1
|
Olaitan G, Ganesana M, Strohman A, Lynch WJ, Legon W, Venton BJ. Focused Ultrasound Modulates Dopamine in a Mesolimbic Reward Circuit. J Neurochem 2025; 169:e70001. [PMID: 39902479 PMCID: PMC11791541 DOI: 10.1111/jnc.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/18/2024] [Accepted: 12/28/2024] [Indexed: 02/05/2025]
Abstract
Dopamine is a neurotransmitter that plays a significant role in reward and motivation. Dysfunction in the mesolimbic dopamine pathway has been linked to a variety of psychiatric disorders, including addiction. Low-intensity focused ultrasound (LIFU) has demonstrated effects on brain activity, but how LIFU affects dopamine neurotransmission is not known. Here, we applied three different intensities (6.5, 13, and 26 W/cm2 ISPPA) of 2-min LIFU to the prelimbic cortex (PLC) and measured dopamine in the nucleus accumbens (NAc) core using fast-scan cyclic voltammetry. Two minutes of LIFU sonication at 13 W/cm2 to the PLC significantly reduced dopamine release by ~50% for up to 2 h. However, double the intensity (26 W/cm2) resulted in less inhibition (~30%), and half the intensity (6.5 W/cm2) did not result in any inhibition of dopamine. Anatomical controls applying LIFU to the primary somatosensory cortex did not change NAc core dopamine, and applying LIFU to the PLC did not affect dopamine release in the caudate or NAc shell. Histological evaluations showed no evidence of cell damage or death. Modeling temperature rise demonstrates a maximum temperature change of 0.5°C with 13 W/cm2, suggesting that modulation is not due to thermal mechanisms. These studies show that LIFU at a moderate intensity provides a noninvasive, high spatial resolution means to modulate specific mesolimbic circuits that could be used in future studies to target and repair pathways that are dysfunctional in addiction and other psychiatric diseases.
Collapse
Affiliation(s)
- Greatness Olaitan
- Department of ChemistryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Andrew Strohman
- Graduate Program in Translational Biology, Medicine, and HealthVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
- Virginia Tech Carilion School of MedicineRoanokeVirginiaUSA
- Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVirginiaUSA
| | - Wendy J. Lynch
- Psychiatry and Neurobehavioral SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Wynn Legon
- Graduate Program in Translational Biology, Medicine, and HealthVirginia Polytechnic Institute and State UniversityRoanokeVirginiaUSA
- Virginia Tech Carilion School of MedicineRoanokeVirginiaUSA
- Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVirginiaUSA
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
- Center for Human Neuroscience ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVirginiaUSA
- Center for Health Behaviors ResearchFralin Biomedical Research Institute at Virginia Tech CarilionRoanokeVirginiaUSA
| | - B. Jill Venton
- Department of ChemistryUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
2
|
Ferraro L, Tiozzo Fasiolo L, Beggiato S, Borelli AC, Pomierny-Chamiolo L, Frankowska M, Antonelli T, Tomasini MC, Fuxe K, Filip M. Neurotensin: A role in substance use disorder? J Psychopharmacol 2016; 30:112-27. [PMID: 26755548 DOI: 10.1177/0269881115622240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotensin is a tridecapeptide originally identified in extracts of bovine hypothalamus. This peptide has a close anatomical and functional relationship with the mesocorticolimbic and nigrostriatal dopamine system. Neural circuits containing neurotensin were originally proposed to play a role in the mechanism of action of antipsychotic agents. Additionally, neurotensin-containing pathways were demonstrated to mediate some of the rewarding and/or sensitizing properties of drugs of abuse.This review attempts to contribute to the understanding of the role of neurotensin and its receptors in drug abuse. In particular, we will summarize the potential relevance of neurotensin, its related compounds and neurotensin receptors in substance use disorders, with a focus on the preclinical research.
Collapse
Affiliation(s)
- Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Laura Tiozzo Fasiolo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Sarah Beggiato
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Andrea C Borelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Malgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Tiziana Antonelli
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Kjell Fuxe
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Malgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
3
|
Filip M, Frankowska M, Sadakierska-Chudy A, Suder A, Szumiec Ł, Mierzejewski P, Bienkowski P, Przegaliński E, Cryan JF. GABAB receptors as a therapeutic strategy in substance use disorders: Focus on positive allosteric modulators. Neuropharmacology 2015; 88:36-47. [DOI: 10.1016/j.neuropharm.2014.06.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 12/16/2022]
|
4
|
Barker JM, Taylor JR, Chandler LJ. A unifying model of the role of the infralimbic cortex in extinction and habits. ACTA ACUST UNITED AC 2014; 21:441-8. [PMID: 25128534 PMCID: PMC4138355 DOI: 10.1101/lm.035501.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The infralimbic prefrontal cortex (IL) has been shown to be critical for the regulation of flexible behavior, but its precise function remains unclear. This region has been shown to be critical for the acquisition, consolidation, and expression of extinction learning, leading many to hypothesize that IL suppresses behavior as part of a “stop” network. However, this framework is at odds with IL function in habitual behavior in which the IL has been shown to be required for the expression and acquisition of ongoing habitual behavior. Here, we will review the current state of knowledge of IL anatomy and function in behavioral flexibility and provide a testable framework for a single IL mechanism underlying its function in both extinction and habit learning.
Collapse
Affiliation(s)
- Jacqueline M Barker
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - L Judson Chandler
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
5
|
Serotonin2C receptors and drug addiction: focus on cocaine. Exp Brain Res 2013; 230:537-45. [PMID: 23748692 DOI: 10.1007/s00221-013-3593-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/22/2013] [Indexed: 12/20/2022]
Abstract
This review provides an overview of the role of central serotonin2C (5-HT2C) receptors in drug addiction, specifically focusing on their impact on the neurochemical and behavioral effects of cocaine, one of the most worldwide abused drug. First, we described the neurochemical and electrophysiological mechanisms underlying the interaction between 5-HT2C receptors and the mesocorticolimbic dopaminergic network, in keeping with the key role of this system in drug abuse and dependence. Thereafter, we focused on the role of 5-HT2C receptors in the effects of cocaine in various preclinical behavioral models used in drug addiction research, such as locomotor hyperactivity, locomotor sensitization, drug discrimination, and self-administration, to end with an overview of the neurochemical mechanisms underlying the interactions between 5-HT2C receptors, mesocorticolimbic dopamine system, and cocaine. On their whole, the presented data provide compelling preclinical evidence that 5-HT2C receptor agonists may have efficacy in the treatment of cocaine abuse and dependence, thereby underlying the need for additional clinical studies to ascertain whether preclinical data translate to the human.
Collapse
|
6
|
Sherrill LK, Stanis JJ, Gulley JM. Age-dependent effects of repeated amphetamine exposure on working memory in rats. Behav Brain Res 2013; 242:84-94. [PMID: 23291159 DOI: 10.1016/j.bbr.2012.12.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/20/2012] [Accepted: 12/24/2012] [Indexed: 11/27/2022]
Abstract
Cognitive dysfunction is a hallmark of chronic psychostimulant misuse. Adolescents may have heightened risk of developing drug-induced deficits because their brains are already undergoing widespread changes in anatomy and function as a normal part of development. To address this hypothesis, we performed two sets of experiments where adolescent and young adult rats were pre-exposed to saline or amphetamine (1 or 3mg/kg) and subsequently tested in a prefrontal cortex (PFC)-sensitive working memory task. A total of ten injections of AMPH or saline (in control rats) were given every other day over the course of 19 days. After rats reached adulthood (>90 days old), cognitive performance was assessed using operant-based delayed matching-to-position (DMTP) and delayed nonmatching-to-position (DNMTP) tasks. DNMTP was also assessed following challenges with amphetamine (0.3-1.25mg/kg), and ketamine (5.0-10mg/kg). In experiment one, we also measured the locomotor response following the first and tenth pre-exposure to amphetamine and after an amphetamine challenge given at the conclusion of operant testing. Compared to adult-exposed groups, adolescents were less sensitive to the psychomotor effects of amphetamine. However, they were more vulnerable to exposure-induced cognitive impairments. For example, adolescent-exposed rats displayed delay-dependent deficits in accuracy, increased sensitivity to proactive interference, and required more training to reach criterion. Drug challenges produced deficits in DNMTP performance, but these were not dependent on pre-exposure group. These studies demonstrate age of exposure-dependent effects of amphetamine on cognition in a PFC-sensitive task, suggesting a heightened sensitivity of adolescents to amphetamine-induced neuroplasticity.
Collapse
Affiliation(s)
- Luke K Sherrill
- Department of Psychology, University of Illinois, Urbana-Champaign, USA
| | | | | |
Collapse
|
7
|
Calipari ES, Ferris MJ, Salahpour A, Caron MG, Jones SR. Methylphenidate amplifies the potency and reinforcing effects of amphetamines by increasing dopamine transporter expression. Nat Commun 2013; 4:2720. [PMID: 24193139 PMCID: PMC4017736 DOI: 10.1038/ncomms3720] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/07/2013] [Indexed: 01/04/2023] Open
Abstract
Methylphenidate (MPH) is commonly diverted for recreational use, but the neurobiological consequences of exposure to MPH at high, abused doses are not well defined. Here we show that MPH self-administration in rats increases dopamine transporter (DAT) levels and enhances the potency of MPH and amphetamine on dopamine responses and drug-seeking behaviours, without altering cocaine effects. Genetic overexpression of the DAT in mice mimics these effects, confirming that MPH self-administration-induced increases in DAT levels are sufficient to induce the changes. Further, this work outlines a basic mechanism by which increases in DAT levels, regardless of how they occur, are capable of increasing the rewarding and reinforcing effects of select psychostimulant drugs, and suggests that individuals with elevated DAT levels, such as ADHD sufferers, may be more susceptible to the addictive effects of amphetamine-like drugs.
Collapse
Affiliation(s)
- Erin S. Calipari
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mark J Ferris
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Marc G. Caron
- Department of Cell Biology, Medicine and Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
8
|
Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes. Brain Res 2012; 1476:132-53. [PMID: 22494568 DOI: 10.1016/j.brainres.2012.03.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 11/22/2022]
Abstract
The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT(2C) receptors on the effects of different classes of addictive drugs, illustrated by reference to data using pharmacological and genetic tools. The neurochemical mechanism of the interaction between 5-HT(2C) receptors, with focus on the mesocorticolimbic dopaminergic system, and drugs of abuse (using cocaine as an example) is discussed. Finally, we integrate recent nonclinical and clinical research and information with marketed products possessing 5-HT(2C) receptor binding affinities. Accordingly, available nonclinical data and some clinical observations targeting 5-HT(2C) receptors may offer innovative translational strategies for combating drug dependence.This article is part of a Special Issue entitled: Brain Integration.
Collapse
|
9
|
Nagy B, Szabó I, Papp S, Takács G, Szalay C, Karádi Z. Glucose-monitoring neurons in the mediodorsal prefrontal cortex. Brain Res 2012; 1444:38-44. [PMID: 22330723 DOI: 10.1016/j.brainres.2012.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 11/18/2022]
Abstract
The mediodorsal prefrontal cortex (mdPFC), a key structure of the limbic neural circuitry, plays important roles in the central regulation of feeding. As an integrant part of the forebrain dopamine (DA) system, it performs complex roles via interconnections with various brain areas where glucose-monitoring (GM) neurons have been identified. The main goal of the present experiments was to examine whether similar GM neurons exist in the mediodorsal prefrontal cortex. To search for such chemosensory cells here, and to estimate their involvement in the DA circuitry, extracellular single neuron activity of the mediodorsal prefrontal cortex of anesthetized Wistar and Sprague-Dawley rats was recorded by means of tungsten wire multibarreled glass microelectrodes during microelectrophoretic administration of d-glucose and DA. One fourth of the neurons tested changed in firing rate in response to glucose, thus, proved to be elements of the forebrain GM neural network. DA responsive neurons in the mdPFC were found to represent similar proportion of all cells; the glucose-excited units were shown to display excitatory whereas the glucose-inhibited neurons were demonstrated to exert mainly inhibitory responses to dopamine. The glucose-monitoring neurons of the mdPFC and their distinct DA sensitivity are suggested to be of particular significance in adaptive processes of the central feeding control.
Collapse
Affiliation(s)
- Bernadett Nagy
- Pécs University, Medical School, Institute of Physiology and Neurophysiology Research Group of the Hungarian Academy of Sciences,Pécs, Hungary.
| | | | | | | | | | | |
Collapse
|
10
|
Fabbricatore AT, Ghitza UE, Prokopenko VF, West MO. Electrophysiological evidence of mediolateral functional dichotomy in the rat accumbens during cocaine self-administration: tonic firing patterns. Eur J Neurosci 2009; 30:2387-400. [PMID: 20092580 PMCID: PMC3004473 DOI: 10.1111/j.1460-9568.2009.07033.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Given the increasing research emphasis on putative accumbal functional compartmentation, we sought to determine whether neurons that demonstrate changes in tonic firing rate during cocaine self-administration are differentially distributed across subregions of the NAcc. Rats were implanted with jugular catheters and microwire arrays targeting NAcc subregions (core, dorsal shell, ventromedial shell, ventrolateral shell and rostral pole shell). Recordings were obtained after acquisition of stable cocaine self-administration (0.77 mg/kg/0.2mL infusion; fixed-ratio 1 schedule of reinforcement; 6-h daily sessions). During the self-administration phase of the experiment, neurons demonstrated either: (i) tonic suppression (or decrease); (ii) tonic activation (or increase); or (iii) no tonic change in firing rate with respect to rates of firing during pre- and post-drug phases. Consistent with earlier observations, tonic decrease was the predominant firing pattern observed. Differences in the prevalence of tonic increase firing were observed between the core and the dorsal shell and dorsal shell-core border regions, with the latter two areas exhibiting a virtual absence of tonic increases. Tonic suppression was exhibited to a greater extent by the dorsal shell-core border region relative to the core. These differences could reflect distinct subregional afferent processing and/or differential sensitivity of subpopulations of NAcc neurons to cocaine. Ventrolateral shell firing topographies resembled those of core neurons. Taken together, these observations are consistent with an emerging body of literature that differentiates the accumbens mediolaterally and further advances the likelihood that distinct functions are subserved by NAcc subregions in appetitive processing.
Collapse
|
11
|
Ball KT, Wellman CL, Fortenberry E, Rebec GV. Sensitizing regimens of (+/-)3, 4-methylenedioxymethamphetamine (ecstasy) elicit enduring and differential structural alterations in the brain motive circuit of the rat. Neuroscience 2009; 160:264-74. [PMID: 19236907 PMCID: PMC2669702 DOI: 10.1016/j.neuroscience.2009.02.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/05/2009] [Accepted: 02/07/2009] [Indexed: 10/21/2022]
Abstract
Repeated, intermittent exposure to the psychomotor stimulants amphetamine and cocaine induces a progressive and enduring augmentation of their locomotor-activating effects, known as behavioral sensitization, which is accompanied by similarly stable adaptations in the dendritic structure of cortico-striatal neurons. We examined whether repeated exposure to the increasingly abused amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) also results in long-lasting behavioral and morphological changes in mesocortical (medial prefrontal cortex) and ventral striatal (nucleus accumbens) neurons. Rats received two daily injections of either 5.0 mg/kg (+/-)-MDMA or saline vehicle, approximately 6 h apart, for 3 consecutive days, followed by 4 drug-free days for a total of 3 weeks. Following a 4-week drug-free period, MDMA-pretreated rats displayed behavioral sensitization, as well as large increases in spine density and the number of multiple-headed spines on medium spiny neurons in core and shell subregions of nucleus accumbens. In medial prefrontal cortex, the prelimbic subregion showed increased spine density on distal dendrites of layer V pyramidal neurons, while the anterior cingulate subregion showed a change in the distribution of dendritic material instead. Collectively, our results show that long-lasting locomotor sensitization to MDMA is accompanied by reorganization of synaptic connectivity in limbic-cortico-striatal circuitry. The differential plasticity in cortical subregions, moreover, suggests that drug-induced structural changes are not homogeneous and may be specific to the circuitry underlying long-term changes in drug-seeking and drug-taking behavior.
Collapse
Affiliation(s)
- Kevin T. Ball
- Department of Psychology, Bloomsburg University of Pennsylvania, Bloomsburg, PA, USA
| | - Cara L. Wellman
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Emma Fortenberry
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - George V. Rebec
- Department of Psychological and Brain Sciences and Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
12
|
Ding ZM, Liu W, Engleman EA, Rodd ZA, McBride WJ. Differential effects of dopamine D2 and GABA(A) receptor antagonists on dopamine neurons between the anterior and posterior ventral tegmental area of female Wistar rats. Pharmacol Biochem Behav 2009; 92:404-12. [PMID: 19480073 PMCID: PMC2859430 DOI: 10.1016/j.pbb.2009.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Previous findings indicated differences in neuronal circuitries mediating drug reinforcement between the anterior and posterior ventral tegmental area (VTA). The objective of the present study was to examine the effects of the dopamine D2 antagonist sulpiride and the GABA(A) antagonist picrotoxin administered in the anterior and posterior VTA on the activity of mesoaccumbal dopamine neurons in female Wistar rats. Sulpiride and picrotoxin were administered in the anterior and posterior VTA. Extracellular dopamine levels were measured in sub-regions of the VTA and nucleus accumbens (ACB). Reverse-microdialysis of sulpiride (100 microM) into the posterior VTA increased extracellular dopamine levels locally (80% above baseline) and in the ACB shell and core (70% above baseline), whereas reverse-microdialysis into the anterior VTA produced a much smaller effect locally (30% above baseline) and in the ACB shell and core. In contrast, microinjection of picrotoxin (80 and 160 microM) into the anterior, but not posterior VTA, increased dopamine release in the ACB shell. The results suggest that dopamine neurons in the posterior VTA, compared to the anterior VTA, may be under greater D2 receptor-mediated tonic inhibition, whereas dopamine neurons in the anterior VTA, compared to the posterior VTA, may be under greater GABA(A) receptor-mediated tonic inhibition.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Indiana University School of Medicine, Institute of PsychiatricResearch, 791 Union Drive, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | |
Collapse
|
13
|
Effects of repeated exposure to cocaine on group II metabotropic glutamate receptor function in the rat medial prefrontal cortex: behavioral and neurochemical studies. Psychopharmacology (Berl) 2009; 203:501-10. [PMID: 19005645 DOI: 10.1007/s00213-008-1392-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Repeated exposure to cocaine progressively increases drug-induced locomotor activity, which is termed behavioral sensitization. Enhanced excitatory output from the medial prefrontal cortex (mPFC), which can be modulated by group II metabotropic glutamate receptors (mGluR), is thought to play a key role in the development of sensitization to cocaine. OBJECTIVES The present studies were designed to determine whether the ability of intra-mPFC injections of the group II mGluR agonist 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC) to inhibit cocaine-induced motor activity and dopamine release in the nucleus accumbens is reduced in sensitized animals. RESULTS Initial studies demonstrated that injection of APDC (0.015-15 nmol/side) into the mPFC dose dependently reduced cocaine-induced (15 mg/kg, i.p.) motor activity. The lowest dose in the present studies that significantly reduced the acute motor-stimulant response to cocaine was 1.5 nmol/side. The specificity of the effects of APDC was confirmed by demonstrating that intra-mPFC co-injection of LY341495 (1.5 nmol/side), a group II mGluR antagonist, prevented the inhibitory actions of APDC. Finally, it was shown that intra-mPFC injection of APDC was able to prevent the initiation of behavioral and neurochemical sensitization to cocaine. Intra-mPFC APDC was also observed to block the expression of cocaine-induced sensitization after short (1 day), but not prolonged (7 and 30 days), abstinence from cocaine. CONCLUSIONS Taken together, these data suggest that mPFC group II mGluR function is reduced following extended abstinence from repeated cocaine.
Collapse
|
14
|
Hipólito L, Sánchez-Catalán MJ, Polache A, Granero L. Induction of brain CYP2E1 changes the effects of ethanol on dopamine release in nucleus accumbens shell. Drug Alcohol Depend 2009; 100:83-90. [PMID: 18990514 DOI: 10.1016/j.drugalcdep.2008.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 01/05/2023]
Abstract
CYP2E1 is an important enzyme involved in the brain metabolism of ethanol that can be induced by chronic consumption of alcohol. Recent works have highlighted the importance of this system in the context of the behavioural effects of ethanol. Unfortunately, the underlying neurochemical events for these behavioural changes, has not been yet explored. In this work, we have started this exploration by analyzing the possible changes in the neurochemical response of the mesolimbic system to ethanol after pharmacological induction of brain CYP2E1. We have used the dopamine extracellular levels in nucleus accumbens (NAc) core and shell, measured by means of microdialysis in vivo, as an index of the effects of ethanol. Acetone 1% in the tap water was used to induce brain CYP2E1. Efficacy of the induction protocol was assessed by immunoblotting. Intravenous administration of 1.5 g/kg of ethanol in control rats provoked a significant increase of the dopamine levels in both the core (up to 127% of baseline) and the shell (up to 122% of baseline) of the NAc. However, the same dose of ethanol in acetone-treated rats only increased the dopamine extracellular levels in the core (up to 142% of baseline) whereas dopamine levels in the shell subregion remain unaltered relative to baseline. The results of this study indicate that induction of CYP2E1 changes the response of the mesolimbic system to ethanol in a region-dependent manner. Two hypotheses are postulated to explain the observed effects.
Collapse
Affiliation(s)
- Lucía Hipólito
- Departamento de Farmacia y Tecnología Farmacéutica, Universidad de Valencia, Avda Vicente Andrés Estellés s/n, 46100 Burjassot, Spain
| | | | | | | |
Collapse
|
15
|
Frank STH, Krumm B, Spanagel R. Cocaine-induced dopamine overflow within the nucleus accumbens measured by in vivo microdialysis: A meta-analysis. Synapse 2008; 62:243-52. [DOI: 10.1002/syn.20489] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
Repeated amphetamine administration induces Fos in prefrontal cortical neurons that project to the lateral hypothalamus but not the nucleus accumbens or basolateral amygdala. Psychopharmacology (Berl) 2008; 197:179-89. [PMID: 18080115 PMCID: PMC2553393 DOI: 10.1007/s00213-007-1021-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 11/09/2007] [Indexed: 02/04/2023]
Abstract
RATIONALE The development of sensitization to amphetamine (AMPH) is dependent on increases in excitatory outflow from the medial prefrontal cortex (mPFC) to subcortical centers. These projections are clearly important for the progressive enhancement of the behavioral response during drug administration that persists through withdrawal. OBJECTIVES The objective of this study was to identify the mPFC subcortical pathway(s) activated by a sensitizing regimen of AMPH. MATERIALS AND METHODS Using retrograde labeling techniques, Fos activation was evaluated in the predominant projection pathways of the mPFC of sensitized rats after a challenge injection of AMPH. RESULTS There was a significant increase in Fos-immunoreactive cells in the mPFC, nucleus accumbens (NAc), basolateral amygdala (BLA), and lateral hypothalamus (LH) of rats treated repeatedly with AMPH when compared to vehicle-treated controls. The mPFC pyramidal neurons that project to the LH but not the NAc or BLA show a significant induction of Fos after repeated AMPH treatment. In addition, we found a dramatic increase in Fos-activated orexin neurons. CONCLUSIONS The LH, a region implicated in natural and drug reward processes, may play a role in the development and persistence of sensitization to repeated AMPH through its connections with the mPFC and possibly through its orexin neurons.
Collapse
|
17
|
Verheij MMM, Cools AR. Twenty years of dopamine research: individual differences in the response of accumbal dopamine to environmental and pharmacological challenges. Eur J Pharmacol 2008; 585:228-44. [PMID: 18423601 DOI: 10.1016/j.ejphar.2008.02.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/07/2008] [Accepted: 02/13/2008] [Indexed: 11/30/2022]
Abstract
Individual differences in the dopaminergic system of the nucleus accumbens of rats have extensively been reported. These individual differences have frequently been used to explain individual differences in response to environmental and pharmacological challenges. Remarkably, only little attention is paid to the factors that underlie these individual differences. This review gives an overview of the studies that have been performed in our institute during the last 20 years to investigate individual differences in accumbal dopamine release. Data are summarised demonstrating that individual differences in accumbal dopamine release are due to individual differences in: the functional reactivity of the noradrenergic system, the accumbal concentration of vesicular monoamine transporters and tyrosine hydroxylase as well as in the quantal size of the presynaptic pools of dopamine. Our data are embedded in the available literature to create a model that illustrates the putative hardware giving rise to the individual-specific release of accumbal dopamine. An important role is contributed to individual differences in the reactivity of the: hypothalamic-pituitary-adrenal axes, the reactivity of second messenger systems as well in the aminergic reactivity of the accumbens shell and core. The consequences of the individual-specific make-up and reactivity of the nucleus accumbens on the regulation of behaviour and the response to drugs of abuse will also be discussed. Apart from agents that interact with dopaminergic receptors, re-uptake or breakdown, noradrenergic agents as well as agents that interact with vesicular monoamine transporters or tyrosine hydroxylase are suggested to have therapeutic effects in subjects that are suffering from diseases in which the dopaminergic system is disturbed.
Collapse
Affiliation(s)
- Michel M M Verheij
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University Nijmegen Medical Centre, 6525 EZ, Nijmegen, The Netherlands.
| | | |
Collapse
|
18
|
Alcaro A, Huber R, Panksepp J. Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. BRAIN RESEARCH REVIEWS 2007; 56:283-321. [PMID: 17905440 PMCID: PMC2238694 DOI: 10.1016/j.brainresrev.2007.07.014] [Citation(s) in RCA: 319] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 07/03/2007] [Accepted: 07/03/2007] [Indexed: 12/11/2022]
Abstract
The mesolimbic dopaminergic (ML-DA) system has been recognized for its central role in motivated behaviors, various types of reward, and, more recently, in cognitive processes. Functional theories have emphasized DA's involvement in the orchestration of goal-directed behaviors and in the promotion and reinforcement of learning. The affective neuroethological perspective presented here views the ML-DA system in terms of its ability to activate an instinctual emotional appetitive state (SEEKING) evolved to induce organisms to search for all varieties of life-supporting stimuli and to avoid harms. A description of the anatomical framework in which the ML system is embedded is followed by the argument that the SEEKING disposition emerges through functional integration of ventral basal ganglia (BG) into thalamocortical activities. Filtering cortical and limbic input that spreads into BG, DA transmission promotes the "release" of neural activity patterns that induce active SEEKING behaviors when expressed at the motor level. Reverberation of these patterns constitutes a neurodynamic process for the inclusion of cognitive and perceptual representations within the extended networks of the SEEKING urge. In this way, the SEEKING disposition influences attention, incentive salience, associative learning, and anticipatory predictions. In our view, the rewarding properties of drugs of abuse are, in part, caused by the activation of the SEEKING disposition, ranging from appetitive drive to persistent craving depending on the intensity of the affect. The implications of such a view for understanding addiction are considered, with particular emphasis on factors predisposing individuals to develop compulsive drug seeking behaviors.
Collapse
Affiliation(s)
- Antonio Alcaro
- Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind & Behavior, Bowling Green State University, Life Science Building, Bowling Green, OH, 43403, USA
- Santa Lucia Foundation, European Centre for Brain Research (CERC), Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Robert Huber
- Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind & Behavior, Bowling Green State University, Life Science Building, Bowling Green, OH, 43403, USA
| | - Jaak Panksepp
- Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind & Behavior, Bowling Green State University, Life Science Building, Bowling Green, OH, 43403, USA
- Department of VCAPP, Center for the Study of Animal Well-Being, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
19
|
Peleg-Raibstein D, Feldon J. Effects of dorsal and ventral hippocampal NMDA stimulation on nucleus accumbens core and shell dopamine release. Neuropharmacology 2006; 51:947-57. [PMID: 16876207 DOI: 10.1016/j.neuropharm.2006.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 05/18/2006] [Accepted: 06/02/2006] [Indexed: 11/29/2022]
Abstract
This study has analysed the effects of infusing N-methyl-D-aspartate (NMDA) into either the ventral or dorsal hippocampus on dopamine (DA) transmission in the nucleus accumbens (NAC) core or shell for the first time. Dopamine was measured using in vivo microdialysis with high performance liquid chromatography with electrochemical detection (HPLC-EC). Unilateral NMDA infusion (0.5 microg) into the ventral hippocampus (VH) increased extracellular DA levels in NAC shell during the first 30 min following infusion compared to saline (SAL) infused animals. In contrast, NAC core DA levels were unaffected. NMDA infusion into the dorsal hippocampus (DH) led to a decrease in NAC core DA levels; this effect was not observed in the SAL-infused group. DA levels in NAC shell remained unaltered. At the end of the experiments, we examined the response to a systemic amphetamine (AMPH) injection of 1mg/kg on extracellular DA levels of the NAC core and shell. Interestingly, on2ly animals previously infused with NMDA into the VH exhibited a sensitized DA response in the NAC shell in response to the AMPH injection. We can conclude that VH activation has an acute stimulatory effect on DA release in the shell and that DH activation has a suppressive effect on extracellular DA levels in the core.
Collapse
Affiliation(s)
- Daria Peleg-Raibstein
- Laboratory of Behavioural Neurobiology, Swiss Federal Institute of Technology (ETH Zurich), Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | |
Collapse
|
20
|
Fuchs H, Nagel J, Hauber W. Effects of physiological and pharmacological stimuli on dopamine release in the rat globus pallidus. Neurochem Int 2005; 47:474-81. [PMID: 16122838 DOI: 10.1016/j.neuint.2005.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/16/2005] [Accepted: 06/28/2005] [Indexed: 11/21/2022]
Abstract
A major aspect of understanding functions of the globus pallidus (GP) within the basal ganglia is the significance of its dopamine innervation. Here, we used in vivo-microdialysis in rats to characterize pallidal dopamine release in response to a number of physiological and pharmacological stimuli known to activate dopamine neurons. Results reveal that an aversive stimulus, i.e. handling for 20 min, significantly increased dialysate dopamine in the globus pallidus to about 130% of baseline levels. Likewise, a novel and appetitive stimulus, i.e. presentation of unfamiliar, palatable food, significantly elevated pallidal dopamine to about 150% of baseline levels both in rats which did and did not consume the food reward. These findings provide evidence that increases of dopamine (DA) efflux may largely reflect stimulus saliency implicating an involvement of pallidal dopamine signalling in control of behaviour governed by salient stimuli. Results further showed that reverse microdialysis of D-amphetamine and cocaine in augmenting concentrations of 0.1-100 microM elevated dialysate dopamine in a concentration-dependent manner suggesting a role of pallidal dopamine in mediating behavioural effects of psychostimulant drugs.
Collapse
Affiliation(s)
- Holger Fuchs
- Department of Animal Physiology, Abteilung Tierphysiologie, Institute for Biology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | | | | |
Collapse
|
21
|
Bachtell RK, Whisler K, Karanian D, Self DW. Effects of intra-nucleus accumbens shell administration of dopamine agonists and antagonists on cocaine-taking and cocaine-seeking behaviors in the rat. Psychopharmacology (Berl) 2005; 183:41-53. [PMID: 16163523 DOI: 10.1007/s00213-005-0133-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 07/05/2005] [Indexed: 11/29/2022]
Abstract
RATIONALE Dopamine signaling in the nucleus accumbens (NAc) plays an important role in regulating drug-taking and drug-seeking behaviors, but the role of D(1)- and D(2)-like receptors in this regulation remains unclear. OBJECTIVES Our objective was to study the role of NAc D(1)- and D(2)-like receptors in the reinstatement of cocaine-seeking behavior and the regulation of stabilized cocaine intake in rats. METHODS Using a within-session reinstatement procedure, whereby animals self-administer cocaine (90 min) and extinguish responding (150 min) in a single session, we assessed the ability of NAc microinfusions of the D(1) agonist SKF 81297 and the D(2) agonist 7-OH-DPAT to reinstate extinguished cocaine seeking. The effects of the D(1) antagonist SCH 23390 and the D(2) antagonist eticlopride pretreatment on agonist- and cocaine-primed reinstatement were also measured. Similar agonist and antagonist treatments were tested for their ability to modulate stabilized cocaine and sucrose self-administration. RESULTS Intra-NAc infusions of either SKF 81297 (0.3-3.0 microg) or 7-OH-DPAT (1.0-10.0 microg) dose-dependently reinstated cocaine seeking with greater efficacy in the medial core than in the shell subregion and at doses that also stimulated locomotor behavior. Intra-NAc shell infusions of SCH 23390 (1.0 microg) and eticlopride (3.0-10.0 microg) blocked cocaine-primed reinstatement (2.0 mg/kg, i.v.) and indiscriminately blocked reinstatement induced by either intra-NAc D(1) or D(2) agonists. Doses of agonists that triggered reinstatement failed to alter stabilized cocaine intake, whereas doses of antagonists that blocked reinstatement increased cocaine intake in the shell. CONCLUSIONS Both D(1) and D(2) receptors in the NAc play a prominent, and perhaps cooperative, role in regulating cocaine-taking and cocaine-seeking behaviors.
Collapse
Affiliation(s)
- Ryan K Bachtell
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9070, USA
| | | | | | | |
Collapse
|
22
|
Hao Y, Yang JY, Guo M, Wu CF, Wu MF. Morphine decreases extracellular levels of glutamate in the anterior cingulate cortex: an in vivo microdialysis study in freely moving rats. Brain Res 2005; 1040:191-6. [PMID: 15804441 DOI: 10.1016/j.brainres.2005.01.072] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 01/24/2005] [Accepted: 01/24/2005] [Indexed: 11/25/2022]
Abstract
In the present study, we investigated the effect of morphine on the extracellular levels of glutamate in the anterior cingulate cortex (ACC) in freely moving rats using in vivo microdialysis coupled to high performance liquid chromatography and electrochemical detection. The results showed that either acute or chronic morphine treatment decreased the extracellular levels of glutamate in the ACC. Naloxone could reverse the decrease induced by chronic morphine treatment. The present study provided the first neurochemical evidence that morphine decreased extracellular levels of glutamate in the ACC, suggesting that glutamate in ACC is involved in the central actions of morphine.
Collapse
Affiliation(s)
- Yue Hao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | |
Collapse
|
23
|
Shilliam CS, Dawson LA. The effect of clozapine on extracellular dopamine levels in the shell subregion of the rat nucleus accumbens is reversed following chronic administration: comparison with a selective 5-HT(2C) receptor antagonist. Neuropsychopharmacology 2005; 30:372-80. [PMID: 15562297 DOI: 10.1038/sj.npp.1300591] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinical onset of both the therapeutic and side effects of antipsychotic drugs can take days/weeks to develop. Therefore, it is likely that adaptive changes in neurotransmission of key systems may only manifest upon chronic administration. Thus, using in vivo microdialysis we have evaluated the acute and chronic (21 days) effects of the atypical antipsychotic clozapine on nucleus accumbens (NAcc) dopamine (DA) output in the rat. Clozapine (10 mg/kg p.o.) produced an acute 60% increase in extracellular levels of DA in the shell but not the core subregion of the NAcc. This clozapine-induced effect was also apparent on day 8 (59% increase) of chronic administration. However, on day 22 (following 21 days chronic administration), clozapine-induced a significant decrease in extracellular DA levels (44% decrease). Since clozapine possesses significant affinity for the 5-HT(2C) receptor these clozapine-induced effects were compared to those of SB-243213, a selective 5-HT(2C) receptor antagonist. SB-243213 (10 mg/kg p.o.) had no effect on NAcc DA levels either acutely or following 21 days chronic administration. These data demonstrate that the atypical neuroleptic clozapine is more effective at eliciting changes in the shell vs the core subregion of the NAcc. In contrast, chronic treatment produces a time-dependent reduction in clozapine-induced DA efflux in the shell subregion. This selective temporal change in dopaminergic neurotransmission may be associated with the delayed therapeutic onset of antipsychotic activity. However, since SB-243213 had no effect on DA levels in the NAcc, it is likely that 5-HT(2C) receptor antagonism alone is not the mechanism by which clozapine exerts is actions.
Collapse
Affiliation(s)
- Claire S Shilliam
- Department of Neuropharmacology, Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK.
| | | |
Collapse
|
24
|
Gonzales RA, Job MO, Doyon WM. The role of mesolimbic dopamine in the development and maintenance of ethanol reinforcement. Pharmacol Ther 2005; 103:121-46. [PMID: 15369680 DOI: 10.1016/j.pharmthera.2004.06.002] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurobiological processes by which ethanol seeking and consumption are established and maintained are thought to involve areas of the brain that mediate motivated behavior, such as the mesolimbic dopamine system. The mesolimbic dopamine system is comprised of cells that originate in the ventral tegmental area (VTA) and project to several forebrain regions, including a prominent terminal area, the nucleus accumbens (NAcc). The NAcc has been subdivided into core and shell subregions. Both areas receive converging excitatory input from the cortex and amygdala and dopamine input from the VTA, with the accumbal medium spiny neuron situated to integrate the signals. Although forced ethanol administration enhances dopamine activity in the NAcc, conclusions regarding the role of mesolimbic dopamine in ethanol reinforcement cannot be made from these experiments. Behavioral experiments consistently show that pharmacological manipulations of the dopamine transmission in the NAcc alter responding for ethanol, although ethanol reinforcement is maintained after lesions of the accumbal dopamine system. Additionally, extracellular dopamine increases in the NAcc during operant self-administration of ethanol, which is consistent with a role of dopamine in ethanol reinforcement. Behavioral studies that distinguish appetitive responding from ethanol consumption show that dopamine is important in ethanol-seeking behavior, whereas neurochemical studies suggest that accumbal dopamine is also important during ethanol consumption before pharmacological effects occur. Cellular studies suggest that ethanol alters synaptic plasticity in the mesolimbic system, possibly through dopaminergic mechanisms, and this may underlie the development of ethanol reinforcement. Thus, anatomical, pharmacological, neurochemical, cellular, and behavioral studies are more clearly defining the role of mesolimbic dopamine in ethanol reinforcement.
Collapse
Affiliation(s)
- Rueben A Gonzales
- Department of Pharmacology, College of Pharmacy, The University of Texas at Austin, 1 University Station A1915, Austin, TX 78712-0125, USA.
| | | | | |
Collapse
|
25
|
Glucocorticoid hormones, individual differences, and behavioral and dopaminergic responses to psychostimulant drugs. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Melis M, Spiga S, Diana M. The dopamine hypothesis of drug addiction: hypodopaminergic state. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 63:101-54. [PMID: 15797467 DOI: 10.1016/s0074-7742(05)63005-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Miriam Melis
- B.B. Brodie Department of Neuroscience, University of Cagliari, 09042 Monserrato, Italy
| | | | | |
Collapse
|
27
|
Hows MEP, Lacroix L, Heidbreder C, Organ AJ, Shah AJ. High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine, norepinephrine, 5-hydroxytryptamine and cocaine in biological samples. J Neurosci Methods 2004; 138:123-32. [PMID: 15325120 DOI: 10.1016/j.jneumeth.2004.03.021] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 03/22/2004] [Accepted: 03/26/2004] [Indexed: 10/26/2022]
Abstract
A rapid liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed for the measurement of dopamine (DA), 5-hydroxytryptamine (5HT) and norepinephrine (NE) in brain microdialysates. The assay has also been utilised for the simultaneous measurement of these neurotransmitters and cocaine in brain dialysates. The neurotransmitters and cocaine were resolved in a single 4-min run using a binary gradient elution profile. The analytes were detected using tandem mass spectrometry in the positive ion electrospray mode. The limits of detection for DA, NE, 5HT and cocaine were 200, 1000, 900 pM and 1 pg ml(-1), respectively.
Collapse
Affiliation(s)
- Mark E P Hows
- Computational Analytical and Structural Sciences, Psychiatry CEDD, GlaxoSmithKline, Via A. Fleming 4, 37135 Verona, Italy.
| | | | | | | | | |
Collapse
|
28
|
Ikegami A, Duvauchelle CL. Dopamine Mechanisms and Cocaine Reward. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2004; 62:45-94. [PMID: 15530568 DOI: 10.1016/s0074-7742(04)62002-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aiko Ikegami
- Division of Pharmacology/Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
29
|
Ikegami A, Duvauchelle CL. Nucleus accumbens and medial prefrontal cortex dopaminergic response to self-administered cocaine in naive rats. Neurosci Lett 2004; 354:205-8. [PMID: 14700732 DOI: 10.1016/j.neulet.2003.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cocaine reinforcement is strongly associated with increased nucleus accumbens dopamine (NAcc DA). The involvement of medial prefrontal cortex (mPFC) DA in cocaine reward is less defined, but substantial evidence indicates that increased mPFC DA may suppress NAcc DA levels. Using in vivo microdialysis, NAcc or mPFC DA was determined in cocaine-naive rats after a self-administered cocaine injection (3.0 mg/kg). Extracellular levels of NAcc DA were dramatically enhanced 10 min post-cocaine injection, but dropped significantly at each subsequent assessment. mPFC DA also increased significantly, but to a lesser extent than observed in the NAcc. Findings of prominent DA increases in both the NAcc and mPFC terminals during the test session indicate that NAcc DA responses do not appear to be inhibited by increased mPFC DA during cocaine self-administration.
Collapse
Affiliation(s)
- Aiko Ikegami
- College of Pharmacy, Division of Pharmacology and Toxicology and the Waggoner Center for Alcohol and Addiction Research, The University of Texas, Austin, TX 78712-0125, USA
| | | |
Collapse
|
30
|
Homberg JR, Wardeh G, Raasø HS, Schoffelmeer ANM, De Vries TJ. Neuroadaptive changes in mesocorticolimbic dopamine and acetylcholine neurons following cocaine or saline self-administration are dependent on pre-existing individual differences. Neuroscience 2003; 121:829-36. [PMID: 14580932 DOI: 10.1016/j.neuroscience.2003.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we demonstrated that stress-induced self-grooming behaviour in rats predicted an enhanced motivation to self-administer cocaine as determined under a progressive ratio schedule of reinforcement. The enhanced motivation of high grooming (HG) rats was associated with a reduced reactivity of dopaminergic neurons in the medial prefrontal cortex and amygdala, but not nucleus accumbens. In the present study, we studied the effect of cocaine and saline self-administration on these pre-existing differences in neurochemical profile by determining the electrically evoked release of [3H]dopamine and [14C]acetylcholine from superfused slices of the nucleus accumbens shell and core, medial prefrontal cortex and amygdala of HG and low grooming (LG) rats. Although HG and LG rats did not differ in acquisition of cocaine and saline self-administration, both conditions induced substantially different neuroadaptations in these rats. Differences in depolarisation-induced dopamine and acetylcholine release were maintained in the medial prefrontal cortex, emerged in the nucleus accumbens and dissipated in the amygdala. These results indicate that altered reactivity of mesocorticolimbic dopaminergic and cholinergic neurons due to exposure to cocaine and environmental stimuli (saline) is dependent on pre-existing neurochemical differences and displays region-specificity. These pre-existing differences and the cocaine- and environmental-induced neuroadaptations seem to act in concert to produce an enhanced motivational state to self-administer cocaine.
Collapse
Affiliation(s)
- J R Homberg
- Research Institute Neurosciences Vrije Universiteit, Drug Abuse Program, Department of Medical Pharmacology, VU Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Zocchi A, Girlanda E, Varnier G, Sartori I, Zanetti L, Wildish GA, Lennon M, Mugnaini M, Heidbreder CA. Dopamine responsiveness to drugs of abuse: A shell-core investigation in the nucleus accumbens of the mouse. Synapse 2003; 50:293-302. [PMID: 14556234 DOI: 10.1002/syn.10271] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The existence of subterritories within the nucleus accumbens has now been widely supported by histochemical, neurochemical, electrophysiological, as well as morphological and ultrastructural studies and suggest specific afferent and efferent systems involved in different behavioral aspects. Microdialysis studies in the rat have consistently shown that most drugs of abuse increase extracellular dopamine levels preferentially in the shell subregion of the nucleus accumbens. The study of the relative roles of NAc subregions may considerably help our understanding of the neurobiological basis of drug addiction. Accordingly, the aim of the present work was to extend the outcome of rat studies to the mouse species. Five major drugs of abuse were systemically and acutely administered to mice with a microdialysis probe implanted in either the shell or the core. A statistical comparison was performed on data transformed as percentage values of baseline dopamine vs. logarithmic values with baseline dopamine as a covariate. Results show a significant increase in dopamine levels in both the shell and core subregions following cocaine, amphetamine, nicotine, ethanol, and morphine treatments. A difference between shell and core after cocaine, nicotine, and morphine was evident when data were analyzed as percent values of baseline. However, such a shell-core dichotomy became no longer significant when ANOVA was applied on the statistically more appropriate logarithmic transformation of data with baseline as a covariate. The significant baseline differences among groups of mice (dopamine levels in the shell significantly lower compared with dopamine levels in the core) may have compromised, at least in part, the statistical procedure usually applied in microdialysis studies. These findings suggest that a careful evaluation of the data is required when subtle changes in extracellular levels of DA are measured.
Collapse
Affiliation(s)
- Alessandro Zocchi
- Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, 37135 Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Heidbreder CA, Groenewegen HJ. The medial prefrontal cortex in the rat: evidence for a dorso-ventral distinction based upon functional and anatomical characteristics. Neurosci Biobehav Rev 2003; 27:555-79. [PMID: 14599436 DOI: 10.1016/j.neubiorev.2003.09.003] [Citation(s) in RCA: 653] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The prefrontal cortex in rats can be distinguished anatomically from other frontal cortical areas both in terms of cytoarchitectonic characteristics and neural connectivity, and it can be further subdivided into subterritories on the basis of such criteria. Functionally, the prefrontal cortex of rats has been implicated in working memory, attention, response initiation and management of autonomic control and emotion. In humans, dysfunction of prefrontal cortical areas with which the medial prefrontal cortex of the rat is most likely comparable is related to psychopathology including schizophrenia, sociopathy, obsessive-compulsive disorder, depression, and drug abuse. Recent literature points to the relevance of conducting a functional analysis of prefrontal subregions and supports the idea that the area of the medial prefrontal cortex in rats is characterized by its own functional heterogeneity, which may be related to neuroanatomical and neurochemical dissociations. The present review covers recent findings with the intent of correlating these distinct functional differences in the dorso-ventral axis of the rat medial prefrontal cortex with anatomical and neurochemical patterns.
Collapse
Affiliation(s)
- Christian A Heidbreder
- Department of Biology, Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, Via A Fleming 4, 37135 Verona, Italy.
| | | |
Collapse
|
33
|
Shilliam CS, Heidbreder CA. Gradient of dopamine responsiveness to dopamine receptor agonists in subregions of the rat nucleus accumbens. Eur J Pharmacol 2003; 477:113-22. [PMID: 14519414 DOI: 10.1016/j.ejphar.2003.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study sought to investigate the possibility that the degree of selectivity of dopamine D3/D2 receptor agonists such as quinelorane, 7-hydroxy-2-dipropylaminotetralin (7-OH-DPAT), quinpirole and apomorphine on dopamine D3 over D2 receptor subtypes can be assessed by measuring dopamine transmission in the shell vs. core compartments of the nucleus accumbens by using microdialysis in freely moving rats. Significant reductions in dialysate dopamine levels compared to vehicle-treated animals were observed in the shell of the nucleus accumbens with 3, 10 and 30 microg/kg quinelorane, 100 microg/kg 7-OH DPAT, 25 and 100 microg/kg quinpirole, and 100 microg/kg apomorphine. In the core subregion, significant reductions in dopamine were seen at 10 and 30 microg/kg quinelorane, 25 and 100 microg/kg 7-OH-DPAT, 100 microg/kg quinpirole and 100 microg/kg apomorphine. However, a significant shell/core dichotomy could only be observed in response to the lowest dose of quinelorane (3 microg/kg) with the shell being hyper-responsive compared with the core. The present findings suggest that quinelorane is one of the most selective dopamine D3 receptor agonists based on its ability to target the shell subregion of the nucleus accumbens.
Collapse
Affiliation(s)
- Claire S Shilliam
- Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline, New Frontiers Science Park, Essex CM19 5AW, Harlow, United Kingdom.
| | | |
Collapse
|
34
|
Bubar MJ, McMahon LR, De Deurwaerdère P, Spampinato U, Cunningham KA. Selective serotonin reuptake inhibitors enhance cocaine-induced locomotor activity and dopamine release in the nucleus accumbens. Neuropharmacology 2003; 44:342-53. [PMID: 12604093 DOI: 10.1016/s0028-3908(02)00381-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The role for serotonin (5-HT) in mediating the behavioral effects of cocaine may be related in part to the ability of 5-HT to modulate the function of the dopamine (DA) mesoaccumbens pathways. In the present study, the ability of the selective serotonin reuptake inhibitors (SSRIs) fluoxetine (10 mg/kg, IP) and fluvoxamine (10 and 20 mg/kg, IP) to alter cocaine (10 mg/kg, IP)-induced hyperactivity and DA release in the nucleus accumbens (NAc) was analyzed in male Sprague-Dawley rats. Systemic administration of either fluoxetine or fluvoxamine enhanced cocaine-induced locomotor activity in a dose-dependent manner; fluoxetine (10 mg/kg, IP) also enhanced cocaine (10 mg/kg, IP)-induced DA efflux in the NAc. To test the hypothesis that the NAc serves as the locus of action underlying these effects following systemic cocaine administration, fluoxetine (1 and 3 micro g/0.2 micro l/side) or fluvoxamine (1 and 3 micro g/0.2 micro l/side) was microinfused into the NAc shell prior to systemic administration of cocaine (10 mg/kg, IP). Intra-NAc shell infusion of 3 micro g of fluoxetine or fluvoxamine enhanced cocaine-induced hyperactivity, while infusion of fluoxetine (1 micro M) through the microdialysis probe implanted into the NAc shell enhanced cocaine (10 mg/kg, IP)-induced DA efflux in the NAc. Thus, the ability of systemic injection of SSRIs to enhance cocaine-evoked hyperactivity and DA efflux in the NAc is mediated in part by local actions of the SSRIs in the NAc.
Collapse
Affiliation(s)
- M J Bubar
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77550-1031, USA
| | | | | | | | | |
Collapse
|
35
|
Rodd-Henricks ZA, McKinzie DL, Li TK, Murphy JM, McBride WJ. Cocaine is self-administered into the shell but not the core of the nucleus accumbens of Wistar rats. J Pharmacol Exp Ther 2002; 303:1216-26. [PMID: 12438546 DOI: 10.1124/jpet.102.038950] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rewarding properties of cocaine have been postulated to be regulated, in part, by the mesolimbic dopamine system. However, the possibility that the rewarding properties of cocaine are mediated by direct activation of this system has yielded contradictory findings. The intracranial self-administration technique is used to identify specific brain regions involved in the initiation of response-contingent behaviors for the delivery of a reinforcer. The present study assessed whether adult Wistar rats would self-administer cocaine directly into the nucleus accumbens shell (AcbSh) and core (AcbC). For each subregion, subjects were placed in standard two-lever operant chambers and randomly assigned to one of five groups for each site that were given either artificial cerebrospinal fluid (aCSF), or 400, 800, 1200, or 1600 pmol of cocaine/100 nl to self-administer. The data indicate that rats with placements within the AcbSh readily self-administered 800 to 1600 pmol of cocaine/100 nl and responded significantly more on the active than inactive lever. These subjects also decreased responding on the active lever when aCSF was substituted for cocaine and reinstated responding on the active lever when cocaine was reintroduced. Coinfusion of the D2-like receptor antagonist sulpiride inhibited cocaine self-infusion in the AcbSh. In contrast to the AcbSh data, rats failed to self-administer any tested dose of cocaine into the AcbC or areas ventral to the AcbSh. These findings suggest that the AcbSh is a neuroanatomical substrate for the reinforcing effects of cocaine and that activation of D2-like receptors is involved.
Collapse
Affiliation(s)
- Zachary A Rodd-Henricks
- Institute of Psychiatric Research and Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana 46202-4887, USA.
| | | | | | | | | |
Collapse
|
36
|
Pezze MA, Feldon J, Murphy CA. Increased conditioned fear response and altered balance of dopamine in the shell and core of the nucleus accumbens during amphetamine withdrawal. Neuropharmacology 2002; 42:633-43. [PMID: 11985821 DOI: 10.1016/s0028-3908(02)00022-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been suggested that neuroadaptations within the nucleus accumbens (NAC) dopaminergic (DA) projection contribute to the negative affect associated with psychostimulant withdrawal. The present study assessed the effects of amphetamine (AMPH) withdrawal on behavioral and NAC DA responses to conditioned fear stress. Animals injected with escalating-dose AMPH (1-5mg/kg, three injections/day, 6 days) or saline (SAL) acquired a tone-shock association on withdrawal day 3 and were tested for extinction of conditioned freezing to the tone on withdrawal day 4. Extracellular levels of NAC shell and core DA were monitored using in vivo microdialysis on both days. AMPH-withdrawn animals exhibited more conditioned freezing than SAL animals during both acquisition and extinction. During acquisition, DA increased more in the shell than the core of the NAC in both AMPH and SAL groups. During extinction to the tone, shell DA increased in SAL- but not AMPH-treated animals, whereas core DA activity was greater in AMPH than SAL animals. These data demonstrate that AMPH withdrawal alters the balance between shell and core DA transmission while increasing the behavioral expression of conditioned fear. Such drug-induced neuroadaptations in the NAC stress response may be involved in the exacerbation of negative emotions associated with drug withdrawal and stimulant-induced psychosis.
Collapse
Affiliation(s)
- M A Pezze
- Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schorenstrasse 16, CH-8603 Schwerzenbach, Switzerland
| | | | | |
Collapse
|
37
|
Pezze MA, Heidbreder CA, Feldon J, Murphy CA. Selective responding of nucleus accumbens core and shell dopamine to aversively conditioned contextual and discrete stimuli. Neuroscience 2002; 108:91-102. [PMID: 11738134 DOI: 10.1016/s0306-4522(01)00403-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dopamine transmission within the nucleus accumbens has been implicated as a neurochemical substrate of associative learning processes. It has been suggested that the acquisition of classically conditioned fear to a specific environment, or context, differs fundamentally from the development of conditioned fear to a discrete stimulus, such as a light or a tone. In this study, we assessed extracellular dopamine in the rat nucleus accumbens shell and core during the expression of a conditioned fear response. Animals were aversively conditioned to either a context or a tone and extracellular dopamine was measured in the nucleus accumbens shell and core by in vivo microdialysis over the next 2 days as animals were returned first to the conditioning chamber (day 1: context test), and subsequently as animals were again returned to the chamber and presented with the conditioned tone stimulus (day 2: tone test). Dopamine levels in the core were significantly higher in the Context-Shock group compared to the Tone-Shock group during the 30-min exposure to context while dopamine levels in the nucleus accumbens shell did not differ significantly during the context test between groups. In contrast, extracellular dopamine in the shell but not the core of Tone-Shock animals increased significantly during presentation of the tone. Dopamine in both the shell and core remained unchanged during the tone test in the Context-Shock groups.These data suggest distinct roles for shell and core dopamine transmission in the expression of a conditioned emotional response. While dopamine increased in the shell primarily during the presentation of a discrete tone conditioned stimulus, core dopamine responded more to a contextual conditioned stimulus. These results may reflect differences in either the type of information acquired or the salience of the learned associations which are formed to a context vs. a discrete tone cue.
Collapse
Affiliation(s)
- M A Pezze
- Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schorenstrasse 16, CH-8603, Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
38
|
Zhang WN, Bast T, Feldon J. Effects of hippocampal N-methyl-D-aspartate infusion on locomotor activity and prepulse inhibition: differences between the dorsal and ventral hippocampus. Behav Neurosci 2002; 116:72-84. [PMID: 11895185 DOI: 10.1037/0735-7044.116.1.72] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prepulse inhibition (PPI) of the acoustic startle response and open-field locomotor activity were measured after bilateral infusion of N-methyl-D-aspartate into the ventral (0.10, 0.25, 0.50 microg/side) and dorsal (0.10, 0.25, 0.50, 0.70 microg/side) hippocampus of Wistar rats. Dose-dependent hyperactivity and disruption of PPI--behavioral effects related to psychotic symptoms--were observed after ventral infusions but were virtually absent after dorsal infusions. This functional dorsal-ventral difference might be related to the different connections of the dorsal and ventral hippocampus with the amygdala, nucleus accumbens, and prefrontal cortex, which have been implicated in the regulation of locomotor activity and PPI. Hippocampal overactivity has been associated with schizophrenia. The findings suggest that overstimulation of the ventral hippocampal projections may contribute to behavioral outcomes related to psychotic symptoms.
Collapse
Affiliation(s)
- Wei-Ning Zhang
- Swiss Federal Institute of Technology Zurich, Schwerzenbach
| | | | | |
Collapse
|
39
|
Olsen CM, Duvauchelle CL. Intra-prefrontal cortex injections of SCH 23390 influence nucleus accumbens dopamine levels 24 h post-infusion. Brain Res 2001; 922:80-6. [PMID: 11730704 DOI: 10.1016/s0006-8993(01)03152-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The dopaminergic pathway from the ventral tegmental area (VTA) to the nucleus accumbens (NAcc) is well known to be involved in the reinforcing properties of many drugs of abuse. The medial prefrontal cortex (mPFC) has been shown to exhibit significant influence over activity in this pathway, and has also been implicated in drug abuse. The present experiment investigated the ability of D1 activity in the mPFC to influence accumbal dopamine levels. NAcc dopamine (DA) was monitored before, immediately after, and 24 h following mPFC infusion of a D1 agonist (SKF 38393), D1 antagonist (SCH 23390), or a vehicle solution. Immediately following infusion of dopaminergic agents or vehicle, no significant changes in accumbal DA were observed. However, 24 h following infusion of the antagonist but not the agonist, significant elevations of accumbal DA were observed. Since elevated NAcc DA was only observed 24 h after treatment, these results provide evidence that long-term neural adaptations can be induced by transient neuropharmacological treatment.
Collapse
Affiliation(s)
- C M Olsen
- College of Pharmacy, Division of Pharmacology/Toxicology, The University of Texas at Austin, Austin, TX 78712-1074, USA
| | | |
Collapse
|
40
|
Hemmati P, Shilliam CS, Hughes ZA, Shah AJ, Roberts JC, Atkins AR, Hunter AJ, Heidbreder CA. In vivo characterization of basal amino acid levels in subregions of the rat nucleus accumbens: effect of a dopamine D(3)/D(2) agonist. Neurochem Int 2001; 39:199-208. [PMID: 11434978 DOI: 10.1016/s0197-0186(01)00026-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent evidence demonstrates that two subdivisions of the nucleus accumbens, the dorsolateral core and the ventromedial shell can be distinguished by morphological, immunohistochemical and chemoarchitectural differences. In the present study, we measured basal levels of amino acids in microdialysates from both the shell and core subterritories of the nucleus accumbens in freely moving rats using HPLC with fluorescence detection. The effect of the dopamine D(3)/D(2) receptor agonist quinelorane (30 microg/kg s.c.) was then investigated in both subregions. With the exception of glutamate, histidine, and serine, which showed similar levels in both subterritories, alanine, arginine, aspartate, gamma-aminobutyric acid, glutamine, and tyrosine were significantly higher in the shell compared with the core. In contrast, taurine levels were significantly lower in the shell than in the core. A particularly striking difference across subregions of the nucleus accumbens was observed for basal GABA levels with a shell/core ratio of 18.5. Among all the amino acids investigated in the present study, quinelorane selectively decreased dialysate GABA levels in the core subregion of the nucleus accumbens. The results of the present study point to specific profiles of both shell and core in terms of: (1) basal chemical neuroanatomical markers for amino acids; and (2) GABAergic response to the DA D(3)/D(2) agonist quinelorane.
Collapse
Affiliation(s)
- P Hemmati
- Neuroscience Research, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park (North), Harlow, Essex CM19 5AW, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bast T, Zhang WN, Heidbreder C, Feldon J. Hyperactivity and disruption of prepulse inhibition induced by N-methyl-D-aspartate stimulation of the ventral hippocampus and the effects of pretreatment with haloperidol and clozapine. Neuroscience 2001; 103:325-35. [PMID: 11246148 DOI: 10.1016/s0306-4522(00)00589-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study re-examined the hyperactivity and disruption of prepulse inhibition induced by N-methyl-D-aspartate stimulation of the rat ventral hippocampus and compared how both effects were affected by pretreatment with either haloperidol or clozapine. While the hyperactivity is thought to depend on dopamine receptor activation in the nucleus accumbens, the dopamine D2-class receptor blocker haloperidol failed to antagonize the disruption of prepulse inhibition in previous studies. However, an ameliorative effect of the atypical neuroleptic clozapine on disruption of prepulse inhibition was suggested by our previous experiments [Zhang et al. (1999) NeuroReport 10, 1-6]. In the present study, bilateral infusion of N-methyl-D-aspartate (0.5microg/side) into the ventral hippocampus of Wistar rats increased open field locomotor activity and disrupted prepulse inhibition. Both effects were observed immediately after infusion but disappeared 24h later. Injection of haloperidol (0.2mg/kg) or clozapine (5mg/kg), 45min prior to N-methyl-D-aspartate infusion, totally antagonized the hyperactivity but did not affect the disruption of prepulse inhibition. We conclude that dopaminergic mechanisms are differentially involved in the hyperactivity and disruption of prepulse inhibition induced by N-methyl-D-aspartate stimulation of the ventral hippocampus. Activation of accumbal dopamine receptors, which is blocked by clozapine and haloperidol to a comparable extent, seems to be crucial for the hyperactivity but not the disruption of prepulse inhibition. The present finding that both clozapine and haloperidol failed to antagonize the disruption of prepulse inhibition induced by N-methyl-D-aspartate stimulation of the ventral hippocampus is discussed with respect to our previous contrary finding concerning the ameliorative effect of clozapine and with respect to the disruption of prepulse inhibition in rats being considered as a model of sensorimotor gating deficits in schizophrenia.
Collapse
Affiliation(s)
- T Bast
- Laboratory of Behavioural Neurobiology, The Swiss Federal Institute of Technology-Zürich, Schorenstrasse 16, CH 8603, Schwerzenbach, Switzerland
| | | | | | | |
Collapse
|
42
|
Chefer VI, Morón JA, Hope B, Rea W, Shippenberg TS. Kappa-opioid receptor activation prevents alterations in mesocortical dopamine neurotransmission that occur during abstinence from cocaine. Neuroscience 2001; 101:619-27. [PMID: 11113311 DOI: 10.1016/s0306-4522(00)00417-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In vivo microdialysis was used to characterize basal dopamine dynamics and cocaine-evoked dopamine levels in the medial prefrontal cortex of male Sprague-Dawley rats that had previously received once daily injections of cocaine (days 1-5; 20mg/kg, i.p.) in combination with the selective kappa-opioid receptor agonist U-69593 (days 3-5; 0.32mg/kg, s.c.) or its vehicle. The influence of these treatments on [3H]dopamine uptake in medial prefrontal cortex synaptosomes was also determined. Three days following the cessation of drug treatment, animals with prior history of cocaine administration exhibited enhanced psychomotor stimulation in response to a subsequent cocaine challenge. This effect was not apparent in animals that had previously received the cocaine treatment regimen in combination with the kappa-opioid receptor agonist U-69593. Cocaine challenge increased prefrontal dopamine levels in all pretreatment groups, but cocaine-pre-exposed animals had lower cocaine-evoked dopamine levels and higher basal in vivo extraction fraction, indicative of an increase in basal dopamine uptake relative to controls. Pretreatment with U-69593 prevented these effects of cocaine. Measurement of [3H]dopamine uptake in synaptosomes revealed a significant increase in uptake three days after the cessation of cocaine treatment. No increase in uptake was observed in animals that had received the cocaine treatment regimen in combination with U-69593. These results demonstrate that the early phase of abstinence from cocaine is associated with marked alterations in medial prefrontal cortex dopamine neurotransmission and that these neuroadaptations are prevented by the activation of kappa-opioid receptors. Furthermore, they raise the possibility that mesocortical dopamine neurons may be an important neural substrate upon which kappa-opioid agonists act to prevent the development of cocaine-induced behavioral sensitization.
Collapse
Affiliation(s)
- V I Chefer
- Behavioral Neuroscience Laboratory, NIH/NIDA Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
43
|
Hedou G, Homberg J, Feldon J, Heidbreder CA. Expression of sensitization to amphetamine and dynamics of dopamine neurotransmission in different laminae of the rat medial prefrontal cortex. Neuropharmacology 2001; 40:366-82. [PMID: 11166330 DOI: 10.1016/s0028-3908(00)00174-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The present study investigated the effect of acute and repeated administrations of amphetamine (AMPH) on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in the two main cytoarchitectonic subterritories of the medial prefrontal cortex (mPFC) (anterior cingulate and dorsocaudal prelimbic cortices vs ventral prelimbic and rostral infralimbic cortices). Both the acute locomotor effects of AMPH and the expression of behavioral sensitization following its repeated administration were also simultaneously assessed. The repeated, intermittent administration of AMPH over five consecutive days led to a significant sensitized locomotor response to a subsequent challenge that occurred following a 48-h withdrawal period. Basal dialysate DA levels were higher in the ventral mPFC compared with its dorsal counterpart in naive animals, that is prior to the acute administration of AMPH. However, the inverse relationship was observed in animals that had developed sensitization: basal dialysate DA levels were significantly lower in the ventral mPFC compared with the dorsal mPFC. In naïve animals, AMPH produced a significant decrease in DA levels in both the ventral and dorsal subregions of the mPFC. However, the inverse relationship was observed in animals that had developed sensitization: dialysate DA levels in response to AMPH remained significantly decreased in the dorsal mPFC, whereas DA went back to baseline levels in the ventral mPFC. Given that a critical concentration of DA is required for normal function of the mPFC, our results suggest that AMPH-induced changes in DA levels in different subregions of the mPFC are critical for both the acute effects of the drug and the expression of behavioral sensitization to its repeated administration by producing either less or more selectivity or sharpening of stimuli to cortico-cortical dendrites and subcortical synaptic afferents to the pyramidal cells located in the dorso-ventral axis of the mPFC.
Collapse
Affiliation(s)
- G Hedou
- The Swiss Federal Institute of Technology Zürich (ETH), Laboratory of Behavioral Biology, Zürich, Switzerland
| | | | | | | |
Collapse
|
44
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|
45
|
Heidbreder CA, Baumann MH. Autoregulation of dopamine synthesis in subregions of the rat nucleus accumbens. Eur J Pharmacol 2001; 411:107-113. [PMID: 11137864 DOI: 10.1016/s0014-2999(00)00882-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The discovery of a core-shell dichotomy within the nucleus accumbens has opened new lines of investigation into the neuronal basis of psychiatric disorders and drug dependence. In the present study, the autoregulation of dopamine synthesis in subdivisions of the rat nucleus accumbens was examined. We measured the accumulation of L-3,4-dihydroxyphenylalanine (DOPA) after the inhibition of aromatic L-amino acid decarboxylase with 3-hydroxylbenzylhydrazine (NSD-1015, 100 mg kg(-1)) as an in vivo index of dopamine synthesis. The effect of the dopamine D(1)/D(2) receptor agonist apomorphine (0, 20, 100, 500 microgram kg(-1)) and the dopamine D(2)/D(3) receptor agonist quinpirole (0, 20, 100, 500 microgram kg(-1)) on dopamine synthesis was determined in the dorsolateral core, ventromedial shell, and rostral pole of the nucleus accumbens. DOPA accumulation was also measured in the frontal cortex, olfactory tubercle, and caudate nucleus of the same rats for comparative purposes. The results show that the three sectors of the nucleus accumbens had similar basal levels of DOPA. Both apomorphine and quinpirole produced a decrease in the dopamine synthesis rate in all brain regions examined. In general, the dopamine D(2)/D(3) receptor agonist quinpirole produced a significantly greater decrease in DOPA accumulation than the dopamine D(1)/D(2) receptor agonist apomorphine. Within the nucleus accumbens, we found no core-shell differences in the agonist-induced suppression of dopamine synthesis, but the rostral pole was less sensitive to the highest dose of both dopamine agonists. These results suggest that differences in dopamine function between the core and shell might not involve region-specific differences in the receptor-mediated autoregulation of dopamine neurotransmission. Moreover, the blunted effect of dopamine agonists in the rostral pole illustrates that this region of the accumbens is functionally distinct, possibly due to a lower dopamine receptor reserve when compared to the core and shell.
Collapse
Affiliation(s)
- C A Heidbreder
- Neuroscience Research, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park (North), Building H25, Room 104A, Essex CM19 5AW, Harlow, UK.
| | | |
Collapse
|
46
|
Wood MD, Heidbreder C, Reavill C, Ashby CR, Middlemiss DN. 5-HT2C receptor antagonists: Potential in schizophrenia. Drug Dev Res 2001. [DOI: 10.1002/ddr.1208] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Lacroix L, Spinelli S, Heidbreder CA, Feldon J. Differential role of the medial and lateral prefrontal cortices in fear and anxiety. Behav Neurosci 2000; 114:1119-30. [PMID: 11142644 DOI: 10.1037/0735-7044.114.6.1119] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the rat, both the medial and lateral prefrontal cortices (PFC; mPFC and lPFC, respectively) have direct connections with limbic structures that are important in the expression of fear and anxiety. The present study investigated the behavioral effects of excitotoxic lesions of either the mPFC or the lPFC on conditioned and unconditioned fear paradigms. In both unconditioned fear paradigms (open field, elevated plus-maze), lesions of the mPFC decreased anxiety. In fear conditioning, lPFC lesions substantially increased freezing throughout the different phases of the experiment, whereas mPFC lesions increased freezing to contextual cues and showed reduced freezing to discrete cues. These results support the functional role of the PFC in mediating or modulating central states of fear and anxiety and suggest a functional dissociation between the lPFC and mPFC in their role in fear and anxiety.
Collapse
Affiliation(s)
- L Lacroix
- Behavioural Neurobiology Laboratory, Swiss Federal Institute of Technology, Zurich, Schwerzenbach
| | | | | | | |
Collapse
|
48
|
Murphy CA, Pezze M, Feldon J, Heidbreder C. Differential involvement of dopamine in the shell and core of the nucleus accumbens in the expression of latent inhibition to an aversively conditioned stimulus. Neuroscience 2000; 97:469-77. [PMID: 10828530 DOI: 10.1016/s0306-4522(00)00043-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Latent inhibition, the process whereby pre-exposure to a conditioned stimulus without consequence impairs subsequent learning of an association between the conditioned stimulus and an unconditioned stimulus, is reportedly disrupted in both amphetamine-treated rats and in acute schizophrenics. This has led to the suggestion that disruptions in latent inhibition model some of the cognitive impairments associated with hyperactive dopamine transmission as it is expressed in schizophrenic patients. Specifically, fluctuations in dopamine neurotransmission within the nucleus accumbens have been implicated in the mediation of latent inhibition; however, it has not been established whether these dopamine-mediated effects occur in the shell or core subregion of the nucleus. In the present study, 48h after conditioned stimulus-pre-exposed and non-pre-exposed animals experienced 10 pairings of tone and footshock, we measured extracellular levels of dopamine in the shell and core during the expression of latent inhibition to an aversively conditioned tone using in vivo microdialysis. Our results show that pre-exposure to the tone eliminated the conditioned release of dopamine in the shell of the nucleus accumbens and resulted in an attenuated conditioned freezing response to the tone conditioned stimulus. In contrast, dopamine release in the core was not affected by pre-exposure to the tone. These data suggest that it is specifically the shell of the nucleus accumbens in which alterations of dopaminergic tone, whether pharmacologically induced in rodents or the result of disease in humans, may act to disrupt latent inhibition.
Collapse
Affiliation(s)
- C A Murphy
- Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology (ETH-Zurich), Schorenstrasse 16, CH-8603, Schwerzenbach, Switzerland.
| | | | | | | |
Collapse
|
49
|
Hedou G, Homberg J, Martin S, Wirth K, Feldon J, Heidbreder CA. Effect of amphetamine on extracellular acetylcholine and monoamine levels in subterritories of the rat medial prefrontal cortex. Eur J Pharmacol 2000; 390:127-36. [PMID: 10708716 DOI: 10.1016/s0014-2999(00)00038-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study sought to investigate the contributions of the dorsal prelimbic/anterior cingulate and ventral prelimbic/infralimbic cortices to the reverse microdialysis of amphetamine (1, 10, 100, 500, and 1000 microM) on dialysate acetylcholine, choline, norepinephrine, and serotonin levels. The results demonstrate that basal levels of acetylcholine, choline, and serotonin were homogeneous within subregions of the medial prefrontal cortex. In contrast, dialysate norepinephrine levels were significantly higher in the anterior cingulate cortex compared with the infralimbic cortex. Reverse microdialysis of amphetamine in both subareas of the medial prefrontal cortex produced a dose-dependent increase in norepinephrine and serotonin levels; the magnitude of this effect was similar in both subterritories of the medial prefrontal cortex. Microinfusion of amphetamine increased dialysate acetylcholine levels in a dose-dependent manner only in the infralimbic cortex. Finally, amphetamine decreased choline levels in both subregions of the medial prefrontal cortex. The magnitude of this effect was larger in the anterior cingulate cortex compared with its infralimbic counterpart. Since depletions of frontal cortical acetylcholine result in severe cognitive deficits, the present data raise the possibility that the type of neural integrative processes that acetylcholine mediates depends, at least in part, on the subterritories that characterize the medial prefrontal cortex.
Collapse
Affiliation(s)
- G Hedou
- The Swiss Federal Institute of Technology Zürich (ETH), Laboratory of Behavioral Biology, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Zahm DS. An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 2000; 24:85-105. [PMID: 10654664 DOI: 10.1016/s0149-7634(99)00065-2] [Citation(s) in RCA: 351] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuroanatomical substrates associated in the literature with adaptive responding are discussed, with a focus on the nucleus accumbens. While it is emphasized that the accumbens exhibits multiple levels of complex organization, a fairly complete list of brief descriptions of recent studies devoted specifically to the accumbens shell and core subterritories is presented in tabular format. The distinct patterns of connectivity of the accumbens core and shell and structures related to them by connections are described. Multiple inputs, outputs and abundant reciprocity of connections within the ventral parts of the basal ganglia are emphasized and the implications for "through-put" of impulses is considered. It is noted, at least on neuroanatomical grounds, that there is ample reason to expect feed forward processing from shell and structures with which it is associated to core and structures with which it is associated. Furthermore, the potential for additional feed forward processing involving several forebrain functional anatomical systems, inlcuding the ventral striatopallidum, extended amygdala and magnocellular basal forebrain complex is considered. It is intended that from the considerations recorded here a conceptual framework will begin to emerge that is amenable to further experimental substantiation as regards how multiple basal forebrain systems and the cortices to which they are related by connections work together to fashion a unitary object--the adaptive response.
Collapse
Affiliation(s)
- D S Zahm
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, MO 63104, USA.
| |
Collapse
|