation, carbamylation, oxidative stress and systemic inflammation can cause changes in the quantity and quality of HDL, resulting in reduced HDL levels and abnormal function. Dysfunctional HDL can also have a negative impact on pancreatic β cells and kidney cells, leading to the progression of DKD. Based on these findings, new HDL-related DKD risk predictors have gradually been proposed. Interventions aiming to improve HDL levels and function, such as infusion of recombinant HDL (rHDL) or lipid-poor apolipoprotein A-I (apoA-I), can significantly improve glycemic control and also show renal protective effects. However, recent studies have revealed a U-shaped relationship between HDL-C levels and DKD, and the loss of protective properties of high levels of HDL may be related to changes in composition and the deposition of dysfunctional particles that exacerbate damage. Further research is needed to fully elucidate the complex role of HDL in DKD. Given the important role of HDL in metabolic health, developing HDL-based therapies that augment HDL function, rather than simply increasing its level, is a critical step in managing the development and progression of DKD.
Collapse
Affiliation(s)
- Ke Liu
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Diabetic Kidney Disease, Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mark E. Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | - Zhonglin Chai
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | - Fang Liu
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Diabetic Kidney Disease, Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Lin KH, Vilar-Gomez E, Corey KE, Connelly MA, Gupta SK, Lake JE, Chalasani N, Gawrieh S. MASLD in persons with HIV is associated with high cardiometabolic risk as evidenced by altered advanced lipoprotein profiles and targeted metabolomics. Lipids Health Dis 2024; 23:339. [PMID: 39420356 PMCID: PMC11484191 DOI: 10.1186/s12944-024-02317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Metabolic dysfunction associated steatotic liver disease (MASLD) is associated with increased cardiovascular disease (CVD) risk in persons with HIV (PWH). The lipidomic and metabolomic alterations contributing to this risk are poorly understood. We aimed to characterize the advanced lipoprotein and targeted metabolomic profiles in PWH and assess if the presence and severity of MASLD influence these profiles. METHODS This is a cross-sectional analysis of a prospectively enrolled multicenter cohort. PWH without alcohol abuse or known liver disease underwent vibration-controlled transient elastography for controlled attenuation parameter (CAP) and liver stiffness measurement (LSM). Lipidomic and metabolomic profiling was undertaken with nuclear magnetic resonance (NMR) spectroscopy. Hepatic steatosis was defined as CAP ≥ 263 dB/m and clinically significant fibrosis (CSF) as LSM ≥ 8 kPa. Logistic regression models assessed associations between MASLD, CSF and lipidomic and metabolic parameters. RESULTS Of 190 participants (71% cisgender male, 96% on antiretroviral therapy), 58% had MASLD and 12% CSF. Mean (SD) age was 48.9 (12.1) years and body mass index (BMI) 29.9 (6.4) kg/m2. Compared to PWH without MASLD (controls), PWH with MASLD had lower HDL-C but higher total triglyceride, VLDL-C, branched-chain amino acids, GlycA, trimethylamine N-oxide levels, Lipoprotein-Insulin Resistance and Diabetes Risk Indices. There were no significant differences in these parameters between participants with MASLD with or without CSF. In a multivariable regression analysis, MASLD was independently associated with changes in most of these parameters after adjustment for age, gender, race/ethnicity, type 2 diabetes mellitus, BMI, and lipid lowering medications use. CONCLUSIONS MASLD in PWH is independently associated with altered advanced lipoprotein and targeted metabolic profiles, indicating a higher CVD risk in this population.
Collapse
Affiliation(s)
- Kung-Hung Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indianapolis, IN, 46202, USA
| | - Eduardo Vilar-Gomez
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indianapolis, IN, 46202, USA
| | - Kathleen E Corey
- Division of Gastroenterology, Department of Medicine, Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Samir K Gupta
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jordan E Lake
- Division of Infectious Diseases, Department of Medicine, UTHealth Science Center at Houston, Houston, TX, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indianapolis, IN, 46202, USA
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Gong S, Jin J, Mao J, Li H, Mo Y, Zhou Q, Gan S. Plasma atherogenicity index is a powerful indicator for identifying metabolic syndrome in adults with type 2 diabetes mellitus: A cross-sectional study. Medicine (Baltimore) 2024; 103:e39792. [PMID: 39331941 PMCID: PMC11441968 DOI: 10.1097/md.0000000000039792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/30/2024] [Indexed: 09/29/2024] Open
Abstract
Metabolic syndrome (MetS) is an important risk factor for atherosclerotic cardiovascular disease (ASCVD). Elevated triglyceride (TG) levels and decreased high-density lipoprotein levels (HDL-C) are predisposing factors for the development of ASCVD. Evidence on the association between atherosclerotic index of plasma [AIP = log (TG/HDL-C)] and MetS is limited. Our study aimed to investigate the association between AIP and MetS. This is a cross-sectional study that determines the presence of MetS by assessing anthropometric and biochemical parameters. Multivariate log-binomial regression models were used to analyze the relationship between AIP and MetS risk. To further test the stability of the results, we performed sensitivity analyses in young, non-obese, and normal lipid population. Smoothing plots explored the potential nonlinear relationship between the AIP index for MetS and the estimated potential risk threshold. Predictive power of AIP for MetS using respondent operating characteristic (ROC) curves. The prevalence of MetS was 67.35%. Multivariate logistic regression analysis showed an independent and positive association between AIP and MetS (Per 1 SD increase, PR = 1.31, 95% CI: 1.15-1.47). Sensitivity analysis demonstrated the stability of the results. Smoothing plot showed a nonlinear relationship between AIP and MetS, with an inflection point of 0.66. ROC curve analysis, AIP was an accurate indicator for assessing MetS in type 2 diabetics (AUC = 0.840, 95% CI: 0.819-0.862). AIP is a stable and independently powerful predictor of MetS in T2DM patients. AIP can be used as a simple assessment tool for the early detection of MetS and disease management for the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Shijun Gong
- Department of Ultrasound, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Jing Jin
- Department of Endocrinology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Jing Mao
- Department of Science and Education, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Heng Li
- Department of Ultrasound, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - YePing Mo
- Department of Ultrasound, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Quan Zhou
- Department of Science and Education, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| | - Shenglian Gan
- Department of Endocrinology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, China
| |
Collapse
|
7
|
Klobučar I, Habisch H, Klobučar L, Trbušić M, Pregartner G, Berghold A, Kostner GM, Scharnagl H, Madl T, Frank S, Degoricija V. Sex-Related Differences in the Associations between Adiponectin and Serum Lipoproteins in Healthy Subjects and Patients with Metabolic Syndrome. Biomedicines 2024; 12:1972. [PMID: 39335486 PMCID: PMC11429094 DOI: 10.3390/biomedicines12091972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
The strong associations between the serum levels of adiponectin and the lipoprotein subclasses observed in healthy subjects are much weaker in patients with metabolic syndrome (MS). However, the impact of sex on these associations remained unexplored. Therefore, in the present study, we examined associations between adiponectin and the lipoprotein subclasses, analyzed by nuclear magnetic resonance spectroscopy, separately in healthy females and males, as well as in females and males with MS. We observed negative correlations between adiponectin and VLDL, IDL, and small-dense LDL in healthy males, but neither in healthy females nor in females or males with MS. Additionally, adiponectin was positively correlated with some HDL subclasses in healthy males and females with MS, but not in healthy females or males with MS. Adjusting for age and either body mass index, waist circumference, C-reactive protein, or interleukin-6 weakened the associations between adiponectin and VLDL and IDL but not small-dense LDL. The adjustment weakened the associations between adiponectin and HDL in healthy males but not in females with MS. Based on our results, we conclude that sex and the presence of MS are strong determinants of the associations between adiponectin and serum lipoproteins and that the complex regulatory network comprising adiponectin and other molecular players involved in the regulation of lipoprotein metabolism is primarily operative in healthy males and females with MS.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
| | - Lucija Klobučar
- Department of Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia;
| | - Matias Trbušić
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics, and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics, and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Gerhard M. Kostner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria;
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria;
| | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria;
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Zhang X, van der Vorst EPC. High-Density Lipoprotein Modifications: Causes and Functional Consequences in Type 2 Diabetes Mellitus. Cells 2024; 13:1113. [PMID: 38994965 PMCID: PMC11240616 DOI: 10.3390/cells13131113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024] Open
Abstract
High-density lipoprotein (HDL) is a group of small, dense, and protein-rich lipoproteins that play a role in cholesterol metabolism and various cellular processes. Decreased levels of HDL and HDL dysfunction are commonly observed in individuals with type 2 diabetes mellitus (T2DM), which is also associated with an increased risk for cardiovascular disease (CVD). Due to hyperglycemia, oxidative stress, and inflammation that develop in T2DM, HDL undergoes several post-translational modifications such as glycation, oxidation, and carbamylation, as well as other alterations in its lipid and protein composition. It is increasingly recognized that the generation of HDL modifications in T2DM seems to be the main cause of HDL dysfunction and may in turn influence the development and progression of T2DM and its related cardiovascular complications. This review provides a general introduction to HDL structure and function and summarizes the main modifications of HDL that occur in T2DM. Furthermore, the potential impact of HDL modifications on the pathogenesis of T2DM and CVD, based on the altered interactions between modified HDL and various cell types that are involved in glucose homeostasis and atherosclerotic plaque generation, will be discussed. In addition, some perspectives for future research regarding the T2DM-related HDL modifications are addressed.
Collapse
Affiliation(s)
- Xiaodi Zhang
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
9
|
Bouchard J, Raj P, Yu L, Sobhi B, Malalgoda M, Malunga L, Netticadan T, Joseph Thandapilly S. Oat protein modulates cholesterol metabolism and improves cardiac systolic function in high fat, high sucrose fed rats. Appl Physiol Nutr Metab 2024; 49:738-750. [PMID: 38477294 DOI: 10.1139/apnm-2023-0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Oats are recognized to provide many health benefits that are mainly associated with its dietary fibre, β-glucan. However, the protein derived from oats is largely understudied with respect to its ability to maintain health and attenuate risk factors of chronic diseases. The goal of the current study was to investigate the metabolic effects of oat protein consumption in lieu of casein as the protein source in high fat, high sucrose (HF/HS) fed Wistar rats. Four-week-old rats were divided into three groups and were fed three different experimental diets: a control diet with casein as the protein source, an HF/HS diet with casein, or an HF/HS diet with oat protein for 16 weeks. Heart structure and function were determined by echocardiography. Blood pressure measurements, an oral glucose tolerance test, and markers of cholesterol metabolism, oxidative stress, inflammation, and liver and kidney damage were also performed. Our study results show that incorporation of oat protein in the diet was effective in preserving systolic heart function in HF/HS fed rats. Oat protein significantly reduced serum total and low-density lipoprotein cholesterol levels. Furthermore, oat protein normalized liver HMG-CoAR activity, which, to our knowledge, is the first time this has been reported in the literature. Therefore, our research suggests that oat protein can provide hypocholesterolemic and cardioprotective benefits in a diet-induced model of metabolic syndrome.
Collapse
Affiliation(s)
- Jenny Bouchard
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Pema Raj
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
| | - Liping Yu
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
| | - Babak Sobhi
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
| | - Maneka Malalgoda
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lovemore Malunga
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Thomas Netticadan
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Sijo Joseph Thandapilly
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, Winnipeg, MB R2H 2A6, Canada
- Richardson Center for Food Technology and Research, Winnipeg, MB R3T 2N2, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
10
|
Yi M, Toribio AJ, Salem YM, Alexander M, Ferrey A, Swentek L, Tantisattamo E, Ichii H. Nrf2 Signaling Pathway as a Key to Treatment for Diabetic Dyslipidemia and Atherosclerosis. Int J Mol Sci 2024; 25:5831. [PMID: 38892018 PMCID: PMC11172493 DOI: 10.3390/ijms25115831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic endocrine disorder that affects more than 20 million people in the United States. DM-related complications affect multiple organ systems and are a significant cause of morbidity and mortality among people with DM. Of the numerous acute and chronic complications, atherosclerosis due to diabetic dyslipidemia is a condition that can lead to many life-threatening diseases, such as stroke, coronary artery disease, and myocardial infarction. The nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway is an emerging antioxidative pathway and a promising target for the treatment of DM and its complications. This review aims to explore the Nrf2 pathway's role in combating diabetic dyslipidemia. We will explore risk factors for diabetic dyslipidemia at a cellular level and aim to elucidate how the Nrf2 pathway becomes a potential therapeutic target for DM-related atherosclerosis.
Collapse
Affiliation(s)
- Michelle Yi
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Arvin John Toribio
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Yusuf Muhammad Salem
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Antoney Ferrey
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Lourdes Swentek
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| | - Ekamol Tantisattamo
- Department of Medicine, University of California Irvine, Irvine, CA 92697, USA; (A.F.); (E.T.)
| | - Hirohito Ichii
- Department of Surgery, University of California Irvine, Irvine, CA 92697, USA; (M.Y.); (A.J.T.); (Y.M.S.); (M.A.); (L.S.)
| |
Collapse
|
11
|
Klobučar I, Habisch H, Klobučar L, Trbušić M, Pregartner G, Berghold A, Kostner GM, Scharnagl H, Madl T, Frank S, Degoricija V. Serum Levels of Adiponectin Are Strongly Associated with Lipoprotein Subclasses in Healthy Volunteers but Not in Patients with Metabolic Syndrome. Int J Mol Sci 2024; 25:5050. [PMID: 38732266 PMCID: PMC11084877 DOI: 10.3390/ijms25095050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Metabolic syndrome (MS) is a widespread disease in developed countries, accompanied, among others, by decreased adiponectin serum levels and perturbed lipoprotein metabolism. The associations between the serum levels of adiponectin and lipoproteins have been extensively studied in the past under healthy conditions, yet it remains unexplored whether the observed associations also exist in patients with MS. Therefore, in the present study, we analyzed the serum levels of lipoprotein subclasses using nuclear magnetic resonance spectroscopy and examined their associations with the serum levels of adiponectin in patients with MS in comparison with healthy volunteers (HVs). In the HVs, the serum levels of adiponectin were significantly negatively correlated with the serum levels of large buoyant-, very-low-density lipoprotein, and intermediate-density lipoprotein, as well as small dense low-density lipoprotein (LDL) and significantly positively correlated with large buoyant high-density lipoprotein (HDL). In patients with MS, however, adiponectin was only significantly correlated with the serum levels of phospholipids in total HDL and large buoyant LDL. As revealed through logistic regression and orthogonal partial least-squares discriminant analyses, high adiponectin serum levels were associated with low levels of small dense LDL and high levels of large buoyant HDL in the HVs as well as high levels of large buoyant LDL and total HDL in patients with MS. We conclude that the presence of MS weakens or abolishes the strong associations between adiponectin and the lipoprotein parameters observed in HVs and disturbs the complex interplay between adiponectin and lipoprotein metabolism.
Collapse
Affiliation(s)
- Iva Klobučar
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
| | - Hansjörg Habisch
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
| | - Lucija Klobučar
- Department of Medicine, University Hospital Centre Osijek, 31000 Osijek, Croatia;
| | - Matias Trbušić
- Department of Cardiology, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia; (I.K.); (M.T.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics, and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Andrea Berghold
- Institute for Medical Informatics, Statistics, and Documentation, Medical University of Graz, 8036 Graz, Austria; (G.P.); (A.B.)
| | - Gerhard M. Kostner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria;
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036 Graz, Austria;
| | - Tobias Madl
- Otto Loewi Research Center, Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria; (H.H.); (T.M.)
- BioTechMed-Graz, 8010 Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria;
- BioTechMed-Graz, 8010 Graz, Austria
| | - Vesna Degoricija
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
- Department of Medicine, Sisters of Charity University Hospital Centre, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Kirwan R, Mazidi M, Butler T, Perez de Heredia F, Lip GYH, Davies IG. The association of appendicular lean mass and grip strength with low-density lipoprotein, very low-density lipoprotein, and high-density lipoprotein particle diameter: a Mendelian randomization study of the UK Biobank cohort. EUROPEAN HEART JOURNAL OPEN 2024; 4:oeae019. [PMID: 38595990 PMCID: PMC11003544 DOI: 10.1093/ehjopen/oeae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Aims Reduced muscle mass and reduced strength are frequently associated with both alterations in blood lipids and poorer cardiometabolic outcomes in epidemiological studies; however, a causal association cannot be determined from such observations. Two-sample Mendelian randomization (MR) was applied to assess the association of genetically determined appendicular lean mass (ALM) and handgrip strength (HGS) with serum lipid particle diameter. Methods and results Mendelian randomization was implemented using summary-level data from the largest genome-wide association studies on ALM (n = 450 243), HGS (n = 223 315), and lipoprotein [low-density lipoprotein (LDL), very LDL (VLDL), and high-density lipoprotein (HDL)] particle diameters (n = 115 078). Inverse variance-weighted (IVW) method was used to calculate the causal estimates. Weighted median-based method, MR-Egger, and leave-one-out method were applied as sensitivity analysis. Greater ALM had a statistically significant positive effect on HDL particle diameter (MR-Egger: β = 0.055, SE = 0.031, P = 0.081; IVW: β = 0.068, SE = 0.014, P < 0.001) and a statistically significant negative effect on VLDL particle diameter (MR-Egger: β = -0.114, SE = 0.039, P = 0.003; IVW: β = -0.081, SE = 0.017, P < 0.001). Similarly, greater HGS had a statistically significant positive effect on HDL particle diameter (MR-Egger: β = 0.433, SE = 0.184, P = 0.019; IVW: β = 0.121, SE = 0.052, P = 0.021) and a statistically significant negative effect on VLDL particle diameter (MR-Egger: β = -0.416, SE = 0.163, P = 0.011; IVW: β = -0.122, SE = 0.046, P = 0.009). There was no statistically significant effect of either ALM or HGS on LDL particle diameter. Conclusion There were potentially causal associations between both increasing ALM and HGS and increasing HDL particle size and decreasing VLDL particle size. These causal associations may offer possibilities for interventions aimed at improving cardiovascular disease risk profile.
Collapse
Affiliation(s)
- Richard Kirwan
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK
| | - Mohsen Mazidi
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK
- Clinical Trial Service Unit, Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Old Road Campus, Roosevelt Dr., Doll Bldg, Oxford, OX3 7LF, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Tom Butler
- School of Applied Health and Social Care and Social Work, Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, UK
| | - Fatima Perez de Heredia
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University, Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
13
|
Abdel-Moneim A, Mahmoud R, Allam G, Mahmoud B. Relationship between Cytokines and Metabolic Syndrome Components: Role of Pancreatic-Derived Factor, Interleukin-37, and Tumor Necrosis Factor-α in Metabolic Syndrome Patients. Indian J Clin Biochem 2024; 39:37-46. [PMID: 38223016 PMCID: PMC10784435 DOI: 10.1007/s12291-022-01079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/21/2022] [Indexed: 10/14/2022]
Abstract
The metabolic syndrome (MetS) is a serious public health issue that affects people all over the world. Notably, insulin resistance, prothrombotic activity, and inflammatory state are associated with MetS. This study aims to explore the relationship between cytokines and tumor necrosis factor-α (TNF-α), pancreatic-derived factor (PANDER), and interleukin (IL-)-37 and the accumulation of MetS components. Eligible participants were divided into four groups as follows: group 1, patients with dyslipidemia; group 2, patients with dyslipidemia and obesity; group 3, patients with dyslipidemia, obesity, and hypertension; and group 4, patients with dyslipidemia, obesity, hypertension, and hyperglycemia. This study exhibited that serum levels of TNF-α and PANDER were significantly elevated (P < 0.001) in the MetS groups, while IL-37 level and IL-37 mRNA expression were significantly decreased (P < 0.001) relative to healthy controls. Moreover, this study has revealed significant correlations (P < 0.001) between MetS components and TNF-α, PANDER, and IL-37 levels in MetS patients. The aforementioned results suggested the association between the proinflammatory cytokine (TNF-α and PANDER) and anti-inflammatory cytokine (IL-37) with the accumulation of MetS components. Hence, the overall outcome indicated that PANDER and IL-37 may be considered novel biomarkers associated with increased risk of MetS and can be used as a promising therapeutic target in preventing, ameliorating, and treating metabolic disorders. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01079-z.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt. Salah Salem St, 62511 Beni-Suef, Egypt
| | - Rania Mahmoud
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gamal Allam
- Immunology Section, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Basant Mahmoud
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
14
|
Rotllan N, Julve J, Escolà-Gil JC. Type 2 Diabetes and HDL Dysfunction: A Key Contributor to Glycemic Control. Curr Med Chem 2024; 31:280-285. [PMID: 36722477 DOI: 10.2174/0929867330666230201124125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 02/02/2023]
Abstract
High-density lipoproteins (HDL) have been shown to exert multiple cardioprotective and antidiabetic functions, such as their ability to promote cellular cholesterol efflux and their antioxidant, anti-inflammatory, and antiapoptotic properties. Type 2 diabetes (T2D) is usually associated with low high-density lipoprotein cholesterol (HDL-C) levels as well as with significant alterations in the HDL composition, thereby impairing its main functions. HDL dysfunction also negatively impacts both pancreatic β-cell function and skeletal muscle insulin sensitivity, perpetuating this adverse self-feeding cycle. The impairment of these pathways is partly dependent on cellular ATP-binding cassette transporter (ABC) A1-mediated efflux to lipid-poor apolipoprotein (apo) A-I in the extracellular space. In line with these findings, experimental interventions aimed at improving HDL functions, such as infusions of synthetic HDL or lipid-poor apoA-I, significantly improved glycemic control in T2D patients and experimental models of the disease. Cholesteryl ester transfer protein (CETP) inhibitors are specific drugs designed to increase HDLC and HDL functions. Posthoc analyses of large clinical trials with CETP inhibitors have demonstrated their potential anti-diabetic properties. Research on HDL functionality and HDL-based therapies could be a crucial step toward improved glycemic control in T2D subjects.
Collapse
Affiliation(s)
- Noemi Rotllan
- Institut de recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Julve
- Institut de recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Carles Escolà-Gil
- Institut de recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Yuan C, Jing P, Jian Z, Wei X. Association between urinary sodium and circulating lipid levels: a Mendelian randomization study. Front Endocrinol (Lausanne) 2023; 14:1189473. [PMID: 38093964 PMCID: PMC10716694 DOI: 10.3389/fendo.2023.1189473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Background Urinary sodium was indicated to be associated with dyslipidemia, but inconsistent conclusions for this association exist across the present observational studies. Objectives This study aimed to evaluate the causal association between urinary sodium and circulating lipid levels [low-density lipoprotein cholesterol (LDL-C), triglycerides, and high-density lipoprotein cholesterol (HDL-C)] through Mendelian randomization. Methods Univariable Mendelian randomization (UVMR) and multivariable Mendelian randomization (MVMR) with pleiotropy-resistant methods were performed. Data for urinary sodium were obtained from the genome-wide association study (GWAS) from 446,237 European individuals. Data for lipid profiles were extracted from GWAS based on the UK Biobank (for the discovery analysis) and the Global Lipids Genetics Consortium (for the replication analysis). Results In the discovery analysis, UVMR provided evidence that per 1-unit log-transformed genetically increased urinary sodium was associated with a lower level of HDL-C level (beta = -0.32; 95% CI: -0.43, -0.20; p = 7.25E-08), but not with LDL-C and triglycerides. This effect was still significant in the further MVMR when considering the effect of BMI or the other two lipid contents. In contrast, higher genetically predicted triglycerides could increase urinary sodium in both UVMR (beta = 0.030; 95% CI: 0.020, -0.039; p = 2.12E-10) and MVMR analyses (beta = 0.029; 95% CI: 0.019, 0.037; p = 8.13E-10). Similar results between triglycerides and urinary sodium were found in the replication analysis. Conclusion Increased urinary sodium may have weak causal effects on decreased circulating HDL-C levels. Furthermore, genetically higher triglyceride levels may have independent causal effects on increased urinary sodium excretion.
Collapse
Affiliation(s)
- Chi Yuan
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| | - Peijia Jing
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhongyu Jian
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, China
| | - Xin Wei
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Elmileegy IMH, Waly HSA, Alghriany AAI, Abou Khalil NS, Mahmoud SMM, Negm EA. Gallic acid rescues uranyl acetate induced-hepatic dysfunction in rats by its antioxidant and cytoprotective potentials. BMC Complement Med Ther 2023; 23:423. [PMID: 37993853 PMCID: PMC10664358 DOI: 10.1186/s12906-023-04250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The liver was identified as a primary target organ for the chemo-radiological effects of uranyl acetate (UA). Although the anti-oxidant and anti-apoptotic properties of gallic acid (GA) make it a promising phytochemical to resist its hazards, there is no available data in this area of research. METHODS To address this issue, eighteen rats were randomly and equally divided into three groups. One group was received carboxymethyl cellulose (vehicle of GA) and kept as a control. The UA group was injected intraperitoneally with UA at a single dose of 5 mg/kg body weight. The third group (GA + UA group) was treated with GA orally at a dose of 100 mg/kg body weight for 14 days before UA exposure. UA was injected on the 15th day of the experiment in either the UA group or the GA + UA group. The biochemical, histological, and immunohistochemical findings in the GA + UA group were compared to both control and UA groups. RESULTS The results showed that UA exposure led to a range of adverse effects. These included elevated plasma levels of aspartate aminotransferase, lactate dehydrogenase, total protein, globulin, glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and very-low-density lipoprotein and decreased plasma levels of high-density lipoprotein cholesterol. The exposure also disrupted the redox balance, evident through decreased plasma total antioxidant capacity and hepatic nitric oxide, superoxide dismutase, reduced glutathione, glutathione-S-transferase, glutathione reductase, and glutathione peroxidase and increased hepatic oxidized glutathione and malondialdehyde. Plasma levels of albumin and alanine aminotransferase did not significantly change in all groups. Histopathological analysis revealed damage to liver tissue, characterized by deteriorations in tissue structure, excessive collagen accumulation, and depletion of glycogen. Furthermore, UA exposure up-regulated the immuno-expression of cleaved caspase-3 and down-regulated the immuno-expression of nuclear factor-erythroid-2-related factor 2 in hepatic tissues, indicating an induction of apoptosis and oxidative stress response. However, the pre-treatment with GA proved to be effective in mitigating these negative effects induced by UA exposure, except for the disturbances in the lipid profile. CONCLUSIONS The study suggests that GA has the potential to act as a protective agent against the adverse effects of UA exposure on the liver. Its ability to restore redox balance and inhibit apoptosis makes it a promising candidate for countering the harmful effects of chemo-radiological agents such as UA.
Collapse
Affiliation(s)
- Ibtisam M H Elmileegy
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Hanan S A Waly
- Laboratory of Physiology, Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut, Egypt
| | | | - Nasser S Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt.
- Department of Basic Medical Sciences, Faculty of Physical Therapy, Merit University, Sohag, Egypt.
| | - Sara M M Mahmoud
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Eman A Negm
- Department of Physiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| |
Collapse
|
17
|
Lőrincz H, Csiha S, Ratku B, Somodi S, Sztanek F, Seres I, Paragh G, Harangi M. Gender-Dependent Associations between Serum Betatrophin Levels and Lipoprotein Subfractions in Diabetic and Nondiabetic Obese Patients. Int J Mol Sci 2023; 24:16504. [PMID: 38003693 PMCID: PMC10671489 DOI: 10.3390/ijms242216504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Betatrophin, also known as angiopoietin-like protein 8 (ANGPTL8), mainly plays a role in lipid metabolism. To date, associations between betatrophin and lipoprotein subfractions are poorly investigated. For this study, 50 obese patients with type 2 diabetes (T2D) and 70 nondiabetic obese (NDO) subjects matched in gender, age, and body mass index (BMI) as well as 49 gender- and age-matched healthy, normal-weight controls were enrolled. Serum betatrophin levels were measured with ELISA, and lipoprotein subfractions were analyzed using Lipoprint gel electrophoresis. Betatrophin concentrations were found to be significantly higher in the T2D and NDO groups compared to the controls in all subjects and in females, but not in males. We found significant positive correlations between triglyceride, very low density lipoprotein (VLDL), large LDL (low density lipoprotein), small LDL, high density lipoprotein (HDL) -6-10 subfractions, and betatrophin, while negative correlations were detected between betatrophin and IDL, mean LDL size, and HDL-1-5. Proportion of small HDL was the best predictor of betatrophin in all subjects. Small LDL and large HDL subfractions were found to be the best predictors in females, while in males, VLDL was found to be the best predictor of betatrophin. Our results underline the significance of serum betatrophin measurement in the cardiovascular risk assessment of obese patients with and without T2D, but gender differences might be taken into consideration.
Collapse
Affiliation(s)
- Hajnalka Lőrincz
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Sára Csiha
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Balázs Ratku
- Doctoral School of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Sándor Somodi
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ferenc Sztanek
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ildikó Seres
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
18
|
Kim S, Lee JW, Lee Y, Song Y, Linton JA. Association between triglyceride-glucose index and low-density lipoprotein particle size in korean obese adults. Lipids Health Dis 2023; 22:94. [PMID: 37403101 DOI: 10.1186/s12944-023-01857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Small dense low-density lipoprotein cholesterol (sdLDL-C) is the lipoprotein marker among the various lipoproteins that is most strongly related to atherosclerosis. Insulin resistance (IR) can alter lipid metabolism, and sdLDL-C is characteristic of diabetic dyslipidemia. Therefore, this study sought to inspect the relationship between the triglyceride-glucose (TyG) index and mean low-density lipoprotein (LDL) particle size. METHODS In this study, a total of 128 adults participated. The correlation coefficients between various lipoproteins and the TyG index were compared using Steiger's Z test and the Spearman correlation. The independent link between the TyG index and mean LDL particle size was demonstrated by multiple linear regression analysis. To identify the TyG index cutoff value for the predominance of sdLDL particles, receiver operating characteristic curves were plotted. RESULTS Mean LDL particle size correlated more strongly with the TyG index than did very low-density lipoprotein, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Regression analysis demonstrated that mean LDL particle size had a strong association with the TyG index (β coefficient = -0.038, P-value < 0.001). The TyG index optimal cutoff value for sdLDL particle predominance and the corresponding area under the curve (standard error: 0.028, 95% confidence interval: 0.842-0.952) were 8.72 and 0.897, respectively, which were close to the cutoff value of diabetes risk in Koreans. CONCLUSIONS Mean LDL particle size is more strongly correlated with the TyG index than do other lipid parameters. After correcting for confounding variables, mean LDL particle size is independently linked with the TyG index. The study indicates that the TyG index is strongly related to atherogenic sdLDL particles predominance.
Collapse
Affiliation(s)
- Sanghoon Kim
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ji-Won Lee
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, 06237, Republic of Korea
| | - Yaeji Lee
- Department of Biostatistics and Computing, Yonsei University, Seoul, 03722, Republic of Korea
| | - Youhyun Song
- Healthcare Research Team, Health Promotion Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea.
| | - John A Linton
- Department of Family Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- International Health Care Center, Severance Hospital, Yonsei University Health System, Seoul, 03722, Republic of Korea.
| |
Collapse
|
19
|
Laupsa-Borge J, Grytten E, Bohov P, Bjørndal B, Strand E, Skorve J, Nordrehaug JE, Berge RK, Rostrup E, Mellgren G, Dankel SN, Nygård OK. Sex-specific responses in glucose-insulin homeostasis and lipoprotein-lipid components after high-dose supplementation with marine n-3 PUFAs in abdominal obesity: a randomized double-blind crossover study. Front Nutr 2023; 10:1020678. [PMID: 37404855 PMCID: PMC10315503 DOI: 10.3389/fnut.2023.1020678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Background Clinical studies on effects of marine-derived omega-3 (n-3) polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and the plant-derived omega-6 (n-6) PUFA linoleic acid (LA) on lipoprotein-lipid components and glucose-insulin homeostasis have shown conflicting results, which may partly be explained by differential responses in females and males. However, we have lacked data on sexual dimorphism in the response of cardiometabolic risk markers following increased consumption of n-3 or n-6 PUFAs. Objective To explore sex-specific responses after n-3 (EPA + DHA) or n-6 (LA) PUFA supplementation on circulating lipoprotein subfractions, standard lipids, apolipoproteins, fatty acids in red blood cell membranes, and markers of glycemic control/insulin sensitivity among people with abdominal obesity. Methods This was a randomized double-blind crossover study with two 7-week intervention periods separated by a 9-week washout phase. Females (n = 16) were supplemented with 3 g/d of EPA + DHA (fish oil) or 15 g/d of LA (safflower oil), while males (n = 23) received a dose of 4 g/d of EPA + DHA or 20 g/d of LA. In fasting blood samples, we measured lipoprotein particle subclasses, standard lipids, apolipoproteins, fatty acid profiles, and markers of glycemic control/insulin sensitivity. Results The between-sex difference in relative change scores was significant after n-3 for total high-density lipoproteins (females/males: -11%*/-3.3%, p = 0.036; *: significant within-sex change), high-density lipoprotein particle size (+2.1%*/-0.1%, p = 0.045), and arachidonic acid (-8.3%*/-12%*, p = 0.012), and after n-6 for total (+37%*/+2.1%, p = 0.041) and small very-low-density lipoproteins (+97%*/+14%, p = 0.021), and lipoprotein (a) (-16%*/+0.1%, p = 0.028). Circulating markers of glucose-insulin homeostasis differed significantly after n-3 for glucose (females/males: -2.1%/+3.9%*, p = 0.029), insulin (-31%*/+16%, p < 0.001), insulin C-peptide (-12%*/+13%*, p = 0.001), homeostasis model assessment of insulin resistance index 2 (-12%*/+14%*, p = 0.001) and insulin sensitivity index 2 (+14%*/-12%*, p = 0.001), and quantitative insulin sensitivity check index (+4.9%*/-3.4%*, p < 0.001). Conclusion We found sex-specific responses after high-dose n-3 (but not n-6) supplementation in circulating markers of glycemic control/insulin sensitivity, which improved in females but worsened in males. This may partly be related to the sex differences we observed in several components of the lipoprotein-lipid profile following the n-3 intervention. Clinical trial registration https://clinicaltrials.gov/, identifier [NCT02647333].
Collapse
Affiliation(s)
- Johnny Laupsa-Borge
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elise Grytten
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bodil Bjørndal
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elin Strand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jon Skorve
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Rolf K. Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Espen Rostrup
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Gunnar Mellgren
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Simon N. Dankel
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Research Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar K. Nygård
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
20
|
Zvintzou E, Xepapadaki E, Skroubis G, Mparnia V, Giannatou K, Benabdellah K, Kypreos KE. High-Density Lipoprotein in Metabolic Disorders and Beyond: An Exciting New World Full of Challenges and Opportunities. Pharmaceuticals (Basel) 2023; 16:855. [PMID: 37375802 DOI: 10.3390/ph16060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
High-density lipoprotein (HDL) is an enigmatic member of the plasma lipid and lipoprotein transport system, best known for its ability to promote the reverse cholesterol efflux and the unloading of excess cholesterol from peripheral tissues. More recently, data in experimental mice and humans suggest that HDL may play important novel roles in other physiological processes associated with various metabolic disorders. Important parameters in the HDL functions are its apolipoprotein and lipid content, further reinforcing the principle that HDL structure defines its functionality. Thus, based on current evidence, low levels of HDL-cholesterol (HDL-C) or dysfunctional HDL particles contribute to the development of metabolic diseases such as morbid obesity, type 2 diabetes mellitus, and nonalcoholic fatty liver disease. Interestingly, low levels of HDL-C and dysfunctional HDL particles are observed in patients with multiple myeloma and other types of cancer. Therefore, adjusting HDL-C levels within the optimal range and improving HDL particle functionality is expected to benefit such pathological conditions. The failure of previous clinical trials testing various HDL-C-raising pharmaceuticals does not preclude a significant role for HDL in the treatment of atherosclerosis and related metabolic disorders. Those trials were designed on the principle of "the more the better", ignoring the U-shape relationship between HDL-C levels and morbidity and mortality. Thus, many of these pharmaceuticals should be retested in appropriately designed clinical trials. Novel gene-editing-based pharmaceuticals aiming at altering the apolipoprotein composition of HDL are expected to revolutionize the treatment strategies, improving the functionality of dysfunctional HDL.
Collapse
Affiliation(s)
- Evangelia Zvintzou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - George Skroubis
- Morbid Obesity Unit, Department of Surgery, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Victoria Mparnia
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Katerina Giannatou
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Avda. de la Ilustración 114, 18016 Granada, Spain
| | - Kyriakos E Kypreos
- Department of Pharmacology, School of Medicine, University of Patras, Rio Achaias, 26500 Patras, Greece
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
21
|
Higashi Y. Endothelial Function in Dyslipidemia: Roles of LDL-Cholesterol, HDL-Cholesterol and Triglycerides. Cells 2023; 12:1293. [PMID: 37174693 PMCID: PMC10177132 DOI: 10.3390/cells12091293] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Dyslipidemia is associated with endothelial dysfunction. Endothelial dysfunction is the initial step for atherosclerosis, resulting in cardiovascular complications. It is clinically important to break the process of endothelial dysfunction to cardiovascular complications in patients with dyslipidemia. Lipid-lowering therapy enables the improvement of endothelial function in patients with dyslipidemia. It is likely that the relationships of components of a lipid profile such as low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides with endothelial function are not simple. In this review, we focus on the roles of components of a lipid profile in endothelial function.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 743-8551, Japan; ; Tel.: +81-82-257-5831
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8553, Japan
| |
Collapse
|
22
|
Bonilha I, Luchiari B, Nadruz W, Sposito AC. Very low HDL levels: clinical assessment and management. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:3-18. [PMID: 36651718 PMCID: PMC9983789 DOI: 10.20945/2359-3997000000585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In individuals with very low high-density lipoprotein (HDL-C) cholesterol, such as Tangier disease, LCAT deficiency, and familial hypoalphalipoproteinemia, there is an increased risk of premature atherosclerosis. However, analyzes based on comparisons of populations with small variations in HDL-C mediated by polygenic alterations do not confirm these findings, suggesting that there is an indirect association or heterogeneity in the pathophysiological mechanisms related to the reduction of HDL-C. Trials that evaluated some of the HDL functions demonstrate a more robust degree of association between the HDL system and atherosclerotic risk, but as they were not designed to modify lipoprotein functionality, there is insufficient data to establish a causal relationship. We currently have randomized clinical trials of therapies that increase HDL-C concentration by various mechanisms, and this HDL-C elevation has not independently demonstrated a reduction in the risk of cardiovascular events. Therefore, this evidence shows that (a) measuring HDL-C as a way of estimating HDL-related atheroprotective system function is insufficient and (b) we still do not know how to increase cardiovascular protection with therapies aimed at modifying HDL metabolism. This leads us to a greater effort to understand the mechanisms of molecular action and cellular interaction of HDL, completely abandoning the traditional view focused on the plasma concentration of HDL-C. In this review, we will detail this new understanding and the new horizon for using the HDL system to mitigate residual atherosclerotic risk.
Collapse
Affiliation(s)
- Isabella Bonilha
- Universidade de Campinas (Unicamp), Laboratório de Biologia Vascular e Aterosclerose (AtheroLab), Divisão de Cardiologia, Campinas, SP, Brasil
| | - Beatriz Luchiari
- Universidade de Campinas (Unicamp), Laboratório de Biologia Vascular e Aterosclerose (AtheroLab), Divisão de Cardiologia, Campinas, SP, Brasil
| | - Wilson Nadruz
- Universidade de Campinas (Unicamp), Divisão de Cardiologia, Campinas, SP, Brasil
| | - Andrei C Sposito
- Universidade de Campinas (Unicamp), Laboratório de Biologia Vascular e Aterosclerose (AtheroLab), Divisão de Cardiologia, Campinas, SP, Brasil,
| |
Collapse
|
23
|
Huang R, Cheng Z, Jin X, Yu X, Yu J, Guo Y, Zong L, Sheng J, Liu X, Wang S. Usefulness of four surrogate indexes of insulin resistance in middle-aged population in Hefei, China. Ann Med 2022; 54:622-632. [PMID: 35175162 PMCID: PMC8856080 DOI: 10.1080/07853890.2022.2039956] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Previous study have shown that lipid accumulation product (LAP), visceral adiposity index (VAI), triglyceride/high-density lipoprotein cholesterol ratio (TG/HDL-C) and triglycerides/glucose index (TyG index) could be simple clinical indicators of insulin resistance (IR) based on anthropometric and/or biochemical parameters. However, the rational and preferred surrogate marker of IR in different population has yet to be validated. The aim of this study was evaluating the practicability of the LAP, VAI, TG/HDL-C, and TyG in predicting IR in middle-aged Chinese population. METHODS A cross-sectional study was conducted in 569 Chinese participants (mean age was 48.5; man 67.7%), and each participant completed a questionnaire survey, anthropometric measurement, and biochemical testing. One-way ANOVAs, Chi-squared test, Pearson's correlation, and multiple logistic regression were used to evaluate the association between VAI, LAP, TG/HDL-C, and TyG with IR. To correctly discriminate individuals with insulin resistance, a receiver operating characteristic (ROC) analysis was conducted for each evaluated variable and the overall diagnostic accuracy was quantified using the area under the ROC curve (AUC). The AUC of evaluated variables were compared using a nonparametric approach. The optimal cut-off points were determined by the Youden's index, and the corresponding sensitivity and specificity were provided. RESULTS Significant positive correlation was identified between HOMA-IR with TG/HDL-C (r = 0.306), VAI (r = 0.217), LAP (r = 0.381), and TyG (r = 0.371), respectively (all p < .001). After adjustment for potential confounders of IR, compared with the lowest tertiles, odds ratio (95% CI) having IR in the highest tertiles of TG/HDL-C, VAI, LAP and TyG were 6.07 (2.89-12.71), 10.89 (4.37-27.13), 4.68 (2.00-10.92), and 12.20 (5.04-29.56). The area under ROC curves to predict HOMA-diagnosed IR was 0.773 for TG/HDL-C, 0.767 for VAI, 0.806 for LAP, and 0.800 for TyG, respectively. Among those, LAP showed the greatest value of AUC [0.806 (0.763-0.850)] and highest specificity (0.804). CONCLUSION Compared with other indicators, the LAP and TyG are simple, relatively accurate, clinically available surrogate markers of insulin resistance in middle-aged population in Hefei, China. Among 4 evaluated parameters, the LAP have the highest specificity and the TyG have the highest sensitivity.Key MessagesLAP and TyG could be used as simple and alternative methods to identify the individuals at risk for insulin resistance.LAP and TyG have relatively high predictive ability in diagnosis of IR compared with VAI and TG/HDL-C.No significant difference is observed between LAP and TyG in the ability of predicting insulin resistance.
Collapse
Affiliation(s)
- Rui Huang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Zi Cheng
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xingyi Jin
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xuemin Yu
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jinhui Yu
- School of Public Health, Anhui Medical University, Hefei, China
| | - Yunpeng Guo
- Hongguang Street Community Health Service Center, Hefei, China
| | - Li Zong
- Hongguang Street Community Health Service Center, Hefei, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xing Liu
- Hongguang Street Community Health Service Center, Hefei, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Association between Cholesterol Level and the Risk of Hematologic Malignancy According to Menopausal Status: A Korean Nationwide Cohort Study. Biomedicines 2022; 10:biomedicines10071617. [PMID: 35884921 PMCID: PMC9313203 DOI: 10.3390/biomedicines10071617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 12/05/2022] Open
Abstract
Recent studies have revealed the possible association between serum cholesterol levels and hematologic malignancy (HM). However, limited information is available about how reproductive factors interact with this association. Therefore, we investigated the roles of serum cholesterol in the risk of HM according to the menopausal status. We finally identified 1,189,806 premenopausal and 1,621,604 postmenopausal women who underwent a national health screening program in 2009 using data from the Korean National Health Insurance Service database. Overall, 5449 (0.19%) developed HM. Among postmenopausal women, the inverse associations were observed between total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) levels, and the risk of overall HM. In premenopausal women, the highest quartile of HDL-C was associated with a reduced risk of HM compared with the lowest quartile of HDL-C consistent with results in postmenopausal women (adjusted hazard ratio [aHR] 0.80, 95% confidence interval [CI] [0.68–0.95]), whereas the highest quartile of triglyceride (TG) showed an increased risk of HM compared to the lowest quartile of TG, (aHR 1.22, 95% CI [1.02,1.44]) only in premenopausal women. Our finding suggests that lipid profiles are differently associated with HM risk by menopausal status.
Collapse
|
25
|
Guo X, Huang Z, Chen J, Hu J, Hu D, Peng D, Yu B. ANGPTL3 Is Involved in the Post-prandial Response in Triglyceride-Rich Lipoproteins and HDL Components in Patients With Coronary Artery Disease. Front Cardiovasc Med 2022; 9:913363. [PMID: 35845073 PMCID: PMC9276986 DOI: 10.3389/fcvm.2022.913363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022] Open
Abstract
It is well-established that there exists an inverse relationship between high-density lipoprotein (HDL) cholesterol and triglyceride (TG) levels in the plasma. However, information is lacking on the impact of post-prandial triglyceride-rich lipoproteins (TRLs) on the structure of HDL subclasses in patients with coronary artery disease (CAD). In this study, the data of 49 patients with CAD were analyzed to evaluate dynamic alterations in post-prandial lipid profiles using nuclear magnetic resonance-based methods. An enzyme-linked immunosorbent assay was used to quantify the serum angiopoietin-like protein 3 (ANGPTL3). After glucose supplementation, the expression of hepatic ANGPTL3 was evaluated both in vitro and in vivo. Compared to fasting levels, the post-prandial serum TG level of all participants was considerably increased. Although post-prandial total cholesterol in HDL (HDL-C) remained unchanged, free cholesterol in HDL particles (HDL-FC) was significantly reduced after a meal. Furthermore, the post-prandial decrease in the HDL-FC level corresponded to the increase in remnant cholesterol (RC), indicating the possible exchange of free cholesterol between HDL and TRLs after a meal. Moreover, CAD patients with exaggerated TG response to diet, defined as TG increase >30%, tend to have a greater post-prandial increase of RC and decrease of HDL-FC compared to those with TG increase ≤30%. Mechanistically, the fasting and post-prandial serum ANGPTL3 levels were significantly lower in those with TG increase ≤30% than those with TG increase >30%, suggesting that ANGPTL3, the key lipolysis regulator, may be responsible for the different post-prandial responses of TG, RC, and HDL-FC.
Collapse
Affiliation(s)
- Xin Guo
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Huang
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin Chen
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiarui Hu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Die Hu
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, Research Institute of Blood Lipid and Atherosclerosis, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
26
|
Mocciaro G, D’Amore S, Jenkins B, Kay R, Murgia A, Herrera-Marcos LV, Neun S, Sowton AP, Hall Z, Palma-Duran SA, Palasciano G, Reimann F, Murray A, Suppressa P, Sabbà C, Moschetta A, Koulman A, Griffin JL, Vacca M. Lipidomic Approaches to Study HDL Metabolism in Patients with Central Obesity Diagnosed with Metabolic Syndrome. Int J Mol Sci 2022; 23:6786. [PMID: 35743227 PMCID: PMC9223701 DOI: 10.3390/ijms23126786] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors characterised by central obesity, atherogenic dyslipidaemia, and changes in the circulating lipidome; the underlying mechanisms that lead to this lipid remodelling have only been partially elucidated. This study used an integrated "omics" approach (untargeted whole serum lipidomics, targeted proteomics, and lipoprotein lipidomics) to study lipoprotein remodelling and HDL composition in subjects with central obesity diagnosed with MetS (vs. controls). Compared with healthy subjects, MetS patients showed higher free fatty acids, diglycerides, phosphatidylcholines, and triglycerides, particularly those enriched in products of de novo lipogenesis. On the other hand, the "lysophosphatidylcholines to phosphatidylcholines" and "cholesteryl ester to free cholesterol" ratios were reduced, pointing to a lower activity of lecithin cholesterol acyltransferase (LCAT) in MetS; LCAT activity (directly measured and predicted by lipidomic ratios) was positively correlated with high-density lipoprotein cholesterol (HDL-C) and negatively correlated with body mass index (BMI) and insulin resistance. Moreover, many phosphatidylcholines and sphingomyelins were significantly lower in the HDL of MetS patients and strongly correlated with BMI and clinical metabolic parameters. These results suggest that MetS is associated with an impairment of phospholipid metabolism in HDL, partially led by LCAT, and associated with obesity and underlying insulin resistance. This study proposes a candidate strategy to use integrated "omics" approaches to gain mechanistic insights into lipoprotein remodelling, thus deepening the knowledge regarding the molecular basis of the association between MetS and atherosclerosis.
Collapse
Affiliation(s)
- Gabriele Mocciaro
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
| | - Simona D’Amore
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK;
- Clinica Medica “A. Murri”, “Aldo Moro” University of Bari, 70124 Bari, Italy;
| | - Benjamin Jenkins
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| | - Richard Kay
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| | - Antonio Murgia
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
| | - Luis Vicente Herrera-Marcos
- Department of Biochemistry and Molecular and Cellular Biology, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain;
| | - Stefanie Neun
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
| | - Alice P. Sowton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.P.S.); (A.M.)
| | - Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Susana Alejandra Palma-Duran
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
| | - Giuseppe Palasciano
- Clinica Medica “A. Murri”, “Aldo Moro” University of Bari, 70124 Bari, Italy;
| | - Frank Reimann
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| | - Andrew Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK; (A.P.S.); (A.M.)
| | - Patrizia Suppressa
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
| | - Albert Koulman
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK;
- Rowlett Institute, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Michele Vacca
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK; (G.M.); (A.M.); (S.N.); (Z.H.)
- Department of Interdisciplinary Medicine, Clinica Medica “C. Frugoni”, Aldo Moro University of Bari, 70124 Bari, Italy; (P.S.); (C.S.); (A.M.)
- Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK
- Welcome Trust-MRC Institute of Metabolic Science Metabolic Research Laboratories, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK; (B.J.); (R.K.); (F.R.); (A.K.)
| |
Collapse
|
27
|
Feizi A, Haghighatdoost F, Zakeri P, Aminorroaya A, Amini M. Growth trajectories in lipid profile and fasting blood sugar in prediabetic people over a 16- year follow-up and future risk of type2 diabetes mellitus: A latent growth modeling approach. ALEXANDRIA JOURNAL OF MEDICINE 2022. [DOI: 10.1080/20905068.2022.2062958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fahimeh Haghighatdoost
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parisa Zakeri
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashraf Aminorroaya
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Amini
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Norwitz NG, Soto-Mota A, Kaplan B, Ludwig DS, Budoff M, Kontush A, Feldman D. The Lipid Energy Model: Reimagining Lipoprotein Function in the Context of Carbohydrate-Restricted Diets. Metabolites 2022; 12:metabo12050460. [PMID: 35629964 PMCID: PMC9147253 DOI: 10.3390/metabo12050460] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
When lean people adopt carbohydrate-restricted diets (CRDs), they may develop a lipid profile consisting of elevated LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C) with low triglycerides (TGs). The magnitude of this lipid profile correlates with BMI such that those with lower BMI exhibit larger increases in both LDL-C and HDL-C. The inverse association between BMI and LDL-C and HDL-C change on CRD contributed to the discovery of a subset of individuals—termed Lean Mass Hyper-Responders (LMHR)—who, despite normal pre-diet LDL-C, as compared to non-LMHR (mean levels of 148 and 145 mg/dL, respectively), exhibited a pronounced hyperlipidemic response to a CRD, with mean LDL-C and HDL-C levels increasing to 320 and 99 mg/dL, respectively, in the context of mean TG of 47 mg/dL. In some LMHR, LDL-C levels may be in excess of 500 mg/dL, again, with relatively normal pre-diet LDL-C and absent of genetic findings indicative of familial hypercholesterolemia in those who have been tested. The Lipid Energy Model (LEM) attempts to explain this metabolic phenomenon by positing that, with carbohydrate restriction in lean persons, the increased dependence on fat as a metabolic substrate drives increased hepatic secretion and peripheral uptake of TG contained within very low-density lipoproteins (VLDL) by lipoprotein lipase, resulting in marked elevations of LDL-C and HDL-C, and low TG. Herein, we review the core features of the LEM. We review several existing lines of evidence supporting the model and suggest ways to test the model’s predictions.
Collapse
Affiliation(s)
- Nicholas G. Norwitz
- Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (N.G.N.); (D.F.)
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute for Medical Sciences and Nutrition Salvador Zubiran, Tlalpan, CDMX 14080, Mexico;
| | - Bob Kaplan
- Citizen Science Foundation, Las Vegas, NV 89139, USA;
| | - David S. Ludwig
- Harvard Medical School, Boston, MA 02115, USA;
- New Balance Foundation Obesity Prevention Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Matthew Budoff
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, 75013 Paris, France;
| | - David Feldman
- Citizen Science Foundation, Las Vegas, NV 89139, USA;
- Correspondence: (N.G.N.); (D.F.)
| |
Collapse
|
29
|
Nasr A, Matthews K, Janssen I, Brooks MM, Barinas-Mitchell E, Orchard TJ, Billheimer J, Wang NC, McConnell D, Rader DJ, El Khoudary SR. Associations of Abdominal and Cardiovascular Adipose Tissue Depots With HDL Metrics in Midlife Women: the SWAN Study. J Clin Endocrinol Metab 2022; 107:e2245-e2257. [PMID: 35298649 PMCID: PMC9113818 DOI: 10.1210/clinem/dgac148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 12/14/2022]
Abstract
CONTEXT The menopause transition is accompanied by declines in the atheroprotective features of high-density lipoprotein (HDL), which are linked to deleterious cardiovascular (CV) outcomes. OBJECTIVE This work aimed to assess the relationship between abdominal and CV visceral adipose tissues (VAT) with future HDL metrics in midlife women, and the role of insulin resistance (IR) on these associations. METHODS Temporal associations compared abdominal and CV fat with later measures of HDL metrics. This community-based cohort comprised 299 women, baseline mean age 51.1 years (SD: 2.8 years), 67% White, 33% Black, from the Study of Women's Health Across the Nation (SWAN) HDL ancillary study. Exposures included volumes of abdominal VAT, epicardial AT (EAT), paracardial AT (PAT), or perivascular AT (PVAT). Main outcomes included HDL cholesterol efflux capacity (HDL-CEC); HDL phospholipids (HDL-PL), triglycerides (HDL-Tgs), and cholesterol (HDL-C); apolipoprotein A-I (ApoA-I), and HDL particles (HDL-P) and size. RESULTS In multivariable models, higher abdominal VAT was associated with lower HDL-CEC, HDL-PL, HDL-C, and large HDL-P and smaller HDL size. Higher PAT was associated with lower HDL-PL, HDL-C, and large HDL-P and smaller HDL size. Higher EAT was associated with higher small HDL-P. Higher PVAT volume was associated with lower HDL-CEC. The Homeostatic Model Assessment of Insulin Resistance partially mediated the associations between abdominal AT depots with HDL-CEC, HDL-C, large HDL-P, and HDL size; between PVAT with HDL-CEC; and PAT with HDL-C, large HDL-P, and HDL size. CONCLUSION In midlife women, higher VAT volumes predict HDL metrics 2 years later in life, possibly linking them to future CV disease. Managing IR may preclude the unfavorable effect of visceral fat on HDL metrics.
Collapse
Affiliation(s)
- Alexis Nasr
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Karen Matthews
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Imke Janssen
- Department of Preventive Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Maria M Brooks
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Emma Barinas-Mitchell
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Trevor J Orchard
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Jeffrey Billheimer
- Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Norman C Wang
- Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dan McConnell
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Daniel J Rader
- Departments of Medicine and Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Samar R El Khoudary
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Urata T, Kishino T, Watanabe K, Shibasaki S, Yotsukura M, Mori H, Kawamura N, Tanaka T, Osaka M, Matsushima S, Yamasaki S, Ohtsuka K, Ohnishi H, Watanabe T. Sonographically Measured Adipose Tissue Thickness Correlates with Laboratory Test Abnormalities Reflecting Metabolic State in Elderly Women. Metab Syndr Relat Disord 2021; 20:148-155. [PMID: 34962149 DOI: 10.1089/met.2021.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Background: Accumulation of adipose tissue progresses to metabolic diseases. Sonography is a convenient modality for measuring the thickness of adipose tissue. The present study aimed to clarify the site of adipose tissue thickness that correlated best with laboratory test values reflecting metabolic abnormalities. Methods: Subjects comprised 37 elderly women with metabolic diseases or an almost healthy state (median age, 71 years; interquartile range, 62-78 years). Abdominal visceral adipose tissue (VAT), subcutaneous adipose tissue, peritoneal adipose tissue, perirenal adipose tissue, and epicardial adipose tissue (EAT) thicknesses were measured. Correlations were evaluated between laboratory test values and these adipose tissue thicknesses. Results: VAT thickness measured at the level of the umbilicus correlated positively with values of triglycerides (TGs) (r = 0.593, P = 0.0009) and hemoglobin A1c (r = 0.490, P = 0.0081) and negatively with the value of high-density lipoprotein cholesterol (r = -0.521, P = 0.0045), even after adjusting for body mass index. Significant positive correlations were also found between EAT thickness and TGs (r = 0.542, P = 0.0029). Conclusions: Among the adipose tissue thicknesses measured at several sites by sonography, VAT thickness correlated most closely with laboratory test values representing metabolic abnormalities in elderly women.
Collapse
Affiliation(s)
- Tsuyoshi Urata
- Department of Clinical Laboratory, Kyorin University Hospital, Mitaka, Tokyo, Japan
| | - Tomonori Kishino
- Department of Clinical Laboratory, Kyorin University Hospital, Mitaka, Tokyo, Japan.,Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.,Department of Clinical Engineering, Kyorin University Faculty of Health Sciences, Mitaka, Tokyo, Japan
| | - Keiko Watanabe
- Department of Clinical Laboratory, Kyorin University Hospital, Mitaka, Tokyo, Japan
| | - Shohei Shibasaki
- Department of Medical Technology, Kyorin University Faculty of Health Sciences, Mitaka, Tokyo, Japan
| | - Masayuki Yotsukura
- Department of Clinical Engineering, Kyorin University Faculty of Health Sciences, Mitaka, Tokyo, Japan.,Department of Cardiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Hideaki Mori
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Naohiro Kawamura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Toshiaki Tanaka
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Maiko Osaka
- Department of Clinical Laboratory, Kyorin University Hospital, Mitaka, Tokyo, Japan
| | - Satsuki Matsushima
- Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Satoko Yamasaki
- Department of Clinical Laboratory, Kyorin University Hospital, Mitaka, Tokyo, Japan.,Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.,Department of Cardiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Kouki Ohtsuka
- Department of Clinical Laboratory, Kyorin University Hospital, Mitaka, Tokyo, Japan.,Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Hiroaki Ohnishi
- Department of Clinical Laboratory, Kyorin University Hospital, Mitaka, Tokyo, Japan.,Department of Laboratory Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Takashi Watanabe
- Dean, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| |
Collapse
|
31
|
Tang H, Xiang Z, Li L, Shao X, Zhou Q, You X, Xiong C, Ning J, Chen T, Deng D, Zou H. Potential role of anti-inflammatory HDL subclasses in metabolic unhealth/obesity. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:565-575. [PMID: 34402692 DOI: 10.1080/21691401.2021.1961798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/19/2021] [Indexed: 01/29/2023]
Abstract
High-density lipoprotein (HDL) particles comprising heterogeneous subclasses of different functions exert anti-inflammatory effects by interacting with immune-response cells. However, the relationship of HDL subclasses with immune-response cells in metabolic unhealth/obesity has not been defined clearly. The purpose of this study was to delineate the relational changes of HDL subclasses with immune cells and inflammatory markers in metabolic unhealth/obesity to understand the role of anti-inflammatory HDL subclasses. A total of 316 participants were classified by metabolic health. HDL subclasses were detected by microfluidic chip electrophoresis. White blood cell (WBC) counts and lymphocytes were assessed using automatic haematology analyser. Levels of high-sensitivity C-reactive protein (hs-CRP) and interleukin 6 (IL-6) were measured. In our study, not only the distribution of HDL subclasses, but also HDL-related structural proteins changed with the deterioration of metabolic disease. Moreover, lymphocytes and inflammation factors significantly gradually increased. The level of HDL2b was negatively associated with WBC, lymphocytes and hs-CRP in multivariable linear regression analysis. In multinomial logistic regression analysis, high levels of HDL3 and low levels of HDL2b increased the probability of having an unfavourable metabolic unhealth/obesity status. We supposed that HDL2b particles may play anti-inflammation by negatively regulating lymphocytes activation. HDL2b may be a therapeutic target for future metabolic disease due to the anti-inflammatory effects.
Collapse
Affiliation(s)
- Hongjuan Tang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, Maoming People's Hospital, Maoming, China
| | - Zhicong Xiang
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Longyu Li
- Guangdong Ardent Biomed Co. Ltd & Ardent BioMed LLC (California), Guangzhou, CA, USA
| | - Xiaofei Shao
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qin Zhou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xu You
- Department of Clinical Lab, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Chongxiang Xiong
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jing Ning
- Department of Nephrology, Pinghu Hospital, Health Science Center, South China Hospital of Shenzhen University, Shenzhen, P.R. China
| | - Tong Chen
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - David Deng
- Guangdong Ardent Biomed Co. Ltd & Ardent BioMed LLC (California), Guangzhou, CA, USA
| | - Hequn Zou
- Department of Nephrology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, Pinghu Hospital, Health Science Center, South China Hospital of Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
32
|
Yoshinaga MY, Quintanilha BJ, Chaves-Filho AB, Miyamoto S, Sampaio GR, Rogero MM. Postprandial plasma lipidome responses to a high-fat meal among healthy women. J Nutr Biochem 2021; 97:108809. [PMID: 34192591 DOI: 10.1016/j.jnutbio.2021.108809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/27/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
Postprandial lipemia consists of changes in concentrations and composition of plasma lipids after food intake, commonly presented as increased levels of triglyceride-rich lipoproteins. Postprandial hypertriglyceridemia may also affect high-density lipoprotein (HDL) structure and function, resulting in a net decrease in HDL concentrations. Elevated triglycerides (TG) and reduced HDL levels have been positively associated with risk of cardiovascular diseases development. Here, we investigated the plasma lipidome composition of 12 clinically healthy, nonobese and young women in response to an acute high-caloric (1135 kcal) and high-fat (64 g) breakfast meal. For this purpose, we employed a detailed untargeted mass spectrometry-based lipidomic approach and data was obtained at four sampling points: fasting and 1, 3 and 5 h postprandial. Analysis of variance revealed 73 significantly altered lipid species between all sampling points. Nonetheless, two divergent subgroups have emerged at 5 h postprandial as a function of differential plasma lipidome responses, and were thereby designated slow and fast TG metabolizers. Late responses by slow TG metabolizers were associated with increased concentrations of several species of TG and phosphatidylinositol (PI). Lipidomic analysis of lipoprotein fractions at 5 h postprandial revealed higher TG and PI concentrations in HDL from slow relative to fast TG metabolizers, but not in apoB-containing fraction. These data indicate that modulations in HDL lipidome during prolonged postprandial lipemia may potentially impact HDL functions. A comprehensive characterization of plasma lipidome responses to acute metabolic challenges may contribute to a better understanding of diet/lifestyle regulation in the metabolism of lipid and glucose.
Collapse
Affiliation(s)
- Marcos Yukio Yoshinaga
- Laboratory of Modified Lipids, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.
| | - Bruna Jardim Quintanilha
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo, Brazil
| | - Adriano Britto Chaves-Filho
- Laboratory of Modified Lipids, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Laboratory of Modified Lipids, Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Geni Rodrigues Sampaio
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Marcelo Macedo Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, São Paulo, Brazil.
| |
Collapse
|
33
|
Yun JS, Ko SH. Current trends in epidemiology of cardiovascular disease and cardiovascular risk management in type 2 diabetes. Metabolism 2021; 123:154838. [PMID: 34333002 DOI: 10.1016/j.metabol.2021.154838] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/07/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
With the advances in diabetes care, the trend of incident cardiovascular disease (CVD) in patients with type 2 diabetes mellitus (T2DM) has been decreasing over past decades. However, given that CVD is still a major cause of death in patients with diabetes and that the risk of CVD in patients with T2DM is more than twice that in those without DM, there are still considerable challenges to the prevention of CVD in diabetes. Accordingly, there have been several research efforts to decrease cardiovascular (CV) risk in T2DM. Large-scale genome-wide association studies (GWAS) and clinical cohort studies have investigated the effects of factors, such as genetic determinants, hypoglycaemia, and insulin resistance, on CVD and can account for the unexplained CV risk in T2DM. Lifestyle modification is a widely accepted cornerstone method to prevent CVD as the first-line strategy in T2DM. Recent reports from large CV outcome trials have proven the positive CV effects of sodium-glucose cotransporter-2 (SGLT-2) inhibitors and glucagon-like peptide-1 receptor agonists (GLP-1RAs) in patients with high CVD risk. Overall, current practice guidelines for the management of CVD in T2DM are moving from a glucocentric strategy to a more individualised patient-centred approach. This review will discuss the current epidemiologic trends of CVD in T2DM and the risk factors linking T2DM to CVD, including genetic contribution, hypoglycaemia, and insulin resistance, and proper care strategies, including lifestyle and therapeutic approaches.
Collapse
Affiliation(s)
- Jae-Seung Yun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Hyun Ko
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
34
|
Xepapadaki E, Nikdima I, Sagiadinou EC, Zvintzou E, Kypreos KE. HDL and type 2 diabetes: the chicken or the egg? Diabetologia 2021; 64:1917-1926. [PMID: 34255113 DOI: 10.1007/s00125-021-05509-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
HDL is a complex macromolecular cluster of various components, such as apolipoproteins, enzymes and lipids. Quality evidence from clinical and epidemiological studies led to the principle that HDL-cholesterol (HDL-C) levels are inversely correlated with the risk of CHD. Nevertheless, the failure of many cholesteryl ester transfer protein inhibitors to protect against CVD casts doubts on this principle and highlights the fact that HDL functionality, as dictated by its proteome and lipidome, also plays an important role in protecting against metabolic disorders. Recent data indicate that HDL-C levels and HDL particle functionality are correlated with the pathogenesis and prognosis of type 2 diabetes mellitus, a major risk factor for CVD. Hyperglycaemia leads to reduced HDL-C levels and deteriorated HDL functionality, via various alterations in HDL particles' proteome and lipidome. In turn, reduced HDL-C levels and impaired HDL functionality impact the performance of key organs related to glucose homeostasis, such as pancreas and skeletal muscles. Interestingly, different structural alterations in HDL correlate with distinct metabolic abnormalities, as indicated by recent data evaluating the role of apolipoprotein A1 and lecithin-cholesterol acyltransferase deficiency in glucose homeostasis. While it is becoming evident that not all HDL disturbances are causatively associated with the development and progression of type 2 diabetes, a bidirectional correlation between these two conditions exists, leading to a perpetual self-feeding cycle.
Collapse
Affiliation(s)
- Eva Xepapadaki
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Ioanna Nikdima
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Eleftheria C Sagiadinou
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece
| | - Kyriakos E Kypreos
- Pharmacology Laboratory, Department of Medicine, School of Health Sciences, University of Patras, Rio Achaias, Greece.
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
35
|
Maraninchi M, Calabrese A, Nogueira JP, Castinetti F, Mancini J, Mourre F, Piétri L, Bénamo E, Albarel F, Morange I, Dupont-Roussel J, Nicolay A, Brue T, Béliard S, Valéro R. Role of growth hormone in hepatic and intestinal triglyceride-rich lipoprotein metabolism. J Clin Lipidol 2021; 15:712-723. [PMID: 34462238 DOI: 10.1016/j.jacl.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Elevated plasma concentrations of hepatic- and intestinally-derived triglyceride-rich lipoproteins (TRL) are implicated in the pathogenesis of atherosclerotic cardiovascular disease and all-cause mortality. Excess of TRL is the driving cause of atherogenic dyslipidemia commonly occurring in insulin-resistant individuals such as patients with obesity, type 2 diabetes and metabolic syndrome. Interestingly, growth hormone (GH)-deficient individuals display similar atherogenic dyslipidemia, suggesting an important role of GH and GH deficiency in the regulation of TRL metabolism. OBJECTIVE We aimed to examine the direct and/or indirect role of GH on TRL metabolism. METHODS We investigated the effect on fasting and postprandial hepatic-TRL and intestinal-TRL metabolism of short-term (one month) withdrawal of GH in 10 GH-deficient adults. RESULTS After GH withdrawal, we found a reduction in fasting plasma TRL concentration (significant decrease in TRL-TG, TRL-cholesterol, TRL-apoB-100, TRL-apoC-III and TRL-apoC-II) but not in postprandial TRL response. This reduction was due to fewer fasting TRL particles without a change in TG per particle and was not accompanied by a change in postprandial TRL-apoB-48 response. Individual reductions in TRL correlated strongly with increases in insulin sensitivity and decreases in TRL-apoC-III. CONCLUSION In this relatively short term 'loss of function' human experimental model, we have shown an unanticipated reduction of hepatic-TRL particles despite increase in total body fat mass and reduction in lean mass. These findings contrast with the atherogenic dyslipidemia previously described in chronic GH deficient states, providing a new perspective for the role of GH in lipoprotein metabolism.
Collapse
Affiliation(s)
- Marie Maraninchi
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France
| | - Anastasia Calabrese
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France
| | - Juan-Patricio Nogueira
- Docencia e Investigacion, Hospital Central de Formosa, Salta 555, Formosa CP 3600, Argentina; Facultad de Ciencias de la Salud, Universidad Nacional de Formosa, Gutnisky 3200, Formosa CP 3600, Argentina
| | - Frédéric Castinetti
- INSERM, U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, France and AP-HM, Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l'hypophyse HYPO, Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Univ, Marseille 13005, France
| | - Julien Mancini
- INSERM, IRD, UMR1252, SESSTIM, Aix-Marseille Univ, Marseille F-13273, France; APHM, Timone Hospital, Public Health Department (BIOSTIC), Marseille, F-13385, France
| | - Florian Mourre
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France
| | - Léa Piétri
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France
| | - Eric Bénamo
- Department of Endocrinology and Metabolic Diseases, Hospital d'Avignon Henri Duffaut, 205 rue Raoul Follereau, Avignon 84000, France
| | - Frédérique Albarel
- INSERM, U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, France and AP-HM, Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l'hypophyse HYPO, Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Univ, Marseille 13005, France
| | - Isabelle Morange
- INSERM, U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, France and AP-HM, Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l'hypophyse HYPO, Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Univ, Marseille 13005, France
| | - Jeanine Dupont-Roussel
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France
| | - Alain Nicolay
- APHM, Laboratory of Endocrine Biochemistry, La Conception Hospital, Marseille, France
| | - Thierry Brue
- INSERM, U1251, Marseille Medical Genetics (MMG), Faculté des Sciences médicales et paramédicales, France and AP-HM, Department of Endocrinology, Hôpital de la Conception, Centre de Référence des Maladies Rares de l'hypophyse HYPO, Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Univ, Marseille 13005, France
| | - Sophie Béliard
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France
| | - René Valéro
- Aix Marseille Univ, APHM, INSERM, INRAE, C2VN, University Hospital La Conception, Department of Nutrition, Metabolic Diseases and Endocrinology, 147 boulevard Baille, Marseille 13005, France.
| |
Collapse
|
36
|
Cervantes-Paz B, Yahia EM. Avocado oil: Production and market demand, bioactive components, implications in health, and tendencies and potential uses. Compr Rev Food Sci Food Saf 2021; 20:4120-4158. [PMID: 34146454 DOI: 10.1111/1541-4337.12784] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
Avocado is a subtropical/tropical fruit with creamy texture, peculiar flavor, and high nutritional value. Due to its high oil content, a significant quantity of avocado fruit is used for the production of oil using different methods. Avocado oil is rich in lipid-soluble bioactive compounds, but their content depends on different factors. Several phytochemicals in the oil have been linked to prevention of cancer, age-related macular degeneration, and cardiovascular diseases and therefore have generated an increase in consumer demand for avocado oil. The aim of this review is to critically and systematically analyze the worldwide production and commercialization of avocado oil, its extraction methods, changes in its fat-soluble phytochemical content, health benefits, and new trends and applications. There is a lack of information on the production and commercialization of the different types of avocado oil, but there are abundant data on extraction methods using solvents, centrifugation-assisted aqueous extraction, mechanical extraction by cold pressing (varying concentration and type of enzymes, temperature and time of reaction, and dilution ratio), ultrasound-assisted extraction, and supercritical fluid to enhance the yield and quality of oil. Extensive information is available on the content of fatty acids, although it is limited on carotenoids and chlorophylls. The effect of avocado oil on cancer, diabetes, and cardiovascular diseases has been demonstrated through in vitro and animal studies, but not in humans. Avocado oil continues to be of interest to the food, pharmaceutical, and cosmetic industries and is also generating increased attention in other areas including structured lipids, nanotechnology, and environmental care.
Collapse
Affiliation(s)
- Braulio Cervantes-Paz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, México.,Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Elhadi M Yahia
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, México
| |
Collapse
|
37
|
Association between the FTO SNP rs9939609 and Metabolic Syndrome in Chilean Children. Nutrients 2021; 13:nu13062014. [PMID: 34208143 PMCID: PMC8230726 DOI: 10.3390/nu13062014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 11/05/2022] Open
Abstract
Background: The increasing prevalence of obesity in children has raised the incidence of Metabolic Syndrome (MetS) in this age group. Given the short- and long-term health impact of MetS, it is essential to prevent its onset by detecting its main triggers. Besides, genetic factors play an essential role in influencing which individuals within a population are most likely to develop obesity in response to a particular environment. In this regard, a common variation in the FTO gene is reproducibly associated with BMI and obesity from childhood and the genetic load has been linked to several cardiovascular risk factors, highlighting the FTO single nucleotide polymorphism (SNP) rs9939609. Therefore, this study aimed to establish the relationship between the FTO SNP rs9939609 and MetS. Methods: A cross-sectional study was carried out on 220 children from the Biobío region (Chile). MetS diagnosis was established through the modified Cook criteria, using prevalence ratios, COR curves, and linear regressions to determine its association with MetS and its components. Results: The prevalence of MetS was significantly increased among carriers of the risk allele (A): TT, 20.2%; TA, 25.4%; AA, 44.7% (p = 0.006). Also, the presence of A was associated with altered MetS-related variables. Conclusions: The FTO SNP rs9939609 was associated with a raised prevalence of MetS among A allele carriers, and was higher in the homozygous genotype (AA).
Collapse
|
38
|
Takaeko Y, Maruhashi T, Kajikawa M, Kishimoto S, Yamaji T, Harada T, Hashimoto Y, Han Y, Kihara Y, Chayama K, Goto C, Yusoff FM, Yoshimura K, Nakashima A, Higashi Y. Lower triglyceride levels are associated with better endothelial function. J Clin Lipidol 2021; 15:500-511. [PMID: 34006457 DOI: 10.1016/j.jacl.2021.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/12/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Increased serum triglyceride levels are independently associated with endothelial dysfunction. However, there is little evidence to define normal levels of triglycerides and there is little information on endothelial function in subjects with extremely low levels of triglycerides. OBJECTIVE The purpose of this study was to determine the relationship between triglycerides, especially low levels of triglycerides, and vascular function. METHODS We measured flow-mediated vasodilation (FMD) in 7047 subjects and nitroglycerine-induced vasodilation (NID) in 1017 subjects. We divided the subjects into eight groups by triglyceride levels: <50 mg/dL, 50-69 mg/dL, 70-89 mg/dL, 90-109 mg/dL, 110-129 mg/dL, 130-149 mg/dL, 150-199 mg/dL, and ≥200 mg/dL. RESULTS FMD was significantly higher in subjects with triglyceride levels of <50 mg/dL than in subjects with triglyceride levels of 50-69 mg/dL, 70-89 mg/dL, 90-109 mg/dL, 110-129 mg/dL, 130-149 mg/dL, 150-199 mg/dL, and ≥200 mg/dL (p=0.002, p<0.001, p<0.001, p<0.001, p<0.001, p<0.001, and p<0.001, respectively). Using triglyceride levels of >200 mg/dL as a reference, the odds ratios for a lower quartile of FMD were significantly lower in the <50 mg/dL group, 50-69 mg/dL group, 70-89 mg/dL group, and 90-109 mg/dL group after adjustment for age, gender and other cardiovascular risk factors. There was a slight negative correlation between NID and triglycerides (r=-0.074; p=0.019). However, there was no significant differences in NID among the eight groups. CONCLUSIONS FMD values were highest in subjects with extremely low levels of triglycerides (<50 mg/dL). Lower triglyceride levels were associated with better endothelial function. CLINICAL TRIAL REGISTRATION INFORMATION http://www.umin.ac.jp (University Hospital Medical Information Network Clinical Trials Registry) (UMIN000012950).
Collapse
Affiliation(s)
- Yuji Takaeko
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Dr. Takaeko, Yamaji, Harada, Hashimoto and Kihara)
| | - Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan (Dr Maruhashi, Kishimoto, Han, Yusoff and Higashi)
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (Dr Kajikawa and Higashi)
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan (Dr Maruhashi, Kishimoto, Han, Yusoff and Higashi)
| | - Takayuki Yamaji
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Dr. Takaeko, Yamaji, Harada, Hashimoto and Kihara)
| | - Takahiro Harada
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Dr. Takaeko, Yamaji, Harada, Hashimoto and Kihara)
| | - Yu Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Dr. Takaeko, Yamaji, Harada, Hashimoto and Kihara)
| | - Yiming Han
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan (Dr Maruhashi, Kishimoto, Han, Yusoff and Higashi)
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Dr. Takaeko, Yamaji, Harada, Hashimoto and Kihara)
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan (Dr Chayama)
| | - Chikara Goto
- Department of Physical Therapy, Hiroshima International University, Hiroshima, Japan (Dr Goto)
| | - Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan (Dr Maruhashi, Kishimoto, Han, Yusoff and Higashi)
| | - Kenichi Yoshimura
- Department of Biostatistics, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (Dr Yoshimura)
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan (Dr Nakashima)
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan (Dr Maruhashi, Kishimoto, Han, Yusoff and Higashi); Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan (Dr Kajikawa and Higashi).
| |
Collapse
|
39
|
Li S, Xue J, Hong P. Relationships between serum omentin-1 concentration, body composition and physical activity levels in older women. Medicine (Baltimore) 2021; 100:e25020. [PMID: 33725883 PMCID: PMC7969279 DOI: 10.1097/md.0000000000025020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/11/2021] [Indexed: 01/05/2023] Open
Abstract
This study aimed to investigate the relationships between omentin-1, body composition and physical activity (PA) levels in older women.Eighty-one older women (age = 64 ± 6years; body mass index = 24.2 ± 3.2 kg/m2; body fat percentage = 36.1 ± 5.7%) participated in this study. We divided the subjects into overweight/obesity and normal weight group. Body composition was measured by dual energy X-ray absorptiometry. Serum omentin-1 concentration was measured using enzyme linked immunosorbent assay. PA levels were obtained by using accelerometers. In addition, anthropometric and insulin resistance values were determined.Omentin-1 level in overweight/obesity group was significantly lower than in the normal weight group (P < .01). Analysis of all subjects showed that serum omentin-1 was negatively correlated with body weight, BMI (body mass index), waist circumference (WC), WHR (waist-to-hip ratio), percentage of body fat, total body fat mass (FM), fat-free mass (FFM) (r = -.571, -0.569, -0.546, -0.382, -0.394, -0.484, -0.524, all P < .01), respectively. We also found a negative correlation between moderate-to-vigorous physical activity (MVPA) and total body FM (r = -.233, P < .05). However, no significant correlation was found between omentin-1 and sedentary behavior and MVPA (both P > .05). Moreover, the relationship between omentin-1, body composition and PA was analyzed by using multiple linear stepwise regressions. The results showed that serum omentin-1 concentration was inversely correlated with total body FM (β = -0.334, P = .004) in multiple linear stepwise regression analysis.We found that total body FM was inversely related to serum omentin-1 concentration and PA levels, but there was no correlation between omentin-1 and PA levels. These results showed that PA may participate in the regulation of body composition, which may be also affected by serum omentin-1. However, the mechanism by which PA affects body composition may not be through omentin-1 and was more likely through other metabolic pathways.
Collapse
Affiliation(s)
- Shuo Li
- School of Sport Science, Shanghai University of Sport, Shanghai
| | | | - Ping Hong
- School of Sport Science, Shanghai University of Sport, Shanghai
- Winter Sports Administrative Center, General Administration of Sport of China, Beijing, China
| |
Collapse
|
40
|
Sasson A, Kristoferson E, Batista R, McClung JA, Abraham NG, Peterson SJ. The pivotal role of heme Oxygenase-1 in reversing the pathophysiology and systemic complications of NAFLD. Arch Biochem Biophys 2020; 697:108679. [PMID: 33248947 DOI: 10.1016/j.abb.2020.108679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023]
Abstract
The pathogenesis and molecular pathways involved in non-alcoholic fatty liver disease (NAFLD) are reviewed, as well as what is known about mitochondrial dysfunction that leads to heart disease and the progression to steatohepatitis and hepatic fibrosis. We focused our discussion on the role of the antioxidant gene heme oxygenase-1 (HO-1) and its nuclear coactivator, peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α) in the regulation of mitochondrial biogenesis and function and potential therapeutic benefit for cardiac disease, NAFLD as well as the pharmacological effect they have on the chronic inflammatory state of obesity. The result is increased mitochondrial function and the conversion of white adipocyte tissue to beige adipose tissue ("browning of white adipose tissue") that leads to an improvement in signaling pathways and overall liver function. Improved mitochondrial biogenesis and function is essential to preventing the progression of hepatic steatosis to NASH and cirrhosis as well as preventing cardiovascular complications.
Collapse
Affiliation(s)
- Ariel Sasson
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Eva Kristoferson
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Rogerio Batista
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY, 10595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25701, USA
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, 11215, USA.
| |
Collapse
|
41
|
Verwer BJ, Scheffer PG, Vermue RP, Pouwels PJ, Diamant M, Tushuizen ME. NAFLD is related to Post-prandial Triglyceride-enrichment of HDL Particles in Association with Endothelial and HDL Dysfunction. Liver Int 2020; 40:2439-2444. [PMID: 32652824 PMCID: PMC7540355 DOI: 10.1111/liv.14597] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 06/09/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
NAFLD is closely related with the metabolic syndrome (MetS) and increased risk of cardiovascular disease. Liver fat associates with post-prandial hypertriglyceridemia, potentially contributing to triglyceride-enrichment of high-density lipoproteins (HDL-TG), and subsequent HDL dysfunction. We assessed liver fat by MR spectroscopy, and its association with HDL physiochemical properties, and endothelial function, measured as flow-mediated dilation (FMD), before and following three consecutive meals, in 36 men with type 2 diabetes mellitus (T2DM), with the MetS, and controls. Plasma triglycerides increased significantly following the meals (P < .001). Fasting HDL-TG was highest in T2DM, relative to MetS and controls (P = .002), and increased post-prandially in all groups (P < .001). HDL function was negatively associated with HDL-TG following three meals (r = -.32, P<.05). Liver fat associated with HDL-TG after three meals (r = .65, P < .001). HDL-TG was independently associated with FMD following three consecutive meals (r = -.477, P = .003). We conclude liver fat is associated with post-prandial HDL-TG enrichment which was closely related with endothelial and HDL dysfunction.
Collapse
Affiliation(s)
- Bart J. Verwer
- Department of Gastroenterology and HepatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter G. Scheffer
- Department of Clinical ChemistryAmsterdam University Medical CentreAmsterdamThe Netherlands
| | - Rick P. Vermue
- Department of Clinical ChemistryAmsterdam University Medical CentreAmsterdamThe Netherlands
| | - Petra J. Pouwels
- Department of Physics & Medical TechnologyAmsterdam University Medical CentreAmsterdamThe Netherlands
| | - Michaela Diamant
- Department of Internal MedicineAmsterdam University Medical CentreAmsterdamThe Netherlands
| | - Maarten E. Tushuizen
- Department of Gastroenterology and HepatologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
42
|
Fathi M, Alavinejad P, Haidari Z, Amani R. The Effect of Zinc Supplementation on Steatosis Severity and Liver Function Enzymes in Overweight/Obese Patients with Mild to Moderate Non-alcoholic Fatty Liver Following Calorie-Restricted Diet: a Double-Blind, Randomized Placebo-Controlled Trial. Biol Trace Elem Res 2020; 197:394-404. [PMID: 32020523 DOI: 10.1007/s12011-019-02015-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022]
Abstract
The role of zinc is known in balancing the oxidant/antioxidant system and also in improving insulin resistance in many diseases. Recently, in vivo and in vitro studies revealed roles of zinc on lipophagy and suppressing hepatic lipid deposition. The present study is the first double-blind randomized clinical trial that investigated the effect of zinc supplement on clinical manifestations and anthropometric parameters of overweight/obese non-alcoholic fatty liver patients following calorie-restricted diet. Fifty-six overweight/obese subjects with confirmed non-alcoholic fatty liver disease (NAFLD) using ultrasonography were randomized to treatment (calorie-restricted diet plus 30 mg/day zinc supplement) or placebo (calorie-restricted diet and placebo) groups. Serum liver enzymes and liver steatosis were measured at the baseline and 12 weeks post-intervention. Anthropometric measurements and food recalls were collected at the beginning, weeks 6 and 12. Zinc supplementation significantly elevated serum zinc concentrations in the treatment group (p < 0.001). Treatment also reduced alanine aminotransferase and γ-glutamyl transpeptidase enzymes in the treatment group (p < 0.05). Waist circumference was also significantly lowered in the zinc group (p < 0.05). Liver steatosis and fatty liver index changes were not significant between the groups. Overall, beneficial effects of zinc supplementation were shown on serum levels of zinc and liver enzymes in overweight/obese NAFLD patients.
Collapse
Affiliation(s)
- Mojdeh Fathi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Isfahan Province, Iran
| | - Pezhman Alavinejad
- Alimentary Tract Research Center, Ahvaz Imam Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan Province, Iran
| | - Zahra Haidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Isfahan Province, Iran
| | - Reza Amani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Isfahan Province, Iran.
| |
Collapse
|
43
|
Abstract
A new cardiometabolic-based chronic disease (CMBCD) model is presented that provides a basis for early and sustainable, evidence-based therapeutic targeting to promote cardiometabolic health and mitigate the development and ravages of cardiovascular disease. In the first part of this JACC State-of-the-Art Review, a framework is presented for CMBCD, focusing on 3 primary drivers (genetics, environment, and behavior) and 2 metabolic drivers (adiposity and dysglycemia) with applications to 3 cardiovascular endpoints (coronary heart disease, heart failure, and atrial fibrillation). Specific mechanistic pathways are presented configuring early primary drivers with subsequent adiposity, insulin resistance, β-cell dysfunction, and metabolic syndrome, leading to cardiovascular disease. The context for building this CMBCD model is to expose actionable targets for prevention to achieve optimal cardiovascular outcomes. The tactical implementation of this CMBCD model is the subject of second part of this JACC State-of-the-Art Review.
Collapse
|
44
|
Cardiometabolic-Based Chronic Disease, Adiposity and Dysglycemia Drivers: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75:525-538. [PMID: 32029136 DOI: 10.1016/j.jacc.2019.11.044] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/06/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
A new cardiometabolic-based chronic disease (CMBCD) model is presented that provides a basis for early and sustainable, evidence-based therapeutic targeting to promote cardiometabolic health and mitigate the development and ravages of cardiovascular disease. In the first part of this JACC State-of-the-Art Review, a framework is presented for CMBCD, focusing on 3 primary drivers (genetics, environment, and behavior) and 2 metabolic drivers (adiposity and dysglycemia) with applications to 3 cardiovascular endpoints (coronary heart disease, heart failure, and atrial fibrillation). Specific mechanistic pathways are presented configuring early primary drivers with subsequent adiposity, insulin resistance, β-cell dysfunction, and metabolic syndrome, leading to cardiovascular disease. The context for building this CMBCD model is to expose actionable targets for prevention to achieve optimal cardiovascular outcomes. The tactical implementation of this CMBCD model is the subject of second part of this JACC State-of-the-Art Review.
Collapse
|
45
|
Abou-Khalil NS, Ali MF, Ali MM, Ibrahim A. Surgical castration versus chemical castration in donkeys: response of stress, lipid profile and redox potential biomarkers. BMC Vet Res 2020; 16:310. [PMID: 32847551 PMCID: PMC7448993 DOI: 10.1186/s12917-020-02530-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/19/2020] [Indexed: 01/17/2023] Open
Abstract
Background Castration is a husbandry practice raising important questions on the welfare and physiological status of farm animals. Searching for effective castration methods that minimally compromise the body physiology is worthy of attention. Therefore, this study aimed to evaluate the differential response of biological systems in donkeys to surgical castration versus the chemical one by CaCl2 with special emphasis on stress, lipid profile, and oxidative stress biomarkers. Donkeys were divided randomly and equally into two groups; the chemical (Ch) and surgical (S) groups (n = 6). The Ch group was chemically castrated by intratesticular injection of 20% CaCl2 dissolved in absolute ethanol. Blood samples were collected prior to castration and at 15, 30, 45, and 60 days after the beginning of experiment. Results Surprisingly, the Ch group at the end of the experiment was characterized by significantly higher cortisol level compared to the S group. TC and LDL-C levels in the S group significantly decreased at day 45, while TG levels significantly increased at days 45 and 60 in comparison with day 0. HDL-C levels at days 30 and 60 in the Ch group significantly increased in comparison with day 0. At day 30 post-castration, HDL-C was significantly higher and LDL-C was significantly lower in the Ch group than the S group. A significant elevation in TC and LDL-C was observed at day 45 and in HDL-C at the end of experimental duration in the Ch group when compared with the S group. TPX level was significantly lower and TAC was significantly higher in the Ch group at day 45 than the S group. Conclusion Surgical castration evoked less stress and minor changes in lipid profile and oxidant/antioxidant balance relative to chemical castration by intratesticular 20% CaCl2 dissolved in absolute ethanol.
Collapse
Affiliation(s)
- Nasser S Abou-Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Marwa F Ali
- Department of Veterinary Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Magda M Ali
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ahmed Ibrahim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
46
|
Fiorentino TV, Succurro E, Marini MA, Pedace E, Andreozzi F, Perticone M, Sciacqua A, Perticone F, Sesti G. HDL cholesterol is an independent predictor of β-cell function decline and incident type 2 diabetes: A longitudinal study. Diabetes Metab Res Rev 2020; 36:e3289. [PMID: 31922637 DOI: 10.1002/dmrr.3289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/25/2019] [Accepted: 12/27/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Experimental evidence indicates that high-density lipoprotein (HDL) may stimulate glucose uptake and improve β-cell function. The aim of this study was to evaluate whether lower levels of HDL may affect the risk to develop type 2 diabetes. METHODS Incident rate of type 2 diabetes and changes in insulin sensitivity and β-cell function over 5.5-year follow-up were examined in 670 non-diabetic subjects stratified in tertiles according to basal HDL levels. RESULTS As compared to the highest tertile of HDL, individuals with lower levels of HDL have an increased risk to develop type 2 diabetes independently from several cardiometabolic risk factors (odds ratio: 2.88, 95% confidence interval: 1.05-7.91), and exhibited a greater deterioration of β-cell function, estimated by the disposition index, over 5.5-year follow-up. Conversely, changes in Matsuda index of insulin sensitivity over the follow-up were not significantly different amongst the three HDL groups. In a multivariable regression analysis model including age, sex, waist circumference, triglycerides, total cholesterol, C-reactive protein, fasting and 2-hour post-load glucose, family history of type 2 diabetes and smoking habit, HDL concentration at baseline was an independent predictor of β-cell function decline over the follow-up (β = .30, P = .0001). Mediation analysis showed that the association between lower HDL levels at baseline and increased risk of incident diabetes was mediated by β-cell function deterioration during the follow-up (t = -3.32, P = .001). CONCLUSIONS Subjects with lower levels of HDL have an increased risk to develop type 2 diabetes likely due to a greater β-cell function decline over time.
Collapse
Affiliation(s)
- Teresa V Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria A Marini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Pedace
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maria Perticone
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| |
Collapse
|
47
|
Song SO, Hwang YC, Kahn SE, Leonetti DL, Fujimoto WY, Boyko EJ. Intra-Abdominal Fat and High Density Lipoprotein Cholesterol Are Associated in a Non-Linear Pattern in Japanese-Americans. Diabetes Metab J 2020; 44:277-285. [PMID: 32174061 PMCID: PMC7188973 DOI: 10.4093/dmj.2019.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 07/04/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We describe the association between high density lipoprotein cholesterol (HDL-C) concentration and computed tomography (CT)-measured fat depots. METHODS We examined the cross-sectional associations between HDL-C concentration and intra-abdominal (IAF), abdominal subcutaneous (SCF), and thigh fat (TF) areas in 641 Japanese-American men and women. IAF, SCF, and TF were measured by CT at the level of the umbilicus and mid-thigh. The associations between fat area measurements and HDL-C were examined using multivariate linear regression analysis adjusting for age, sex, diabetes family history, homeostasis model assessment of insulin resistance (HOMA-IR), and body mass index (BMI). Non-linearity was assessed using fractional polynomials. RESULTS Mean±standard deviation of HDL-C concentration and IAF in men and women were 1.30±0.34 mg/dL, 105±55.3 cm², and 1.67±0.43 mg/dL, 74.4±46.6 cm² and differed significantly by gender for both comparisons (P<0.001). In univariate analysis, HDL-C concentration was significantly associated with CT-measured fat depots. In multivariate analysis, IAF was significantly and non-linearly associated with HDL-C concentration adjusted for age, sex, BMI, HOMA-IR, SCF, and TF (IAF: β=-0.1012, P<0.001; IAF²: β=0.0008, P<0.001). SCF was also negatively and linearly associated with HDL-C (β=-0.4919, P=0.001). CONCLUSION HDL-C does not linearly decline with increasing IAF in Japanese-Americans. A more complex pattern better fits this association.
Collapse
Affiliation(s)
- Sun Ok Song
- Epidemiologic Research and Information Center, VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea.
| | - You Cheol Hwang
- Division of Endocrinology and Metabolism, Department of Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Korea
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Hospital and Specialty Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Donna L Leonetti
- Department of Anthropology, University of Washington, Seattle, WA, USA
| | - Wilfred Y Fujimoto
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Edward J Boyko
- Epidemiologic Research and Information Center, VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
48
|
Ko CW, Qu J, Black DD, Tso P. Regulation of intestinal lipid metabolism: current concepts and relevance to disease. Nat Rev Gastroenterol Hepatol 2020; 17:169-183. [PMID: 32015520 DOI: 10.1038/s41575-019-0250-7] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Lipids entering the gastrointestinal tract include dietary lipids (triacylglycerols, cholesteryl esters and phospholipids) and endogenous lipids from bile (phospholipids and cholesterol) and from shed intestinal epithelial cells (enterocytes). Here, we comprehensively review the digestion, uptake and intracellular re-synthesis of intestinal lipids as well as their packaging into pre-chylomicrons in the endoplasmic reticulum, their modification in the Golgi apparatus and the exocytosis of the chylomicrons into the lamina propria and subsequently to lymph. We also discuss other fates of intestinal lipids, including intestinal HDL and VLDL secretion, cytosolic lipid droplets and fatty acid oxidation. In addition, we highlight the applicability of these findings to human disease and the development of therapeutics targeting lipid metabolism. Finally, we explore the emerging role of the gut microbiota in modulating intestinal lipid metabolism and outline key questions for future research.
Collapse
Affiliation(s)
- Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jie Qu
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Dennis D Black
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
49
|
Kara O. Influence of subclinical hypothyroidism on metabolic parameters in obese children and adolescents. Clin Exp Pediatr 2020; 63:110-114. [PMID: 32164046 PMCID: PMC7073379 DOI: 10.3345/cep.2019.01536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Subclinical hypothyroidism (SH) is a common condition in obese children. However, its effect on glucose and lipid metabolism in obese children remains controversial. PURPOSE The present study aimed to investigate the association between SH and metabolic parameters. METHODS A total of 215 obese children and adolescents aged 6-18 years were included in this retrospective cross-sectional study. The patients' anthropometric measurements such as thyrotropin (TSH), free thyroxine (fT4), fasting plasma glucose, and insulin levels, as well as homeostasis model assessment for insulin resistance (HOMA-IR) index, and lipid profiles were evaluated. The patients were allocated to the SH group (fT4 normal, TSH 5-10 mIU/L) (n=77) or the control group (fT4 normal, TSH<5 mIU/L) (n=138). The glucose and lipid metabolisms of the 2 groups were compared. RESULTS SH was identified in 77 of 215 patients (36%). Mean body mass index was similar in both groups. The mean serum insulin, HOMA-IR, and triglyceride (TG) levels were higher and the mean high-density lipoprotein cholesterol level was lower in the SH group than in the control group (P=0.007, P=0.004, P=0.01, and P=0.02, respectively). A positive correlation was observed between TSH level and insulin level, HOMA-IR, and TG level. CONCLUSION SH was identified in some of the obese children and adolescents. A clear association was observed between SH, insulin resistance, and dyslipidemia in obese children.
Collapse
Affiliation(s)
- Ozlem Kara
- Department of Pediatric Endocrinology, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
50
|
Evia-Viscarra ML, Guardado-Mendoza R. Comparison between metabolically healthy obesity and metabolically unhealthy obesity by different definitions among Mexican children. J Pediatr Endocrinol Metab 2020; 33:215-222. [PMID: 31834862 DOI: 10.1515/jpem-2019-0077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023]
Abstract
Background There is no consensus on the definition of metabolically healthy obesity (MHO) and the diagnostic criteria in children. Objectives To estimate the prevalence of MHO and compare clinical and biochemical characteristics between MHO and metabolically unhealthy obesity (MUO), and to evaluate the association between MUO and cardiovascular disease (CVD) risk, anthropometrics and family background using different definitions in children. Methods This was a cross-sectional study. Participants included 224 obese children between the years 2007 and 2017. MHO was defined by three different criteria: (i) absence of metabolic syndrome (MHO-MS), (ii) no insulin resistance (IR) by homeostatic model assessment (HOMA) <3.16 cut-off (MHO-IR3.16) and (iii) absence of IR at <95th percentile for Mexican children (MHO-95th). Results The prevalence of MHO-MS, MHO-IR3.16 and MHO-IR95th was 12.9%, 56.3% and 41.5%, respectively. The prevalence of simultaneous MHO-MS plus MHO-IR95th was 5.36%. Children with MHO-MS vs. MUO-MS showed lower height, weight and body mass index (BMI) percentiles; MHO-IR3.16 vs. MUO-IR3.16 showed lower age, acanthosis, Tanner, waist circumference (WC), waist-to-height ratio (WHtR), systolic blood pressure (SBP), diastolic blood pressure (DBP) and glucose; and MHO-IR95th vs. MUO-IR95th showed lower acanthosis, WC, DBP, glucose and high high-density lipoprotein cholesterol (HDL-C). MUO-MS was associated with WC > 90th, type 2 diabetes mellitus (T2DM) in first-degree relatives and obesity in siblings. MUO-IR3.16 was associated with pubertal stages, WC > 90th, WHtR > 0.55 and fasting hyperglycemia. MUO-IR95th was associated with WHtR > 0.55 and HDL < 10th. MHO-MS and MHO-IR3.16 or MHO-IR95th did not have agreement. Conclusions The prevalence of MHO varied depending on the definition, although the real MHO with no MS or IR is very low. Low DBP and high HDL-C in MHO were present in any definition. Association of MUO with anthropometric, biochemical and family background differs across definitions.
Collapse
Affiliation(s)
- María Lola Evia-Viscarra
- Pediatrics Endocrinology, Diabetes in Child and Adolescent, Postgrade, MSc in Clinical Investigation, Department of Pediatric Endocrinology, Hospital Regional de Alta Especialidad del Bajío, Blvd. Milenio 130, San Carlos la Roncha, C.P. 37670, León, Guanajuato, Mexico
| | - Rodolfo Guardado-Mendoza
- Department of Research, Hospital Regional de Alta Especialidad del Bajío, León, Guanajuato, Mexico
| |
Collapse
|