1
|
Ferreira LDL, Pereira MH, Guarneri AA. Revisiting Trypanosoma rangeli Transmission Involving Susceptible and Non-Susceptible Hosts. PLoS One 2015; 10:e0140575. [PMID: 26469403 PMCID: PMC4607475 DOI: 10.1371/journal.pone.0140575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/26/2015] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma rangeli infects several triatomine and mammal species in South America. Its transmission is known to occur when a healthy insect feeds on an infected mammal or when an infected insect bites a healthy mammal. In the present study we evaluated the classic way of T. rangeli transmission started by the bite of a single infected triatomine, as well as alternative ways of circulation of this parasite among invertebrate hosts. The number of metacyclic trypomastigotes eliminated from salivary glands during a blood meal was quantified for unfed and recently fed nymphs. The quantification showed that ~50,000 parasites can be liberated during a single blood meal. The transmission of T. rangeli from mice to R. prolixus was evaluated using infections started through the bite of a single infected nymph. The mice that served as the blood source for single infected nymphs showed a high percentage of infection and efficiently transmitted the infection to new insects. Parasites were recovered by xenodiagnosis in insects fed on mice with infections that lasted approximately four months. Hemolymphagy and co-feeding were tested to evaluate insect-insect T. rangeli transmission. T. rangeli was not transmitted during hemolymphagy. However, insects that had co-fed on mice with infected conspecifics exhibited infection rates of approximately 80%. Surprisingly, 16% of the recipient nymphs became infected when pigeons were used as hosts. Our results show that T. rangeli is efficiently transmitted between the evaluated hosts. Not only are the insect-mouse-insect transmission rates high, but parasites can also be transmitted between insects while co-feeding on a living host. We show for the first time that birds can be part of the T. rangeli transmission cycle as we proved that insect-insect transmission is feasible during a co-feeding on these hosts.
Collapse
Affiliation(s)
- Luciana de Lima Ferreira
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Marcos Horácio Pereira
- Departamento de Parasitologia, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
2
|
Cura CI, Duffy T, Lucero RH, Bisio M, Péneau J, Jimenez-Coello M, Calabuig E, Gimenez MJ, Valencia Ayala E, Kjos SA, Santalla J, Mahaney SM, Cayo NM, Nagel C, Barcán L, Málaga Machaca ES, Acosta Viana KY, Brutus L, Ocampo SB, Aznar C, Cuba Cuba CA, Gürtler RE, Ramsey JM, Ribeiro I, VandeBerg JL, Yadon ZE, Osuna A, Schijman AG. Multiplex Real-Time PCR Assay Using TaqMan Probes for the Identification of Trypanosoma cruzi DTUs in Biological and Clinical Samples. PLoS Negl Trop Dis 2015; 9:e0003765. [PMID: 25993316 PMCID: PMC4437652 DOI: 10.1371/journal.pntd.0003765] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/16/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi has been classified into six Discrete Typing Units (DTUs), designated as TcI-TcVI. In order to effectively use this standardized nomenclature, a reproducible genotyping strategy is imperative. Several typing schemes have been developed with variable levels of complexity, selectivity and analytical sensitivity. Most of them can be only applied to cultured stocks. In this context, we aimed to develop a multiplex Real-Time PCR method to identify the six T. cruzi DTUs using TaqMan probes (MTq-PCR). METHODS/PRINCIPAL FINDINGS The MTq-PCR has been evaluated in 39 cultured stocks and 307 biological samples from vectors, reservoirs and patients from different geographical regions and transmission cycles in comparison with a multi-locus conventional PCR algorithm. The MTq-PCR was inclusive for laboratory stocks and natural isolates and sensitive for direct typing of different biological samples from vectors, reservoirs and patients with acute, congenital infection or Chagas reactivation. The first round SL-IR MTq-PCR detected 1 fg DNA/reaction tube of TcI, TcII and TcIII and 1 pg DNA/reaction tube of TcIV, TcV and TcVI reference strains. The MTq-PCR was able to characterize DTUs in 83% of triatomine and 96% of reservoir samples that had been typed by conventional PCR methods. Regarding clinical samples, 100% of those derived from acute infected patients, 62.5% from congenitally infected children and 50% from patients with clinical reactivation could be genotyped. Sensitivity for direct typing of blood samples from chronic Chagas disease patients (32.8% from asymptomatic and 22.2% from symptomatic patients) and mixed infections was lower than that of the conventional PCR algorithm. CONCLUSIONS/SIGNIFICANCE Typing is resolved after a single or a second round of Real-Time PCR, depending on the DTU. This format reduces carryover contamination and is amenable to quantification, automation and kit production.
Collapse
Affiliation(s)
- Carolina I. Cura
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
| | - Tomas Duffy
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
| | - Raúl H. Lucero
- Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina
| | - Margarita Bisio
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
| | - Julie Péneau
- Laboratoire Hospitalier et Universitaire-CH Andrée Rosemon, Cayenne, French Guiana, France
| | - Matilde Jimenez-Coello
- Laboratorio Biología Celular, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Eva Calabuig
- Servicio de Medicina Interna, Hospital Politécnico LA FE, Valencia, Spain
| | - María J. Gimenez
- Servicio de Microbiología, Hospital Universitario y Politécnico LA FE, Valencia, Spain
| | - Edward Valencia Ayala
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Sonia A. Kjos
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
| | - José Santalla
- Laboratorio de Parasitología, Instituto Nacional de Laboratorios en Salud, Ministerio de Salud y Deportes de Bolivia, La Paz, Bolivia
| | - Susan M. Mahaney
- Southwest National Primate Research Center and Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Nelly M. Cayo
- Instituto de Biología de la Altura, Universidad Nacional de Jujuy, Jujuy, Argentina
| | - Claudia Nagel
- Epidemiología e Infectología Clínica, Hospital Universitario Fundación Favaloro, Buenos Aires, Argentina
| | - Laura Barcán
- Sección Infectología, Servicio de Clínica Médica, Hospital Italiano, Buenos Aires, Argentina
| | - Edith S. Málaga Machaca
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Karla Y. Acosta Viana
- Laboratorio Biología Celular, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Laurent Brutus
- Institut de Recherche pour le Développement and University Paris Descartes, UMR 216, Mother and Child Facing Tropical Diseases, Paris, France
| | - Susana B. Ocampo
- Instituto de Biología de la Altura, Universidad Nacional de Jujuy, Jujuy, Argentina
| | - Christine Aznar
- Laboratoire Hospitalier et Universitaire-CH Andrée Rosemon, Cayenne, French Guiana, France
| | - Cesar A. Cuba Cuba
- Parasitologia Médica e Biologia de Vetores, Área de Patologia, Faculdade de Medicina, Universidade de Brasilia, Brasilia DF, Brazil
| | - Ricardo E. Gürtler
- Laboratorio de Eco-Epidemiología, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Janine M. Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, Chiapas, Mexico
| | - Isabela Ribeiro
- Drugs and Neglected Diseases Initiative, Genève, Switzerland
| | - John L. VandeBerg
- Southwest National Primate Research Center and Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Zaida E. Yadon
- Pan American Health Organization (PAHO), World Health Organization (WHO), Washington, D.C., United States of America
| | - Antonio Osuna
- Institute of Biotechnology, Molecular Parasitology Group, University of Granada, Granada, Spain
| | - Alejandro G. Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”—INGEBI-CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
3
|
Reis-Cunha JL, Mendes TADO, de Almeida Lourdes R, Ribeiro DRDS, Machado-de-Avila RA, de Oliveira Tavares M, Lemos DS, Câmara ACJ, Olórtegui CC, de Lana M, da Cunha Galvão LM, Fujiwara RT, Bartholomeu DC. Genome-wide screening and identification of new Trypanosoma cruzi antigens with potential application for chronic Chagas disease diagnosis. PLoS One 2014; 9:e106304. [PMID: 25225853 PMCID: PMC4165580 DOI: 10.1371/journal.pone.0106304] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
The protozoan Trypanosoma cruzi is the etiologic agent of Chagas disease, an infection that afflicts approximately 8 million people in Latin America. Diagnosis of chronic Chagas disease is currently based on serological tests because this condition is usually characterized by high anti-T. cruzi IgG titers and low parasitemia. The antigens used in these assays may have low specificity due to cross reactivity with antigens from related parasite infections, such as leishmaniasis, and low sensitivity caused by the high polymorphism among T. cruzi strains. Therefore, the identification of new T. cruzi-specific antigens that are conserved among the various parasite discrete typing units (DTUs) is still required. In the present study, we have explored the hybrid nature of the T. cruzi CL Brener strain using a broad genome screening approach to select new T. cruzi antigens that are conserved among the different parasite DTUs and that are absent in other trypanosomatid species. Peptide arrays containing the conserved antigens with the highest epitope prediction scores were synthesized, and the reactivity of the peptides were tested by immunoblot using sera from C57BL/6 mice chronically infected with T. cruzi strains from the TcI, TcII or TcVI DTU. The two T. cruzi proteins that contained the most promising peptides were expressed as recombinant proteins and tested in ELISA experiments with sera from chagasic patients with distinct clinical manifestations: those infected with T. cruzi from different DTUs and those with cutaneous or visceral leishmaniasis. These proteins, named rTc_11623.20 and rTc_N_10421.310, exhibited 94.83 and 89.66% sensitivity, 98.2 and 94.6% specificity, respectively, and a pool of these 2 proteins exhibited 96.55% sensitivity and 98.18% specificity. This work led to the identification of two new antigens with great potential application in the diagnosis of chronic Chagas disease.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Rodrigo de Almeida Lourdes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ricardo Andrez Machado-de-Avila
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maykon de Oliveira Tavares
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Denise Silveira Lemos
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Carlos Chavez Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marta de Lana
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Ricardo Toshio Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
4
|
Dias FBS, Quartier M, Diotaiuti L, Mejía G, Harry M, Lima ACL, Davidson R, Mertens F, Lucotte M, Romaña CA. Ecology of Rhodnius robustus Larrousse, 1927 (Hemiptera, Reduviidae, Triatominae) in Attalea palm trees of the Tapajós River Region (Pará State, Brazilian Amazon). Parasit Vectors 2014; 7:154. [PMID: 24690302 PMCID: PMC3974420 DOI: 10.1186/1756-3305-7-154] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rising number of acute cases of Chagas disease in the State of Pará, reported in the past two decades, has been associated, in part, with the ingestion of juice of local palm tree fruits, mainly açaí berry and bacaba. Near the study area, in Santarém, Pará State, an outbreak of Chagas disease has been notified and investigations suggest the consumption of bacaba juice as the main source of infection with T. cruzi. The purpose of this study is to assess the aspects associated to the ecology of Rhodnius robustus in palm trees of three communities of the Tapajós region, in the State of Pará, Brazil. METHODS Palm trees were cut down and dissected to search for triatomines. DNA from triatomines was extracted to investigate natural infection by Trypanosoma cruzi and T. rangeli. For statistical analyzes, data from infestation of palm trees, as well as the rates of natural infection by T. cruzi and T. rangeli were compared by Chi-square test. Triatomine density values were analyzed by the nonparametric Kruskal Wallis test and then comparisons between each pair of variables were made by the Mann-Whitney test assuming a confidence interval of 95%. RESULTS We dissected 136 palm trees, 60 at the end of the rainy period and 76 at the end of the dry period. Seventy-three of them (53.7%) were infested with triatomines and three species were found, namely: Rhodnius robustus, Rhodnius pictipes and Panstrongylus lignarius. We collected 743 triatomines, and R. robustus was predominant (n = 739). The identification of natural infection of the insects by trypanosomatids revealed that 125 triatomines were infected by T. cruzi, 69 by T. rangeli and 14 presented both parasites, indicating the presence of mixed infection in the same vector. CONCLUSION The results suggest that São Tomé is the community with greater density of triatomines and infestation of palm trees; also, it demonstrates the existence of an intense sylvatic cycle in the region, which demands intensive surveillance to prevent human transmission.
Collapse
Affiliation(s)
- Fernando Braga Stehling Dias
- Laboratório de Triatomíneos e Epidemiologia da Doença de Chagas, Centro de Pesquisa René Rachou, Av Augusto de Lima, 1715 Barro Preto, Belo Horizonte, MG CEP 30190-002, Brazil
- LEGS, Laboratoire Evolution Génome et Spéciation UPR 9034, DEEIT - Diversité, Ecologie et Evolution des Insectes Tropicaux, CNRS, Avenue de la Terrasse, Bâtiment 13, Boîte Postale, 191198 Gif-sur-Yvette, France
| | - Marion Quartier
- LEGS, Laboratoire Evolution Génome et Spéciation UPR 9034, DEEIT - Diversité, Ecologie et Evolution des Insectes Tropicaux, CNRS, Avenue de la Terrasse, Bâtiment 13, Boîte Postale, 191198 Gif-sur-Yvette, France
- Laboratoire Ecologie et Evolution des Parasites, Institut de Biologie, Université de Neuchâtel, Rue Emile Argand 11 2000, Neuchâtel, Switzerland
| | - Liléia Diotaiuti
- Laboratório de Triatomíneos e Epidemiologia da Doença de Chagas, Centro de Pesquisa René Rachou, Av Augusto de Lima, 1715 Barro Preto, Belo Horizonte, MG CEP 30190-002, Brazil
| | - Guy Mejía
- Centro de Investigaciones Médicas - CIBM, Universidad Simón Bolívar, Carrera 59 No. 59-92, A.A. 50595, Barranquilla, Colombia
| | - Myriam Harry
- LEGS, UPR9034 CNRS-IRD-Paris Sud, Av de la Terasse, BP1, 91198 Gif-sur-Yvette/Université Paris Sud, UFR de Sciences, 91400 Orsay, France
| | - Anna Carolina Lustosa Lima
- Centro de Pesquisa em Biotecnologia, Rua Juramento, 1464, Unidade Antônio Mourão, 3º andar Saudade, Belo Horizonte, MG CEP 30.285-000, Brazil
| | - Robert Davidson
- GÉOTOP & Institut des Sciences de l’Environnement, Université du Québec à Montréal, C.P. 8888, succ. Centre-Ville, H3C 3P8 Montréal, Québec, Canada
- Biodôme de Montréal, Canada, 4777, Avenue Pierre-De Coubertin, Montréal H1V 1B3, Québec, Canada
| | - Frédéric Mertens
- Centro de Desenvolvimento Sustentável, Universidade de Brasília, Campus Universitário Darcy Ribeiro - L3 Norte / Gleba A, Bloco C, 70910-900 Brasília, DF, Brazil
| | - Marc Lucotte
- Biodôme de Montréal, Canada, 4777, Avenue Pierre-De Coubertin, Montréal H1V 1B3, Québec, Canada
| | - Christine A Romaña
- Université Paris Descartes/PRES Sorbonne Paris Cité. 19 rue de Dantzig, Paris 75015, France
| |
Collapse
|
5
|
de Sá ARN, Steindel M, Demeu LMK, Lückemeyer DD, Grisard EC, Neto QADL, de Araújo SM, Toledo MJDO, Gomes ML. Cytochrome oxidase subunit 2 gene allows simultaneous detection and typing of Trypanosoma rangeli and Trypanosoma cruzi. Parasit Vectors 2013; 6:363. [PMID: 24360167 PMCID: PMC3891993 DOI: 10.1186/1756-3305-6-363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/18/2013] [Indexed: 11/18/2022] Open
Abstract
Background The parasites Trypanosoma rangeli and Trypanosoma cruzi share vectors and hosts over a wide geographical area in Latin America. In this study, we propose a single molecular approach for simultaneous detection and typing of T. rangeli and T. cruzi. Methods A restriction fragment length polymorphism analysis of the mitochondrial cytochrome oxidase II gene (COII-RFLP) using enzyme AluI and different amounts of DNA from the major genetic groups of T. rangeli and T. cruzi (KP1+/KP1- and DTU-I/DTU-II) was carried out. The same marker was tested on the other T. cruzi DTUs (DTU-III to DTU-VI) and on DNA extracted from gut contents of experimentally infected triatomines. Results The COII PCR generates a ~400 bp fragment, which after digestion with AluI (COII-RFLP) can be used to distinguish T. rangeli from T. cruzi and simultaneously differentiate the major genetic groups of T. rangeli (KP1+ and KP1-) and T. cruzi (DTU-I and DTU-II). The COII-RFLP generated bands of ~120 bp and ~280 bp for KP1+, whereas for KP1- no amplicon cleavage was observed. For T. cruzi, digestion of COII revealed a ~300 bp band for DTU-I and a ~250 bp band for DTU-II. For DTU-III to DTU-VI, COII-RFLP generated bands ranging from ~310 to ~330 bp, but the differentiation of these DTUs was not as clear as the separation between DTU-I and DTU-II. After AluI digestion, a species-specific fragment of ~80 bp was observed for all DTUs of T. cruzi. No cross-amplification was observed for Leishmania spp., T. vivax or T. evansi. Conclusions The COII-RFLP allowed simultaneous detection and typing of T. rangeli and T. cruzi strains according to their major genetic groups (KP1+/KP1- and DTU-I/DTU-II) in vitro and in vivo, providing a reliable and sensitive tool for epidemiological studies in areas where T. rangeli and T. cruzi coexist.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mônica Lúcia Gomes
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá (UEM), Av, Colombo, 5790, Zona 7, CEP: 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
6
|
Fraga J, Fernandez-Calienes A, Montalvo AM, Maes I, Dujardin JC, Van der Auwera G. Differentiation betweenTrypanosoma cruziandTrypanosoma rangeliusing heat-shock protein 70 polymorphisms. Trop Med Int Health 2013; 19:195-206. [DOI: 10.1111/tmi.12222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jorge Fraga
- Parasitology Department; Institute of Tropical Medicine Pedro Kouri; La Havana Cuba
| | | | | | - Ilse Maes
- Department of Biomedical Sciences; Institute of Tropical Medicine; Antwerp Belgium
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences; Institute of Tropical Medicine; Antwerp Belgium
- Department of Biomedical Sciences; University of Antwerp; Antwerp Belgium
| | - Gert Van der Auwera
- Department of Biomedical Sciences; Institute of Tropical Medicine; Antwerp Belgium
| |
Collapse
|
7
|
Mendes TADO, Reis Cunha JL, de Almeida Lourdes R, Rodrigues Luiz GF, Lemos LD, dos Santos ARR, da Câmara ACJ, Galvão LMDC, Bern C, Gilman RH, Fujiwara RT, Gazzinelli RT, Bartholomeu DC. Identification of strain-specific B-cell epitopes in Trypanosoma cruzi using genome-scale epitope prediction and high-throughput immunoscreening with peptide arrays. PLoS Negl Trop Dis 2013; 7:e2524. [PMID: 24205430 PMCID: PMC3814679 DOI: 10.1371/journal.pntd.0002524] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/26/2013] [Indexed: 11/19/2022] Open
Abstract
Background The factors influencing variation in the clinical forms of Chagas disease have not been elucidated; however, it is likely that the genetics of both the host and the parasite are involved. Several studies have attempted to correlate the T. cruzi strains involved in infection with the clinical forms of the disease by using hemoculture and/or PCR-based genotyping of parasites from infected human tissues. However, both techniques have limitations that hamper the analysis of large numbers of samples. The goal of this work was to identify conserved and polymorphic linear B-cell epitopes of T. cruzi that could be used for serodiagnosis and serotyping of Chagas disease using ELISA. Methodology By performing B-cell epitope prediction on proteins derived from pair of alleles of the hybrid CL Brener genome, we have identified conserved and polymorphic epitopes in the two CL Brener haplotypes. The rationale underlying this strategy is that, because CL Brener is a recent hybrid between the TcII and TcIII DTUs (discrete typing units), it is likely that polymorphic epitopes in pairs of alleles could also be polymorphic in the parental genotypes. We excluded sequences that are also present in the Leishmania major, L. infantum, L. braziliensis and T. brucei genomes to minimize the chance of cross-reactivity. A peptide array containing 150 peptides was covalently linked to a cellulose membrane, and the reactivity of the peptides was tested using sera from C57BL/6 mice chronically infected with the Colombiana (TcI) and CL Brener (TcVI) clones and Y (TcII) strain. Findings and Conclusions A total of 36 peptides were considered reactive, and the cross-reactivity among the strains is in agreement with the evolutionary origin of the different T. cruzi DTUs. Four peptides were tested against a panel of chagasic patients using ELISA. A conserved peptide showed 95.8% sensitivity, 88.5% specificity, and 92.7% accuracy for the identification of T. cruzi in patients infected with different strains of the parasite. Therefore, this peptide, in association with other T. cruzi antigens, may improve Chagas disease serodiagnosis. Together, three polymorphic epitopes were able to discriminate between the three parasite strains used in this study and are thus potential targets for Chagas disease serotyping. Serological tests are preferentially used for the diagnosis of Chagas disease during the chronic phase because of the low parasitemia and high anti-T. cruzi antibody titers. However, contradictory or inconclusive results, mainly related to the characteristics of the antigens used, are often observed. Additionally, the factors influencing variation in the clinical forms of Chagas disease have not been elucidated, although it is likely that host and parasite genetics are involved. Several studies attempting to correlate the parasite strain with the clinical forms have used hemoculture and/or PCR-based genotyping. However, both techniques have limitations. Hemoculture requires the isolation of parasites from patient blood and the growth of these parasites in animals or in vitro culture, thereby possibly selecting certain subpopulations. Moreover, the level of parasitemia in the chronic phase is very low, hindering the detection of parasites. Additionally, direct genotyping of parasites from infected tissues is an invasive procedure that requires medical care and hinders studies with a large number of samples. The goal of this work was to identify conserved and polymorphic linear B-cell epitopes of T. cruzi on a genome-wide scale for use in the serodiagnosis and serotyping of Chagas disease using ELISA. Development of a serotyping method based on the detection of strain-specific antibodies may help to understand the relationship between the infecting strain and disease evolution.
Collapse
Affiliation(s)
| | - João Luís Reis Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | | - Lucas Dhom Lemos
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | | | | | | | - Caryn Bern
- University of California, San Francisco, San Francisco, California, United States of America
| | - Robert H. Gilman
- Universidad Cayetano Heredia, Lima, Peru
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Ricardo Tostes Gazzinelli
- Departamento de Bioquímica, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
- Centro de Pesquisas Rene Rachou – Fundação Oswaldo Cruz, Belo Horizonte, Brasil
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | |
Collapse
|
8
|
Sequence polymorphism in the Trypanosoma rangeli HSP70 coding genes allows typing of the parasite KP1(+) and KP1(−) groups. Exp Parasitol 2013; 133:447-53. [DOI: 10.1016/j.exppara.2013.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 12/03/2012] [Accepted: 01/03/2013] [Indexed: 11/22/2022]
|
9
|
Paim RMM, Pereira MH, Araújo RN, Gontijo NF, Guarneri AA. The interaction between Trypanosoma rangeli and the nitrophorins in the salivary glands of the triatomine Rhodnius prolixus (Hemiptera; Reduviidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:229-236. [PMID: 23295786 DOI: 10.1016/j.ibmb.2012.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 06/01/2023]
Abstract
The parasite Trypanosoma rangeli develops in the intestinal tract of triatomines and, particularly in species of the genus Rhodnius, invades the hemolymph and salivary glands, where subsequent metacyclogenesis takes place. Many aspects of the interaction between T. rangeli and triatomines are still unclear, especially concerning the development of the parasite in the salivary glands and how the parasite interacts with the saliva. In this work, we describe new findings on the process of T. rangeli infection of the salivary glands and the impact of infection on the saliva composition. To ensure a complete infection (intestinal tract, hemolymph and salivary glands), 3rd instar Rhodnius prolixus nymphs were fed on blood containing T. rangeli epimastigotes using an artificial feeder. After molt to the 4th instar, the nymphs were inoculated with epimastigotes in the hemolymph. The results showed that the flagellates started to invade the salivary glands by the 7th day after the injection. The percentage of trypomastigotes inside the salivary glands continuously increased until the 25th day, at which time the trypomastigotes were more than 95% of the T. rangeli forms present. The salivary contents from T. rangeli-infected insects showed a pH that was significantly more acidic (<6.0) and had a lower total protein and hemeprotein contents compared with non-infected insects. However, the ratio of hemeprotein to total protein was similar in both control and infected insects. qPCR demonstrated that the expression levels of three housekeeping genes (18S rRNA, β-actin and α-tubulin) and nitrophorins 1-4 were not altered in the salivary glands after an infection with T. rangeli. In addition, the four major nitrophorins (NPs 1-4) were knocked down using RNAi and their suppression impacted T. rangeli survival in the salivary glands to the point that the parasite burden inside the R. prolixus salivary glands was reduced by more than 3-fold. These results indicated that these parasites most likely non-specifically incorporated the proteins that were present in R. prolixus saliva as nutrients, without impairing the biosynthesis of the antihemostatic molecules.
Collapse
Affiliation(s)
- Rafaela M M Paim
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Bloco I4, Sala 177, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
10
|
Abstract
miRNAs, a subclass of small regulatory RNAs, are present from ancient unicellular protozoans to parasitic helminths and parasitic arthropods. The miRNA-silencing mechanism appears, however, to be absent in a number of protozoan parasites. Protozoan miRNAs and components of their silencing machinery possess features different from other eukaryotes, providing some clues on the evolution of the RNA-induced silencing machinery. miRNA functions possibly associate with neoblast biology, development, physiology, infection and immunity of parasites. Parasite infection can alter host miRNA expression that can favor both parasite clearance and infection. miRNA pathways are, thus, a potential target for the therapeutic control of parasitic diseases.
Collapse
Affiliation(s)
- Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology; Key Laboratory of Veterinary Parasitology of Gansu Province; Lanzhou Veterinary Research Institute; CAAS; Lanzhou; Gansu, China; Key Lab of New Animal Drug Project, Gansu Province; Key Lab of Veterinary Pharmaceutical Development, Ministry of Agriculture; Lanzhou Institute of Husbandry and Pharmaceutical Sciences; CAAS; Lanzhou; Gansu, China; School of Biology; University of Nottingham; Nottingham, UK
| | | | | |
Collapse
|
11
|
Thekisoe OMM, Rodriguez CV, Rivas F, Coronel-Servian AM, Fukumoto S, Sugimoto C, Kawazu SI, Inoue N. Detection of Trypanosoma cruzi and T. rangeli infections from Rhodnius pallescens bugs by loop-mediated isothermal amplification (LAMP). Am J Trop Med Hyg 2010; 82:855-60. [PMID: 20439966 DOI: 10.4269/ajtmh.2010.09-0533] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have developed two loop-mediated isothermal amplification (LAMP) assays for specific detection of Trypanosoma cruzi and Trypanosoma rangeli based on the 18S ribosomal RNA (rRNA) and the small nucleolar RNA (snoRNA) genes, respectively. The detection limit of the assays is 100 fg and 1 pg for T. cruzi and T. rangeli, respectively, with reactions conducted in 60 minutes. The two LAMP assays were used in detection of T. cruzi and T. rangeli infections in comparison with polymerase chain reaction (PCR) for DNA samples extracted from Rhodnius pallescens bugs collected from palm trees in Panama. Out of a total of 52 DNA samples from R. pallescens bugs 17 (33%) and 14 (27%) were T. cruzi-positive by LAMP and PCR, respectively, while, 7 (13%) and 4 (8%) were T. rangeli-positive by LAMP and PCR, respectively. Further evaluation of these LAMP assays is needed, especially with specimens collected from human patients as well as blood kept for transfusion purposes.
Collapse
Affiliation(s)
- Oriel M M Thekisoe
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Nocua P, Gómez C, Cuervo C, Puerta C. Cl gene cluster encoding several small nucleolar RNAs: a comparison amongst trypanosomatids. Mem Inst Oswaldo Cruz 2009; 104:473-80. [PMID: 19547875 DOI: 10.1590/s0074-02762009000300013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 03/03/2009] [Indexed: 11/22/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are small non-coding RNAs that modify RNA molecules such as rRNA and snRNA by guiding 2'-O-ribose methylation (C/D box snoRNA family) and pseudouridylation reactions (H/ACA snoRNA family). H/ACA snoRNAs are also involved in trans-splicing in trypanosomatids. The aims of this work were to characterise the Cl gene cluster that encodes several snoRNAs in Trypanosoma rangeli and compare it with clusters from Trypanosoma cruzi, Trypanosoma brucei, Leishmania major, Leishmania infantum, Leishmania braziliensis and Leptomonas collosoma. The T. rangeli Cl gene cluster is an 801 base pair (bp) repeat sequence that encodes three C/D (Cl1, Cl2 and Cl4) and three H/ACA (Cl3, Cl5 and Cl6) snoRNAs. In contrast to T. brucei, the Cl3 and Cl5 homologues have not been annotated in the Leishmania or T. cruzi genome projects (http//:www.genedb.org). Of note, snoRNA transcribed regions have a high degree of sequence identity among all species and share gene synteny. Collectively, these findings suggest that the Cl cluster could constitute an interesting target for therapeutic (gene silencing) or diagnostic intervention strategies (PCR-derived tools).
Collapse
Affiliation(s)
- Paola Nocua
- Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | |
Collapse
|
13
|
Caracterización molecular de los genes histona H2A y ARNsno-Cl de Trypanosoma rangeli:: aplicación en pruebas diagnósticas. INFECTIO 2009. [DOI: 10.1016/s0123-9392(09)70142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
La región intergénica del gen H2A apoya las subpoblaciones KP1(-) y KP1(+) de Trypanosoma rangeli. BIOMEDICA 2007. [DOI: 10.7705/biomedica.v27i3.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Pavia PX, Vallejo GA, Montilla M, Nicholls RS, Puerta CJ. Detection of Trypanosoma cruzi and Trypanosoma rangeli infection in triatomine vectors by amplification of the histone H2A/SIRE and the sno-RNA-C11 genes. Rev Inst Med Trop Sao Paulo 2007; 49:23-30. [PMID: 17384816 DOI: 10.1590/s0036-46652007000100005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 08/15/2006] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma rangeli is non pathogenic for humans but of important medical and epidemiological interest because it shares vertebrate hosts, insect vectors, reservoirs and geographic areas with T. cruzi, the etiological agent of Chagas disease. Therefore, in this work, we set up two PCR reactions, TcH2AF/R and TrFR2, to distinguish T. cruzi from T. rangeli in mixed infections of vectors based on amplification of the histone H2A/SIRE and the small nucleolar RNA Cl1 genes, respectively. Both PCRs were able to appropriately detect all T. cruzi or T. rangeli experimentally infected-triatomines, as well as the S35/S36 PCR which amplifies the variable region of minicircle kDNA of T. cruzi. In mixed infections, whereas T. cruzi DNA was amplified in 100% of samples with TcH2AF/R and S35/S36 PCRs, T. rangeli was detected in 71% with TrF/R2 and in 6% with S35/S36. In a group of Rhodnius colombiensis collected from Coyaima (Colombia), T. cruzi was identified in 100% with both PCRs and T. rangeli in 14% with TrF/R2 and 10% with S35/S36 PCR. These results show that TcH2AF/R and TrF/R2 PCRs which are capable of recognizing all T. cruzi and T. rangeli strains and lineages could be useful for diagnosis as well as for epidemiological field studies of T. cruzi and T. rangeli vector infections.
Collapse
Affiliation(s)
- Paula Ximena Pavia
- Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
16
|
Cuervo C, López MC, Puerta C. The Trypanosoma rangeli histone H2A gene sequence serves as a differential marker for KP1 strains. INFECTION GENETICS AND EVOLUTION 2006; 6:401-9. [PMID: 16504597 DOI: 10.1016/j.meegid.2006.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 01/16/2006] [Accepted: 01/19/2006] [Indexed: 11/29/2022]
Abstract
Trypanosoma rangeli has recently been divided in two primary lineages denoted as KP1(+) and KP1(-) strains because of epidemiological and evolutionary interest in the molecular differentiation of these two groups. We report the molecular characterization of the genes encoding histone H2A protein from a T. rangeli KP1(+) strain (H14), its comparison to T. rangeli KP1(-) strain (C23) histone H2A coding genes [Puerta, C., Cuervo, P., Thomas, M.C., López, M.C., 2000. Molecular characterization of the histone H2A gene from the parasite Trypanosoma rangeli. Parasitol. Res. 86, 916-922], and its application in a low-stringency single specific primer polymerase chain reaction (LSSP-PCR) assay to differentiate these parasite groups. The results show that the locus encoding the H2A protein in the H14 strain is formed by at least 11 gene units measuring 799 nucleotides in length, organized in tandem, and located in two chromosomes of approximately 1.9 and 1.1Mb in size. Remarkably, in KP1(-) strains these genes are on pairs of chromosomes of about 1.7 and 1.9Mb. In addition, there is a hybridization signal in the compression region above 2.1Mb in all T. rangeli strains. Therefore, the chromosomal location of these genes is a useful marker to distinguish between KP1(+) and KP1(-) T. rangeli strains. The alignment of the H2A nucleotide sequences from H14 and C23 strains showed an identity of 99.5% between the coding regions and an identity of 95% between the non-coding regions. The deduced amino acid sequences proved to be identical. Based on 5% of the difference between the intergenic regions, we developed a LSSP-PCR assay which can differentiate between KP1(+) and KP1(-) strains.
Collapse
Affiliation(s)
- Claudia Cuervo
- Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Universidad Javeriana, Carrera 7 No. 43-82, Edificio 50, Laboratorio 113, Bogotá, Colombia
| | | | | |
Collapse
|
17
|
Diez H, Thomas MC, Urueña CP, Santander SP, Cuervo CL, López MC, Puerta CJ. Molecular characterization of the kinetoplastid membrane protein-11 genes from the parasite Trypanosoma rangeli. Parasitology 2005; 130:643-51. [PMID: 15977901 DOI: 10.1017/s0031182004006936] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Trypanosomatids are early divergent parasites which include several species of medical interest. Trypanosoma rangeli is not pathogenic for humans but shows a high immunological cross-reactivity with Trypanosoma cruzi, the causative agent of Chagas' disease that affects more than 17 million people throughout the world. Recent studies have suggested that T. cruzi KMP-11 antigen could be a good candidate for the induction of immunoprotective cytotoxic responses against T. cruzi natural infection. In the present paper the genes coding for the T. rangeli kinetoplastid membrane protein-11 have been characterized. The results show that the locus encoding this protein is formed by 4 gene units measuring 550 nucleotides in length, organized in tandem, and located in different chromosomes in KP1(+) and KP1(-) strains. The gene units are transcribed as a single mRNA of 530 nucleotides in length. Alignment of the T. rangeli KMP-11 deduced amino acid sequence with the homologous KMP-11 protein from T. cruzi revealed an identity of 97%. Interestingly, the T and B cell epitopes of the T. cruzi KMP-11 protein are conserved in the T. rangeli KMP-11 amino acid sequence.
Collapse
Affiliation(s)
- H Diez
- Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad Ciencias, Pontificia Universidad Javeriana, Carrera 7a No 43-82, Edificio 50, Laboratorio 113, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
18
|
Urrea DA, Carranza JC, Cuba CAC, Gurgel-Gonçalves R, Guhl F, Schofield CJ, Triana O, Vallejo GA. Molecular characterisation of Trypanosoma rangeli strains isolated from Rhodnius ecuadoriensis in Peru, R. colombiensis in Colombia and R. pallescens in Panama, supports a co-evolutionary association between parasites and vectors. INFECTION GENETICS AND EVOLUTION 2005; 5:123-9. [PMID: 15639744 DOI: 10.1016/j.meegid.2004.07.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Revised: 07/10/2004] [Accepted: 07/17/2004] [Indexed: 10/26/2022]
Abstract
We present data on the molecular characterisation of strains of Trypanosoma rangeli isolated from naturally infected Rhodnius ecuadoriensis in Peru, from Rhodnius colombiensis, Rhodnius pallescens and Rhodnius prolixus in Colombia, and from Rhodnius pallescens in Panama. Strain characterisation involved a duplex PCR with S35/S36/KP1L primers. Mini-exon gene analysis was also carried out using TrINT-1/TrINT-2 oligonucleotides. kDNA and mini-exon amplification indicated dimorphism within both DNA sequences: (i) KP1, KP2 and KP3 or (ii) KP2 and KP3 products for kDNA, and 380 bp or 340 bp products for the mini-exon. All T. rangeli strains isolated from R. prolixus presented KP1, KP2 and KP3 products with the 340 bp mini-exon product. By contrast, all T. rangeli strains isolated from R. ecuadoriensis, R. pallescens and R. colombiensis, presented profiles with KP2 and KP3 kDNA products and the 380 bp mini-exon product. Combined with other studies, these results provide evidence of co-evolution of T. rangeli strains associated with different Rhodnius species groups east and west of the Andean mountains.
Collapse
Affiliation(s)
- D A Urrea
- Laboratorio de Investigaciones en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, A.A. No. 546, Ibagué, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Russell AG, Schnare MN, Gray MW. Pseudouridine-guide RNAs and other Cbf5p-associated RNAs in Euglena gracilis. RNA (NEW YORK, N.Y.) 2004; 10:1034-46. [PMID: 15208440 PMCID: PMC1370595 DOI: 10.1261/rna.7300804] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In eukaryotes, box H/ACA small nucleolar RNAs (snoRNAs) guide sites of pseudouridine (Psi) formation in rRNA. These snoRNAs reside in RNP complexes containing the putative Psi synthase, Cbf5p. In this study we have identified Cbf5p-associated RNAs in Euglena gracilis, an early diverging eukaryote, by immunoprecipitating Cbf5p-containing complexes from cellular extracts. We characterized one box H/ACA-like RNA which, however, does not appear to guide Psi formation in rRNA. We also identified four single Psi-guide box AGA RNAs. We determined target sites for these putative Psi-guide RNAs and confirmed that the predicted Psi modifications do, in fact, occur at these positions in Euglena rRNA. The Cbf5p-associated snoRNAs appear to be encoded by multicopy genes, some of which are clustered in the genome together with methylation-guide snoRNA genes. These modification-guide snoRNAs and snoRNA genes are the first ones to be reported in euglenid protists, the evolutionary sister group to the kinetoplastid protozoa. Unexpectedly, we also found and have partially characterized a selenocysteine tRNA homolog in the anti-Cbf5p-immunoprecipitated sample.
Collapse
Affiliation(s)
- Anthony G Russell
- Department of Biochemistry and Molecular Biology, Sir Charles Tupper Medical Building, Room 8F-2, Dal-housie University, 5850 College Street, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | |
Collapse
|
20
|
Maia da Silva F, Rodrigues AC, Campaner M, Takata CSA, Brigido MC, Junqueira ACV, Coura JR, Takeda GF, Shaw JJ, Teixeira MMG. Randomly amplified polymorphic DNA analysis of Trypanosoma rangeli and allied species from human, monkeys and other sylvatic mammals of the Brazilian Amazon disclosed a new group and a species-specific marker. Parasitology 2004; 128:283-94. [PMID: 15074877 DOI: 10.1017/s0031182003004554] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We characterized 14 trypanosome isolates from sylvatic mammals (9 from primates, 1 from sloth, 2 from anteaters and 2 from opossum) plus 2 human isolates of Brazilian Amazon. These isolates were proven to be Trypanosoma rangeli by detection of metacyclic trypomastigotes in the salivary glands of triatomines and by a specific PCR assay. Polymorphism determined by randomly amplified polymorphic DNA (RAPD) revealed that most (12) of the Brazilian T. rangeli isolates from the Amazon differed from those of other geographical regions, thus constituting a new group of T. rangeli. Four Brazilian isolates clustered together with a previously described group (A) that was described as being composed of being isolates from Colombia and Venezuela. Isolates from Panama and El Salvador form another group. The isolate from Southern Brazil did not cluster to any of the above-mentioned groups. This is the first study that assesses the genetic relationship of a large number of isolates from wild mammals, especially from non-human primates. A randomly-amplified DNA fragment (Tra625) exclusive to T. rangeli was used to develop a PCR assay able to detect all T. rangeli groups.
Collapse
Affiliation(s)
- F Maia da Silva
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, 05508-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|