1
|
Willoughby JJ, Jensen AM. Abca4, mutated in Stargardt disease, is required for structural integrity of cone outer segments. Dis Model Mech 2025; 18:DMM052052. [PMID: 39610324 PMCID: PMC11744051 DOI: 10.1242/dmm.052052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Stargardt disease (STGD), the leading cause of inherited childhood blindness, is primarily caused by mutations in the ABCA4 gene; yet, the underlying mechanisms of photoreceptor degeneration remain elusive, partly due to limitations in existing animal disease models. To expand our understanding, we mutated the human ABCA4 paralogues abca4a and abca4b in zebrafish, which has a cone-rich retina. Our study unveiled striking dysmorphology and elongation of cone outer segments (COS) in abca4a;abca4b double mutants, alongside reduced phagocytosis by the retinal pigmented epithelium (RPE). We report that zebrafish Abca4 protein forms a distinctive stripe along the length of COS, suggesting a potential structural role. We further show that, in wild-type zebrafish, outer segments of cone cells constitutively present externalized phosphatidylserine, an apoptotic 'eat-me' signal, and that this pattern is disrupted in abca4a;abca4b double mutants, potentially contributing to reduced RPE phagocytic activity. More broadly, constitutive presentation of the 'eat-me' signal by COS - if conserved in humans - might have important implications for other retinal degenerative diseases, including age-related macular degeneration. Our zebrafish model provides novel insights into cone dysfunction and presents a promising platform for unraveling the mechanisms of STGD pathogenesis and advancing therapeutic interventions.
Collapse
Affiliation(s)
| | - Abbie M. Jensen
- Biology Department, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Carr BJ, Skitsko D, Song J, Li Z, Ju MJ, Moritz OL. Prominin-1 null Xenopus laevis develop subretinal drusenoid-like deposits, cone-rod dystrophy, and RPE atrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597229. [PMID: 38895468 PMCID: PMC11185615 DOI: 10.1101/2024.06.03.597229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mutations in the PROMININ-1 (PROM1) gene are associated with inherited, non-syndromic vision loss. Here, we used CRISPR/Cas9 to induce truncating prom1-null mutations in Xenopus laevis to create a disease model. We then tracked progression of retinal degeneration in these animals from the ages of 6 weeks to 3 years old. We found that retinal degeneration caused by prom1-null is age-dependent and likely involves death or damage to the retinal pigment epithelium (RPE) that precedes photoreceptor degeneration. As prom1-null frogs age, they develop large cellular debris deposits in the subretinal space and outer segment layer which resemble subretinal drusenoid deposits (SDD) in their location, histology, and representation in color fundus photography and optical coherence tomography (OCT). In older frogs, these SDD-like deposits accumulate in size and number, and they are present before retinal degeneration occurs. Evidence for an RPE origin of these deposits includes infiltration of pigment granules into the deposits, thinning of RPE as measured by OCT, and RPE disorganization as measured by histology and OCT. The appearance and accumulation of SDD-like deposits and RPE thinning and disorganization in our animal model suggests an underlying disease mechanism for prom1-null mediated blindness of death and dysfunction of the RPE preceding photoreceptor degeneration, instead of direct effects upon photoreceptor outer segment morphogenesis, as was previously hypothesized.
Collapse
Affiliation(s)
- Brittany J Carr
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Ophthalmology and Visual Sciences
| | - Dominic Skitsko
- The University of British Columbia, Faculty of Medicine, Department of Ophthalmology and Visual Sciences
| | - Jun Song
- The University of British Columbia, Faculty of Applied Science, Faculty of Medicine, School of Biomedical Engineering
| | - Zixuan Li
- The University of Alberta, Faculty of Medicine and Dentistry, Department of Ophthalmology and Visual Sciences
| | - Myeong Jin Ju
- The University of British Columbia, Faculty of Medicine, Department of Ophthalmology and Visual Sciences
- The University of British Columbia, Faculty of Applied Science, Faculty of Medicine, School of Biomedical Engineering
| | - Orson L Moritz
- The University of British Columbia, Faculty of Medicine, Department of Ophthalmology and Visual Sciences
| |
Collapse
|
3
|
Haggerty KN, Eshelman SC, Sexton LA, Frimpong E, Rogers LM, Agosto MA, Robichaux MA. Super-resolution mapping in rod photoreceptors identifies rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway. PLoS Biol 2024; 22:e3002467. [PMID: 38190419 PMCID: PMC10773939 DOI: 10.1371/journal.pbio.3002467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024] Open
Abstract
Photoreceptor cells in the vertebrate retina have a highly compartmentalized morphology for efficient phototransduction and vision. Rhodopsin, the visual pigment in rod photoreceptors, is densely packaged into the rod outer segment sensory cilium and continuously renewed through essential synthesis and trafficking pathways housed in the rod inner segment. Despite the importance of this region for rod health and maintenance, the subcellular organization of rhodopsin and its trafficking regulators in the mammalian rod inner segment remain undefined. We used super-resolution fluorescence microscopy with optimized retinal immunolabeling techniques to perform a single molecule localization analysis of rhodopsin in the inner segments of mouse rods. We found that a significant fraction of rhodopsin molecules was localized at the plasma membrane, at the surface, in an even distribution along the entire length of the inner segment, where markers of transport vesicles also colocalized. Thus, our results collectively establish a model of rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway in mouse rod photoreceptors.
Collapse
Affiliation(s)
- Kristen N. Haggerty
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Shannon C. Eshelman
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Lauren A. Sexton
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Emmanuel Frimpong
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Leah M. Rogers
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michael A. Robichaux
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
4
|
Haggerty KN, Eshelman SC, Sexton LA, Frimpong E, Rogers LM, Agosto MA, Robichaux MA. Mapping rhodopsin trafficking in rod photoreceptors with quantitative super-resolution microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.20.537413. [PMID: 37131638 PMCID: PMC10153271 DOI: 10.1101/2023.04.20.537413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photoreceptor cells in the vertebrate retina have a highly compartmentalized morphology for efficient long-term phototransduction. Rhodopsin, the visual pigment in rod photoreceptors, is densely packaged into the rod outer segment sensory cilium and continuously renewed through essential synthesis and trafficking pathways housed in the rod inner segment. Despite the importance of this region for rod health and maintenance, the subcellular organization of rhodopsin and its trafficking regulators in the mammalian rod inner segment remain undefined. We used super-resolution fluorescence microscopy with optimized retinal immunolabeling techniques to perform a single molecule localization analysis of rhodopsin in the inner segments of mouse rods. We found that a significant fraction of rhodopsin molecules was localized at the plasma membrane in an even distribution along the entire length of the inner segment, where markers of transport vesicles also colocalized. Thus, our results collectively establish a model of rhodopsin trafficking through the inner segment plasma membrane as an essential subcellular pathway in mouse rod photoreceptors.
Collapse
Affiliation(s)
- Kristen N. Haggerty
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Shannon C. Eshelman
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Lauren A. Sexton
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Emmanuel Frimpong
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Leah M. Rogers
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| | - Melina A. Agosto
- Retina and Optic Nerve Research Laboratory, Department of Physiology and Biophysics, and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Michael A. Robichaux
- Department of Ophthalmology & Visual Sciences and Department of Biochemistry & Molecular Medicine, West Virginia University, Morgantown, WV, 26506
| |
Collapse
|
5
|
Zhang Q, Presswalla F, Calton M, Charniga C, Stern J, Temple S, Vollrath D, Zacks DN, Ali RR, Thompson DA, Miller JML. Highly Differentiated Human Fetal RPE Cultures Are Resistant to the Accumulation and Toxicity of Lipofuscin-Like Material. Invest Ophthalmol Vis Sci 2019; 60:3468-3479. [PMID: 31408109 PMCID: PMC6692057 DOI: 10.1167/iovs.19-26690] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose The accumulation of undigestible autofluorescent material (UAM), termed lipofuscin in vivo, is a hallmark of aged RPE. Lipofuscin derives, in part, from the incomplete degradation of phagocytized photoreceptor outer segments (OS). Whether this accumulated waste is toxic is unclear. We therefore investigated the effects of UAM in highly differentiated human fetal RPE (hfRPE) cultures. Methods Unmodified and photo-oxidized OS were fed daily to confluent cultures of ARPE-19 RPE or hfRPE. The emission spectrum, composition, and morphology of resulting UAM were measured and compared to in vivo lipofuscin. Effects of UAM on multiple RPE phenotypes were assessed. Results Compared to ARPE-19, hfRPE were markedly less susceptible to UAM buildup. Accumulated UAM in hfRPE initially resembled the morphology of lipofuscin from AMD eyes, but compacted and shifted spectrum over time to resemble lipofuscin from healthy aged human RPE. UAM accumulation mildly reduced transepithelial electrical resistance, ketogenesis, certain RPE differentiation markers, and phagocytosis efficiency, while inducing senescence and rare, focal pockets of epithelial-mesenchymal transition. However, it had no effects on mitochondrial oxygen consumption rate, certain other RPE differentiation markers, secretion of drusen components or polarity markers, nor cell death. Conclusions hfRPE demonstrates a remarkable resistance to UAM accumulation, suggesting mechanisms for efficient OS processing that may be lost in other RPE culture models. Furthermore, while UAM alters hfRPE phenotype, the effects are modest, consistent with conflicting reports in the literature on the toxicity of lipofuscin. Our results suggest that healthy RPE may adequately adapt to and tolerate lipofuscin accumulation.
Collapse
Affiliation(s)
- Qitao Zhang
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Feriel Presswalla
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Melissa Calton
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States
| | - Carol Charniga
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Jeffrey Stern
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York, United States
| | - Douglas Vollrath
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States
| | - David N Zacks
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Robin R Ali
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Debra A Thompson
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
6
|
Campbell LJ, West MC, Jensen AM. A high content, small molecule screen identifies candidate molecular pathways that regulate rod photoreceptor outer segment renewal. Sci Rep 2018; 8:14017. [PMID: 30228302 PMCID: PMC6143611 DOI: 10.1038/s41598-018-32336-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/05/2018] [Indexed: 01/04/2023] Open
Abstract
The outer segment of the vertebrate rod photoreceptor is a highly modified cilium composed of many discrete membranous discs that are filled with the protein machinery necessary for phototransduction. The unique outer segment structure is renewed daily with growth at the base of the outer segment where new discs are formed and shedding at the distal end where old discs are phagocytized by the retinal pigment epithelium. In order to understand how outer segment renewal is regulated to maintain outer segment length and function, we used a small molecule screening approach with the transgenic (hsp70:HA-mCherryTM) zebrafish, which expresses a genetically-encoded marker of outer segment renewal. We identified compounds with known bioactivity that affect five content areas: outer segment growth, outer segment shedding, clearance of shed outer segment tips, Rhodopsin mislocalization, and differentiation at the ciliary marginal zone. Signaling pathways that are targeted by the identified compounds include cyclooxygenase in outer segment growth, γ-Secretase in outer segment shedding, and mTor in RPE phagocytosis. The data generated by this screen provides a foundation for further investigation of the signaling pathways that regulate photoreceptor outer segment renewal.
Collapse
Affiliation(s)
- Leah J Campbell
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Megan C West
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA
| | - Abbie M Jensen
- Biology Department, University of Massachusetts, Amherst, MA, 01003, USA. .,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
7
|
Campbell LJ, Jensen AM. Phosphodiesterase Inhibitors Sildenafil and Vardenafil Reduce Zebrafish Rod Photoreceptor Outer Segment Shedding. Invest Ophthalmol Vis Sci 2017; 58:5604-5615. [PMID: 29094165 PMCID: PMC5667398 DOI: 10.1167/iovs.17-21958] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Purpose The vertebrate rod photoreceptor undergoes daily growth and shedding to renew the rod outer segment (ROS), a modified cilium that contains the phototransduction machinery. It has been demonstrated that ROS shedding is regulated by the light–dark cycle; however, we do not yet have a satisfactory understanding of the molecular mechanisms that underlie this regulation. Given that phototransduction relies on the hydrolysis of cGMP via phosphodiesterase 6 (PDE6), we examined ROS growth and shedding in zebrafish treated with cGMP-specific PDE inhibitors. Methods We used transgenic zebrafish that express an inducible, transmembrane-bound mCherry protein, which forms a stripe in the ROS following a heat shock pulse and serves as a marker of ROS renewal. Zebrafish were reared in constant darkness or treated with PDE inhibitors following heat shock. Measurements of growth and shedding were analyzed in confocal z-stacks collected from treated retinas. Results As in dark-reared zebrafish, shedding was reduced in larvae and adults treated with the PDE5/6 inhibitors sildenafil and vardenafil but not with the PDE5 inhibitor tadalafil. In addition, vardenafil noticeably affected rod inner segment morphology. The inhibitory effect of sildenafil on shedding was reversible with drug removal. Finally, cones were more sensitive than rods to the toxic effects of sildenafil and vardenafil. Conclusions We show that pharmacologic inhibition of PDE6 mimics the inhibition of shedding by prolonged constant darkness. The data show that the influence of the light–dark cycle on ROS renewal is regulated, in part, by initiating the shedding process through activation of the phototransduction machinery.
Collapse
Affiliation(s)
- Leah J Campbell
- Biology Department, University of Massachusetts, Amherst, Massachusetts, United States
| | - Abbie M Jensen
- Biology Department, University of Massachusetts, Amherst, Massachusetts, United States.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, United States
| |
Collapse
|
8
|
West MC, Campbell LJ, Willoughby JJ, Jensen AM. Two types of transgenic lines for doxycycline-inducible, cell-specific gene expression in zebrafish ultraviolet cone photoreceptors. Gene Expr Patterns 2014; 14:96-104. [PMID: 24462722 DOI: 10.1016/j.gep.2014.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/31/2022]
Abstract
Temporal and spatial control of gene expression is important for studying the molecular and cellular mechanisms of development, physiology, and disease. We used the doxycycline (Dox)-inducible, Tet-On system to develop transgenic zebrafish for inducible, cell specific control of gene expression in the ultraviolet (UV) cone photoreceptors. Two constructs containing the reverse tetracycline-controlled transcriptional transactivator (rtTA) gene driven by the UV opsin-specific promoter (opn1sw1) were used to generate stable transgenic zebrafish lines using the Tol2-based transgenesis method. One construct included a self-reporting GFP (opn1sw1:rtTA, TRE:GFP) and the other incorporated an epitope tag on the rtTA protein (opn1sw1:rtTA(flag)). UV cone-specific expression of TRE-controlled transgenes was induced by Dox treatment in larvae and adults. Induction of gene expression was observed in 96% of all larval UV cones within 16 h of Dox treatment. UV cone-specific expression of two genes from a bidirectional TRE construct injected into one-cell Tg(opn1sw1:rtTA(flag)) embryos were also induced by Dox treatment. In addition, UV cone-specific expression of Crb2a(IntraWT) was induced by Dox treatment in progeny from crosses of the TRE-response transgenic line, Tg(TRE:HA-Crb2a(IntraWT)), to the Tg(opn1sw1:rtTA, TRE:GFP) line and the Tg(opn1sw1:rtTA(flag)) line. These lines can be used in addition to the inducible, rod-specific gene expression system from the Tet-On Toolkit to elucidate the photoreceptor-specific effects of genes of interest in photoreceptor cell biology and retinal disease.
Collapse
Affiliation(s)
- Megan C West
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States.
| | - Leah J Campbell
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States.
| | - John J Willoughby
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States.
| | - Abbie M Jensen
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States; Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
9
|
Campbell LJ, Willoughby JJ, Jensen AM. Two types of Tet-On transgenic lines for doxycycline-inducible gene expression in zebrafish rod photoreceptors and a gateway-based tet-on toolkit. PLoS One 2012; 7:e51270. [PMID: 23251476 PMCID: PMC3520995 DOI: 10.1371/journal.pone.0051270] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
The ability to control transgene expression within specific tissues is an important tool for studying the molecular and cellular mechanisms of development, physiology, and disease. We developed a Tet-On system for spatial and temporal control of transgene expression in zebrafish rod photoreceptors. We generated two transgenic lines using the Xenopus rhodopsin promoter to drive the reverse tetracycline-controlled transcriptional transactivator (rtTA), one with self-reporting GFP activity and one with an epitope tagged rtTA. The self-reporting line includes a tetracycline response element (TRE)-driven GFP and, in the presence of doxycycline, expresses GFP in larval and adult rods. A time-course of doxycycline treatment demonstrates that maximal induction of GFP expression, as determined by the number of GFP-positive rods, is reached within approximately 24 hours of drug treatment. The epitope-tagged transgenic line eliminates the need for the self-reporting GFP activity by expressing a FLAG-tagged rtTA protein. Both lines demonstrate strong induction of TRE-driven transgenes from plasmids microinjected into one-cell embryos. These results show that spatial and temporal control of transgene expression can be achieved in rod photoreceptors. Additionally, system components are constructed in Gateway compatible vectors for the rapid cloning of doxycycline-inducible transgenes and use in other areas of zebrafish research.
Collapse
Affiliation(s)
- Leah J. Campbell
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - John J. Willoughby
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Abbie M. Jensen
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, United States of America
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Willoughby JJ, Jensen AM. Generation of a genetically encoded marker of rod photoreceptor outer segment growth and renewal. Biol Open 2011; 1:30-6. [PMID: 23213365 PMCID: PMC3507166 DOI: 10.1242/bio.2011016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Vertebrate photoreceptors are specialized light sensing neurons. The photoreceptor outer segment is a highly modified cilium where photons of light are transduced into a chemical and electrical signal. The outer segment has the typical cilary axoneme but, in addition, it has a large number of densely packed, stacked, intramembranous discs. The molecular and cellular mechanisms that contribute to vertebrate photoreceptor outer segment morphogenesis are still largely unknown. Unlike typical cilia, the outer segment is continuously regenerated or renewed throughout the life of the animal through the combined process of distal outer segment shedding and proximal outer segment growth. The process of outer segment renewal was discovered over forty years ago, but we still lack an understanding of how photoreceptors renew their outer segments and few, if any, molecular mechanisms that regulate outer segment growth or shedding have been described. Our lack of progress in understanding how photoreceptors renew their outer segments has been hampered by the difficulty in measuring rates of renewal. We have created a new method that uses heat-shock induction of a fluorescent protein that can be used to rapidly measure outer segment growth rates. We describe this method, the stable transgenic line we created, and the growth rates observed in larval and adult rod photoreceptors using this new method. This new method will allow us to begin to define the genetic and molecular mechanisms that regulate rod outer segment renewal, a crucial aspect of photoreceptor function and, possibly, viability.
Collapse
Affiliation(s)
- John J Willoughby
- Department of Biology, University of Massachusetts , Amherst, MA 01003 , USA ; Molecular and Cellular Biology Program, University of Massachusetts , Amherst, MA 01003 , USA
| | | |
Collapse
|
11
|
Hsu YC, Jensen AM. Multiple domains in the Crumbs Homolog 2a (Crb2a) protein are required for regulating rod photoreceptor size. BMC Cell Biol 2010; 11:60. [PMID: 20670434 PMCID: PMC2927502 DOI: 10.1186/1471-2121-11-60] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 07/29/2010] [Indexed: 12/26/2022] Open
Abstract
Background Vertebrate retinal photoreceptors are morphologically complex cells that have two apical regions, the inner segment and the outer segment. The outer segment is a modified cilium and is continuously regenerated throughout life. The molecular and cellular mechanisms that underlie vertebrate photoreceptor morphogenesis and the maintenance of the outer segment are largely unknown. The Crumbs (Crb) complex is a key regulator of apical membrane identity and size in epithelia and in Drosophila photoreceptors. Mutations in the human gene CRUMBS HOMOLOG 1 (CRB1) are associated with early and severe vision loss. Drosophila Crumbs and vertebrate Crb1 and Crumbs homolog 2 (Crb2) proteins are structurally similar, all are single pass transmembrane proteins with a large extracellular domain containing multiple laminin- and EGF-like repeats and a small intracellular domain containing a FERM-binding domain and a PDZ-binding domain. In order to begin to understand the role of the Crb family of proteins in vertebrate photoreceptors we generated stable transgenic zebrafish in which rod photoreceptors overexpress full-length Crb2a protein and several other Crb2a constructs engineered to lack specific domains. Results We examined the localization of Crb2a constructs and their effects on rod morphology. We found that only the full-length Crb2a protein approximated the normal localization of Crb2a protein apical to adherens junctions in the photoreceptor inner segment. Several Crb2a construct proteins localized abnormally to the outer segment and one construct localized abnormally to the cell body. Overexpression of full-length Crb2a greatly increased inner segment size while expression of several other constructs increased outer segment size. Conclusions Our observations suggest that particular domains in Crb2a regulate its localization and thus may regulate its regionalized function. Our results also suggest that the PDZ-binding domain in Crb2a might bring a protein(s) into the Crb complex that alters the function of the FERM-binding domain.
Collapse
Affiliation(s)
- Ya-Chu Hsu
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
12
|
Wall DS, Mears AJ, McNeill B, Mazerolle C, Thurig S, Wang Y, Kageyama R, Wallace VA. Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hes1 activity. ACTA ACUST UNITED AC 2009; 184:101-12. [PMID: 19124651 PMCID: PMC2615087 DOI: 10.1083/jcb.200805155] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sonic hedgehog (Shh) is an indispensable, extrinsic cue that regulates progenitor and stem cell behavior in the developing and adult mammalian central nervous system. Here, we investigate the link between the Shh signaling pathway and Hes1, a classical Notch target. We show that Shh-driven stabilization of Hes1 is independent of Notch signaling and requires the Shh effector Gli2. We identify Gli2 as a primary mediator of this response by showing that Gli2 is required for Hh (Hedgehog)-dependent up-regulation of Hes1. We also show using chromatin immunoprecipitation that Gli2 binds to the Hes1 promoter, which suggests that Hes1 is a Hh-dependent direct target of Gli2 signaling. Finally, we show that Shh stimulation of progenitor proliferation and cell diversification requires Gli2 and Hes1 activity. This paper is the first demonstration of the mechanistic and functional link between Shh, Gli, and Hes1 in the regulation of progenitor cell behavior.
Collapse
Affiliation(s)
- Dana S Wall
- Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Zadro-Lamoureux LA, Zacks DN, Baker AN, Zheng QD, Hauswirth WW, Tsilfidis C. XIAP effects on retinal detachment-induced photoreceptor apoptosis [corrected]. Invest Ophthalmol Vis Sci 2008; 50:1448-53. [PMID: 19060276 DOI: 10.1167/iovs.08-2855] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate the ability of X-linked inhibitor of apoptosis (XIAP) gene therapy to provide neuroprotection to cells of the outer nuclear layer (ONL) of the retina after retinal detachment. METHODS Subretinal injections of a recombinant adenoassociated virus (rAAV) encoding either XIAP or green fluorescent protein (GFP; injection control) were performed in the left eye of Brown Norway rats. Two weeks later, retinal detachments were created at the site of viral injection by delivering sodium hyaluronate into the subretinal space. Retinal tissue was harvested at 24 hours after retinal detachment and was analyzed for caspase 3 and 9 activity. Histologic analysis was conducted on samples taken at 3 days and 2 months after detachment to confirm the presence of XIAP or GFP expression and to assess levels of apoptosis and changes in retinal thickness. RESULTS Caspase assays performed 24 hours after detachment confirmed an expected increase in caspase 3 and 9 activity in the detached regions of GFP-treated retinas, whereas XIAP-treated detached retinas behaved comparably to attached controls. TUNEL analysis of 3-day tissue samples showed fewer apoptotic cells in XIAP-treated detachments than in GFP-treated detachments. At 2 months after the detachment, histology and immunohistochemistry confirmed the preservation of the ONL at sites of XIAP overexpression, whereas the GFP-treated detached retinas had significantly deteriorated. CONCLUSIONS The results suggest that XIAP confers structural neuroprotection of photoreceptors for at least 2 months after retinal detachment.
Collapse
|
14
|
Yu C, Mazerolle CJ, Thurig S, Wang Y, Pacal M, Bremner R, Wallace VA. Direct and indirect effects of hedgehog pathway activation in the mammalian retina. Mol Cell Neurosci 2006; 32:274-82. [PMID: 16815712 DOI: 10.1016/j.mcn.2006.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/24/2006] [Accepted: 05/01/2006] [Indexed: 01/09/2023] Open
Abstract
The morphogen Sonic hedgehog (Shh) is expressed by the projection neurons of the retina, retinal ganglion cells (RGCs) and promotes retinal precursor cell (RPC) proliferation. To distinguish between direct and indirect effects of Hedgehog (Hh) pathway activation in the perinatal mouse retina, we followed the fate of cells that expressed a constitutively active allele of Smoothened (SMO-M2), the signal transduction component of the Hh pathway. SMO-M2 expression promoted a cell-autonomous increase in CyclinD1 expression and RPC proliferation and promoted the development of cells with an inner nuclear layer identity. SMO-M2 expression also inhibited rhodopsin expression in uninfected cells, thus highlighting an unexpected non-cell autonomous effect of Hh pathway activation on photoreceptor development.
Collapse
Affiliation(s)
- Chuan Yu
- Molecular Medicine Program, Ottawa Health Research Institute and University of Ottawa Eye Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Côté PD, De Repentigny Y, Coupland SG, Schwab Y, Roux MJ, Levinson SR, Kothary R. Physiological maturation of photoreceptors depends on the voltage-gated sodium channel NaV1.6 (Scn8a). J Neurosci 2006; 25:5046-50. [PMID: 15901786 PMCID: PMC6724868 DOI: 10.1523/jneurosci.4692-04.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) ensure the saltatory propagation of action potentials along axons by acting as signal amplifiers at the nodes of Ranvier. In the retina, activity mediated by VGSCs is important for the refinement of the retinotectal map. Here, we conducted a full-field electroretinogram (ERG) study on mice null for the sodium channel NaV1.6. Interestingly, the light-activated hyperpolarization of photoreceptor cells (the a-wave) and the major "downstream" components of the ERG, the b-wave and the oscillatory potentials, are markedly reduced and delayed in these mice. The functional deficit was not associated with any morphological abnormality. We demonstrate that Scn8a is expressed in the ganglion and inner nuclear layers and at low levels in the outer nuclear layer beginning shortly before the observed ERG deficit. Together, our data reveal a previously unappreciated role for VGSCs in the physiological maturation of photoreceptors.
Collapse
Affiliation(s)
- Patrice D Côté
- Molecular Medicine Program, Ottawa Health Research Institute, and University of Ottawa Center for Neuromuscular Disease, Ottawa, Ontario, K1H 8L6, Canada
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Dakubo GD, Thurig S, Mazerolle CJ, Wallace VA. Retinal ganglion cell-derived sonic hedgehog locally controls proliferation and the timing of RGC development in the embryonic mouse retina. Development 2005; 132:5103-13. [PMID: 16236765 DOI: 10.1242/dev.02096] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The timing of cell cycle exit and temporal changes in the developmental competence of precursor cells are key components for the establishment of the normal complement of cell types in the mammalian retina. The identity of cell extrinsic cues that control these processes is largely unknown. We showed previously in mouse retina that sonic hedgehog (Shh) signalling from retinal ganglion cells (RGCs) to retinal precursor cells (RPC) is required for the establishment of normal retinal organization. Here, we show that conditional ablation of Shh expression in the peripheral mouse results in a depletion of the RPC pool, owing to precocious cell-cycle exit and neuronal differentiation. These changes were correlated with the downregulation of cyclin D1 and Hes1 gene expression. Shh inactivation also results in an increase in RGC number owing to a bias of RPC towards RGC production. In contrast to zebrafish, where Shh signalling drives cell cycle exit and RGC development, our findings indicate that in the mouse retina Shh signalling is required to maintain RPC proliferation and to control the timing of RGC development.
Collapse
Affiliation(s)
- Yaping Wang
- Molecular Medicine Program, Ottawa Health Research Institute and University of Ottawa Eye Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
| | | | | | | | | |
Collapse
|
17
|
Cheng CW, Chow RL, Lebel M, Sakuma R, Cheung HOL, Thanabalasingham V, Zhang X, Bruneau BG, Birch DG, Hui CC, McInnes RR, Cheng SH. The Iroquois homeobox gene, Irx5, is required for retinal cone bipolar cell development. Dev Biol 2005; 287:48-60. [PMID: 16182275 DOI: 10.1016/j.ydbio.2005.08.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 08/11/2005] [Accepted: 08/11/2005] [Indexed: 12/14/2022]
Abstract
In the mouse retina, at least ten distinct types of bipolar interneurons are involved in the transmission of visual signals from photoreceptors to ganglion cells. How bipolar interneuron diversity is generated during retinal development is poorly understood. Here, we show that Irx5, a member of the Iroquois homeobox gene family, is expressed in developing bipolar cells starting at postnatal day 5 and is localized to a subset of cone bipolar cells in the mature mouse retina. In Irx5-deficient mice, defects were observed in the expression of some, but not all, immunohistological markers that define mature Type 2 and Type 3 OFF cone bipolar cells, indicating a role for Irx5 in bipolar cell differentiation. The differentiation of these two bipolar cell types has previously been shown to require the homeodomain-CVC transcription factor, Vsx1. However, the defects observed in Irx5-deficient retinas do not coincide with a reduction of Vsx1 expression, and conversely, the expression of Irx5 in cone bipolar cells does not require the presence of a functional Vsx1 allele. These results indicate that there are at least two distinct genetic pathways (Irx5-dependent and Vsx1-dependent) regulating the development of Type 2 and Type 3 cone bipolar cells.
Collapse
Affiliation(s)
- Chi Wa Cheng
- Program in Developmental Biology, The Hospital for Sick Children, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bertazolli-Filho R, Ghosh S, Huang W, Wollmann G, Coca-Prados M. Molecular evidence that human ocular ciliary epithelium expresses components involved in phototransduction. Biochem Biophys Res Commun 2001; 284:317-25. [PMID: 11394879 DOI: 10.1006/bbrc.2001.4970] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we report the expression, in the human ocular ciliary epithelium and in a human nonpigmented (NPE) ciliary epithelial cell line, of genes usually restricted to cone and rod photoreceptor cells of the retina. By RT-PCR and DNA sequencing we identified the expression of rhodopsin and components linked to its deactivation, including rhodopsin kinase, recoverin, and visual arrestin. We also detected the expression of transducin (T-alpha), phosphodiesterase (PDE-alpha), and cGMP-gated channel alpha-subunits. Cultured NPE cells responded to treatment with phorbol ester by enhancing the expression of rhodopsin mRNA three- to fourfold. Indirect immunofluorescence of the intact ciliary epithelium with monoclonal antibodies (MAbs) against rhodopsin, rhodopsin kinase, and visual arrestin revealed labeling preferentially restricted to the NPE cells. Furthermore, Western blot analysis of whole lysates from the pars plicata region of the human ciliary epithelium with MAbs demonstrated immunochemical cross-reactivity with proteins of molecular mass similar to rhodopsin (36 kDa), rhodopsin kinase (64 to 66 kDa), and arrestin (48-52 kDa) from the human retina. These results provide the first molecular evidence that components of a non-visual phototransduction pathway are expressed in the human ocular NPE ciliary epithelium, which may be linked to circadian entrainment tasks.
Collapse
Affiliation(s)
- R Bertazolli-Filho
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar Street, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
19
|
Jablonski MM. Investigating the mechanisms of retinal degenerations with antisense oligonucleotides. Doc Ophthalmol 2001; 102:179-96. [PMID: 11556485 DOI: 10.1023/a:1017518717710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Utilizing antisense oligonucleotides coupled with an intact Xenopus eye rudiment model, we have effectively demonstrated that we are able to downregulate the expression of a photoreceptor-specific protein, rds/peripherin, and generate a loss-of-function model upon which to further study the function of the rds/peripherin gene. The ultrastructure and protein expression patterns very closely resemble those previously documented in both the rds mouse and in human autosomal dominant retinitis pigmentosa due to peripherin/RDS mutations. An identical strategy can be applied to any gene correlated with a degenerative retinal phenotype. As the entire array of genes is revealed through the various genome projects, including human and mouse, it is becoming increasingly critical to evaluate and determine the function of the corresponding gene products. Discovering which gene is responsible for a particular clinical phenotype is only the first of many steps in the development of a treatment or cure for that particular disease. Using our in vitro model, in which the retina is readily accessible to the antisense oligonucleotide yet the normal three-dimensional ultrastructure of the retina is maintained, we can evaluate the function of virtually any gene as the sequence becomes available. A thorough understanding of the function of individual genes will provide insights on the role of gene product in retinal health and pathophysiology. This experimental approach will also allow for specific therapeutic interventions to be evaluated so that targeted treatments can be designed for individuals with specific genetic mutations.
Collapse
Affiliation(s)
- M M Jablonski
- Retinal Degeneration Research Center Department of Ophthalmology, The University of Tennessee, Memphis 38163, USA.
| |
Collapse
|
20
|
Pigment epithelium-derived factor supports normal development of photoreceptor neurons and opsin expression after retinal pigment epithelium removal. J Neurosci 2001. [PMID: 11007870 DOI: 10.1523/jneurosci.20-19-07149.2000] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dysfunction of the retinal pigment epithelium (RPE), its loss, or separation from the underlying neural retina results in severe photoreceptor degeneration. Pigment epithelium-derived factor (PEDF) is a glycoprotein with reported neuroprotective and differentiation properties that is secreted in abundance by RPE cells. The "pooling" of PEDF within the interphotoreceptor matrix places this molecule in a prime physical location to affect the underlying neural retina. The purpose of this study was to analyze the morphogenetic activity of PEDF in a model of photoreceptor dysmorphogenesis induced by removal of the RPE. Eyes were dissected from embryonic Xenopus laevis, and the RPE was removed before culturing in medium containing PEDF, PEDF plus anti-PEDF antibodies, or medium alone. Control retinas were maintained with an adherent RPE. Light and electron microscopic analysis was used to examine retinal ultrastructure. Opsin was localized immunocytochemically and quantified as an index of outer segment membranous material and photoreceptor protein expression. Removal of the RPE resulted in an aberrant assembly of photoreceptor outer segments, loss of fine subcellular ultrastructure in photoreceptors, and a reduction in opsin protein levels when compared with control retinas. The addition of PEDF prevented the dysmorphic photoreceptor changes induced by RPE removal. In particular, photoreceptor ultrastructure, outer segment membrane assembly, and steady-state levels of opsin were equivalent to control conditions. Anti-PEDF antibodies completely blocked the morphogenetic activity of PEDF. These results indicate that PEDF is able to mimic the supportive role of the RPE on photoreceptors during the final stages of retinal morphogenesis.
Collapse
|
21
|
Abstract
Within the retina, the Müller cells and photoreceptors are in close physical proximity and are metabolically coupled. It is unknown, however, whether Müller cells affect photoreceptor differentiation and outer segment membrane assembly. The objective of this study was to determine whether targeted disruption of Müller cell metabolism would induce photoreceptor dysmorphogenesis. Intact isolated Xenopus laevis embryonic eyes were cultured in medium with or without Müller cell-specific inhibitors (i.e., alpha-aminoadipic acid and fluorocitrate). To assess Müller cell injury, the gross retinal morphology was examined along with immunocytochemical assessment of Müller cell-specific protein expression patterns. The steady-state levels of opsin were quantified to determine whether the Müller cell inhibitors negatively affected photoreceptor protein synthesis. Müller and photoreceptor cell ultrastructure was scrutinized and the organization of the outer segment membranes was graded. In control retinas, there was no swelling of Müller cell cytoplasm. Glial fibrillary acidic protein (GFAP) was undetectable, whereas glutamine synthetase was abundant. The steady-state level of opsin was high and photoreceptors elaborated properly folded outer segments. Exposure to both Müller cell-specific inhibitors induced swelling of Müller cell endfeet, cytoplasmic paling and alterations of Müller cell-specific protein expression patterns. The steady-state level of opsin in retinas exposed to alpha-aminoadipic acid was unchanged compared with control eyes, whereas, in eyes exposed to fluorocitrate, opsin levels were slightly reduced. The most significant finding was that targeted disruption of Müller cell metabolism adversely affected photoreceptor outer segment membrane assembly, causing dysmorphogenesis of nascent outer segments. These results suggest that the termination signal(s) necessary for proper outer segment folding were disrupted by targeted inhibition of Müller cells and support the hypothesis that Müller cells interact with photoreceptors through mechanisms that may regulate, at least in part, the assembly of photoreceptor outer segment membranes.
Collapse
Affiliation(s)
- M M Jablonski
- Retinal Degeneration Research Center, Department of Ophthalmology, University of Tennessee, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|
22
|
Nguyen M, Arnheiter H. Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 2000; 127:3581-91. [PMID: 10903182 DOI: 10.1242/dev.127.16.3581] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During vertebrate eye development, the optic vesicle is partitioned into a domain at its distal tip that will give rise to the neuroretina, and another at its proximal base that will give rise to the pigmented epithelium. Both domains are initially bipotential, each capable of giving rise to either neuroretina or pigmented epithelium. The partitioning depends on extrinsic signals, notably fibroblast growth factors, which emanate from the overlying surface ectoderm and induce the adjacent neuroepithelium to assume the neuroretinal fate. Using explant cultures of mouse optic vesicles, we demonstrate that bipotentiality of the optic neuroepithelium is associated with the initial coexpression of the basic-helix-loop-helix-zipper transcription factor MITF, which is later needed solely in the pigmented epithelium, and a set of distinct transcription factors that become restricted to the neuroretina. Implantation of fibroblast growth factor-coated beads close to the base of the optic vesicle leads to a rapid downregulation of MITF and the development of an epithelium that, by morphology, gene expression, and lack of pigmentation, resembles the future neuroretina. Conversely, the removal of the surface ectoderm results in the maintenance of MITF in the distal optic epithelium, lack of expression of the neuroretinal-specific CHX10 transcription factor, and conversion of this epithelium into a pigmented monolayer. This phenomenon can be prevented by the application of fibroblast growth factor alone. In Mitf mutant embryos, parts of the future pigment epithelium become thickened, lose expression of a number of pigment epithelium transcription factors, gain expression of neuroretinal transcription factors, and eventually transdifferentiate into a laminated second retina. The results support the view that the bipotential optic neuroepithelium is characterized by overlapping gene expression patterns and that selective gene repression, brought about by local extrinsic signals, leads to the separation into discrete expression domains and, hence, to domain specification.
Collapse
Affiliation(s)
- M Nguyen
- Laboratory of Developmental Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
23
|
Sung CH, Tai AW. Rhodopsin trafficking and its role in retinal dystrophies. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 195:215-67. [PMID: 10603577 DOI: 10.1016/s0074-7696(08)62706-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We review the sorting/targeting steps involved in the delivery of rhodopsin to the outer segment compartment of highly polarized photoreceptor cells. The transport of rhodopsin includes (1) the sorting/budding of rhodopsin-containing vesicles at the trans-Golgi network, (2) the directional translocation of rhodopsin-bearing vesicles through the inner segment, and (3) the delivery of rhodopsin across the connecting cilium to the outer segment. Several independent lines of evidence suggest that the carboxyl-terminal, cytoplasmic tail of rhodopsin is involved in the post-Golgi trafficking of rhodopsin. Inappropriate subcellular targeting of naturally occurring rhodopsin mutants in vivo leads to photoreceptor cell death. Thus, the genes encoding mutations in the cellular components involved in photoreceptor protein transport are likely candidate genes for retinal dystrophies.
Collapse
Affiliation(s)
- C H Sung
- Department of Cell Biology and Anatomy, Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
24
|
Wallace VA, Jensen AM. IBMX, taurine and 9-cis retinoic acid all act to accelerate rhodopsin expression in postmitotic cells. Exp Eye Res 1999; 69:617-27. [PMID: 10620391 DOI: 10.1006/exer.1999.0741] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Birth dating studies in the rodent retina have shown that rod photoreceptors are generated throughout most of retinal development, yet the majority do not begin to express rhodopsin until the first postnatal week. We show that treatment with 3-isobutyl-1-methylxanthine (IBMX) enhances rod development in reaggregate, explant, and monolayer cultures of embryonic and newborn rat neural retina and is more potent than another rod-promoting factor, taurine, but less potent than 9-cis retinoic acid (RA). The effect of IBMX on rod development is not associated with an increase in precursor cell proliferation, rod survival, or a reduction in the development of other retinal cell types. We provide evidence that IBMX, as well as the rod promoting molecules taurine and RA, all act on postmitotic rhodopsin(-)cells to accelerate their differentiation into rhodopsin(+)cells.
Collapse
Affiliation(s)
- V A Wallace
- MRC Developmental Neurobiology Programme, MRC Laboratory for Molecular Cell Biology, University College London, Gower St., WC1E 6BT, U.K
| | | |
Collapse
|
25
|
Jensen AM, Wallace VA. Expression of Sonic hedgehog and its putative role as a precursor cell mitogen in the developing mouse retina. Development 1997; 124:363-71. [PMID: 9053312 DOI: 10.1242/dev.124.2.363] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We show that Sonic hedgehog and patched are expressed in adjacent domains in the developing mouse retina. Treatment of cultures of perinatal mouse retinal cells with the amino-terminal fragment of Sonic hedgehog protein results in an increase in the proportion of cells that incorporate bromodeoxuridine, in total cell numbers, and in rod photoreceptors, amacrine cells and Muller glial cells, suggesting that Sonic hedgehog promotes the proliferation of retinal precursor cells. These findings suggest that hedgehog and patched are part of a conserved signalling pathway in retinal development in mammals and insects.
Collapse
Affiliation(s)
- A M Jensen
- MRC Developmental Neurobiology Programme, University College London, UK
| | | |
Collapse
|
26
|
Abstract
The retina of mammals contains various amounts of cone photoreceptors that are relatively evenly distributed and display a radially or horizontally oriented area of peak density. In most mammalian species two spectrally different classes of cone can be distinguished with various histochemical and physiological methods. These cone classes occur in a relatively constant ratio, middle-to-longwave sensitive cones being predominant over short-wave cones. Recent observations do not support the idea that each cone subpopulation is uniformly distributed across the retina. With appropriate type-specific markers, unexpected patterns of colour cone topography have been revealed in certain species. In the mouse and the rabbit, the "standard" uniform pattern was found to be confined exclusively to the dorsal retina. In a ventral zone of variable width all cones express short-wave pigment, a phenomenon whose biological significance is not known yet. Dorso-ventral asymmetries have been described in lower vertebrates, matching the spectral distribution of light reaching the retina from various sectors of the visual field. It is not clear, however, whether the retinal cone fields in mammals carry out a function similar to that of their counterparts in fish and amphibians. Since in a number of mammalian species short-wave cones are the first to differentiate, and the expression of the short-wave pigment seems to be the default pathway of cone differentiation, we suggest that the short-wave sensitive cone fields are rudimentary areas conserving an ancestral stage of the photopigment evolution.
Collapse
Affiliation(s)
- A Szél
- 2nd Department of Anatomy, Histology, and Embryology, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | |
Collapse
|
27
|
Hallett MA, Delaat JL, Arikawa K, Schlamp CL, Kong F, Williams DS. Distribution of guanylate cyclase within photoreceptor outer segments. J Cell Sci 1996; 109 ( Pt 7):1803-12. [PMID: 8832403 DOI: 10.1242/jcs.109.7.1803] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Guanylate cyclases play an essential role in the recovery of vertebrate photoreceptor cells after light activation. Here, we have investigated how one such guanylate cyclase, RetGC-1, is distributed within light- and dark-adapted rod photoreceptor cells. Guanylate cyclase activity partitioned with the photoreceptor outer segment (OS) cytoskeleton in a light-sensitive manner. RetGC-1 was found to bind actin filaments in actin blot overlays, suggesting a mechanism for its association with the OS cytoskeleton. In retinal sections, this enzyme was immunodetected only in the OSs, where it appeared to be distributed throughout the disk membranes.
Collapse
Affiliation(s)
- M A Hallett
- School of Optometry, Indiana University, Bloomington 47405, USA
| | | | | | | | | | | |
Collapse
|
28
|
Sakuma H, Inana G, Murakami A, Higashide T, McLaren MJ. Immunolocalization of X-arrestin in human cone photoreceptors. FEBS Lett 1996; 382:105-10. [PMID: 8612728 DOI: 10.1016/0014-5793(96)00163-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
X-arrestin is a recently identified retina-specific gene of unknown function. Affinity-purified anti-peptide antibody to human X-arrestin was prepared, and used in Western blot analysis of human retinal proteins and for immunohistochemistry on human retinal sections. By Western blot analysis, the antibody specifically bound to an approximately 47 kDa protein, and by indirect immunofluorescence specifically labeled cone photoreceptors with greatest intensity in their outer segments. In single and double label experiments, the localization of X-arrestin immunoreactivity was compared with immunolabeling patterns obtained with antibodies to red/green cone opsin, rhodopsin, and S-antigen. The results showed that X-arrestin is expressed in red-, green- and blue-sensitive cones in the human retina.
Collapse
Affiliation(s)
- H Sakuma
- Department of Ophthalmology, University of Miami School of Medicine, FL 33136, USA
| | | | | | | | | |
Collapse
|
29
|
Besharse JC, Wetzel MG. Immunocytochemical localization of opsin in rod photoreceptors during periods of rapid disc assembly. JOURNAL OF NEUROCYTOLOGY 1995; 24:371-88. [PMID: 7544404 DOI: 10.1007/bf01189064] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transport of opsin from photoreceptor inner to outer segments has been assumed to occur via the connecting cilium, the only permanent structural connection between these two regions. However, in prior work, little or no immunoreactive opsin has been detected in the cilium, despite the high rate of transport of this protein. This suggests that immune epitopes are masked during passage through the cilium or that opsin is transported via an extra-ciliary route. In this study, we stained the photoreceptors of Xenopus laevis with well-characterized monoclonal antibodies directed at the N-terminal, C-terminal, and 5-6 loop regions of bovine opsin. This was done on isolated retinas incubated in vitro under conditions that support rapid disc assembly, to insure that opsin transport to forming discs was occurring at the time of fixation. Five MAbs that gave robust staining of Xenopus rod inner segment/rod outer segment preparations with the light microscope were utilized for electron microscopic studies on LR White embedded or cryo-ultrathin sections. Four of these stained outer segment discs and inner segment vesicles and plasma membrane. However, no significant staining of the connecting cilium was found. Furthermore, freeze-fractured mouse photoreceptors prepared by the 'fracture-label' technique showed extensive labelling of membrane compartments but lacked staining of the connecting cilium. Isolated retinas incubated under conditions that support robust rod disc synthesis contained many finger-like and vesicular projections of the apical inner segment plasma membrane and inner segment vesicles extending into them. Rod outer segment nascent discs usually made close contact with the inner segment. Both the vesicular profiles associated with the inner segment plasma membrane and the basal discs extending to the inner segment were heavily stained with all four anti-opsin antibodies. This suggests an alternate route for bulk transport of opsin to newly forming discs that involves direct transfer from apical inner segment plasma membrane to nascent discs.
Collapse
Affiliation(s)
- J C Besharse
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City 66160-7400, USA
| | | |
Collapse
|
30
|
Embryonic appearance of rod opsin in the urodele amphibian eye. ACTA ACUST UNITED AC 1993; 203:164-168. [DOI: 10.1007/bf00365056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/1993] [Accepted: 06/01/1993] [Indexed: 10/26/2022]
|
31
|
McDevitt DS, Brahma SK, Jeanny JC, Hicks D. Presence and foveal enrichment of rod opsin in the "all cone" retina of the American chameleon. Anat Rec (Hoboken) 1993; 237:299-307. [PMID: 8291682 DOI: 10.1002/ar.1092370302] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The retinal photoreceptors of the eye of the American chameleon, Anolis carolinensis, have been considered to be exclusively cones. Its retina is unusual for possessing two foveas (areas associated with heightened visual acuity), with the major, central fovea deeply incised and very densely packed with photoreceptors. Immunoblotting and light- and electron microscopic-immunocytochemistry, using several opsin monoclonal antibodies previously found specific for rods, demonstrated the presence and localization of this protein in the Anolis retina. This visual pigment appears sparsely in a subpopulation of photoreceptors in the periphery but overwhelmingly in the central fovea. Complementary results with cone-specific antibody and lectin binding corroborated this spatial organization. These results, as well as those with geckos, suggest that photoreceptor morphology is not an accurate guide among the lacertilians to visual pigment content, and that this phylogenetic grouping may constitute a crossroads in vertebrate photoreceptor evolution.
Collapse
Affiliation(s)
- D S McDevitt
- Department of Animal Biology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia 19104
| | | | | | | |
Collapse
|
32
|
Juliusson B, Bergström A, van Veen T, Ehinger B. Cellular organization in retinal transplants using cell suspensions or fragments of embryonic retinal tissue. Cell Transplant 1993; 2:411-8. [PMID: 8162282 DOI: 10.1177/096368979300200509] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have investigated the cellular organization in two different types of retinal transplants using cell type-specific monoclonal antibodies. Both fragments and cell suspensions of E17-E19 Sprague-Dawley rat retina were transplanted to a subretinal site in congenic adult rat hosts. After a survival time of 28 days, the transplants were stained by immunocytochemistry with antibodies against rhodopsin, which stained rods; with antibodies against HPC-1, which stained amacrine cells and outer and inner plexiform layers; and with antibodies against vimentin, which stained Müller cell fibers and horizontal cells. In the host retina, the distribution of immunocytochemical staining was similar, irrespective of transplantation technique. In the transplants, the anti-rhodopsin staining showed that fragment transplants developed photoreceptors in rosettes, whereas in cell suspension transplants, this staining showed a scattered distribution of photoreceptors. The HPC-1 staining showed that regions corresponding to the inner nuclear layer surrounded both types of transplants and made large invaginations into them. In one case, using the cell suspension technique, fibres were found to run from the inner plexiform layer of the transplant to the outer plexiform layer of the host. The vimentin staining revealed a disorganized array of Müller cell fibres in both types of transplants, but with some concentration to the regions corresponding to the inner plexiform layer.
Collapse
Affiliation(s)
- B Juliusson
- Department of Ophthalmology, University Hospital of Lund, Sweden
| | | | | | | |
Collapse
|
33
|
Preparation of Retinas for Studying Photoreceptors with Confocal Microscopy. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/b978-0-12-185279-5.50009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Kawata A, Oishi T, Fukada Y, Shichida Y, Yoshizawa T. Photoreceptor cell types in the retina of various vertebrate species: immunocytochemistry with antibodies against rhodopsin and iodopsin. Photochem Photobiol 1992; 56:1157-66. [PMID: 1492130 DOI: 10.1111/j.1751-1097.1992.tb09740.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Types of photoreceptor cells in the retinas of 36 species of vertebrates (5 classes, 14 orders) were investigated immunocytochemically with monoclonal antibodies against chicken iodopsin (Io-mAb) and antiserum against bovine rhodopsin (Rh-As). In mammals, Rh-As labeled the outer segments of some photoreceptor cells in striped squirrels (a diurnal mammal) and those of most photoreceptor cells in mice (a nocturnal mammal), while Io-mAb labeled any photoreceptor cells in either of them. In all species of birds studied, Io-mAb labeled the principal and accessory members of double cones and single cones with a red oil droplet. Rh-As labeled single cones with a yellow or clear oil droplet in addition to rods. In turtles, both Rh-As and Io-mAb labeled single cones with a red or clear oil droplet and the principal (with a yellow oil droplet) and accessory members of double cones. This suggests that the visual pigments in these cones of turtles have common epitopes with bovine rhodopsin and chicken iodopsin. In Japanese grass lizards, single cones with a yellow oil droplet and double cones were immunoreactive to both Rh-As and Io-mAb. In snakes, rods and cones could not be distinguished but both positively and negatively stained cells were observed by the use of each antibody. In geckos, however, all photoreceptor cells were immunonegative to Io-mAb. In all species studied in amphibians, Rh-As labeled rods but not cones. Neither rods nor cones reacted with Io-mAb. In fishes, almost all species studied had well developed cones, and some of these cones were labeled by Rh-As. However, Io-mAb labeled the outer segments of some cones only in loaches. Rh-As labeled photoreceptor cells in all species of fishes studied. Thus, Rh-As recognized the outer segments of rods in all species studied from fishes to mammals, whereas the epitope recognized by Io-mAb is conserved in some species of fishes, most species of reptiles and all species of birds studied.
Collapse
Affiliation(s)
- A Kawata
- Department of Biology, Faculty of Science, Nara Women's University, Japan
| | | | | | | | | |
Collapse
|
35
|
Szél A, Röhlich P, Caffé AR, Juliusson B, Aguirre G, Van Veen T. Unique topographic separation of two spectral classes of cones in the mouse retina. J Comp Neurol 1992; 325:327-42. [PMID: 1447405 DOI: 10.1002/cne.903250302] [Citation(s) in RCA: 194] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have found two immunologically distinguishable cone types in the retina of the mouse, each localized to two opposite halves of the eye. One cone type was labelled by the monoclonal antibody COS-1 specific to the middle-to-long wave sensitive visual pigment of the mammals, while the other type was stained by the shortwave-specific monoclonal antibody (OS-2). These results were confirmed with other antibodies directed against specific sequences of the visual pigments. As a result of the uneven distribution of the two cone types the mouse retina is divided into two fields separated by an oblique meridional line. The middlewave sensitive cones were present exclusively in the dorsal half of the mouse retina (M-field). The overwhelming majority of the shortwave sensitive cones occupied the ventral half (S-field), and only a small number was scattered among the middlewave sensitive cones in the dorsal retina. The ratio of the two cone types in the M-field corresponds to what has been found in the retina of other mammals, including rodents such as the gerbil and the rat. The S-field represents an entirely unique area with the unusually great number of shortwave sensitive cones and with the complete lack of the middlewave sensitive ones. The present study provides the structural basis for dichromacy in a rodent species considered for a long time to be monochromat. In addition, it shows that the ventral retina, containing exclusively S-cones in a relatively high density, is a unique retinal field not present in other mammalian species studied so far.
Collapse
Affiliation(s)
- A Szél
- University of Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Hauswirth WW, Langerijt AV, Timmers AM, Adamus G, Ulshafer RJ. Early expression and localization of rhodopsin and interphotoreceptor retinoid-binding protein (IRBP) in the developing fetal bovine retina. Exp Eye Res 1992; 54:661-70. [PMID: 1623951 DOI: 10.1016/0014-4835(92)90021-j] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Differentiation and maturation of the photoreceptor outer segments are key steps in the development of the visual system. Morphological studies presented here show that the cow and human are nearly identical in the timing of outer segment appearance during fetal development, implying that the bovine retina is a good model system for the final stages of human photoreceptor development. To study photoreceptor maturation, rhodopsin and interphotoreceptor retinoid-binding protein (IRBP) were quantified by ELISA in a developmentally staged series of fetal bovine retinas. In addition, their localization within these retinas was determined by immunogold electron microscopy. Rhodopsin, as detected by antibodies directed against either the N- or C-terminal portions of the molecule, is first found at about 5.5 months gestation. It is first detected on the plasma membrane of the immature cilia and on the earliest emergent outer segment membrane, even before organized disk membranes are apparent. In contrast, whereas rhodopsin levels and outer segments are nearly undetectable before 5 months gestation, IRBP accumulates to a significant level (4-5% of the adult) as early as 3 months gestation. Immunogold electron microscopy confirmed this finding, with localization of IRBP predominantly in the subretinal space.
Collapse
Affiliation(s)
- W W Hauswirth
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville 32610
| | | | | | | | | |
Collapse
|
37
|
Bugra K, Jacquemin E, Ortiz JR, Jeanny JC, Hicks D. Analysis of opsin mRNA and protein expression in adult and regenerating newt retina by immunology and hybridization. JOURNAL OF NEUROCYTOLOGY 1992; 21:171-83. [PMID: 1532825 DOI: 10.1007/bf01194976] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rod photoreceptor cells were analysed in adult and regenerating Notophthalmus viridescens retinae using a combination of immunochemical and molecular biological approaches. Monoclonal anti-rhodopsin antibody (Rho-4D2) labelled rod but not cone photoreceptors in adult newt retinae. The antibody bound to the entire cell body, from the synaptic ending through to the outer segment, as examined by light and electron immunocytochemistry. The antibody labelled two bands of 35 and 56 kDa in Western blots of urodele retinal preparations separated by gel electrophoresis. In situ hybridization with radiolabelled anti-sense riboprobes specific for bovine opsin revealed intense patches of silver grains overlying approximately 50% of photoreceptor inner segment myoid regions; no signal above background was detected elsewhere in the retina, or with radiolabelled sense riboprobe controls. Northern blot analysis using the probe on poly A(+) mRNA of adult newt retinae indicated a single band of 1.5 kb, corresponding to the opsin transcript. Following surgical removal of the original retina in test animals, retinal regeneration was studied by sampling tissue from 0-50 days post-surgery. The reappearance of opsin immunoreactivity was examined by light microscopical techniques. No opsin expression was detected in regenerating tissue prior to 16 days. Subsequent to this time, rho-4D2 bound to cells in central areas in which substantial lamination of the new retina had already occurred, and was limited to the scleral border. At no time was any immunoreactivity observed in more peripheral undifferentiated tissue. Thus the reformation of a functional retina seems to follow the same control mechanisms as during development, photoreceptor redifferentiation being at least partly governed by positional or environmental cues.
Collapse
Affiliation(s)
- K Bugra
- Unité de Recherches Gérontologiques, INSERM U 118, Paris, France
| | | | | | | | | |
Collapse
|
38
|
Lewis GP, Erickson PA, Anderson DH, Fisher SK. Opsin distribution and protein incorporation in photoreceptors after experimental retinal detachment. Exp Eye Res 1991; 53:629-40. [PMID: 1835933 DOI: 10.1016/0014-4835(91)90223-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The distribution of opsin was examined immunocytochemically after experimental retinal detachment in adult cats. Retinal detachments were produced by injecting fluid between the retinal pigment epithelium and neural retina. One to 60 days later the animals were killed. Tissue areas from detached and attached retinal regions from the eye with the detached retina, as well as normal (control) retinas, were processed for post-embedding light and electron microscopic immunocytochemistry. In normal and attached retinal regions, anti-opsin labeled the outer segments and Golgi apparatus most heavily, although the entire photoreceptor plasma membrane was labeled at a low level. Beginning at 2 days after retinal detachment, immunolabeling increased in the photoreceptor inner segment, cell body and synaptic terminal plasma membranes. This pattern of anti-opsin labeling continued at all intervals up through the 60-day detachment time-point. Injection of radiolabeled amino acid in detachments from 1 to 30 days show that radiolabeled protein is still transported to the truncated outer segments of the photoreceptor cells. In addition, these outer segment disks label with anti-opsin. These data imply that opsin continues to be transported and incorporated into the outer segments of photoreceptors showing severe degeneration as a result of long-term detachment from the RPE.
Collapse
Affiliation(s)
- G P Lewis
- Neuroscience Research Institute, University of California, Santa Barbara 93106
| | | | | | | |
Collapse
|
39
|
Ulshafer RJ, Clausnitzer EL, Sherry DM, Szél A, Röhlich P. Immunocytochemical identification of outer segment proteins in the rd chicken. Exp Eye Res 1990; 51:209-16. [PMID: 2387336 DOI: 10.1016/0014-4835(90)90074-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Immunoreactivities of two monoclonal antibodies (MAbs) that recognize cone photopigments were tested in the retinas of congenitally blind retinal degenerate (rd) chicks and compared to normally sighted carrier chicks, heterozygous for the mutation. MAb OS-2 had been previously determined to label rod and most cone outer segment membranes in normal chick retinas and is believed to bind to an epitope that is common to several photopigments in chickens. MAb COS-1 labels specifically middle-to-long-wavelength-sensitive cone photopigments in a number of vertebrate species. In rd chicks MAb OS-2 labeled the same number of rod outer segments at the same densities as carrier chicks. However, cone outer segments were less frequently and significantly less heavily labeled with this MAb at all ages tested (1 day, 1 week and 2 weeks post hatching). MAb COS-1 labeled the same number of cone outer segments in both rd and carrier retinas at 1 day of age, however, those outer segments that were labeled in rd specimens had significantly fewer gold particles on them. At both 1 week and 2 weeks of age, rd chick retinas had a significant reduction in numbers of cone outer segments labeled by COS-1. These findings support the hypothesis that the cone photopigment protein is abnormal in the rd chick model of hereditary blindness and retinal degeneration.
Collapse
Affiliation(s)
- R J Ulshafer
- Department of Ophthalmology, University of Florida, Gainesville 32610
| | | | | | | | | |
Collapse
|