1
|
Li X, Yang Y, Zeng N, Qu G, Fu D, Zhu B, Luo Y, Ostersetzer-Biran O, Zhu H. Glycine-rich RNA-binding cofactor RZ1AL is associated with tomato ripening and development. HORTICULTURE RESEARCH 2022; 9:uhac134. [PMID: 35937858 PMCID: PMC9350831 DOI: 10.1093/hr/uhac134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Tomato ripening is a complex and dynamic process coordinated by many regulatory elements, including plant hormones, transcription factors, and numerous ripening-related RNAs and proteins. Although recent studies have shown that some RNA-binding proteins are involved in the regulation of the ripening process, understanding of how RNA-binding proteins affect fruit ripening is still limited. Here, we report the analysis of a glycine-rich RNA-binding protein, RZ1A-Like (RZ1AL), which plays an important role in tomato ripening, especially fruit coloring. To analyze the functions of RZ1AL in fruit development and ripening, we generated knockout cr-rz1al mutant lines via the CRISPR/Cas9 gene-editing system. Knockout of RZ1AL reduced fruit lycopene content and weight in the cr-rz1al mutant plants. RZ1AL encodes a nucleus-localized protein that is associated with Cajal-related bodies. RNA-seq data demonstrated that the expression levels of genes that encode several key enzymes associated with carotenoid biosynthesis and metabolism were notably downregulated in cr-rz1al fruits. Proteomic analysis revealed that the levels of various ribosomal subunit proteins were reduced. This could affect the translation of ripening-related proteins such as ZDS. Collectively, our findings demonstrate that RZ1AL may participate in the regulation of carotenoid biosynthesis and metabolism and affect tomato development and fruit ripening.
Collapse
Affiliation(s)
- Xindi Li
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77840, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77840, USA
| | - Yongfang Yang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ni Zeng
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guiqin Qu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daqi Fu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Benzhong Zhu
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | | |
Collapse
|
2
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
3
|
Abstract
An intimate relationship exists between the transcriptional coregulator Daxx, SUMO, and PML nuclear bodies. In this issue, Chang et al. (2011) provide structural insights into how phosphorylation of Daxx increases its affinity toward SUMOs and functional insights into how enhanced SUMO binding affects Daxx-PML interactions, PML nuclear body localization, and Daxx-mediated repression of genes encoding for antiapoptotic factors.
Collapse
Affiliation(s)
- Debaditya Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
4
|
Goff SA. A unifying theory for general multigenic heterosis: energy efficiency, protein metabolism, and implications for molecular breeding. THE NEW PHYTOLOGIST 2011; 189:923-937. [PMID: 21166808 DOI: 10.1111/j.1469-8137.2010.03574.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Hybrids between genetically diverse varieties display enhanced growth, and increased total biomass, stress resistance and grain yield. Gene expression and metabolic studies in maize, rice and other species suggest that protein metabolism plays a role in the growth differences between hybrids and inbreds. Single trait heterosis can be explained by the existing theories of dominance, overdominance and epistasis. General multigenic heterosis is observed in a wide variety of different species and is likely to share a common underlying biological mechanism. This review presents a model to explain differences in growth and yield caused by general multigenic heterosis. The model describes multigenic heterosis in terms of energy-use efficiency and faster cell cycle progression where hybrids have more efficient growth than inbreds because of differences in protein metabolism. The proposed model is consistent with the observed variation of gene expression in different pairs of inbred lines and hybrid offspring as well as growth differences in polyploids and aneuploids. It also suggests an approach to enhance yield gains in both hybrid and inbred crops via the creation of an appropriate computational analysis pipeline coupled to an efficient molecular breeding program.
Collapse
Affiliation(s)
- Stephen A Goff
- iPlant Collaborative, BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Beguelini M, Marchesin S, Azeredo-Oliveira M, Morielle-Versute E. Nucleolar behavior during meiosis in four species of phyllostomid bats (Chiroptera, Mammalia). GENETICS AND MOLECULAR RESEARCH 2011; 10:552-65. [DOI: 10.4238/vol10-2gmr1060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Zhang J, Zhang F, Zheng X. Depletion of hCINAP by RNA interference causes defects in Cajal body formation, histone transcription, and cell viability. Cell Mol Life Sci 2010; 67:1907-18. [PMID: 20186459 PMCID: PMC11115741 DOI: 10.1007/s00018-010-0301-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/25/2010] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
hCINAP is a highly conserved and ubiquitously expressed protein in eukaryotic organisms and its overexpression decreases the average number of Cajal bodies (CBs) with diverse nuclear functions. Here, we report that hCINAP is associated with important components of CBs. Depletion of hCINAP by RNA interference causes defects in CB formation and disrupts subcellular localizations of its components including coilin, survival motor neurons protein, spliceosomal small nuclear ribonucleoproteins, and nuclear protein ataxia-telangiectasia. Moreover, knockdown of hCINAP expression results in marked reduction of histone transcription, lower levels of U small nuclear RNAs (U1, U2, U4, and U5), and a loss of cell viability. Detection of increased caspase-3 activities in hCINAP-depleted cells indicate that apoptosis is one of the reasons for the loss of viability. Altogether, these data suggest that hCINAP is essential for the formation of canonical CBs, histone transcription, and cell viability.
Collapse
Affiliation(s)
- Jinfang Zhang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing, 100871 China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871 China
| | - Feiyun Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Capital Normal University, Beijing, 100037 China
| | - Xiaofeng Zheng
- National Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing, 100871 China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
7
|
Hebert MD. Phosphorylation and the Cajal body: modification in search of function. Arch Biochem Biophys 2010; 496:69-76. [PMID: 20193656 PMCID: PMC2850958 DOI: 10.1016/j.abb.2010.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 02/24/2010] [Indexed: 12/25/2022]
Abstract
The Cajal body (CB) is a subnuclear domain that contains proteins and factors involved in a diverse range of activities including ribonucleoprotein maturation, histone gene transcription and telomerase assembly. Among these activities, the CBs' role in small nuclear ribonucleoprotein (snRNP) biogenesis is best characterized. Although CBs are found in plants, flies and mammals, not all cell types contain CBs. Rather, CBs are most prominent in transcriptionally active cells, such as cancer and neuronal cells. Many CB components, including the CB marker protein coilin, are phosphorylated in humans. The functional consequence of phosphorylation on CB assembly, activity and disassembly is largely unknown. Also unknown are the signaling pathways, kinases and phosphatases that act upon proteins which localize in the CB. The goal of this review is to demonstrate the need for a concerted effort towards elucidating the functional consequence of phosphorylation on CB formation and activity.
Collapse
Affiliation(s)
- Michael D Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
8
|
Nayak A, Glöckner-Pagel J, Vaeth M, Schumann JE, Buttmann M, Bopp T, Schmitt E, Serfling E, Berberich-Siebelt F. Sumoylation of the transcription factor NFATc1 leads to its subnuclear relocalization and interleukin-2 repression by histone deacetylase. J Biol Chem 2009; 284:10935-46. [PMID: 19218564 DOI: 10.1074/jbc.m900465200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The family of NFAT (nuclear factor of activated T-cells) transcription factors plays an important role in cytokine gene regulation. In peripheral T-cells NFATc1 and -c2 are predominantly expressed. Because of different promoter and poly(A) site usage as well as alternative splicing events, NFATc1 is synthesized in multiple isoforms. The highly inducible NFATc1/A contains a relatively short C terminus, whereas the longer, constitutively expressed isoform NFATc1/C spans an extra C-terminal peptide of 246 amino acids. Interestingly, this NFATc1/C-specific terminus can be highly sumoylated. Upon sumoylation, NFATc1/C, but not the unsumoylated NFATc1/A, translocates to promyelocytic leukemia nuclear bodies. This leads to interaction with histone deacetylases followed by deacetylation of histones, which in turn induces transcriptionally inactive chromatin. As a consequence, expression of the NFATc1 target gene interleukin-2 is suppressed. These findings demonstrate that the modification by SUMO (small ubiquitin-like modifier) converts NFATc1 from an activator to a site-specific transcriptional repressor, revealing a novel regulatory mechanism for NFATc1 function.
Collapse
Affiliation(s)
- Arnab Nayak
- Departments of Molecular Pathology and Neurology, Julius Maximilians-University, 97080 Wuerzburg and Institute of Immunology, Johannes Gutenberg-University, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lorković ZJ, Barta A. Role of Cajal bodies and nucleolus in the maturation of the U1 snRNP in Arabidopsis. PLoS One 2008; 3:e3989. [PMID: 19098980 PMCID: PMC2600615 DOI: 10.1371/journal.pone.0003989] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 11/21/2008] [Indexed: 01/31/2023] Open
Abstract
Background The biogenesis of spliceosomal snRNPs takes place in both the cytoplasm where Sm core proteins are added and snRNAs are modified at the 5′ and 3′ termini and in the nucleus where snRNP-specific proteins associate. U1 snRNP consists of U1 snRNA, seven Sm proteins and three snRNP-specific proteins, U1-70K, U1A, and U1C. It has been shown previously that after import to the nucleus U2 and U4/U6 snRNP-specific proteins first appear in Cajal bodies (CB) and then in splicing speckles. In addition, in cells grown under normal conditions U2, U4, U5, and U6 snRNAs/snRNPs are abundant in CBs. Therefore, it has been proposed that the final assembly of these spliceosomal snRNPs takes place in this nuclear compartment. In contrast, U1 snRNA in both animal and plant cells has rarely been found in this nuclear compartment. Methodology/Principal Findings Here, we analysed the subnuclear distribution of Arabidopsis U1 snRNP-specific proteins fused to GFP or mRFP in transiently transformed Arabidopsis protoplasts. Irrespective of the tag used, U1-70K was exclusively found in the nucleus, whereas U1A and U1C were equally distributed between the nucleus and the cytoplasm. In the nucleus all three proteins localised to CBs and nucleoli although to different extent. Interestingly, we also found that the appearance of the three proteins in nuclear speckles differ significantly. U1-70K was mostly found in speckles whereas U1A and U1C in ∼90% of cells showed diffuse nucleoplasmic in combination with CBs and nucleolar localisation. Conclusions/Significance Our data indicate that CBs and nucleolus are involved in the maturation of U1 snRNP. Differences in nuclear accumulation and distribution between U1-70K and U1A and U1C proteins may indicate that either U1-70K or U1A and U1C associate with, or is/are involved, in other nuclear processes apart from pre-mRNA splicing.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Department of Medical Biochemistry, Max F Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
10
|
Patel SB, Bellini M. The assembly of a spliceosomal small nuclear ribonucleoprotein particle. Nucleic Acids Res 2008; 36:6482-93. [PMID: 18854356 PMCID: PMC2582628 DOI: 10.1093/nar/gkn658] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The U1, U2, U4, U5 and U6 small nuclear ribonucleoprotein particles (snRNPs) are essential elements of the spliceosome, the enzyme that catalyzes the excision of introns and the ligation of exons to form a mature mRNA. Since their discovery over a quarter century ago, the structure, assembly and function of spliceosomal snRNPs have been extensively studied. Accordingly, the functions of splicing snRNPs and the role of various nuclear organelles, such as Cajal bodies (CBs), in their nuclear maturation phase have already been excellently reviewed elsewhere. The aim of this review is, then, to briefly outline the structure of snRNPs and to synthesize new and exciting developments in the snRNP biogenesis pathways.
Collapse
Affiliation(s)
- Snehal Bhikhu Patel
- Biochemistry and College of Medicine and Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
11
|
SUMO-1 transiently localizes to Cajal bodies in mammalian neurons. J Struct Biol 2008; 163:137-46. [PMID: 18571432 DOI: 10.1016/j.jsb.2008.04.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 04/21/2008] [Accepted: 04/25/2008] [Indexed: 11/21/2022]
Abstract
Cajal bodies (CBs) are nuclear organelles involved in the maturation of small nuclear ribonucleoproteins required for the processing of pre-mRNAs. They concentrate coilin, splicing factors and the survival of motor neuron protein (SMN). By using immunocytochemistry and transfection experiments with GFP-SUMO-1, DsRed1-Ubc9, GFP-coilin and GFP-SMN constructs we demonstrate the presence of SUMO-1 and the SUMO conjugating enzyme (Ubc9) in a subset of CBs in undifferentiated neuron-like UR61 cells. Furthermore, SUMO-1 is transiently localized into neuronal CBs from adult nervous tissue in response to osmotic stress or inhibition of methyltransferase activity. SUMO-1-positive CBs contain coilin, SMN and small nuclear ribonucleoproteins, suggesting that they are functional CBs involved in pre-mRNA processing. Since coilin and SMN have several putative motifs of SUMO-1 modification, we suggest that the sumoylation of coilin and/or SMN might play a role in the molecular reorganization of CBs during the neuronal differentiation or stress-response.
Collapse
|
12
|
Bogolyubov D, Parfenov V. Chapter 2 Structure of the Insect Oocyte Nucleus with Special Reference to Interchromatin Granule Clusters and Cajal Bodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:59-110. [DOI: 10.1016/s1937-6448(08)01002-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Dundr M, Ospina JK, Sung MH, John S, Upender M, Ried T, Hager GL, Matera AG. Actin-dependent intranuclear repositioning of an active gene locus in vivo. ACTA ACUST UNITED AC 2007; 179:1095-103. [PMID: 18070915 PMCID: PMC2140015 DOI: 10.1083/jcb.200710058] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although bulk chromatin is thought to have limited mobility within the interphase eukaryotic nucleus, directed long-distance chromosome movements are not unknown. Cajal bodies (CBs) are nuclear suborganelles that nonrandomly associate with small nuclear RNA (snRNA) and histone gene loci in human cells during interphase. However, the mechanism responsible for this association is uncertain. In this study, we present an experimental system to probe the dynamic interplay of CBs with a U2 snRNA target gene locus during transcriptional activation in living cells. Simultaneous four-dimensional tracking of CBs and U2 genes reveals that target loci are recruited toward relatively stably positioned CBs by long-range chromosomal motion. In the presence of a dominant-negative mutant of β-actin, the repositioning of activated U2 genes is markedly inhibited. This supports a model in which nuclear actin is required for these rapid, long-range chromosomal movements.
Collapse
Affiliation(s)
- Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Targeted pre-mRNA modification for gene silencing and regulation. Nat Methods 2007; 5:95-100. [PMID: 18066073 DOI: 10.1038/nmeth1142] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 11/14/2007] [Indexed: 11/08/2022]
Abstract
Most eukaryotic box C/D small nucleolar (sno) or Cajal body-specific RNAs guide base pairing with target RNAs and direct site-specific 2'-O-methylation. We designed an artificial C/D RNA to target the branch point adenosine of ACT1 pre-mRNA to block its splicing. Saccharomyces cerevisiae expressing this guide RNA gene controlled by a GAL1 promoter grew normally on dextrose but not on galactose medium. The pre-mRNA was specifically 2'-O-methylated, prohibiting maturation of ACT1 mRNA. Targeting other adenosines in this region while maintaining almost identical complementarity did not affect ACT1 mRNA level or cell growth, suggesting that targeting the branch-point adenosine was truly 2'-O-methylation-specific rather than an antisense effect; moreover, only the 3'-most branch site adenosine served as the branch point. We targeted other essential intron-containing genes, and observed a similar phenotype. We demonstrated that a Box C/D RNA can guide modification at the pre-mRNA branch point, thus silencing its expression and inducing cell death.
Collapse
|
15
|
Bogolyubov DS, Batalova FM, Ogorzałek A. Localization of interchromatin granule cluster and Cajal body components in oocyte nuclear bodies of the hemipterans. Tissue Cell 2007; 39:353-64. [PMID: 17889915 DOI: 10.1016/j.tice.2007.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/05/2007] [Accepted: 07/12/2007] [Indexed: 11/25/2022]
Abstract
An oocyte nucleus contains different extrachromosomal nuclear domains collectively called nuclear bodies (NBs). In the present work we revealed, using immunogold labeling electron microscopy, some marker components of interchromatin granule clusters (IGCs) and Cajal bodies (CBs) in morphologically heterogeneous oocyte NBs studied in three hemipteran species: Notostira elongata, Capsodes gothicus (Miridae) and Velia caprai (Veliidae). Both IGC and CB counterparts were revealed in oocyte nuclei of the studied species but morphological and biochemical criteria were found to be not sufficient to determine carefully the define type of oocyte NBs. We found that the molecular markers of the CBs (coilin and non-phosphorylated RNA polymerase II) and IGCs (SC35 protein) may be localized in the same NB. Anti-SC35 antibody may decorate not only a granular material representing "true" interchromatin granules but also masks some fibrillar parts of complex NBs. Our first observations on the hemipteran oocyte NBs confirm the high complexity and heterogeneity of insect oocyte IGCs and CBs in comparison with those in mammalian somatic cells and amphibian oocytes.
Collapse
Affiliation(s)
- D S Bogolyubov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, 194064 St. Petersburg, Russia.
| | | | | |
Collapse
|
16
|
Morency E, Sabra M, Catez F, Texier P, Lomonte P. A novel cell response triggered by interphase centromere structural instability. ACTA ACUST UNITED AC 2007; 177:757-68. [PMID: 17548509 PMCID: PMC2064277 DOI: 10.1083/jcb.200612107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interphase centromeres are crucial domains for the proper assembly of kinetochores at the onset of mitosis. However, it is not known whether the centromere structure is under tight control during interphase. This study uses the peculiar property of the infected cell protein 0 of herpes simplex virus type 1 to induce centromeric structural damage, revealing a novel cell response triggered by centromere destabilization. It involves centromeric accumulation of the Cajal body–associated coilin and fibrillarin as well as the survival motor neuron proteins. The response, which we have termed interphase centromere damage response (iCDR), was observed in all tested human and mouse cells, indicative of a conserved mechanism. Knockdown cells for several constitutive centromere proteins have shown that the loss of centromeric protein B provokes the centromeric accumulation of coilin. We propose that the iCDR is part of a novel safeguard mechanism that is dedicated to maintaining interphase centromeres compatible with the correct assembly of kinetochores, microtubule binding, and completion of mitosis.
Collapse
Affiliation(s)
- Eric Morency
- Viral Silencing and Centromeric Instability Team, Université Lyon 1, Lyon F-69003, France
| | | | | | | | | |
Collapse
|
17
|
Pombo A. Advances in imaging the interphase nucleus using thin cryosections. Histochem Cell Biol 2007; 128:97-104. [PMID: 17636315 DOI: 10.1007/s00418-007-0310-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2007] [Indexed: 01/01/2023]
Abstract
The mammalian genome is partitioned amongst various chromosomes and encodes for approximately 30,000 protein-coding genes. Gene expression occurs after exit from mitosis, when chromosomes partially decondense within the cell nucleus to allow the enzymatic activities that work on chromatin to access each gene in a regulated fashion. Differential patterns of gene expression evolve during cell differentiation to give rise to the over 200 cell types in higher eukaryotes. The architectural organisation of the genome inside the interphase cell nucleus, and associated enzymatic activities, reveals dynamic and functional compartmentalization of the genome. In this review, I highlight the advantages of Tokuyasu cryosectioning on the investigation of nuclear structure and function.
Collapse
Affiliation(s)
- Ana Pombo
- Nuclear Organisation Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
18
|
Narita T, Yung TMC, Yamamoto J, Tsuboi Y, Tanabe H, Tanaka K, Yamaguchi Y, Handa H. NELF interacts with CBC and participates in 3' end processing of replication-dependent histone mRNAs. Mol Cell 2007; 26:349-65. [PMID: 17499042 DOI: 10.1016/j.molcel.2007.04.011] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/12/2007] [Accepted: 04/10/2007] [Indexed: 11/22/2022]
Abstract
Negative elongation factor (NELF) is a four subunit transcription elongation factor that has been implicated in numerous diseases ranging from neurological disorders to cancer. Here we show that NELF interacts with the nuclear cap binding complex (CBC), a multifunctional factor that plays important roles in several mRNA processing steps, and the two factors together participate in the 3' end processing of replication-dependent histone mRNAs, most likely through association with the histone stem-loop binding protein (SLBP). Strikingly, absence of NELF and CBC causes aberrant production of polyadenylated histone mRNAs. Moreover, NELF is physically associated with histone gene loci and forms distinct intranuclear foci that we call NELF bodies, which often overlap with Cajal bodies and cleavage bodies. Our results point to a surprising role of NELF in the 3' end processing of histone mRNAs and also suggest that NELF is a new factor that coordinates different mRNA processing steps during transcription.
Collapse
Affiliation(s)
- Takashi Narita
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pikaard CS. Cell biology of the Arabidopsis nuclear siRNA pathway for RNA-directed chromatin modification. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:473-80. [PMID: 17381329 DOI: 10.1101/sqb.2006.71.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Arabidopsis thaliana, the pathway for transcriptional silencing via RNA-directed DNA methylation and chromatin modification involves two forms of nuclear RNA polymerase IV (pol IVa and pol IVb), RNA-DEPENDENT RNA POLYMERASE2 (RDR2), DICER-LIKE3 (DCL3), ARGONAUTE4 (AGO4), the chromatin remodeler, DRD1, and the de novo cytosine methyltransferase, DRM2. New insight into the order of events, as well as the spatial organization of this pathway within the nucleus, has come from the combined use of protein immunolocalization, RNA fluorescence in situ hybridization (RNA-FISH), DNA-FISH, and genetic analysis. New findings show that pol IVa, pol IVb, and DRD1 colocalize with DNA loci that are both the sources and targets of small interfering RNAs (siRNAs). However, RDR2-dependent doublestranded RNA production, dicing by DCL3, and loading of siRNAs into AGO4-containing RNA-induced silencing complexes (RISCs) appear to take place at a distant site, in an siRNA processing center located in the nucleolus. This siRNA processing center shares features of Cajal bodies, which are nucleolus-associated entities involved in the processing and trafficking of RNAs found in ribonucleoprotein (RNP) complexes that splice or modify mRNA, rRNA, or telomeres. Therefore, assembly and trafficking of chromatin-modifying RISCs may share similarities with other nuclear RNPs.
Collapse
Affiliation(s)
- C S Pikaard
- Biology Department, Washington University, St. Louis, Missouri 63130, USA
| |
Collapse
|
20
|
Involvement of UL24 in herpes-simplex-virus-1-induced dispersal of nucleolin. Virology 2007; 363:397-409. [PMID: 17346762 DOI: 10.1016/j.virol.2007.01.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 01/02/2007] [Accepted: 01/18/2007] [Indexed: 11/23/2022]
Abstract
UL24 of herpes simplex virus 1 is important for efficient viral replication, but its function is unknown. We generated a recombinant virus, vHA-UL24, encoding UL24 with an N-terminal hemagglutinin tag. By indirect immunofluorescence at 9 h post-infection (hpi), we detected HA-UL24 in nuclear foci and in cytoplasmic speckles. HA-UL24 partially co-localized with nucleolin, but not with ICP8 or coilin, markers for nucleoli, viral replication compartments, and Cajal bodies respectively. HA-UL24 staining was often juxtaposed to that of another nucleolar protein, fibrillarin. Analysis of HSV-1-induced nucleolar modifications revealed that by 18 hpi, nucleolin staining had dispersed, and fibrillarin staining went from clusters of small spots to a few separate but prominent spots. Fibrillarin redistribution appeared to be independent of UL24. In contrast, cells infected with a UL24-deficient virus retained foci of nucleolin staining. Our results demonstrate involvement of UL24 in dispersal of nucleolin during infection.
Collapse
|
21
|
Stepanova IS, Bogolyubov DS, Parfenov VN. Cajal bodies in insects. II. Molecular composition of cajal bodies in oocytes of house cricket. Relationship between cajal bodies and interchromatin granule clusters. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07010038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Abstract
The morphology and composition of subnuclear organelles, such as Cajal bodies (CBs), nucleoli, and other nuclear bodies, is dynamic and can change in response to a variety of cell stimuli, including stress. We show that UV-C irradiation disrupts CBs and alters the distribution of a specific subset of CB components. The effect of UV-C on CBs differs from previously reported effects of transcription inhibitors. We demonstrate that the mechanism underlying the response of CBs to UV-C is mediated, at least in part, by PA28γ (proteasome activator subunit γ). The presence of PA28γ in coilin-containing complexes is increased by UV-C. Overexpression of PA28γ, in the absence of UV-C treatment, provokes a similar redistribution of the same subset of CB components that respond to UV-C. RNA interference–mediated knockdown of PA28γ attenuates the nuclear disruption caused by UV-C. These data demonstrate that CBs are specific nuclear targets of cellular stress-response pathways and identify PA28γ as a novel regulator of CB integrity.
Collapse
Affiliation(s)
- Mario Cioce
- Gene Regulation and Expression Division, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | |
Collapse
|
23
|
Romanova LG, Anger M, Zatsepina OV, Schultz RM. Implication of nucleolar protein SURF6 in ribosome biogenesis and preimplantation mouse development. Biol Reprod 2006; 75:690-6. [PMID: 16855206 DOI: 10.1095/biolreprod.106.054072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The step-wise assembly of a functional nucleolus, which occurs over the first few cell cycles during preimplantation development, is poorly understood. In this study, we examined the function of the evolutionary conserved nucleolar protein SURF6 in preimplantation mouse embryo development. Immunocytochemical analyses revealed that the localization of SURF6 was similar but not identical to those of fibrillarin and B23/nucleophosmin 1, which are involved in rRNA processing and ribosome biogenesis in mammalian somatic cells. Surf6 mRNA, which is expressed in oocytes and maternally inherited in the zygote, reached a peak level of expression during the 8-cell stage of embryo development, at which time rDNA is highly transcribed. Knock-down of Surf6 mRNA by RNAi led to a decrease in both the mRNA and protein levels, and resulted in developmental arrest at the 8-cell/morula stage, as well as a decrease in the level of 18S rRNA. These results suggest that Surf6 is essential for mouse preimplantation development, presumably by regulating ribosome biogenesis.
Collapse
Affiliation(s)
- Ludmila G Romanova
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | | | |
Collapse
|
24
|
Kropotov A, Serikov V, Suh J, Smirnova A, Bashkirov V, Zhivotovsky B, Tomilin N. Constitutive expression of the human peroxiredoxin V gene contributes to protection of the genome from oxidative DNA lesions and to suppression of transcription of noncoding DNA. FEBS J 2006; 273:2607-17. [PMID: 16817890 DOI: 10.1111/j.1742-4658.2006.05265.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Peroxiredoxins belong to a family of antioxidant proteins that neutralize reactive oxygen species. One member of this family, peroxiredoxin I (PRDX1), suppresses DNA oxidation. Peroxiredoxin V (PRDX5) has been cloned as a transcriptional corepressor, as a peroxisomal/mitochondrial antioxidant protein, and as an inhibitor of p53-dependent apoptosis. Promoters of mammalian PRDX5 genes contain clusters of antioxidant response elements, which can bind the transcription factor NRF2. However, we found that expression of the human PRDX5 gene in situ was not stimulated by the oxidative agent menadione. Silencing of the NRF2 gene in the absence of oxidative stress by specific siRNA did not decrease PRDX5 protein concentration. We also constructed clones of human lung epithelial cells A549 with siRNA-mediated knockdown of the PRDX5 gene. This led to a significant increase in 8-oxoguanine formation in cell DNA. In the PRDX5 knockdown clone, an increase in transcripts containing sequences of alpha-satellite and satellite III DNAs was also detected, suggesting that this protein may be required for silencing of heterochromatin. Together, these results suggest that constitutively expressed PRDX5 gene plays an important role in protecting the genome against oxidation and may also be involved in the control of transcription of noncoding DNA.
Collapse
|
25
|
Espert L, Eldin P, Gongora C, Bayard B, Harper F, Chelbi-Alix MK, Bertrand E, Degols G, Mechti N. The exonuclease ISG20 mainly localizes in the nucleolus and the Cajal (Coiled) bodies and is associated with nuclear SMN protein-containing complexes. J Cell Biochem 2006; 98:1320-33. [PMID: 16514659 DOI: 10.1002/jcb.20869] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have previously shown that ISG20, an interferon (IFN)-induced gene, encodes a 3' to 5' exoribonuclease member of the DEDD superfamily of exonucleases. ISG20 specifically degrades single-stranded RNA. In this report, using immunofluorescence analysis, we demonstrate that in addition to a diffuse cytoplasmic and nucleoplasmic localization, the endogenous ISG20 protein was present in the nucleus both in the nucleolus and in the Cajal bodies (CBs). In addition, we show that the ectopic expression of the CBs signature protein, coilin, fused to the red fluorescent protein (coilin-dsRed) increased the number of nuclear dots containing both ISG20 and coilin-dsRed. Using electron microcopy analysis, ISG20 appeared principally concentrated in the dense fibrillar component of the nucleolus, the major site for rRNA processing. We also present evidences that ISG20 was associated with survival of motor neuron (SMN)-containing macromolecular nuclear complexes required for the biogenesis of various small nuclear ribonucleoproteins. Finally, we demonstrate that ISG20 was associated with U1 and U2 snRNAs, and U3 snoRNA. The accumulation of ISG20 in the CBs after IFN treatment strongly suggests its involvement in a new route for IFN-mediated inhibition of protein synthesis by modulating snRNA and rRNA maturation.
Collapse
Affiliation(s)
- Lucile Espert
- UMR 5160 CNRS, EFS, 240 avenue Emile Jeanbrau, 34094 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Verschure PJ, Visser AE, Rots MG. Step out of the Groove: Epigenetic Gene Control Systems and Engineered Transcription Factors. ADVANCES IN GENETICS 2006; 56:163-204. [PMID: 16735158 DOI: 10.1016/s0065-2660(06)56005-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not only directly recruit components of the transcription machinery but also affect the DNA folding. Such proteins, including various chromatin-modifying enzymes, alter among other processes nucleosome positioning and histone modifications and are potentially involved in changing the overall structure of the chromatin and/or the position of chromatin in the nucleus. These epigenetic regulatory features are now known to control and regulate gene expression, although the molecular mechanisms still need to be clarified in more detail. Several diseases are characterized by aberrant gene-expression patterns. Many of these diseases are linked to dysregulation of epigenetic gene-regulatory systems. To interfere with aberrant gene expression, a novel approach is emerging as a disease therapy, involving engineered transcription factors. Engineered transcription factors are based on, for example, zinc-finger proteins (ZFP) that bind DNA in a sequence-specific manner. Engineered transcription factors based on ZFP are fused to effector domains that function to normalize disrupted gene-expression levels. Zinc-finger proteins most likely also influence epigenetic regulatory systems, such as the complex set of chemical histone and DNA modifications, which control chromatin compaction and nuclear organization. In this chapter, we review how epigenetic regulation systems acting at various levels of packaging the genome in the cell nucleus add to gene-expression control at the DNA level. Since an increasing number of diseases are described to have a clear link to epigenetic dysregulation, we here highlight 10 examples of such diseases. In the second part, we describe the different effector domains that have been fused to ZFPs and are capable of activating or silencing endogenous genes, and we illustrate how these effector domains influence epigenetic control mechanisms. Finally, we speculate how accumulating knowledge about epigenetics can be exploited to make such zinc-finger-transcription factors (ZF-TF) even more effective.
Collapse
Affiliation(s)
- Pernette J Verschure
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, 1098SM Amsterdam, The Netherlands.
| | | | | |
Collapse
|
27
|
Handwerger KE, Gall JG. Subnuclear organelles: new insights into form and function. Trends Cell Biol 2006; 16:19-26. [PMID: 16325406 DOI: 10.1016/j.tcb.2005.11.005] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 09/15/2005] [Accepted: 11/21/2005] [Indexed: 11/30/2022]
Abstract
The cell nucleus is a complex and highly dynamic environment with many functionally specialized regions of substructure that form and maintain themselves in the absence of membranes. Relatively little is known about the basic physical properties of the nuclear interior or how domains within the nucleus are structurally and functionally organized and interrelated. Here, we summarize recent data that shed light on the structural and functional properties of three prominent subnuclear organelles--nucleoli, Cajal bodies (CBs) and speckles. We discuss how these findings impact our understanding of the guiding principles of nuclear organization and various types of human disease.
Collapse
Affiliation(s)
- Korie E Handwerger
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
28
|
Xie SQ, Pombo A. Distribution of different phosphorylated forms of RNA polymerase II in relation to Cajal and PML bodies in human cells: an ultrastructural study. Histochem Cell Biol 2005; 125:21-31. [PMID: 16187066 DOI: 10.1007/s00418-005-0064-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2005] [Indexed: 11/29/2022]
Abstract
The mammalian nucleus is a highly organised organelle that contains many subcompartments with roles in DNA replication and repair, gene expression and RNA processing. Cajal and promyelocytic leukaemia (PML) bodies are discrete nuclear structures with specific molecular signatures. RNA polymerase II and many transcription factors have been identified within these compartments by immunofluorescence microscopy, suggesting a role in polymerase II assembly or transcriptional activity. Here, we have examined the presence of different phosphorylated forms of polymerase II and newly made RNA in Cajal and PML bodies using high-resolution imaging of ultrathin cryosections (approximately 120 nm thick) with fluorescence and electron microscopes. We show that Cajal bodies contain polymerase II phosphorylated on Ser5, and not the Ser2-phosphorylated (active) form or newly made RNA. The presence of polymerase II in the absence of transcriptional activity suggests that Cajal bodies have roles in polymerase assembly or transport, but not in gene transcription. PML bodies contain no detectable polymerase II or nascent RNA in HeLa cells, at the resolution achieved by electron microscopy, but are often surrounded by these markers at distances>25 nm. These results support the view that although PML bodies are present in transcriptionally active areas of the nucleus, they are not generally sites of polymerase II assembly, transport or activity.
Collapse
Affiliation(s)
- Sheila Q Xie
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | |
Collapse
|
29
|
Gedge LJE, Morrison EE, Blair GE, Walker JH. Nuclear actin is partially associated with Cajal bodies in human cells in culture and relocates to the nuclear periphery after infection of cells by adenovirus 5. Exp Cell Res 2005; 303:229-39. [PMID: 15652338 DOI: 10.1016/j.yexcr.2004.06.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 06/11/2004] [Accepted: 06/18/2004] [Indexed: 11/25/2022]
Abstract
Cajal bodies are intra-nuclear structures enriched in proteins involved in transcription and mRNA processing. In this study, immunofluorescence microscopy experiments using a highly specific antibody to actin revealed nuclear actin spots that colocalized in part with p80 coilin-positive Cajal bodies. Actin remained associated with Cajal bodies in cells extracted to reveal the nuclear matrix. Adenovirus infection, which is known to disassemble Cajal bodies, resulted in loss of actin from these structures late in infection. In infected cells, nuclear actin was observed to relocate to structures at the periphery of the nucleus, inside the nuclear envelope. Based on these findings, it is suggested that actin may play an important role in the organization or function of the Cajal body.
Collapse
Affiliation(s)
- L J E Gedge
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
30
|
Kavanagh SJ, Schulz TC, Davey P, Claudianos C, Russell C, Rathjen PD. A family of RS domain proteins with novel subcellular localization and trafficking. Nucleic Acids Res 2005; 33:1309-22. [PMID: 15741184 PMCID: PMC552957 DOI: 10.1093/nar/gki269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We report the sequence, conservation and cell biology of a novel protein, Psc1, which is expressed and regulated within the embryonic pluripotent cell population of the mouse. The Psc1 sequence includes an RS domain and an RNA recognition motif (RRM), and a sequential arrangement of protein motifs that has not been demonstrated for other RS domain proteins. This arrangement was conserved in a second mouse protein (BAC34721). The identification of Psc1 and BAC34721 homologues in vertebrates and related proteins, more widely throughout evolution, defines a new family of RS domain proteins termed acidic rich RS (ARRS) domain proteins. Psc1 incorporated into the nuclear speckles, but demonstrated novel aspects of subcellular distribution including localization to speckles proximal to the nuclear periphery and localization to punctate structures in the cytoplasm termed cytospeckles. Integration of Psc1 into cytospeckles was dependent on the RRM. Cytospeckles were dynamic within the cytoplasm and appeared to traffic into the nucleus. These observations suggest a novel role in RNA metabolism for ARRS proteins.
Collapse
Affiliation(s)
- Steven J. Kavanagh
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
| | - Thomas C. Schulz
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
| | - Philippa Davey
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
| | - Charles Claudianos
- Molecular Genetics and Evolution, Research School of Biological Sciences, Australian National UniversityACT 2601, Australia
| | - Carrie Russell
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
| | - Peter D. Rathjen
- School of Molecular and Biomedical Science, University of AdelaideAdelaide 5005, Australia
- Australian Research Council Special Research Centre in Molecular Genetics, University of AdelaideAdelaide 5005, Australia
- National Stem Cell CentreNotting Hill, VIC 3168, Australia
- To whom correspondence should be addressed. Tel: +61 8 8303 5650; Fax: +61 8 8303 4348;
| |
Collapse
|
31
|
Wang A, Ikura T, Eto K, Ota MS. Dynamic interaction of p220(NPAT) and CBP/p300 promotes S-phase entry. Biochem Biophys Res Commun 2005; 325:1509-16. [PMID: 15555599 DOI: 10.1016/j.bbrc.2004.10.198] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Indexed: 11/24/2022]
Abstract
Cajal bodies contain cyclin E/cdk2 and the substrate p220(NPAT) to regulate the transcription of histones, which is essential for cell proliferation, however, recent mouse knockout studies indicate that cyclin E and cdk2 are dispensable for these events. Because the CBP/p300 histone acetyltransferase are also known to be involved in cell proliferation, we examined the molecular and functional interactions of p220(NPAT) with the CBP/p300 at the G1/S boundary as cell cycle regulators. The subnuclear localization of p220(NPAT) and CBP/p300 proteins showed that their foci partially overlapped in a cell cycle dependent manner. Overexpression of p220(NPAT) and CBP/p300 cooperatively enhanced G1/S transition and DNA synthesis even without cdk2 phosphorylation site. Finally, molecular alignment analysis indicated that p220(NPAT) contains several potential substrate sites for CBP/p300. Overall, our findings demonstrate that p220(NPAT) and CBP/p300 form a transient complex at the G1/S boundary to play cooperative roles to promote the S-phase entry.
Collapse
Affiliation(s)
- Aiyan Wang
- Section of Molecular Craniofacial Embryology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
| | | | | | | |
Collapse
|
32
|
Bilinski SM, Jaglarz MK, Szymanska B, Etkin LD, Kloc M. Sm proteins, the constituents of the spliceosome, are components of nuage and mitochondrial cement in Xenopus oocytes. Exp Cell Res 2004; 299:171-8. [PMID: 15302584 DOI: 10.1016/j.yexcr.2004.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 05/20/2004] [Indexed: 10/26/2022]
Abstract
A conserved feature of germ cells in many animal species is the presence of perinuclear electron-dense material called the "nuage" that is believed to be a precursor of germinal (or polar or P) granules. In Xenopus oogenesis the nuage is first observed near the nuclear envelope and subsequently in close contact with mitochondria, at which stage it is called the mitochondrial cement. In this study, we found that, in Xenopus pre-stage I and stage I oocytes, nuage and mitochondrial cement contain the spliceosomal Sm proteins, Xcat2 mRNA, and DEAD-box RNA helicase XVLG1. Other components of Cajal bodies or splicing machinery such as coilin, SMN protein, and snRNAs are absent from the nuage and mitochondrial cement. We suggest that Xenopus Sm proteins have adapted to a role independent of pre-mRNA splicing and that instead of binding to their traditional spliceosomal partner such as snRNA, they bind mRNAs that are the components of germinal granules (i.e., Xcat2 mRNA) and facilitate the transport of these mRNAs from the nucleus to the nuage that is a precursor of germinal granules. In addition, the presence of Vasa-like DEAD-box helicase in Xenopus nuage suggests involvement of nuage in the microRNA and/or RNAi pathway, similar to the role of nuage in Drosophila.
Collapse
|
33
|
Kropotov AV, Grudinkin PS, Pleskach NM, Gavrilov BA, Tomilin NV, Zhivotovsky B. Downregulation of peroxiredoxin V stimulates formation of etoposide-induced double-strand DNA breaks. FEBS Lett 2004; 572:75-9. [PMID: 15304327 DOI: 10.1016/j.febslet.2004.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 07/08/2004] [Accepted: 07/08/2004] [Indexed: 01/17/2023]
Abstract
Antioxidant protein Peroxiredoxin V (PrxV) is located in mitochondria and peroxisomes but is also present in the nucleus. Here, we show that nuclear PrxV associates with coilin-containing bodies suggesting possible interaction of this protein with transcription complexes. We also studied etoposide-induced phosphorylation of histone H2AX (gamma-H2AX) in human cells in which PrxV activity was downregulated (knockdown, KD-clones) or compromised by overexpression of redox-negative (RD) protein. In KD clones, but not in RD-clones, formation of etoposide-induced gamma-H2AX was increased, indicating that PrxV inhibits conversion of topoisomerase II cleavage complexes into double-strand DNA breaks but this inhibition is not caused by its antioxidant activity.
Collapse
Affiliation(s)
- Andrei V Kropotov
- Institute of Cytology, Russian Academy of Sciences, Tikchoretskii Av.4, 194064 St. Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
34
|
Swiatek P, Jaglarz MK. snRNPs are present in the karyosome capsule in the weevil germinal vesicle. Tissue Cell 2004; 36:253-62. [PMID: 15261745 DOI: 10.1016/j.tice.2004.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 03/17/2004] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
Within the oocyte nucleus of the apple blossom weevil, Anthonomus pomorum (Insecta, Coleoptera) highly condensed and transcriptionaly inactive chromosomes form the karyosome. During its formation, within the nucleoplasm numerous, variably sized spherical inclusions termed nuclear bodies occur. As oogenesis progresses, the karyosome is gradually surrounded by a prominent sheath, the karyosome capsule. The function and molecular composition of both the nuclear bodies and the karyosome capsule are largely unknown. Using cytochemical methods we demonstrate that DNA is confined to the karyosome and there is no extrachromosomal DNA accumulations within the nucleoplasm. In addition, none of the oocyte nucleus subdomains contain argyrophilic proteins. Our immunoEM study revealed that in contrast to similar structures in germinal vesicles in other insect species, the nuclear bodies of A. pomorum do not cross-react with antibodies recognising small nuclear ribonucleoproteins, coilin or the splicing factor SC-35. Unexpectedly, we found that as the karyosome capsule develops, mature small nuclear RNAs and proteins containing the Sm epitope associate with the capsule material. We suggest that the karyosome capsule is a storage site for small nuclear ribonucleoprotein particles, which may be used during early embryonic development.
Collapse
Affiliation(s)
- Piotr Swiatek
- Institute of Zoology, Jagiellonian University, R. Ingardena 6, 30-060 Kraków, Poland.
| | | |
Collapse
|
35
|
Lorković ZJ, Hilscher J, Barta A. Use of fluorescent protein tags to study nuclear organization of the spliceosomal machinery in transiently transformed living plant cells. Mol Biol Cell 2004; 15:3233-43. [PMID: 15133128 PMCID: PMC452579 DOI: 10.1091/mbc.e04-01-0055] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 04/29/2004] [Indexed: 01/24/2023] Open
Abstract
Although early studies suggested that little compartmentalization exists within the nucleus, more recent studies on metazoan systems have identified a still increasing number of specific subnuclear compartments. Some of these compartments are dynamic structures; indeed, protein and RNA-protein components can cycle between different domains. This is particularly evident for RNA processing components. In plants, lack of tools has hampered studies on nuclear compartmentalization and dynamics of RNA processing components. Here, we show that transient expression of fluorescent protein fusions of U1 and U2 small nuclear ribonucleoprotein particle (snRNP)-specific proteins U1-70K, U2B", and U2A ', nucleolar proteins Nop10 and PRH75, and serine-arginine-rich proteins in plant protoplasts results in their correct localization. Furthermore, snRNP-specific proteins also were correctly assembled into mature snRNPs. This system allowed a systematic analysis of the cellular localization of Arabidopsis serine-arginine-rich proteins, which, like their animal counterparts, localize to speckles but not to nucleoli and Cajal bodies. Finally, markers for three different nuclear compartments, namely, nucleoli, Cajal bodies, and speckles, have been established and were shown to be applicable for colocalization studies in living plant protoplasts. Thus, transient expression of proteins tagged with four different fluorescent proteins is a suitable system for studying the nuclear organization of spliceosomal proteins in living plant cells and should therefore allow studies of their dynamics as well.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Cell Nucleolus/immunology
- Cell Nucleolus/metabolism
- Cell Nucleolus/ultrastructure
- Cell Nucleus Structures/chemistry
- Chloroplasts/metabolism
- Coiled Bodies/metabolism
- Luminescent Proteins/analysis
- Luminescent Proteins/genetics
- Microscopy, Fluorescence
- Nuclear Proteins/analysis
- Nuclear Proteins/metabolism
- Phosphoproteins/analysis
- Phosphoproteins/metabolism
- Plant Proteins/analysis
- Protoplasts/metabolism
- RNA-Binding Proteins
- Ribonucleoprotein, U1 Small Nuclear/analysis
- Ribonucleoprotein, U1 Small Nuclear/genetics
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Ribonucleoprotein, U2 Small Nuclear/analysis
- Ribonucleoprotein, U2 Small Nuclear/genetics
- Ribonucleoprotein, U2 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/analysis
- Ribonucleoproteins, Small Nuclear/metabolism
- Serine-Arginine Splicing Factors
- Spliceosomes/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
- Transformation, Genetic
Collapse
Affiliation(s)
- Zdravko J Lorković
- Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Institute of Medical Biochemistry, 1030 Vienna, Austria.
| | | | | |
Collapse
|
36
|
Beenders B, Watrin E, Legagneux V, Kireev I, Bellini M. Distribution of XCAP-E and XCAP-D2 in the Xenopus oocyte nucleus. Chromosome Res 2004; 11:549-64. [PMID: 14516064 DOI: 10.1023/a:1024999316867] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several antibodies were used to examine the distribution of two condensin members, XCAP-E and XCAP-D2, in the nucleus of Xenopus oocytes. XCAP-D2 was found to be associated with the lampbrush chromosomes. The chromosomal regions containing XCAP-D2 correspond precisely to domains of highly compacted chromatin, suggesting a direct contribution of XCAP-D2 in meiotic chromatin organization. In contrast, XCAP-E was found to be absent from chromosomes but was detected at a high concentration in the granular component of nucleoli. The subnucleolar localization of XCAP-E was further confirmed by double labeling using several nucleolar protein markers. The fate of nucleolar XCAP-E was also followed when changes in the nucleoli morphology were artificially induced. The apparent exclusion of XCAP-E from the ribosomal DNA and its tight association with the granular component in all preparations suggest that it might be sequestrated in nucleoli during early stages of meiosis. Interestingly, both XCAP-D2 and XCAP-E were also detected in Cajal bodies, which are organelles suspected to play a role in the assembly/modification of the RNA transcription and processing machinery. The presence of two condensins in CBs might extend such a role of assembly to chromatin macromolecular components as well.
Collapse
Affiliation(s)
- Brent Beenders
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
37
|
Long H, Sun H, Zeng X, Hao S, Jiao M. Identification and characterization of coiled body-like structures in pea (Pisum sativum L.). Cell Biol Int 2004; 28:825-8. [PMID: 15563405 DOI: 10.1016/j.cellbi.2004.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 07/20/2004] [Accepted: 08/12/2004] [Indexed: 11/26/2022]
Abstract
Coiled bodies (CBs) are nuclear organelles which were considered as "universal" nuclear structures in eukaryotic cells, but the formation and function of CBs, especially in plant cells, remained unclear. In this article we reported that CBs in meristematic cells of pea are oval to round obstacles in nucleus and in adjacent to nucleolus, often have the same electron density with nucleolus. We found that CBs could be stained by the rRNP preference staining method, but no rDNA was detected in the structure. Furthermore, our results of immunoelectron microscopy showed that several processing factors, include fibrillarin, U3 snoRNA and ITS1, were present in CB. It seems probable that CBs is derived structurally from nucleolus and act as transport, storage and processing subnucleolar organelles.
Collapse
Affiliation(s)
- Hong Long
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, PR China
| | | | | | | | | |
Collapse
|
38
|
Richard P, Darzacq X, Bertrand E, Jády BE, Verheggen C, Kiss T. A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs. EMBO J 2003; 22:4283-93. [PMID: 12912925 PMCID: PMC175784 DOI: 10.1093/emboj/cdg394] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional synthesis of 2'-O-methylated nucleotides and pseudouridines in Sm spliceosomal small nuclear RNAs takes place in the nucleoplasmic Cajal bodies and it is directed by guide RNAs (scaRNAs) that are structurally and functionally indistinguishable from small nucleolar RNAs (snoRNAs) directing rRNA modification in the nucleolus. The scaRNAs are synthesized in the nucleoplasm and specifically targeted to Cajal bodies. Here, mutational analysis of the human U85 box C/D-H/ACA scaRNA, followed by in situ localization, demonstrates that box H/ACA scaRNAs share a common Cajal body-specific localization signal, the CAB box. Two copies of the evolutionarily conserved CAB consensus (UGAG) are located in the terminal loops of the 5' and 3' hairpins of the box H/ACA domains of mammalian, Drosophila and plant scaRNAs. Upon alteration of the CAB boxes, mutant scaRNAs accumulate in the nucleolus. In turn, authentic snoRNAs can be targeted into Cajal bodies by addition of exogenous CAB box motifs. Our results indicate that scaRNAs represent an ancient group of small nuclear RNAs which are localized to Cajal bodies by an evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Patricia Richard
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
39
|
Malatesta M, Baldelli B, Marcheggiani F, Gazzanelli G. Immunocytochemical analysis of the circadian clock protein in mouse hepatocytes. Microsc Res Tech 2003; 61:414-8. [PMID: 12845566 DOI: 10.1002/jemt.10310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many biochemical, physiological, and behavioral processes in organisms ranging from prokaryotes to humans exhibit circadian rhythms, defined as cyclic oscillations of about 24 hours. The mechanism of the cellular circadian clock relies on interlocking positive and negative transcriptional/translational feedback loops based on the regulated expression of several genes. Clock is one of these genes and its transcript, CLOCK protein, is a transcription factor belonging to the bHLH-PAS family. In mammals the clock gene is expressed in several tissues, including the liver. In the present study, we analyzed by means of quali-quantitative immunoelectron microscopy the fine intracellular distribution of the CLOCK protein in mouse hepatocytes during the daily cycle. We demonstrated that CLOCK protein is mostly located in the cell nucleus, where it accumulates on perichromatin fibrils, representing the in situ form of nascent pre-mRNA, while condensed chromatin and nucleoli contain lower amounts of protein. Moreover, we found that CLOCK protein shows circadian oscillations in these nuclear compartments, peaking in late afternoon. At this time the hepatic transcriptional rate reaches the maximal level, thus suggesting an important role of CLOCK protein in the regulation of liver gene expression.
Collapse
Affiliation(s)
- Manuela Malatesta
- Istituto di Istologia ed Analisi di Laboratorio, University of Urbino, I-61029 Urbino, Italy.
| | | | | | | |
Collapse
|
40
|
Colón-Ramos DA, Salisbury JL, Sanders MA, Shenoy SM, Singer RH, García-Blanco MA. Asymmetric distribution of nuclear pore complexes and the cytoplasmic localization of beta2-tubulin mRNA in Chlamydomonas reinhardtii. Dev Cell 2003; 4:941-52. [PMID: 12791277 DOI: 10.1016/s1534-5807(03)00163-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although it is generally accepted that nuclear architecture is an important determinant of nuclear activity, it is not clear whether cytoplasmic events, such as transcript localization and cell polarity, are affected by this architecture. Characterization of the nuclear architecture of the single-cell alga Chlamydomonas reinhardtii revealed a polarized nucleus, with nuclear pore complexes preferentially concentrated at the posterior side of the nucleus. Nuclear asymmetry was greatly exaggerated during the upregulation of genes encoding flagellar proteins, when nuclear pore complexes (NPCs) were observed to hyperpolarize to the posterior side of the nucleus while heterochromatin polarized to the anterior side. Interestingly, prior to deflagellation, the beta2-tubulin gene was preferentially located in the posterior region of the nucleus, and following deflagellation, beta2-tubulin transcripts accumulated posteriorly in polysome-rich cytoplasmic regions adjacent to the highest concentration of NPCs, suggesting a connection between nuclear architecture and cytoplasmic transcript localization.
Collapse
Affiliation(s)
- Daniel A Colón-Ramos
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
41
|
Zatsepina O, Baly C, Chebrout M, Debey P. The step-wise assembly of a functional nucleolus in preimplantation mouse embryos involves the cajal (coiled) body. Dev Biol 2003; 253:66-83. [PMID: 12490198 DOI: 10.1006/dbio.2002.0865] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After fertilization, ribosomal RNA synthesis is silenced during a period which depends on the species. Data concerning the reassembly of a functional nucleolus remain scarce. We have examined by immunocytochemistry, Western blots, and BrUTP microinjection the dynamics of major nucleolar proteins during the first cycles of mouse embryogenesis, in relation to rDNA transcription sites and coilin, a marker of Cajal bodies. We show that: (1) the reinitiation of rDNA transcription occurs at the two-cell stage, 44-45 h after hCG injection (hphCG), at the surface of the nucleolar precursor bodies (NPBs), where the RNA polymerase I (pol I) transcription complex is recruited 4-5 h before; (2) the NPBs are not equal in their ability to support recruitment of pol I and rDNA transcription; (3) maternally inherited fibrillarin undergoes a dynamic redistribution during the second cell stage, together with coilin, leading to the assembly of the Cajal body around 40 hphCG; and (4) the pol I complex is first recruited to the Cajal body before reaching its rDNA template. We also find that fibrillarin and B23 are both directly assembled around NPBs prior to ongoing pre-rRNA synthesis. Altogether, our results reveal a role of the Cajal bodies in the building of a functional nucleolus.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Nucleolus
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/genetics
- Coiled Bodies
- DNA, Ribosomal/genetics
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/ultrastructure
- Embryonic Development
- Female
- Genomic Imprinting
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Microscopy, Fluorescence
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Pregnancy
- RNA Polymerase I/metabolism
- RNA, Ribosomal/biosynthesis
- Transcription, Genetic
Collapse
Affiliation(s)
- Olga Zatsepina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Russia
| | | | | | | |
Collapse
|
42
|
Lin PS, Marshall NF, Dahmus ME. CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 72:333-65. [PMID: 12206456 DOI: 10.1016/s0079-6603(02)72074-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The repetitive C-terminal domain (CTD) of the largest RNA polymerase II subunit plays a critical role in the regulation of gene expression. The activity of the CTD is dependent on its state of phosphorylation. A variety of CTD kinases act on RNA polymerase II at specific steps in the transcription cycle and preferentially phosphorylate distinct positions within the CTD consensus repeat. A single CTD phosphatase has been identified and characterized that in concert with CTD kinases establishes the level of CTD phosphorylation. The involvement of CTD phosphatase in controlling the progression of RNAP II around the transcription cycle, the mobilization of stored RNAP IIO, and the regulation of transcript elongation and RNA processing is discussed.
Collapse
|
43
|
Murphy C, Wang Z, Roeder RG, Gall JG. RNA polymerase III in Cajal bodies and lampbrush chromosomes of the Xenopus oocyte nucleus. Mol Biol Cell 2002; 13:3466-76. [PMID: 12388750 PMCID: PMC129959 DOI: 10.1091/mbc.e02-05-0281] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We used immunofluorescence to study the distribution and targeting of RNA polymerase (pol) III subunits and pol III transcription factors in the Xenopus laevis oocyte nucleus. Antibodies against several of these proteins stained Cajal bodies and approximately 90 specific sites on the lampbrush chromosomes. Some of the chromosomal sites had been identified previously by in situ hybridization as the genes for 5S rRNA. The remaining sites presumably encode tRNAs and other pol III transcripts. Pol III sites were often resolvable as loops similar to the much more abundant pol II loops, but without a matrix detectable by phase contrast or differential interference contrast. This morphology is consistent with the transcription of short repeated sequences. Hemagglutinin-tagged transcripts encoding core subunits and transcription factors were injected into the oocyte cytoplasm, and the distribution of newly translated proteins inside the nucleus was monitored by immunostaining. Cajal bodies were preferentially targeted by these proteins, and in some cases the chromosomal sites were also weakly stained. The existence of pol III subunits and pol III transcription factors in Cajal bodies and their targeting to these organelles are consistent with a model of Cajal bodies as sites for preassembly of the nuclear transcription machinery.
Collapse
Affiliation(s)
- Christine Murphy
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21210, USA
| | | | | | | |
Collapse
|
44
|
Lam YW, Lyon CE, Lamond AI. Large-scale isolation of Cajal bodies from HeLa cells. Mol Biol Cell 2002; 13:2461-73. [PMID: 12134083 PMCID: PMC117327 DOI: 10.1091/mbc.02-03-0034] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Revised: 02/20/2002] [Accepted: 04/05/2002] [Indexed: 11/11/2022] Open
Abstract
The Cajal body (CB) is a conserved, dynamic nuclear structure that is implicated in various cellular processes, such as the maturation of splicing small nuclear ribonucleoproteins and the assembly of transcription complexes. Here, we report the first procedure for the large-scale purification of CBs from HeLa cell nuclei, resulting in an approximately 750-fold enrichment of the CB marker protein p80-coilin. Immunofluorescence, immunoblotting, and mass spectrometric analyses showed that the composition of the isolated CBs was similar to that of CBs in situ. The morphology and structure of the isolated CBs, as judged by transmission and scanning electron microscopy analysis, are also similar to those of CBs in situ. This protocol demonstrates the feasibility of isolating intact distinct classes of subnuclear bodies from cultured cells in sufficient yield and purity to allow detailed characterization of their molecular composition, structure, and properties.
Collapse
Affiliation(s)
- Yun Wah Lam
- Wellcome Trust Biocentre, MSI/WTB Complex, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
| | | | | |
Collapse
|
45
|
Abstract
Gene expression in eukaryotes requires several multi-component cellular machines. Each machine carries out a separate step in the gene expression pathway, which includes transcription, several pre-messenger RNA processing steps and the export of mature mRNA to the cytoplasm. Recent studies lead to the view that, in contrast to a simple linear assembly line, a complex and extensively coupled network has evolved to coordinate the activities of the gene expression machines. The extensive coupling is consistent with a model in which the machines are tethered to each other to form 'gene expression factories' that maximize the efficiency and specificity of each step in gene expression.
Collapse
Affiliation(s)
- Tom Maniatis
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
46
|
Olson MOJ, Hingorani K, Szebeni A. Conventional and nonconventional roles of the nucleolus. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 219:199-266. [PMID: 12211630 PMCID: PMC7133188 DOI: 10.1016/s0074-7696(02)19014-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the most prominent of subnuclear structures, the nucleolus has a well-established role in ribosomal subunit assembly. Additional nucleolar functions, not related to ribosome biogenesis, have been discovered within the last decade. Built around multiple copies of the genes for preribosomal RNA (rDNA), nucleolar structure is largely dependent on the process of ribosome assembly. The nucleolus is disassembled during mitosis at which time preribosomal RNA transcription and processing are suppressed; it is reassembled at the end of mitosis in part from components preserved from the previous cell cycle. Expression of preribosomal RNA (pre-rRNA) is regulated by the silencing of individual rDNA genes via alterations in chromatin structure or by controlling RNA polymerase I initiation complex formation. Preribosomal RNA processing and posttranscriptional modifications are guided by a multitude of small nucleolar RNAs. Nearly completed ribosomal subunits are exported to the cytoplasm by an established nuclear export system with the aid of specialized adapter molecules. Some preribosomal and nucleolar components are transiently localized in Cajal bodies, presumably for modification or assembly. The nonconventional functions of nucleolus include roles in viral infections, nuclear export, sequestration of regulatory molecules, modification of small RNAs, RNP assembly, and control of aging, although some of these functions are not well established. Additional progress in defining the mechanisms of each step in ribosome biogenesis as well as clarification of the precise role of the nucleolus in nonconventional activities is expected in the next decade.
Collapse
Affiliation(s)
- Mark O J Olson
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
47
|
Bogolyubov D, Parfenov V. Immunogold localization of RNA polymerase II and pre-mRNA splicing factors in Tenebrio molitor oocyte nuclei with special emphasis on karyosphere development. Tissue Cell 2001; 33:549-61. [PMID: 11827099 DOI: 10.1054/tice.2001.0210] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ultrastructural and immunomorphological characteristics of the developing karyosphere and extrachromosomal nuclear bodies (NBs) in Tenebrio molitor oocytes are presented. Three consecutive stages of karyosphere development were identified: reticular, compact and ring-shaped. At the beginning of the karyosphere development (reticular and compact stages), condensed chromosomes are associated with a fibrogranular material (FGM). The successive karyosphere development is accompanied by the reorganization of FGM into fibrogranular NBs. Special attention was given to the nuclear distribution of hyperphosphorylated and non-phosphorylated forms of RNA polymerase II (pol II) and pre-mRNA splicing factors (snRNPs and SC35 protein) during karyosphere development and NB formation. The immunoelectron microscopy revealed that two forms of pol II and splicing factors being assembled in FGM are deposited in appropriate NBs. Some NBs were also shown to contain coilin, a marker protein for Cajal (coiled) bodies. We suggest that different types of NBs appearing in T. molitor oocyte nuclei along with the cessation of transcriptional activity during the karyosphere development represent storage domains for inactive RNA transcription/processing machinery to later usage in early embryogenesis.
Collapse
Affiliation(s)
- D Bogolyubov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg.
| | | |
Collapse
|