1
|
Wang P, Jiang J, Kong K, Fang X, Song Y, Lin F, Jiang J, Zeng J, Chen S, Zhang X. Construction of glaucoma model and comparing eyeball enlargement with myopia in Guinea pig. Exp Eye Res 2024; 246:110010. [PMID: 39069000 DOI: 10.1016/j.exer.2024.110010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
This study aimed to develop and evaluate a guinea pig model for glaucoma, comparing resultant eyeball enlargement with an existing myopia model. Thirty guinea pigs underwent intracameral injection of magnetic microspheres to induce chronic ocular hypertension (COH). Intraocular pressure (IOP) was systematically monitored, revealing a successful induction of COH in 73.33% of the guinea pigs. The mean IOP increased from a baseline of 18.04 ± 1.33 mmHg, reaching a peak at week 3 (36.31 ± 6.13 mmHg) and remaining elevated for at least 7 weeks. All data are presented as mean ± standard deviation of the mean. Subsequently, detailed assessments were conducted to validate the established glaucoma model. Immunofluorescent staining demonstrated a significant decrease in the density of retinal ganglion cells (RGC) in the glaucoma group. Optic disc excavation and notable thinning of the lamina cribrosa (LC) were observed. The quantity of optic nerve ax·ons in glaucoma group gradually decreased from baseline (44553 ± 3608/mm2) to week 4 (28687 ± 2071/mm2) and week 8 (17977 ± 3697/mm2). Moreover, regarding the global enlargement of eyeballs, both the transverse and longitudinal axis in glaucomatous eyes were found to be significantly larger than that in myopic eyes, particularly in the anterior chamber depth (1.758 ± 0.113 mm vs. 1.151 ± 0.046 mm). These findings indicate distinct patterns of structural changes associated with glaucoma and myopia in the guinea pig model. This guinea pig model holds promise for future research aimed at exploring biomechanical mechanisms, therapeutic interventions, and advancing our understanding of the relationship between glaucoma and myopia.
Collapse
Affiliation(s)
- Peiyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jiaxuan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Kangjie Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiuli Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yunhe Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Fengbin Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jingwen Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| | - Shida Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| |
Collapse
|
2
|
Becker S, L'Ecuyer Z, Jones BW, Zouache MA, McDonnell FS, Vinberg F. Modeling complex age-related eye disease. Prog Retin Eye Res 2024; 100:101247. [PMID: 38365085 PMCID: PMC11268458 DOI: 10.1016/j.preteyeres.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Zia L'Ecuyer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Moussa A Zouache
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Guo L, Hua R, Zhang X, Yan TY, Tong Y, Zhao X, Chen SC, Wang M, Bressler NM, Kong J. Scleral Cross-Linking in Form-Deprivation Myopic Guinea Pig Eyes Leads to Glaucomatous Changes. Invest Ophthalmol Vis Sci 2022; 63:24. [PMID: 35594036 PMCID: PMC9150827 DOI: 10.1167/iovs.63.5.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/06/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the potential glaucomatous changes caused by scleral cross-linking (CXL) in a guinea pig form-deprivation (FD) myopia model. Methods Eighty 4-week-old tricolor guinea pigs were divided into four groups: FD only, genipin CXL only, FD plus CXL, and control. Refractive error, axial length (AL), intraocular pressure (IOP), and structural and vasculature optic disc changes in optical coherence tomography (OCT) and OCT angiography (OCTA) were measured at baseline and day 21. CXL efficacy was evaluated by scleral rigidity Young's modulus values. Histological and molecular changes in the anterior chamber angle, retina, and sclera were assessed. Results Baseline parameters were similar among groups (P > 0.05). The FD plus CXL group at day 21 had the least increase of AL (0.14 ± 0.08 mm) and highest IOP elevation (31.5 ± 3.6 mmHg) compared with the FD-only group (AL: 0.68 ± 0.17 mm; IOP: 22.2 ± 2.6 mmHg) and the control group (AL: 0.24 ± 0.09 mm; IOP: 17.4 ± 1.8 mmHg) (all P < 0.001). OCT and OCTA parameters of the optic disc in the FD plus CXL group at day 21 showed glaucomatous changes and decreased blood flow signals. Sclera rigidity increased in the CXL and FD plus CXL groups. Advanced glycation end products deposited extensively in the retina, choroid, and sclera of FD plus CXL eyes. Conclusions CXL causes increased IOP and subsequent optic disc, anterior segment, and scleral changes while inhibiting myopic progression and axial elongation in FD guinea pig eyes. Therefore, applying CXL to control myopia raises safety concerns.
Collapse
Affiliation(s)
- Lei Guo
- Department of Ophthalmology, the Fourth Hospital of China Medical University, Shenyang, China
- Ophthalmology and Optometry Center, the First Hospital of China Medical University, Shenyang, China
| | - Rui Hua
- Department of Ophthalmology, the First Hospital of China Medical University, Shenyang, China
| | - Xinxin Zhang
- Department of Ophthalmology, the Fourth Hospital of China Medical University, Shenyang, China
| | - Ting Yu Yan
- Department of Ophthalmology, the Fourth People's Hospital of Shenyang, Shenyang, China
| | - Yang Tong
- Ocular Pharmacology Laboratory, Shenyang Xingqi Eye Hospital, Shenyang, China
| | - Xin Zhao
- Ocular Pharmacology Laboratory, Shenyang Xingqi Eye Hospital, Shenyang, China
| | - Shi Chao Chen
- Ocular Pharmacology Laboratory, Shenyang Xingqi Eye Hospital, Shenyang, China
| | - Moying Wang
- Department of Ophthalmology, the Fourth Hospital of China Medical University, Shenyang, China
| | - Neil M. Bressler
- Retina Division, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jun Kong
- Department of Ophthalmology, the Fourth Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Muench NA, Patel S, Maes ME, Donahue RJ, Ikeda A, Nickells RW. The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease. Cells 2021; 10:cells10071593. [PMID: 34201955 PMCID: PMC8306483 DOI: 10.3390/cells10071593] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022] Open
Abstract
The important roles of mitochondrial function and dysfunction in the process of neurodegeneration are widely acknowledged. Retinal ganglion cells (RGCs) appear to be a highly vulnerable neuronal cell type in the central nervous system with respect to mitochondrial dysfunction but the actual reasons for this are still incompletely understood. These cells have a unique circumstance where unmyelinated axons must bend nearly 90° to exit the eye and then cross a translaminar pressure gradient before becoming myelinated in the optic nerve. This region, the optic nerve head, contains some of the highest density of mitochondria present in these cells. Glaucoma represents a perfect storm of events occurring at this location, with a combination of changes in the translaminar pressure gradient and reassignment of the metabolic support functions of supporting glia, which appears to apply increased metabolic stress to the RGC axons leading to a failure of axonal transport mechanisms. However, RGCs themselves are also extremely sensitive to genetic mutations, particularly in genes affecting mitochondrial dynamics and mitochondrial clearance. These mutations, which systemically affect the mitochondria in every cell, often lead to an optic neuropathy as the sole pathologic defect in affected patients. This review summarizes knowledge of mitochondrial structure and function, the known energy demands of neurons in general, and places these in the context of normal and pathological characteristics of mitochondria attributed to RGCs.
Collapse
Affiliation(s)
- Nicole A. Muench
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
| | - Sonia Patel
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
| | - Margaret E. Maes
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria;
| | - Ryan J. Donahue
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
- Boston Children’s Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA;
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert W. Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (N.A.M.); (S.P.); (R.J.D.)
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence:
| |
Collapse
|
6
|
Oikawa K, Teixeira LBC, Keikhosravi A, Eliceiri KW, McLellan GJ. Microstructure and resident cell-types of the feline optic nerve head resemble that of humans. Exp Eye Res 2020; 202:108315. [PMID: 33091431 DOI: 10.1016/j.exer.2020.108315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 01/15/2023]
Abstract
The lamina cribrosa (LC) region of the optic nerve head (ONH) is considered a primary site for glaucomatous damage. In humans, biology of this region reflects complex interactions between retinal ganglion cell (RGC) axons and other resident ONH cell-types including astrocytes, lamina cribrosa cells, microglia and oligodendrocytes, as well as ONH microvasculature and collagenous LC beams. However, species differences in the microanatomy of this region could profoundly impact efforts to model glaucoma pathobiology in a research setting. In this study, we characterized resident cell-types, ECM composition and ultrastructure in relation to microanatomy of the ONH in adult domestic cats (Felis catus). Longitudinal and transverse cryosections of ONH tissues were immunolabeled with astrocyte, microglia/macrophage, oligodendrocyte, LC cell and vascular endothelial cell markers. Collagen fiber structure of the LC was visualized by second harmonic generation (SHG) with multiphoton microscopy. Fibrous astrocytes form glial fibrillary acidic protein (GFAP)-positive glial columns in the pre-laminar region, and cover the collagenous plates of the LC region in lamellae oriented perpendicular to the axons. GFAP-negative and alpha-smooth muscle actin-positive LC cells were identified in the feline ONH. IBA-1 positive immune cells and von Willebrand factor-positive blood vessel endothelial cells are also identifiable throughout the feline ONH. As in humans, myelination commences with a population of oligodendrocytes in the retro-laminar region of the feline ONH. Transmission electron microscopy confirmed the presence of capillaries and LC cells that extend thin processes in the core of the collagenous LC beams. In conclusion, the feline ONH closely recapitulates the complexity of the ONH of humans and non-human primates, with diverse ONH cell-types and a robust collagenous LC, within the beams of which, LC cells and capillaries reside. Thus, studies in a feline inherited glaucoma model have the potential to play a key role in enhancing our understanding of ONH cellular and molecular processes in glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Kazuya Oikawa
- Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; Surgical Sciences, University of Wisconsin-Madison, WI, USA; McPherson Eye Research Institute, Madison, WI, USA
| | - Leandro B C Teixeira
- McPherson Eye Research Institute, Madison, WI, USA; Pathobiological Sciences, University of Wisconsin-Madison, WI, USA
| | - Adib Keikhosravi
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Kevin W Eliceiri
- McPherson Eye Research Institute, Madison, WI, USA; Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Gillian J McLellan
- Ophthalmology & Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA; Surgical Sciences, University of Wisconsin-Madison, WI, USA; McPherson Eye Research Institute, Madison, WI, USA.
| |
Collapse
|
7
|
Quillen S, Schaub J, Quigley H, Pease M, Korneva A, Kimball E. Astrocyte responses to experimental glaucoma in mouse optic nerve head. PLoS One 2020; 15:e0238104. [PMID: 32822415 PMCID: PMC7442264 DOI: 10.1371/journal.pone.0238104] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To delineate responses of optic nerve head astrocytes to sustained intraocular pressure (IOP) elevation in mice. METHODS We elevated IOP for 1 day to 6 weeks by intracameral microbead injection in 4 strains of mice. Astrocyte alterations were studied by transmission electron microscopy (TEM) including immunogold molecular localization, and by laser scanning microscopy (LSM) with immunofluorescence for integrin β1, α-dystroglycan, and glial fibrillary acidic protein (GFAP). Astrocyte proliferation and apoptosis were quantified by Ki67 and TUNEL labeling, respectively. RESULTS Astrocytes in normal optic nerve head expressed integrin β1 and α-dystroglycan by LSM and TEM immunogold labeling at electron dense junctional complexes that were found only on cell membrane zones bordering their basement membranes (BM) at the peripapillary sclera (PPS) and optic nerve head capillaries. At 1-3 days after IOP elevation, abnormal extracellular spaces appeared between astrocytes near PPS, and axonal vesical and mitochondrial accumulation indicated axonal transport blockade. By 1 week, abnormal spaces increased, new collagen formation occurred, and astrocytes separated from their BM, leaving cell membrane fragments. Electron dense junctional complexes separated or were absent at the BM. Astrocyte proliferation was modest during the first week, while only occasional apoptotic astrocytes were observed by TEM and TUNEL. CONCLUSIONS Astrocytes normally exhibit junctions with their BM which are disrupted by extended IOP elevation. Responses include reorientation of cell processes, new collagen formation, and cell proliferation.
Collapse
Affiliation(s)
- Sarah Quillen
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Julie Schaub
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Harry Quigley
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mary Pease
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Arina Korneva
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elizabeth Kimball
- Glaucoma Center of Excellence, Wilmer Ophthalmological Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
8
|
Abstract
Retinal ganglion cell axons forming the optic nerve (ON) emerge unmyelinated from the eye and become myelinated after passage through the optic nerve lamina region (ONLR), a transitional area containing a vascular plexus. The ONLR has a number of unusual characteristics: it inhibits intraocular myelination, enables postnatal ON myelination of growing axons, modulates the fluid pressure differences between eye and brain, and is the primary lesion site in the age-related disease open angle glaucoma (OAG). We demonstrate that the human and rodent ONLR possesses a mitotically active, age-depletable neural progenitor cell (NPC) niche, with unique characteristics and culture requirements. These NPCs generate both forms of macroglia: astrocytes and oligodendrocytes, and can form neurospheres in culture. Using reporter mice with SOX2-driven, inducible gene expression, we show that ONLR-NPCs generate macroglial cells for the anterior ON. Early ONLR-NPC loss results in regional dysfunction and hypomyelination. In adulthood, ONLR-NPCs may enable glial replacement and remyelination. ONLR-NPC depletion may help explain why ON diseases such as OAG progress in severity during aging.
Collapse
|
9
|
Mirra S, Marfany G, Garcia-Fernàndez J. Under pressure: Cerebrospinal fluid contribution to the physiological homeostasis of the eye. Semin Cell Dev Biol 2019; 102:40-47. [PMID: 31761444 DOI: 10.1016/j.semcdb.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023]
Abstract
The cerebrospinal fluid (CSF) is a waterly, colorless fluid contained within the brain ventricles and the cranial and spinal subarachnoid spaces. CSF physiological functions range from hydromechanical protection of the central nervous system (CNS) to CNS modulation of developmental processes and regulation of interstitial fluid homeostasis. Optic nerve (ON) is surrounded by CSF circulating in the subarachnoid spaces and is exposed to both CSF (CSFP) and intra ocular (IOP) pressures, which converge at the lamina cribrosa (LC) as two opposite forces. The trans-lamina cribrosa pressure gradient (TLPG) is defined as IOP - CSFP and its alterations (due either to an elevation in IOP or a reduction in ICP) could result in structural damaging of the ON, including glaucomatous changes. The purpose of this review is to update the readers on the CSF contribution in controlling the functions/dysfunctions of ON by regulating homeostasis at LC. We also highlight emerging parallelisms regarding the expression of cilia-related genes in the regulation of common functions of body fluids in both brain and eye structures.
Collapse
Affiliation(s)
- Serena Mirra
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, and Institut de Biomedicina (IBUB), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Lani R, Dias MS, Abreu CA, Araújo VG, Gonçalo T, Nascimento-Dos-Santos G, Dantas AM, Allodi S, Fiorani M, Petrs-Silva H, Linden R. A subacute model of glaucoma based on limbal plexus cautery in pigmented rats. Sci Rep 2019; 9:16286. [PMID: 31705136 PMCID: PMC6841973 DOI: 10.1038/s41598-019-52500-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Glaucoma is a neurodegenerative disorder characterized by the progressive functional impairment and degeneration of the retinal ganglion cells (RGCs) and their axons, and is the leading cause of irreversible blindness worldwide. Current management of glaucoma is based on reduction of high intraocular pressure (IOP), one of its most consistent risk factors, but the disease proceeds in almost half of the patients despite such treatments. Several experimental models of glaucoma have been developed in rodents, most of which present shortcomings such as high surgical invasiveness, slow learning curves, damage to the transparency of the optic media which prevents adequate functional assessment, and variable results. Here we describe a novel and simple method to induce ocular hypertension in pigmented rats, based on low-temperature cauterization of the whole circumference of the limbal vascular plexus, a major component of aqueous humor drainage and easily accessible for surgical procedures. This simple, low-cost and efficient method produced a reproducible subacute ocular hypertension with full clinical recovery, followed by a steady loss of retinal ganglion cells and optic axons, accompanied by functional changes detected both by electrophysiological and behavioral methods.
Collapse
Affiliation(s)
- Rafael Lani
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Mariana S Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Andreia Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor G Araújo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Gonçalo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Silvana Allodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario Fiorani
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hilda Petrs-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Dattilo M, Read AT, Samuels BC, Ethier CR. Detection and characterization of tree shrew retinal venous pulsations: An animal model to study human retinal venous pulsations. Exp Eye Res 2019; 185:107689. [PMID: 31175860 PMCID: PMC6698406 DOI: 10.1016/j.exer.2019.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/15/2019] [Accepted: 06/04/2019] [Indexed: 11/26/2022]
Abstract
Spontaneous retinal venous pulsations (SRVPs), pulsations of branches of the central retinal vein, are affected by intraocular pressure (IOP) and intracranial pressure (ICP) and thus convey potentially-useful information about ICP. However, the exact relationship between SRVPs, IOP, and ICP is unknown. It is not easily feasible to study this relationship in humans, necessitating the use of an animal model. We here propose tree shrews as a suitable animal model to study the complex relationship between SRVPs, IOP, and ICP. Tree shrew SRVP incidence was determined in a population of animals. Following validation of a modified IOP control system to accurately and quickly control IOP, IOP and/or ICP were manipulated in two tree shrews with SRVPs and the effects on SRVP properties were quantified. SRVPs were present in 75% of tree shrews at physiologic IOP and ICP. Altering IOP or ICP produced changes in tree shrew SRVP properties; specifically, increasing IOP caused SRVP amplitude to increase, while increasing ICP caused SRVP amplitude to decrease. In addition, a higher IOP was necessary to generate SRVPs at a higher ICP than at a lower ICP. SRVPs occur with a similar incidence in tree shrews as in humans, and tree shrew SRVPs are affected by changes in IOP and ICP in a manner qualitatively similar to that reported in humans. In view of anatomic similarities, tree shrews are a promising animal model system to further study the complex relationship between SRVPs, IOP, and ICP.
Collapse
Affiliation(s)
- Michael Dattilo
- Department of Ophthalmology, Emory University School of Medicine, 1365-B Clifton Road, Atlanta, 30322, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, 30332, GA, USA.
| | - A Thomas Read
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, 30332, GA, USA.
| | - Brian C Samuels
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, 1670 University Boulevard, Birmingham, 35294, AL, USA.
| | - C Ross Ethier
- Department of Ophthalmology, Emory University School of Medicine, 1365-B Clifton Road, Atlanta, 30322, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, 30332, GA, USA.
| |
Collapse
|
12
|
Zhu Y, Pappas AC, Wang R, Seifert P, Sun D, Jakobs TC. Ultrastructural Morphology of the Optic Nerve Head in Aged and Glaucomatous Mice. Invest Ophthalmol Vis Sci 2019; 59:3984-3996. [PMID: 30098187 PMCID: PMC6082327 DOI: 10.1167/iovs.18-23885] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose To study age- and intraocular pressure–induced changes in the glial lamina of the murine optic nerve on the ultrastructural level. Methods Naïve C57bl/6 mice at various ages spanning the time between early adulthood (3 months) and senescence (30 months) were used in this study. In addition, the intraocular pressure (IOP) was increased in a group of young mice by injection of microbeads into the anterior chamber. The unmyelinated segments of the optic nerve containing the glial lamina were prepared for transmission electron microscopy and imaged at high resolution. Results Axon packing density decreased slightly with age. Aging nerves contained higher numbers of enlarged and degenerating axons. Mean axonal diameter and in particular the variance of axonal diameter correlated well with age. Axonal mitochondria also showed age-dependent signs of pathology. The mean diameter of axonal mitochondria increased, and aged axons often contained profiles of mitochondria with very few or no cristae. Astrocytic mitochondria remained normal even in very old nerves. Changes to axons and axonal mitochondria in young glaucomatous nerves were comparable with those of 18- to 30-month-old naïve mice. In addition to axons and mitochondria, aged and glaucomatous nerves showed thickening of the blood vessel basement membranes and increased deposition of basement membrane collagen. Conclusions On the ultrastructural level, the effects of age and elevated IOP are quite similar. One month of elevated IOP seems to have as strongly detrimental effects on the nerve as at least 18 months of normal aging.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Ophthalmology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston Massachusetts, United States
| | - Anthony C Pappas
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston Massachusetts, United States
| | - Rui Wang
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston Massachusetts, United States.,Department of Ophthalmology, The First Hospital of Xi'an, Xi'an, Shaanxi, China
| | - Philip Seifert
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston Massachusetts, United States
| | - Daniel Sun
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston Massachusetts, United States
| | - Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston Massachusetts, United States
| |
Collapse
|
13
|
Samuels BC, Siegwart JT, Zhan W, Hethcox L, Chimento M, Whitley R, Downs JC, Girkin CA. A Novel Tree Shrew (Tupaia belangeri) Model of Glaucoma. Invest Ophthalmol Vis Sci 2019; 59:3136-3143. [PMID: 30025140 PMCID: PMC6018453 DOI: 10.1167/iovs.18-24261] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Primates and rodents are used widely as animal models of glaucoma, but each has significant limitations. Researchers need additional animal models that closely resemble the relevant anatomy and pathologic features of the human disease to more quickly advance research. We validate a novel glaucoma animal model in tree shrews (Tupaia belangeri). Methods Experimental glaucoma was induced in adult tree shrews (n = 8) by injecting 50 μL of a 25 mg/mL ferromagnetic bead solution into the anterior chamber. Beads were directed into the iridocorneal angle with a magnet to impede aqueous outflow. Animals were followed for 3 months with weekly IOP measurements and biweekly spectral domain optical coherence tomography (SD-OCT) images of the optic nerve head. Histopathology of the optic nerve and optic nerve axon counts were completed at the end of the study. Results The 12-week average mean IOP was 22.7 ± 3.6 and 8.6 ± 2.9 mm Hg in the treated and control eyes, respectively. Longitudinal analysis showed significant retinal nerve fiber layer (RNFL) thinning throughout the study. Axon counts were significantly reduced (59.7%) in treated versus control eyes. SD-OCT imaging showed cupping and posterior displacement of the lamina cribrosa in glaucomatous eyes. RNFL thickness and optic nerve axon counts were reduced consistent with IOP elevation. Optic nerves demonstrated histopathology consistent with glaucomatous optic neuropathy. Conclusions Tree shrews with experimental glaucoma show key pathologic characteristics of the human disease. The tree shrew model of glaucoma has the potential to help researchers accelerate our understanding of glaucoma pathophysiology.
Collapse
Affiliation(s)
- Brian C Samuels
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - John T Siegwart
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Wenjie Zhan
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Lisa Hethcox
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Melissa Chimento
- High Resolution Imaging Facility, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Ryan Whitley
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - J Crawford Downs
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Christopher A Girkin
- Department of Ophthalmology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
14
|
Dey A, Manthey AL, Chiu K, Do CW. Methods to Induce Chronic Ocular Hypertension: Reliable Rodent Models as a Platform for Cell Transplantation and Other Therapies. Cell Transplant 2019; 27:213-229. [PMID: 29637819 PMCID: PMC5898687 DOI: 10.1177/0963689717724793] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glaucoma, a form of progressive optic neuropathy, is the second leading cause of blindness worldwide. Being a prominent disease affecting vision, substantial efforts are being made to better understand glaucoma pathogenesis and to develop novel treatment options including neuroprotective and neuroregenerative approaches. Cell transplantation has the potential to play a neuroprotective and/or neuroregenerative role for various ocular cell types (e.g., retinal cells, trabecular meshwork). Notably, glaucoma is often associated with elevated intraocular pressure, and over the past 2 decades, several rodent models of chronic ocular hypertension (COH) have been developed that reflect these changes in pressure. However, the underlying pathophysiology of glaucoma in these models and how they compare to the human condition remains unclear. This limitation is the primary barrier for using rodent models to develop novel therapies to manage glaucoma and glaucoma-related blindness. Here, we review the current techniques used to induce COH-related glaucoma in various rodent models, focusing on the strengths and weaknesses of the each, in order to provide a more complete understanding of how these models can be best utilized. To so do, we have separated them based on the target tissue (pre-trabecular, trabecular, and post-trabecular) in order to provide the reader with an encompassing reference describing the most appropriate rodent COH models for their research. We begin with an initial overview of the current use of these models in the evaluation of cell transplantation therapies.
Collapse
Affiliation(s)
- Ashim Dey
- 1 School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Abby L Manthey
- 2 Laboratory of Retina Brain Research, Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kin Chiu
- 2 Laboratory of Retina Brain Research, Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,3 Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Hong Kong, China.,4 State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Chi-Wai Do
- 1 School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
15
|
Guo C, Qu X, Rangaswamy N, Leehy B, Xiang C, Rice D, Prasanna G. A murine glaucoma model induced by rapid in vivo photopolymerization of hyaluronic acid glycidyl methacrylate. PLoS One 2018; 13:e0196529. [PMID: 29949582 PMCID: PMC6021085 DOI: 10.1371/journal.pone.0196529] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/13/2018] [Indexed: 12/04/2022] Open
Abstract
Glaucoma is an optic neuropathy commonly associated with elevated intraocular pressure (IOP) resulting in progressive loss of retinal ganglion cells (RGCs) and optic nerve degeneration, leading to blindness. New therapeutic approaches that better preserve the visual field by promoting survival and health of RGCs are highly needed since RGC death occurs despite good IOP control in glaucoma patients. We have developed a novel approach to reliably induce chronic IOP elevation in mouse using a photopolymerizable biomatrix, hyaluronic acid glycidyl methacrylate. This is achieved by rapid in vivo crosslinking of the biomatrix at the iridocorneal angle by a flash of ultraviolet A (UVA) light to impede the aqueous outflow pathway with a controllable manner. Sustained IOP elevation was induced after a single manipulation and was maintained at ~45% above baseline for >4 weeks. Significant thinning of the inner retina and ~35% reduction in RGCs and axons was noted within one month of IOP elevation. Optic nerve degeneration showed positive correlation with cumulative IOP elevation. Activation of astrocytes and microglia appeared to be an early event in response to IOP elevation preceding detectable RGC and axon loss. Attenuated glial reactivity was noted at later stage where significant RGC/axon loss had occurred suggesting astrocytes and microglia may play different roles over the course of glaucomatous degeneration. This novel murine glaucoma model is reproducible and displays cellular changes that recapitulate several pathophysiological features of glaucoma.
Collapse
Affiliation(s)
- Chenying Guo
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
- * E-mail: (GP); (CG)
| | - Xin Qu
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Nalini Rangaswamy
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Barrett Leehy
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Chuanxi Xiang
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Dennis Rice
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
| | - Ganesh Prasanna
- Department of Ophthalmology, Novartis Institutes for BioMedical Research, Cambridge, MA, United States of America
- * E-mail: (GP); (CG)
| |
Collapse
|
16
|
Mammone T, Chidlow G, Casson RJ, Wood JPM. Expression and activation of mitogen-activated protein kinases in the optic nerve head in a rat model of ocular hypertension. Mol Cell Neurosci 2018; 88:270-291. [PMID: 29408550 DOI: 10.1016/j.mcn.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Glaucoma is a leading cause of irreversible blindness manifesting as an age-related, progressive optic neuropathy with associated retinal ganglion cell (RGC) loss. Mitogen-activated protein kinases (MAPKs: p42/44 MAPK, SAPK/JNK, p38 MAPK) are activated in various retinal disease models and likely contribute to the mechanisms of RGC death. Although MAPKs play roles in the development of retinal pathology, their action in the optic nerve head (ONH), where the initial insult to RGC axons likely resides in glaucoma, remains unexplored. METHODS An experimental paradigm representing glaucoma was established by induction of chronic ocular hypertension (OHT) via laser-induced coagulation of the trabecular meshwork in Sprague-Dawley rats. MAPKs were subsequently investigated over the following days for expression and activity alterations, using RT-PCR, immunohistochemistry and Western immunoblot. RESULTS p42/44 MAPK expression was unaltered after intraocular pressure (IOP) elevation, but there was a significant activation of this enzyme in ONH astrocytes after 6-24 h. Activated SAPK/JNK isoforms were present throughout healthy RGC axons but after IOP elevation or optic nerve crush, they both accumulated at the ONH, likely due to RGC axon transport disruption, and were subject to additional activation. p38 MAPK was expressed by a population of microglia which were significantly more populous following IOP elevation. However it was only significantly activated in microglia after 3 days, and then only in the ONH and optic nerve; in the retina it was solely activated in RGC perikarya. CONCLUSIONS In conclusion, each of the MAPKs showed a specific spatio-temporal expression and activation pattern in the retina, ONH and optic nerve as a result of IOP elevation. These findings likely reflect the roles of the individual enzymes, and the cells in which they reside, in the developing pathology following IOP elevation. These data have implications for understanding the mechanisms of ocular pathology in diseases such as glaucoma.
Collapse
Affiliation(s)
- Teresa Mammone
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Glyn Chidlow
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Robert J Casson
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - John P M Wood
- Ophthalmic Research Laboratories, Central Adelaide Local Health Network, Level 7 Adelaide Health & Medical Sciences Building, University of Adelaide, Adelaide, South Australia, Australia; Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
17
|
Mysona BA, Zhao J, Smith S, Bollinger KE. Relationship between Sigma-1 receptor and BDNF in the visual system. Exp Eye Res 2018; 167:25-30. [PMID: 29031856 PMCID: PMC5757370 DOI: 10.1016/j.exer.2017.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/27/2022]
Abstract
Glaucoma is an incurable optic neuropathy characterized by dysfunction and death of retinal ganglion cells (RGCs). Brain derived neurotrophic factor (BDNF) is an essential neurotrophin that supports RGC function and survival. Despite BDNF's importance, our knowledge of molecular mechanisms that modulate BDNF processing and secretion is incomplete. Sigma-1 receptor (S1R) is associated with increased BDNF in hippocampus and with BDNF secretion by brain-derived astrocytes and neuronal cell lines. Much less is known about the relationship between S1R and BDNF in the visual system. Here, we examine how S1R activation and deletion alter expression of mature BDNF (mBDNF) and proBDNF in retina and cultured optic nerve head (ONH) astrocytes. For S1R activation, the S1R agonist (+)-pentazocine (PTZ, 0.5 mg/kg) was administered by intraperitoneal injection to C57BL/6J mice, 3 times per week, for 5 weeks. Expression of proBDNF and mBDNF was also examined in S1R knockout and age-matched C57BL/6J mice. In vitro, cultured ONH astrocytes were treated with 3 μM PTZ for 24 h followed by collection of media and ONH astrocyte lysates. Results showed that treatment with (+)-PTZ increased mBDNF protein in both retina and hippocampus. In contrast, S1R deletion was associated with retinal mBDNF deficits. In ONH astrocytes S1R agonist (+)-PTZ significantly increased levels of secreted BDNF and proBDNF in cell lysates. These findings support a role for S1R in the modulation of BDNF levels within the retina and optic nerve head. Treatment with S1R agonists might provide benefit in diseases such as glaucoma by increasing BDNF levels from endogenous sources.
Collapse
Affiliation(s)
- Barbara A Mysona
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Jing Zhao
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Sylvia Smith
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States
| | - Kathryn E Bollinger
- James and Jean Culver Vision Discovery Institute, Augusta, GA, 30912, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States; Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, 30912, United States.
| |
Collapse
|
18
|
Wang R, Seifert P, Jakobs TC. Astrocytes in the Optic Nerve Head of Glaucomatous Mice Display a Characteristic Reactive Phenotype. Invest Ophthalmol Vis Sci 2017; 58:924-932. [PMID: 28170536 PMCID: PMC5300248 DOI: 10.1167/iovs.16-20571] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Optic nerve head astrocytes, a subtype of white-matter astrocytes, become reactive early in the course of glaucoma. It was shown recently that in the DBA/2J mouse model of inherited glaucoma optic nerve astrocytes extend new longitudinal processes into the axon bundles before ganglion cell loss becomes apparent. The present study aims at testing whether this behavior of astrocytes is typical of early glaucomatous damage. Methods Mice expressing green fluorescent protein in individual astrocytes were used to evaluate the early response of astrocytes in the glial lamina of the optic nerve head after increasing the IOP using the microbead occlusion method. Tissue sections from the glial lamina were imaged consecutively by confocal and electron microscopy. Results Confocal and electron microscope images show that astrocytes close to the myelination transition zone in the hypertensive nerve heads extend new processes that follow the longitudinal axis of the optic nerve and invade axon bundles in the nerve head. Ultrastructurally, the longitudinal processes were largely devoid of subcellular organelles except for degenerating mitochondria. Conclusions The longitudinal processes are a common feature of glaucomatous optic nerve astrocytes, whereas they are not observed after traumatic nerve injury. Thus, astrocytes appear to fine-tune their responses to the nature and/or timing of the injury to the neurons that they surround.
Collapse
Affiliation(s)
- Rui Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China 2Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Philip Seifert
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
19
|
Stowell C, Burgoyne CF, Tamm ER, Ethier CR. Biomechanical aspects of axonal damage in glaucoma: A brief review. Exp Eye Res 2017; 157:13-19. [PMID: 28223180 DOI: 10.1016/j.exer.2017.02.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
The biomechanical environment within the optic nerve head (ONH) is complex and is likely directly involved in the loss of retinal ganglion cells (RGCs) in glaucoma. Unfortunately, our understanding of this process is poor. Here we describe factors that influence ONH biomechanics, including ONH connective tissue microarchitecture and anatomy; intraocular pressure (IOP); and cerebrospinal fluid pressure (CSFp). We note that connective tissue factors can vary significantly from one individual to the next, as well as regionally within an eye, and that the understanding of ONH biomechanics is hindered by anatomical differences between small-animal models of glaucoma (rats and mice) and humans. Other challenges of using animal models of glaucoma to study the role of biomechanics include the complexity of assessing the degree of glaucomatous progression; and inadequate tools for monitoring and consistently elevating IOP in animal models. We conclude with a consideration of important open research questions/challenges in this area, including: (i) Creating a systems biology description of the ONH; (ii) addressing the role of astrocyte connective tissue remodeling and reactivity in glaucoma; (iii) providing a better characterization of ONH astrocytes and non-astrocytic constituent cells; (iv) better understanding the role of ONH astrocyte phagocytosis, proliferation and death; (v) collecting gene expression and phenotype data on a larger, more coordinated scale; and (vi) developing an implantable IOP sensor.
Collapse
Affiliation(s)
- Cheri Stowell
- Optic Nerve Head Research Laboratory, Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Health System, Portland, Oregon, USA
| | - Claude F Burgoyne
- Optic Nerve Head Research Laboratory, Discoveries in Sight Research Laboratories, Devers Eye Institute, Legacy Health System, Portland, Oregon, USA
| | - Ernst R Tamm
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany
| | - C Ross Ethier
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, USA.
| | | |
Collapse
|
20
|
Davis BM, Guo L, Brenton J, Langley L, Normando EM, Cordeiro MF. Towards maximising information extraction from rodent models of ocular disease. Cell Death Dis 2016; 7:e2270. [PMID: 27336714 PMCID: PMC5143400 DOI: 10.1038/cddis.2016.174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- B M Davis
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| | - L Guo
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| | - J Brenton
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| | - L Langley
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
| | - E M Normando
- Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| | - M F Cordeiro
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, London, UK
- Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
21
|
Lossi L, D’Angelo L, De Girolamo P, Merighi A. Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig. Ann Anat 2016; 204:11-28. [DOI: 10.1016/j.aanat.2015.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/24/2023]
|
22
|
Nguyen TD, Ethier CR. Biomechanical assessment in models of glaucomatous optic neuropathy. Exp Eye Res 2015; 141:125-38. [PMID: 26115620 PMCID: PMC4628840 DOI: 10.1016/j.exer.2015.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/20/2015] [Accepted: 05/31/2015] [Indexed: 01/26/2023]
Abstract
The biomechanical environment within the eye is of interest in both the regulation of intraocular pressure and the loss of retinal ganglion cell axons in glaucomatous optic neuropathy. Unfortunately, this environment is complex and difficult to determine. Here we provide a brief introduction to basic concepts of mechanics (stress, strain, constitutive relationships) as applied to the eye, and then describe a variety of experimental and computational approaches used to study ocular biomechanics. These include finite element modeling, direct experimental measurements of tissue displacements using optical and other techniques, direct experimental measurement of tissue microstructure, and combinations thereof. Thanks to notable technical and conceptual advances in all of these areas, we are slowly gaining a better understanding of how tissue biomechanical properties in both the anterior and posterior segments may influence the development of, and risk for, glaucomatous optic neuropathy. Although many challenging research questions remain unanswered, the potential of this body of work is exciting; projects underway include the coupling of clinical imaging with biomechanical modeling to create new diagnostic tools, development of IOP control strategies based on improved understanding the mechanobiology of the outflow tract, and attempts to develop novel biomechanically-based therapeutic strategies for preservation of vision in glaucoma.
Collapse
Affiliation(s)
- Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - C Ross Ethier
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA; Department of Mechanical Engineering, Georgia Institute of Technology, USA; Institute of Biosciences and Bioengineering, Georgia Institute of Technology, USA; Department of Ophthalmology, Emory University, USA.
| |
Collapse
|
23
|
Soluble Tumor Necrosis Factor Alpha Promotes Retinal Ganglion Cell Death in Glaucoma via Calcium-Permeable AMPA Receptor Activation. J Neurosci 2015; 35:12088-102. [PMID: 26338321 DOI: 10.1523/jneurosci.1273-15.2015] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Loss of vision in glaucoma results from the selective death of retinal ganglion cells (RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and microglia/macrophages soon after induction of ocular hypertension. Administration of XPro1595, a selective inhibitor of soluble TNFα, effectively protects RGC soma and axons. Using cobalt permeability assays, we further demonstrate that endogenous soluble TNFα triggers the upregulation of Ca(2+)-permeable AMPA receptor (CP-AMPAR) expression in RGCs of glaucomatous eyes. CP-AMPAR activation is not caused by defects in GluA2 subunit mRNA editing, but rather reflects selective downregulation of GluA2 in neurons exposed to elevated eye pressure. Intraocular administration of selective CP-AMPAR blockers promotes robust RGC survival supporting a critical role for non-NMDA glutamate receptors in neuronal death. Our study identifies glia-derived soluble TNFα as a major inducer of RGC death through activation of CP-AMPARs, thereby establishing a novel link between neuroinflammation and cell loss in glaucoma. SIGNIFICANCE STATEMENT Tumor necrosis factor α (TNFα) has been implicated in retinal ganglion cell (RGC) death, but how TNFα exerts this effect is poorly understood. We report that ocular hypertension, a major risk factor in glaucoma, upregulates TNFα production by Müller cells and microglia. Inhibition of soluble TNFα using a dominant-negative strategy effectively promotes RGC survival. We find that TNFα stimulates the expression of calcium-permeable AMPA receptors (CP-AMPAR) in RGCs, a response that does not depend on abnormal GluA2 mRNA editing but on selective downregulation of the GluA2 subunit by these neurons. Consistent with this, CP-AMPAR blockers promote robust RGC survival supporting a critical role for non-NMDA glutamate receptors in glaucomatous damage. This study identifies a novel mechanism by which glia-derived soluble TNFα modulates neuronal death in glaucoma.
Collapse
|
24
|
Pazos M, Yang H, Gardiner SK, Cepurna WO, Johnson EC, Morrison JC, Burgoyne CF. Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model. Exp Eye Res 2015; 145:173-186. [PMID: 26500195 DOI: 10.1016/j.exer.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE To characterize early optic nerve head (ONH) structural change in rat experimental glaucoma (EG). METHODS Unilateral intraocular pressure (IOP) elevation was induced in Brown Norway rats by hypertonic saline injection into the episcleral veins and animals were sacrificed 4 weeks later by perfusion fixation. Optic nerve cross-sections were graded from 1 (normal) to 5 (extensive injury) by 5 masked observers. ONHs with peripapillary retina and sclera were embedded, serial sectioned, 3-D reconstructed, delineated, and quantified. Overall and animal-specific EG versus Control eye ONH parameter differences were assessed globally and regionally by linear mixed effect models with significance criteria adjusted for multiple comparisons. RESULTS Expansions of the optic nerve and surrounding anterior scleral canal opening achieved statistical significance overall (p < 0.0022), and in 7 of 8 EG eyes (p < 0.005). In at least 5 EG eyes, significant expansions (p < 0.005) in Bruch's membrane opening (BMO) (range 3-10%), the anterior and posterior scleral canal openings (8-21% and 5-21%, respectively), and the optic nerve at the anterior and posterior scleral canal openings (11-30% and 8-41%, respectively) were detected. Optic nerve expansion was greatest within the superior and inferior quadrants. Optic nerve expansion at the posterior scleral canal opening was significantly correlated to optic nerve damage (R = 0.768, p = 0.042). CONCLUSION In the rat ONH, the optic nerve and surrounding BMO and neurovascular scleral canal expand early in their response to chronic experimental IOP elevation. These findings provide phenotypic landmarks and imaging targets for detecting the development of experimental glaucomatous optic neuropathy in the rat eye.
Collapse
Affiliation(s)
- Marta Pazos
- Hospital de l'Esperança, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hongli Yang
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, USA
| | - Stuart K Gardiner
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, OR, USA
| | - William O Cepurna
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Elaine C Johnson
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - John C Morrison
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Claude F Burgoyne
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, USA.
| |
Collapse
|
25
|
Schneider M, Fuchshofer R. The role of astrocytes in optic nerve head fibrosis in glaucoma. Exp Eye Res 2015; 142:49-55. [PMID: 26321510 DOI: 10.1016/j.exer.2015.08.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Glaucoma is defined as a progressive optic neuropathy and is characterized by an irreversible loss of retinal ganglion cells. The main risk factor to develop glaucoma is an increased intraocular pressure (IOP). During the course of glaucoma structural changes in the optic nerve head (ONH) take place which lead to the characteristic excavation or cupping of the ONH. In this review we will focus on mechanisms and processes involved in structural alterations of the extracellular matrix in the lamina cribrosa (LC) of the ONH, which are associated with astrocytes. In glaucoma, a disordered deposition of elastic and collagen fibers and a typical pronounced thickening of the connective tissue septae surrounding the nerve fibers can be observed in the LC region. The remodeling process of the LC and the loss of ON axons are associated with a conversion of astrocytes from quiescent to a reactivated state. The extracellular matrix changes in the LC are thought to be due to a disturbed homeostatic balance of growth factors and the reactivated astrocytes are part of this process. Reactivated astrocytes, remodeling of the ECM within the LC and an elevated IOP are taking part in the retinal ganglion cell loss in glaucoma.
Collapse
Affiliation(s)
- Magdalena Schneider
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany.
| | - Rudolf Fuchshofer
- Institute of Human Anatomy and Embryology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
26
|
Abstract
Glaucoma is increasingly recognized as a neurodegenerative disorder, characterized by the accelerated loss of retinal ganglion cells (RGCs) and their axons. Impaired axonal transport has been implicated as a pathogenic mechanism in a number of neurodegenerative diseases, including glaucoma. The long RGC axon, with its high metabolic demand and crucial role in conveying neurotrophic signals, relies heavily on intact axonal transport. In this mini review, we consider the evidence for transport disruption along RGCs in association with glaucoma and other intraocular pressure models. We give a brief overview of the axonal transport process and the methods by which it is assessed. Spatial and temporal patterns of axonal transport disruption are considered as well as the reversibility of these changes. Biomechanical, metabolic and cytoskeletal insults may underlie the development of axonal transport deficits, and there are multiple perspectives on the impact that transport disruption has on the RGC. Eliciting the role of impaired axonal transport in glaucoma pathogenesis may uncover novel therapeutic targets for protecting the optic nerve and preventing vision loss in glaucoma.
Collapse
Affiliation(s)
- Eamonn T Fahy
- a Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne , Melbourne , Victoria , Australia
| | - Vicki Chrysostomou
- a Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne , Melbourne , Victoria , Australia
| | - Jonathan G Crowston
- a Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne , Melbourne , Victoria , Australia
| |
Collapse
|
27
|
Fortune B. In vivo imaging methods to assess glaucomatous optic neuropathy. Exp Eye Res 2015; 141:139-53. [PMID: 26048475 DOI: 10.1016/j.exer.2015.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
The goal of this review is to summarize the most common imaging methods currently applied for in vivo assessment of ocular structure in animal models of experimental glaucoma with an emphasis on translational relevance to clinical studies of the human disease. The most common techniques in current use include optical coherence tomography and scanning laser ophthalmoscopy. In reviewing the application of these and other imaging modalities to study glaucomatous optic neuropathy, this article is organized into three major sections: 1) imaging the optic nerve head, 2) imaging the retinal nerve fiber layer and 3) imaging retinal ganglion cell soma and dendrites. The article concludes with a brief section on possible future directions.
Collapse
Affiliation(s)
- Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, 1225 NE Second Avenue, Portland, OR 97232, USA.
| |
Collapse
|
28
|
Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes. Exp Eye Res 2015; 139:1-12. [PMID: 26021973 DOI: 10.1016/j.exer.2015.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/24/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to three-dimensionally (3D) characterize the principal macroscopic and microscopic relationships within the rat optic nerve head (ONH) and quantify them in normal control eyes. Perfusion-fixed, trephinated ONH from 8 normal control eyes of 8 Brown Norway Rats were 3D histomorphometrically reconstructed, visualized, delineated and parameterized. The rat ONH consists of 2 scleral openings, (a superior neurovascular and inferior arterial) separated by a thin connective tissue strip we have termed the "scleral sling". Within the superior opening, the nerve abuts a prominent extension of Bruch's Membrane (BM) superiorly and is surrounded by a vascular plexus, as it passes through the sclera, that is a continuous from the choroid into and through the dural sheath and contains the central retinal vein (CRV), (inferiorly). The inferior scleral opening contains the central retinal artery and three long posterior ciliary arteries which obliquely pass through the sclera to obtain the choroid. Bruch's Membrane Opening (BMO) is irregular and vertically elongated, enclosing the nerve (superiorly) and CRV and CRA (inferiorly). Overall mean BMO Depth, BMO Area, Choroidal Thickness and peripapillary Scleral Thickness were 29 μm, 56.5 × 10(3) μm(2), 57 μm and 104 μm respectively. Mean anterior scleral canal opening (ASCO) and posterior scleral canal opening (PSCO) radii were 201 ± 15 μm and 204 ± 16 μm, respectively. Mean optic nerve area at the ASCO and PSCO were 46.3 × 10(3)±4.4 × 10(3) μm(2) and 44.1 × 10(3)±4.5 × 10(3) μm(2) respectively. In conclusion, the 3D complexity of the rat ONH and the extent to which it differs from the primate have been under-appreciated within previous 2D studies. Properly understood, these anatomic differences may provide new insights into the relative susceptibilities of the rat and primate ONH to elevated intraocular pressure.
Collapse
|
29
|
Morrison JC, Cepurna WO, Johnson EC. Modeling glaucoma in rats by sclerosing aqueous outflow pathways to elevate intraocular pressure. Exp Eye Res 2015; 141:23-32. [PMID: 26003399 DOI: 10.1016/j.exer.2015.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/14/2022]
Abstract
Injection of hypertonic saline via episcleral veins toward the limbus in laboratory rats can produce elevated intraocular pressure (IOP) by sclerosis of aqueous humor outflow pathways. This article describes important anatomic characteristics of the rat optic nerve head (ONH) that make it an attractive animal model for human glaucoma, along with the anatomy of rat aqueous humor outflow on which this technique is based. The injection technique itself is also described, with the aid of a supplemental movie, including necessary equipment and specific tips to acquire this skill. Outcomes of a successful injection are presented, including IOP elevation and patterns of optic nerve injury. These concepts are then specifically considered in light of the use of this model to assess potential neuroprotective therapies. Advantages of the hypertonic saline model include a delayed and relatively gradual IOP elevation, likely reproduction of scleral and ONH stresses and strains that may be important in producing axonal injury, and its ability to be applied to any rat (and potentially mouse) strain, leaving the unmanipulated fellow eye as an internal control. Challenges include the demanding surgical skill required by the technique itself, a wide range of IOP response, and mild corneal clouding in some animals. However, meticulous application of the principles detailed in this article and practice will allow most researchers to attain this useful skill for studying cellular events of glaucomatous optic nerve damage.
Collapse
Affiliation(s)
- John C Morrison
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, USA.
| | - William O Cepurna
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, USA
| | - Elaine C Johnson
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, USA
| |
Collapse
|
30
|
Ischemic optic neuropathies and their models: disease comparisons, model strengths and weaknesses. Jpn J Ophthalmol 2015; 59:135-47. [PMID: 25690987 DOI: 10.1007/s10384-015-0373-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 10/30/2014] [Indexed: 12/26/2022]
Abstract
Ischemic optic neuropathies (IONs) describe a group of diseases that specifically target the optic nerve and result in sudden vision loss. These include nonarteritic and arteritic anterior ischemic optic neuropathy (NAION and AAION) and posterior ischemic optic neuropathy (NPION, APION). Until recently, little was known of the mechanisms involved in ION damage, due to a lack of information about the mechanisms associated with these diseases. This review discusses the new models that closely mimic these diseases (rodent NAION, primate NAION, rodent PION). These models have enabled closer dissection of the mechanisms involved with the pathophysiology of these disorders and enable identification of relevant mechanisms and potential pathways for effective therapeutic intervention. Descriptions of the different models are included, and comparisons between the models, their relative similarities with the clinical disease, as well as differences are discussed.
Collapse
|
31
|
Kawano J. Chemoarchitecture of glial fibrillary acidic protein (GFAP) and glutamine synthetase in the rat optic nerve: an immunohistochemical study. Okajimas Folia Anat Jpn 2015; 92:11-30. [PMID: 26448374 DOI: 10.2535/ofaj.92.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An immunohistochemical analysis of the chemoarchitecture of glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) was conducted in the rat optic nerve. The optic nerve has been divided into 3 regions: the intraretinal, unmyelinated, and myelinated regions. However, it currently remains unclear whether the chemoarchitecture of GFAP and GS is homogeneously organized, especially in the myelinated region. The intraretinal region was divided into intraretinal regions 1 (i1) and 2 (i2). GFAP immunoreactivity was very strong in the i2 and unmyelinated regions, and strong in the i1 region. GS immunoreactivity was moderate in the i1 and i2 regions, and weak in the unmyelinated region. The myelinated region was separated into myelinated regions 1 (m1) and 2 (m2). In the m1 region, GFAP immunoreactivity was strong and GS immunoreactivity was moderate; however, GFAP immunoreactivity was moderate and GS immunoreactivity was weak in the m2 region. Thus, the chemoarchitecture was heterogeneously organized in the myelinated region, with the i1, i2 and m1 regions being the main GS distribution sites. Moreover, most GS-immunoreactive glial cells were oligodendrocytes in the myelinated region. Since GS is a key enzyme in glutamate metabolism, these results may facilitate future investigations for a clearer understanding of glutamate metabolism.
Collapse
Affiliation(s)
- June Kawano
- Department of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences
| |
Collapse
|
32
|
Abstract
In glaucoma, regardless of its etiology, retinal ganglion cells degenerate and eventually die. Although age and elevated intraocular pressure (IOP) are the main risk factors, there are still many mysteries in the pathogenesis of glaucoma. The advent of genome-wide microarray expression screening together with the availability of animal models of the disease has allowed analysis of differential gene expression in all parts of the eye in glaucoma. This review will outline the findings of recent genome-wide expression studies and discuss their commonalities and differences. A common finding was the differential regulation of genes involved in inflammation and immunity, including the complement system and the cytokines transforming growth factor β (TGFβ) and tumor necrosis factor α (TNFα). Other genes of interest have roles in the extracellular matrix, cell-matrix interactions and adhesion, the cell cycle, and the endothelin system.
Collapse
Affiliation(s)
- Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
33
|
Balaratnasingam C, Kang MH, Yu P, Chan G, Morgan WH, Cringle SJ, Yu DY. Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions. Exp Eye Res 2014; 121:11-22. [DOI: 10.1016/j.exer.2014.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 01/29/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
|
34
|
Integrins in trabecular meshwork and optic nerve head: possible association with the pathogenesis of glaucoma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:202905. [PMID: 23586020 PMCID: PMC3613054 DOI: 10.1155/2013/202905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/07/2013] [Indexed: 02/02/2023]
Abstract
Integrins are a family of membrane-spanning proteins that are important receptors for cell adhesion to extracellular matrix proteins. They also provide connections between the extracellular environment and intracellular cytoskeletons and are responsible for activation of many intracellular signaling pathways. In vitro and in vivo data strongly indicate that integrin-mediated signaling events can modulate the organization of the actin cytoskeleton in trabecular meshwork (TM) cells and are associated with astrocyte migration and microglia activation of the optic nerve head in patients with primary open angle glaucoma. Consequently, increase in resistance in the TM outflow pathways and remodeling of the optic nerve head occur, which in turn increases intraocular pressure (IOP), adds additional mechanical stress and strain to optic nerve axons, and accelerates damage of axons initially caused by optic nerve head remodeling. Integrins appear to be ideal candidates for translating physical stress and strain into cellular responses known to occur in glaucomatous optic neuropathy.
Collapse
|
35
|
Storoni M, Chan CKM, Cheng ACO, Chan NCY, Leung CKS. The Pathogenesis of Nonarteritic Anterior Ischemic Optic Neuropathy. ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY (PHILADELPHIA, PA.) 2013; 2:132-5. [PMID: 26108050 DOI: 10.1097/apo.0b013e3182902e45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although nonarteritic anterior ischemic optic neuropathy (NAION) is known to occur as a result of ischemic insult to the anterior portion of the optic nerve, its etiology and pathogenesis remain elusive. Because NAION is a nonfatal condition, acute, postmortem histopathologic analysis has never been undertaken. Animal models of NAION have been created with the use of an iodinated derivative of fluorescein, rose bengal. When rose bengal is stimulated with the use of a frequency-doubled neodymium-Yttrium aluminium garnet (YAG) laser diode, vascular endothelial damage may be induced in a precise and focal manner, within the anterior optic nerve. Primate and nonprimate animal models of NAION differ from the human pattern of NAION in the duration of the disease course, as well as the anatomy. The rat lamina cribrosa contains a differing connective tissue structure, which may result in a differing pathogenesis of ischemic insult. Optic disk swelling resolves within 5 days in rats and 14 days in primates; in humans, it is known to persist for up to 6 weeks. Animal models have nonetheless enabled a deeper understanding of the underlying pathologic processes in NAION.
Collapse
Affiliation(s)
- Mithu Storoni
- From the Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, PR China
| | | | | | | | | |
Collapse
|
36
|
Munemasa Y, Kitaoka Y. Molecular mechanisms of retinal ganglion cell degeneration in glaucoma and future prospects for cell body and axonal protection. Front Cell Neurosci 2013; 6:60. [PMID: 23316132 PMCID: PMC3540394 DOI: 10.3389/fncel.2012.00060] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/06/2012] [Indexed: 12/20/2022] Open
Abstract
Glaucoma, which affects more than 70 million people worldwide, is a heterogeneous group of disorders with a resultant common denominator; optic neuropathy, eventually leading to irreversible blindness. The clinical manifestations of primary open-angle glaucoma (POAG), the most common subtype of glaucoma, include excavation of the optic disc and progressive loss of visual field. Axonal degeneration of retinal ganglion cells (RGCs) and apoptotic death of their cell bodies are observed in glaucoma, in which the reduction of intraocular pressure (IOP) is known to slow progression of the disease. A pattern of localized retinal nerve fiber layer (RNFL) defects in glaucoma patients indicates that axonal degeneration may precede RGC body death in this condition. The mechanisms of degeneration of neuronal cell bodies and their axons may differ. In this review, we addressed the molecular mechanisms of cell body death and axonal degeneration in glaucoma and proposed axonal protection in addition to cell body protection. The concept of axonal protection may become a new therapeutic strategy to prevent further axonal degeneration or revive dying axons in patients with preperimetric glaucoma. Further study will be needed to clarify whether the combination therapy of axonal protection and cell body protection will have greater protective effects in early or progressive glaucomatous optic neuropathy (GON).
Collapse
Affiliation(s)
- Yasunari Munemasa
- Department of Ophthalmology, St. Marianna University School of Medicine Kawasaki, Kanagawa, Japan
| | | |
Collapse
|
37
|
Nickells RW, Howell GR, Soto I, John SWM. Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 2012; 35:153-79. [PMID: 22524788 DOI: 10.1146/annurev.neuro.051508.135728] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glaucoma is a complex neurodegenerative disorder that is expected to affect 80 million people by the end of this decade. Retinal ganglion cells (RGCs) are the most affected cell type and progressively degenerate over the course of the disease. RGC axons exit the eye and enter the optic nerve by passing through the optic nerve head (ONH). The ONH is an important site of initial damage in glaucoma. Higher intraocular pressure (IOP) is an important risk factor for glaucoma, but the molecular links between elevated IOP and axon damage in the ONH are poorly defined. In this review and focusing primarily on the ONH, we discuss recent studies that have contributed to understanding the etiology and pathogenesis of glaucoma. We also identify areas that require further investigation and focus on mechanisms identified in other neurodegenerations that may contribute to RGC dysfunction and demise in glaucoma.
Collapse
Affiliation(s)
- Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
38
|
Belforte N, Sande PH, de Zavalía N, Dorfman D, Rosenstein RE. Therapeutic benefit of radial optic neurotomy in a rat model of glaucoma. PLoS One 2012; 7:e34574. [PMID: 22479647 PMCID: PMC3315541 DOI: 10.1371/journal.pone.0034574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
Radial optic neurotomy (RON) has been proposed as a surgical treatment to alleviate the neurovascular compression and to improve the venous outflow in patients with central retinal vein occlusion. Glaucoma is characterized by specific visual field defects due to the loss of retinal ganglion cells and damage to the optic nerve head (ONH). One of the clinical hallmarks of glaucomatous neuropathy is the excavation of the ONH. The aim of this work was to analyze the effect of RON in an experimental model of glaucoma in rats induced by intracameral injections of chondroitin sulfate (CS). For this purpose, Wistar rats were bilaterally injected with vehicle or CS in the eye anterior chamber, once a week, for 10 weeks. At 3 or 6 weeks of a treatment with vehicle or CS, RON was performed by a single incision in the edge of the neuro-retinal ring at the nasal hemisphere of the optic disk in one eye, while the contralateral eye was submitted to a sham procedure. Electroretinograms (ERGs) were registered under scotopic conditions and visual evoked potentials (VEPs) were registered with skull-implanted electrodes. Retinal and optic nerve morphology was examined by optical microscopy. RON did not affect the ocular hypertension induced by CS. In eyes injected with CS, a significant decrease of retinal (ERG a- and b-wave amplitude) and visual pathway (VEP N2-P2 component amplitude) function was observed, whereas RON reduced these functional alterations in hypertensive eyes. Moreover, a significant loss of cells in the ganglion cell layer, and Thy-1-, NeuN- and Brn3a- positive cells was observed in eyes injected with CS, whereas RON significantly preserved these parameters. In addition, RON preserved the optic nerve structure in eyes with chronic ocular hypertension. These results indicate that RON reduces functional and histological alterations induced by experimental chronic ocular hypertension.
Collapse
Affiliation(s)
- Nicolás Belforte
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Pablo H. Sande
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Nuria de Zavalía
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Damián Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Ruth E. Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires, CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
39
|
Abstract
BACKGROUND Radial optic neurotomy (RON) has been proposed as a treatment for central retinal vein occlusion. However, it is still under debate whether RON would be an adequate treatment or a dangerous procedure, and persuasive animal studies are lacking. The aim of this study was to analyze the early histologic and functional outcomes of RON in normal rat eyes. METHODS Radial optic neurotomy was performed by cutting into the optic nerve edge at the nasal hemisphere, while the contralateral eye underwent a sham procedure. The retinal function was assessed by scotopic electroretinography, and the visual pathway was assessed by flash visual evoked potentials. Intraocular pressure was assessed with a tonometer, the pupillary light reflex was measured after exposing eyes to a 30-second light flash, whereas the optic nerve head structure was examined by histologic analysis. RESULTS In normal rat eyes, RON provoked minor histologic alterations at the optic nerve head level and a transient decrease in the electroretinography. No changes in visual evoked potentials, intraocular pressure, and pupillary light reflex were observed in rat eyes submitted to RON. CONCLUSION To our knowledge, this is the first study describing the early histopathologic and functional consequences of RON in normal rat eyes.
Collapse
|
40
|
Vidal-Sanz M, Salinas-Navarro M, Nadal-Nicolás FM, Alarcón-Martínez L, Valiente-Soriano FJ, Miralles de Imperial J, Avilés-Trigueros M, Agudo-Barriuso M, Villegas-Pérez MP. Understanding glaucomatous damage: Anatomical and functional data from ocular hypertensive rodent retinas. Prog Retin Eye Res 2012; 31:1-27. [DOI: 10.1016/j.preteyeres.2011.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 12/24/2022]
|
41
|
Dai C, Khaw PT, Yin ZQ, Li D, Raisman G, Li Y. Structural basis of glaucoma: the fortified astrocytes of the optic nerve head are the target of raised intraocular pressure. Glia 2011; 60:13-28. [PMID: 21948238 DOI: 10.1002/glia.21242] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/08/2011] [Indexed: 11/07/2022]
Abstract
Increased intraocular pressure (IOP) damages the retinal ganglion cell axons as they pass through the optic nerve head (ONH). The massive connective tissue structure of the human lamina cribrosa is generally assumed to be the pressure transducer responsible for the damage. The rat, however, with no lamina cribrosa, suffers the same glaucomatous response to raised IOP. Here, we show that the astrocytes of the rat ONH are "fortified" by extraordinarily dense cytoskeletal filaments that would make them ideal transducers of distorting mechanical forces. The ONH astrocytes are arranged as a fan-like radial array, firmly attached ventrally to the sheath of the ONH by thick basal processes, but dividing dorsally into progressively more slender processes with only delicate attachments to the sheath. At 1 week after raising the IOP by an injection of magnetic microspheres into the anterior eye chamber, the fine dorsal processes of the ONH astrocytes are torn away from the surrounding sheath. There is no indication of distortion or compression of the axons. Subsequently, despite return of the IOP toward normal levels, the damage to the ONH progresses ventrally through the astrocytic cell bodies, resulting in complete loss of the fortified astrocytes and of the majority of the axons by around 4 weeks. We propose that the dorsal attachments of the astrocytes are the site of initial damage in glaucoma, and that the damage to the axons is not mechanical, but is a consequence oflocalized loss of metabolic support from the astrocytes (Tsacopoulos and Magistretti (1996) J Neurosci 16:877-885).
Collapse
Affiliation(s)
- Chao Dai
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London WC1N 3BG, UK
| | | | | | | | | | | |
Collapse
|
42
|
Chidlow G, Ebneter A, Wood JPM, Casson RJ. The optic nerve head is the site of axonal transport disruption, axonal cytoskeleton damage and putative axonal regeneration failure in a rat model of glaucoma. Acta Neuropathol 2011; 121:737-51. [PMID: 21311901 PMCID: PMC3098991 DOI: 10.1007/s00401-011-0807-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/27/2011] [Accepted: 01/29/2011] [Indexed: 02/02/2023]
Abstract
The neurodegenerative disease glaucoma is characterised by the progressive death of retinal ganglion cells (RGCs) and structural damage to the optic nerve (ON). New insights have been gained into the pathogenesis of glaucoma through the use of rodent models; however, a coherent picture of the early pathology remains elusive. Here, we use a validated, experimentally induced rat glaucoma model to address fundamental issues relating to the spatio-temporal pattern of RGC injury. The earliest indication of RGC damage was accumulation of proteins, transported by orthograde fast axonal transport within axons in the optic nerve head (ONH), which occurred as soon as 8 h after induction of glaucoma and was maximal by 24 h. Axonal cytoskeletal abnormalities were first observed in the ONH at 24 h. In contrast to the ONH, no axonal cytoskeletal damage was detected in the entire myelinated ON and tract until 3 days, with progressively greater damage at later time points. Likewise, down-regulation of RGC-specific mRNAs, which are sensitive indicators of RGC viability, occurred subsequent to axonal changes at the ONH and later than in retinas subjected to NMDA-induced somatic excitotoxicity. After 1 week, surviving, but injured, RGCs had initiated a regenerative-like response, as delineated by Gap43 immunolabelling, in a response similar to that seen after ON crush. The data presented here provide robust support for the hypothesis that the ONH is the pivotal site of RGC injury following moderate elevation of IOP, with the resulting anterograde degeneration of axons and retrograde injury and death of somas.
Collapse
Affiliation(s)
- Glyn Chidlow
- Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute Centre for Neurological Diseases, Adelaide, SA, Australia.
| | | | | | | |
Collapse
|
43
|
Bernstein SL, Johnson MA, Miller NR. Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models. Prog Retin Eye Res 2011; 30:167-87. [PMID: 21376134 DOI: 10.1016/j.preteyeres.2011.02.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/20/2011] [Accepted: 02/22/2011] [Indexed: 11/27/2022]
Abstract
Anterior ischemic optic neuropathy (AION) can be divided into nonarteritic (NAION) and arteritic (AAION) forms. NAION makes up ~85% of all cases of AION, and until recently was poorly understood. There is no treatment for NAION, and its initiating causes are poorly understood, in part because NAION is not lethal, making it difficult to obtain fresh, newly affected tissue for study. In-vivo electrophysiology and post-mortem studies reveal specific responses that are associated with NAION. New models of NAION have been developed which enable insights into the pathophysiological events surrounding this disease. These models include both rodent and primate species, and the power of a 'vertically integrated' multi-species approach can help in understanding the common cellular mechanisms and physiological responses to clinical NAION, and to identify potential approaches to treatment. The models utilize laser light to activate intravascular photoactive dye to induce capillary vascular thrombosis, while sparing the larger vessels. The observable optic nerve changes associated with rodent models of AION (rAION) and primate NAION (pNAION) are indistinguishable from that seen in clinical disease, including sectoral axonal involvement, and in-vivo electrophysiological data from these models are consistent with clinical data. Early post-infarct events reveal an unexpected inflammatory response, and changes in intraretinal gene expression for both stress response, while sparing outer retinal function, which occurs in AAION models. Histologically, the NAION models reveal an isolated loss of retinal ganglion cells by apoptosis. There are changes detectable by immunohistochemistry suggesting that other retinal cells mount a brisk response to retinal ganglion cell distress without themselves dying. The optic nerve ultimately shows axonal loss and scarring. Inflammation is a prominent early histological feature. This suggests that clinically, specific modulation of inflammation may be a useful approach to NAION treatment early in the course of the disease.
Collapse
Affiliation(s)
- Steven L Bernstein
- Department of Ophthalmology and Visual Sciences, University of Maryland at Baltimore, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
44
|
Morrison JC, Cepurna Ying Guo WO, Johnson EC. Pathophysiology of human glaucomatous optic nerve damage: insights from rodent models of glaucoma. Exp Eye Res 2010; 93:156-64. [PMID: 20708000 DOI: 10.1016/j.exer.2010.08.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/28/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Understanding mechanisms of glaucomatous optic nerve damage is essential for developing effective therapies to augment conventional pressure-lowering treatments. This requires that we understand not only the physical forces in play, but the cellular responses that translate these forces into axonal injury. The former are best understood by using primate models, in which a well-developed lamina cribrosa, peripapillary sclera and blood supply are most like that of the human optic nerve head. However, determining cellular responses to elevated intraocular pressure (IOP) and relating their contribution to axonal injury require cell biology techniques, using animals in numbers sufficient to perform reliable statistical analyses and draw meaningful conclusions. Over the years, models of chronically elevated IOP in laboratory rats and mice have proven increasingly useful for these purposes. While lacking a distinct collagenous lamina cribrosa, the rodent optic nerve head (ONH) possesses a cellular arrangement of astrocytes, or glial lamina, that ultrastructurally closely resembles that of the primate. Using these tools, major insights have been gained into ONH and the retinal cellular responses to elevated IOP that, in time, can be applied to the primate model and, ultimately, human glaucoma.
Collapse
Affiliation(s)
- John C Morrison
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, CERES, 3375 SW Terwilliger Bvld, Portland, OR 97239, USA.
| | | | | |
Collapse
|
45
|
Morrison JC, Johnson E, Cepurna WO. Rat models for glaucoma research. PROGRESS IN BRAIN RESEARCH 2009; 173:285-301. [PMID: 18929117 DOI: 10.1016/s0079-6123(08)01121-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Rats are becoming an increasingly popular model system for understanding mechanisms of optic nerve injury in primary open-angle glaucoma (POAG). Although the anatomy of the rat optic nerve head (ONH) is different from the human, the ultrastructural relationships between astrocytes and axons are quite similar, making it likely that cellular processes of axonal damage in these models will be relevant to human glaucoma. All of these models rely on elevating intraocular pressure (IOP), a major risk factor for glaucoma. Methods that produce increased resistance to aqueous humor outflow at the anterior chamber angle, specifically hypertonic saline injection of aqueous outflow pathways and laser treatment of the limbal tissues, appear to produce a specific regional pattern of injury that may have a particular relevance to understanding regional injury in human glaucoma. Because increased pressure fluctuations are a characteristic of such models and the rodent ONH appears to have high susceptibility to elevated IOP, special instrumentation and measurement techniques are required to document pressure exposure in these eyes and understand the pressure levels that the eyes and the optic nerve are exposed to. With these techniques, it is possible to obtain an excellent correlation between pressure and the extent of nerve damage. Continued use of these models will lead to a better understanding of cellular mechanisms of pressure-induced optic nerve damage and POAG.
Collapse
Affiliation(s)
- John C Morrison
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
| | | | | |
Collapse
|
46
|
Elevated pressure induced astrocyte damage in the optic nerve. Brain Res 2008; 1244:142-54. [DOI: 10.1016/j.brainres.2008.09.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 11/22/2022]
|
47
|
Albrecht May C. Comparative anatomy of the optic nerve head and inner retina in non-primate animal models used for glaucoma research. Open Ophthalmol J 2008; 2:94-101. [PMID: 19516911 PMCID: PMC2694605 DOI: 10.2174/1874364100802010094] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/17/2008] [Accepted: 04/28/2008] [Indexed: 01/08/2023] Open
Abstract
To judge the information of experimental settings in relation to the human situation, it is crucial to be aware of morphological differences and peculiarities in the species studied. Related to glaucoma, the most important structures of the posterior eye segment are the optic nerve head including the lamina cribrosa, and the inner retinal layers. The review highlights the differences of the lamina cribrosa and its vascular supply, the prelaminar optic nerve head, and the retinal ganglion cell layer in the most widely used animal models for glaucoma research, including mouse, rat, rabbit, pig, dog, cat, chicken, and quail. Although all species show some differences to the human situation, the rabbit seems to be the most problematic animal for glaucoma research.
Collapse
Affiliation(s)
- Christian Albrecht May
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technical University Dresden, D-01307 Dresden, Germany.
| |
Collapse
|
48
|
Abstract
Animal models are useful to elucidate the etiology and pathology of glaucoma and to develop novel and more effective therapies for the disease. Because of the substantial similarities between the rodent and primate eyes, and the advances of relevant study techniques, rat and mouse models of glaucoma have recently become popular as research tools. This review surveys research techniques used in the measurement of rodent intraocular pressure, and also the evaluation of pertinent morphologic, biochemical, and functional changes in the retina, optic nerve head, and optic nerve. This review further describes in detail the individual rodent models, some of which serve as surrogate models and do not entail ocular hypertension, whereas others involve transient or chronic increases of intraocular pressure. The technical considerations and theoretical concerns of these models, their advantages, and limitations, are also discussed.
Collapse
Affiliation(s)
- Iok-Hou Pang
- Glaucoma Research, Alcon Research, Ltd, Fort Worth, TX, USA.
| | | |
Collapse
|
49
|
Nickells RW. From ocular hypertension to ganglion cell death: a theoretical sequence of events leading to glaucoma. Can J Ophthalmol 2007. [DOI: 10.3129/can.j.ophthalmol.i07-036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
50
|
Shakoor A, Gupta M, Blair N, Shahidi M. Chorioretinal vascular oxygen tension in spontaneously breathing anesthetized rats. Ophthalmic Res 2007; 39:103-7. [PMID: 17284937 PMCID: PMC2883832 DOI: 10.1159/000099246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/19/2006] [Indexed: 11/19/2022]
Abstract
PURPOSE To establish baseline and variability of oxygen tension (PO(2)) measurements in the choroid, retinal arteries, capillaries, and veins of spontaneously breathing anesthetized rats and determine the effect of a moderate surgical procedure on the chorioretinal PO(2). METHODS Our previously established optical section phosphorescence imaging technique was utilized to measure PO(2) in the chorioretinal vasculatures. Imaging was performed in 29 spontaneously breathing rats under ketamine/xylazine anesthesia. In 7 rats, blood was drawn using a surgically implanted femoral arterial catheter and analyzed to determine the systemic arterial PO(2). The PO(2) measurements in 22 rats without surgery (group 1) and 7 surgically instrumented rats (group 2) were statistically compared. The intrasubject variability was calculated by the average standard deviation (SD) of repeated measurements. RESULTS The average systemic arterial PO(2) was 52 +/- 7 mm Hg (mean +/- SD) in group 2. In group 1, the average PO(2) measurements in the choroid, retinal arteries, capillaries, and veins were 50 +/- 11, 40 +/- 5, 39 +/- 6, and 30 +/- 5 mm Hg, respectively. No statistically significant PO(2) differences in any of the chorioretinal vasculatures were found between the two groups (p > 0.4). The intrasubject variability was 3 mm Hg in the choroid, retinal arteries, capillaries, and veins. CONCLUSIONS Chorioretinal PO(2) measurements in spontaneously breathing anesthetized rats have a relatively low variability, indicating that PO(2) changes due to various physiological alterations can be reliably assessed.
Collapse
Affiliation(s)
| | | | | | - M. Shahidi
- *Mahnaz Shahidi, PhD, Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, Chicago IL 60612 (USA), Tel. +1 312 413 7364, Fax +1 312 413 7366, E-Mail
| |
Collapse
|