1
|
Priya M, Farooq M, Siddique KHM. Enhancing Tolerance to Combined Heat and Drought Stress in Cool-Season Grain Legumes: Mechanisms, Genetic Insights, and Future Directions. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39829217 DOI: 10.1111/pce.15382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
The increasing frequency of concurrent heat and drought stress poses a significant challenge to agricultural productivity, particularly for cool-season grain legumes, including broad bean (Vicia Faba L.), lupin (Lupinus spp.), lentil (Lens culinaris Medik), chickpea (Cicer arietinum L.), grasspea (Lathyrus sativus L.), pea (Pisum sativum L.), and common vetch (Vicia sativa L.). These legumes play a vital role in sustainable agricultural systems due to their nitrogen-fixing ability and high nutritional value. This review synthesizes current knowledge of the impacts and tolerance mechanisms associated with combined heat and drought stresses in these crops. We evaluate physiological and biochemical responses to combined heat and drought stress, focusing on their detrimental effects on growth, development, and yield. Key genetic and molecular mechanisms, such as the roles of osmolytes, antioxidants, and stress-responsive genes, are explored. We also discuss the intricate interplay between heat and drought stress signaling pathways, including the involvement of Ca2+ ions, reactive oxygen species, transcription factor DREB2A, and the endoplasmic reticulum in mediating stress responses. This comprehensive analysis offers new insights into developing resilient legume varieties to enhance agricultural sustainability under climate change. Future research should prioritize integrating omics technologies to unravel plant responses to combined abiotic stresses.
Collapse
Affiliation(s)
- Manu Priya
- Cranberry Research Station, University of Massachusetts, East Wareham, Massachusetts, USA
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| | - Kadambot H M Siddique
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| |
Collapse
|
2
|
Qin C, Fan X, Fang Q, Yu H, Ni L, Jiang M. Abscisic acid-induced H 2O 2 production positively regulates the activity of SAPK8/9/10 through oxidation of the type one protein phosphatase OsPP47. THE NEW PHYTOLOGIST 2024; 244:1345-1361. [PMID: 39219038 DOI: 10.1111/nph.20092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Subclass III sucrose nonfermenting1-related protein kinase 2s (SnRK2s) are positive regulators of abscisic acid (ABA) signaling and abiotic stress responses. However, the underlying activation mechanisms of osmotic stress/ABA-activated protein kinase 8/9/10 (SAPK8/9/10) of rice (Oryza sativa) subclass III SnRK2s in ABA signaling remain to be elucidated. In this study, we employed biochemical, molecular biology, cell biology, and genetic approaches to identify the molecular mechanism by which OsPP47, a type one protein phosphatase in rice, regulates SAPK8/9/10 activity in ABA signaling. We found that OsPP47 not only physically interacted with SAPK8/9/10 but also interacted with ABA receptors PYLs. OsPP47 negatively regulated ABA sensitivity in seed germination and root growth. In the absence of ABA, OsPP47 directly inactivated SAPK8/9/10 by dephosphorylation. In the presence of ABA, ABA-bound OsPYL2 formed complexes with OsPP47 and inhibited its phosphatase activity, partially releasing the inhibition of SAPK8/9/10. SAPK8/9/10-mediated H2O2 production inhibited OsPP47 activity by oxidizing Cys-116 and Cys-256 to form OsPP47 oligomers, resulting in not only preventing the OsPP47-SAPK8/9/10 interaction but also blocking the inhibition of SAPK8/9/10 activity by OsPP47. Our results reveal novel pathways for the inhibition of SAPK8/9/10 in the basal state and for the activation of SAPK8/9/10 induced by ABA in rice.
Collapse
Affiliation(s)
- Caihua Qin
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Fan
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qianqian Fang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honghua Yu
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lan Ni
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- College of Life Sciences, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Gan X, Sengottaiyan P, Park KH, Assmann SM, Albert R. A network-based modeling framework reveals the core signal transduction network underlying high carbon dioxide-induced stomatal closure in guard cells. PLoS Biol 2024; 22:e3002592. [PMID: 38691548 PMCID: PMC11090369 DOI: 10.1371/journal.pbio.3002592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/13/2024] [Accepted: 03/15/2024] [Indexed: 05/03/2024] Open
Abstract
Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.
Collapse
Affiliation(s)
- Xiao Gan
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Palanivelu Sengottaiyan
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kyu Hyong Park
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Réka Albert
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
4
|
Sato H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Complex plant responses to drought and heat stress under climate change. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1873-1892. [PMID: 38168757 DOI: 10.1111/tpj.16612] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuraoka, Setagara-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
5
|
Chen J, Jin Z, Xiang L, Chen Y, Zhang J, Zhao J, Huang F, Shi Y, Cheng F, Pan G. Ethanol suppresses rice seed germination through inhibiting ROS signaling. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154123. [PMID: 37907025 DOI: 10.1016/j.jplph.2023.154123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
Ethanol is frequently used not only as priming but also as a solvent to dissolve hardly water-soluble phytohormones gibberellic acid (GA3) and abscisic acid (ABA) in seed germination. However, the molecular and physiological mechanisms of ethanol's impact on seed germination remain elusive. In this report, we investigated how ethanol affected reactive oxygen species (ROS) during rice seed germination. Ethanol at a concentration of 3.5% (v/v) inhibited 90% seed germination, which was almost reversed by H2O2. H2O2 contents in embryos were reduced by ethanol after 18 h imbibition. Antioxidant enzymes assays revealed that only superoxide dismutase (SOD) activities in seed embryos were lowered by ethanol, in line with the suppressed mRNA expression of SOD genes during imbibition. Additionally, compared to the mock condition, ethanol increased ABA contents but decreased GA (GA1 and GA3) in seed embryos, resulting in disharmonizing GA/ABA balance. Conceivably ethanol induced transcription of OsNCEDs, the key genes for ABA biosynthesis, and OsABA8ox3, a key gene for ABA catabolism. Furthermore, ethanol promoted ABA signaling by upregulating ABA receptor genes and ABA-responsive element (ABRE)-binding protein/ABRE-binding factors during imbibition. Overall, our results demonstrate that lowering of H2O2 levels due to suppressed SOD activities in rice germinating seed embryos is the decisive factor for ethanol-induced inhibition of seed germination, and GA/ABA balance and ABA signaling also play important roles in ethanol's inhibitory impact on seed germination.
Collapse
Affiliation(s)
- Jiameng Chen
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Zeyan Jin
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Longyi Xiang
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Yanyan Chen
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Jie Zhang
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Jiayi Zhao
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Fudeng Huang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Yongfeng Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, PR China
| | - Fangmin Cheng
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China
| | - Gang Pan
- Department of Agronomy, Zijingang Campus, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
6
|
Qin Q. ROS: Important factor in plant stem cell fate regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154082. [PMID: 37690340 DOI: 10.1016/j.jplph.2023.154082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Reactive oxygen species (ROS) are initially considered to be toxic byproducts of aerobic metabolic reactions. However, increasing evidence has shown that they have emerged as signaling molecules involved in several basic biological processes. Recent studies highlight the pivotal role of ROS in the maintenance of shoot and root stem cell niche. In this review, we discuss the impact of ROS distribution and their gradients on the stability of the stem cell niches (SCN) in shoot apical meristem (SAM) and root apical meristem (RAM) by determining the balance between stemness and differentiation. We also summarize several important transcription factors that are involved in the regulation of ROS balance in SAM and RAM, regulating key enzymes in ROS metabolism, especially SOD and peroxidase. ROS are also tightly interconnected with phytohormones in the control of the stem cell fate. Besides, ROS are also important regulators of the cell cycle in controlling the size of the stem cells. Understanding the regulation mechanisms of ROS production, polarization gradient distribution, homeostasis, and downstream signal transduction in cells will open exciting new perspectives for plant developmental biology.
Collapse
Affiliation(s)
- Qianqian Qin
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Key Laboratory of Gene Editing for Breeding, Gansu Province, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
7
|
De Brasi-Velasco S, Sánchez-Guerrero A, Castillo MC, Vertommen D, León J, Sevilla F, Jiménez A. Thioredoxin TRXo1 is involved in ABA perception via PYR1 redox regulation. Redox Biol 2023; 63:102750. [PMID: 37269685 DOI: 10.1016/j.redox.2023.102750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/05/2023] Open
Abstract
Abscisic acid (ABA) plays a fundamental role in plant growth and development processes such as seed germination, stomatal response or adaptation to stress, amongst others. Increases in the endogenous ABA content is recognized by specific receptors of the PYR/PYL/RCAR family that are coupled to a phosphorylation cascade targeting transcription factors and ion channels. Just like other receptors of the family, nuclear receptor PYR1 binds ABA and inhibits the activity of type 2C phosphatases (PP2Cs), thus avoiding the phosphatase-exerted inhibition on SnRK2 kinases, positive regulators which phosphorylate targets and trigger ABA signalling. Thioredoxins (TRXs) are key components of cellular redox homeostasis that regulate specific target proteins through a thiol-disulfide exchange, playing an essential role in redox homeostasis, cell survival, and growth. In higher plants, TRXs have been found in almost all cellular compartments, although its presence and role in nucleus has been less studied. In this work, affinity chromatography, Dot-blot, co-immunoprecipitation, and bimolecular fluorescence complementation assays allowed us to identify PYR1 as a new TRXo1 target in the nucleus. Studies on recombinant HisAtPYR1 oxidation-reduction with wild type and site-specific mutagenized forms showed that the receptor underwent redox regulation involving changes in the oligomeric state in which Cys30 and Cys65 residues were implied. TRXo1 was able to reduce previously-oxidized inactive PYR1, thus recovering its capacity to inhibit HAB1 phosphatase. In vivo PYR1 oligomerization was dependent on the redox state, and a differential pattern was detected in KO and over-expressing Attrxo1 mutant plants grown in the presence of ABA compared to WT plants. Thus, our findings suggest the existence of a redox regulation of TRXo1 on PYR1 that may be relevant for ABA signalling and had not been described so far.
Collapse
Affiliation(s)
| | | | - Mari-Cruz Castillo
- Institute of Plant Molecular and Cellular Biology (IBMCP CSIC-UPV), E-46022, Valencia, Spain.
| | - Didier Vertommen
- de Duve Institute and MASSPROT Platform UCLouvain, 1200, Brussels, Belgium.
| | - José León
- Institute of Plant Molecular and Cellular Biology (IBMCP CSIC-UPV), E-46022, Valencia, Spain.
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, E-30100, Murcia, Spain.
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, E-30100, Murcia, Spain.
| |
Collapse
|
8
|
Wang L, Zhou Y, Ding Y, Chen C, Chen X, Su N, Zhang X, Pan Y, Li J. Novel flavin-containing monooxygenase protein FMO1 interacts with CAT2 to negatively regulate drought tolerance through ROS homeostasis and ABA signaling pathway in tomato. HORTICULTURE RESEARCH 2023; 10:uhad037. [PMID: 37101513 PMCID: PMC10124749 DOI: 10.1093/hr/uhad037] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Drought stress is the major abiotic factor that can seriously affect plant growth and crop production. The functions of flavin-containing monooxygenases (FMOs) are known in animals. They add molecular oxygen to lipophilic compounds or produce reactive oxygen species (ROS). However, little information on FMOs in plants is available. Here, we characterized a tomato drought-responsive gene that showed homology to FMO, and it was designated as FMO1. FMO1 was downregulated promptly by drought and ABA treatments. Transgenic functional analysis indicated that RNAi suppression of the expression of FMO1 (FMO1-Ri) improved drought tolerance relative to wild-type (WT) plants, whereas overexpression of FMO1 (FMO1-OE) reduced drought tolerance. The FMO1-Ri plants exhibited lower ABA accumulation, higher levels of antioxidant enzyme activities, and less ROS generation compared with the WT and FMO1-OE plants under drought stress. RNA-seq transcriptional analysis revealed the differential expression levels of many drought-responsive genes that were co-expressed with FMO1, including PP2Cs, PYLs, WRKY, and LEA. Using Y2H screening, we found that FMO1 physically interacted with catalase 2 (CAT2), which is an antioxidant enzyme and confers drought resistance. Our findings suggest that tomato FMO1 negatively regulates tomato drought tolerance in the ABA-dependent pathway and modulates ROS homeostasis by directly binding to SlCAT2.
Collapse
Affiliation(s)
| | | | - Yin Ding
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Chunrui Chen
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xueting Chen
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Nini Su
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xingguo Zhang
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Yu Pan
- State Cultivation Base of Crop Stress Biology for Southern Mountainous land of Southwest University, Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | | |
Collapse
|
9
|
Freytag C, Garda T, Kónya Z, M-Hamvas M, Tóth-Várady B, Juhász GP, Ujlaky-Nagy L, Kelemen A, Vasas G, Máthé C. B" and C subunits of PP2A regulate the levels of reactive oxygen species and superoxide dismutase activities in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:182-192. [PMID: 36640685 DOI: 10.1016/j.plaphy.2022.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The serine-threonine protein phosphatases PP2A regulate many cellular processes, however their role in oxidative stress responses and defence is less known. We show the involvement of its C (catalytic) and B" (a regulatory) subunits. The c3c4 (C subunit) and fass (B") subunit mutants and Col wt of Arabidopsis were used. Controls and treatments with the PP2A inhibitor microcystin-LR (MCY-LR) and reactive oxygen species (ROS) inducer diquat (DQ) were employed. ROS levels of primary roots were largely genotype dependent and both C and B" subunit mutants had increased sensitivity to MCY-LR and DQ indicating the involvement of these subunits in oxidative stress induction. Superoxide dismutases (SOD), mainly the Cu/Zn-SOD isoform, as key enzymes involved in ROS scavenging are also showing altered (mostly increased) activities in both c3c4 and fass mutants and have opposite relations to ROS induction. This indicates that the two types of subunits involved have partially different regulatory roles. In relation to this, control and MCY-LR/DQ treated B" subunit mutants were proven to have altered levels of phosphorylation of histone H2AX. γH2AX, the phosphorylated form indicates double stranded DNA damage during oxidative stress. Overall we point out the probable pivotal role of several PP2A subunits in the regulation of oxidative stress responses in plants and pave the way for future research to reveal the signaling pathways involved.
Collapse
Affiliation(s)
- Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Zoltán Kónya
- Department of Medical Chemisty, Faculty of Medicine, University of Debrecen, Hungary.
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Balázs Tóth-Várady
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Gabriella Petra Juhász
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - László Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary.
| | - Adrienn Kelemen
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Gábor Vasas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| | - Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary.
| |
Collapse
|
10
|
Yang Z, Qin F. The battle of crops against drought: Genetic dissection and improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:496-525. [PMID: 36639908 DOI: 10.1111/jipb.13451] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
With ongoing global climate change, water scarcity-induced drought stress remains a major threat to agricultural productivity. Plants undergo a series of physiological and morphological changes to cope with drought stress, including stomatal closure to reduce transpiration and changes in root architecture to optimize water uptake. Combined phenotypic and multi-omics studies have recently identified a number of drought-related genetic resources in different crop species. The functional dissection of these genes using molecular techniques has enriched our understanding of drought responses in crops and has provided genetic targets for enhancing resistance to drought. Here, we review recent advances in the cloning and functional analysis of drought resistance genes and the development of technologies to mitigate the threat of drought to crop production.
Collapse
Affiliation(s)
- Zhirui Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Feng Qin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
11
|
Zhao W, Huang H, Wang J, Wang X, Xu B, Yao X, Sun L, Yang R, Wang J, Sun A, Wang S. Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:546-561. [PMID: 36534116 DOI: 10.1111/tpj.16067] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The jasmonic acid (JA) signaling pathway is involved in the plant response to drought stress. JA and other hormones synergistically regulate the drought response in plants. However, the molecular mechanism underlying this synergism remains poorly defined. In the present study, transcriptome analyses of guard cells and quantitative PCR experiments revealed that MYC2 negatively regulated the negative regulator of ABA signaling, SlPP2C1, and the type-B response regulator in the cytokinin pathway, SlRR26, and this negative regulation was direct. SlRR26 overexpression reduced drought tolerance in transgenic tomatoes, whereas slrr26cr lines were more tolerant to drought. SlRR26 negatively modulated reactive oxygen species levels in stomata and stomatal closure through RobhB. Moreover, SlRR26 overexpression counteracted JA-mediated stomatal closure, suggesting that SlRR26 played a negative role in the JA-mediated drought response. These findings suggest that MYC2 plays a key role in JA-regulated stomatal closure under drought stress by inhibiting SlPP2C1 and SlRR26.
Collapse
Affiliation(s)
- Wenchao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jingjing Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoyun Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Bingqin Xu
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuehui Yao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jianli Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Aidong Sun
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 10083, China
| | - Shaohui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
12
|
Roeder J, Liu J, Doch I, Ruschhaupt M, Christmann A, Grill E, Helmke H, Hohmann S, Lehr S, Frackenpohl J, Yang Z. Abscisic acid agonists suitable for optimizing plant water use. FRONTIERS IN PLANT SCIENCE 2023; 13:1071710. [PMID: 36743550 PMCID: PMC9894685 DOI: 10.3389/fpls.2022.1071710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Climate change and overexploitation of groundwater resources cause constraints on water demand for agriculture, thus threatening crop productivity. For future food security, there is an urgent need for crops of high water use efficiency combined with high crop productivity, i.e. having high water productivity. High water productivity means efficient biomass accumulation at reduced transpiration. Recent studies show that plants are able to optimize carbon uptake per water transpired with little or no trade-off in yield. The phytohormone abscisic acid (ABA) plays a pivotal role in minimizing leaf transpiration and mediating enhanced water productivity. Hence, ABA and more chemically stable ABA agonists have the potential to improve crop water productivity. Synthesis, screening, and identification of suitable ABA agonists are major efforts currently undertaken. In this study, we used yeast expressing the plant ABA signal pathway to prescreen ABA-related cyano cyclopropyl compounds (CCPs). The yeast analysis allowed testing the ABA agonists for general toxicity, efficient uptake, and specificity in regulating different ABA receptor complexes. Subsequently, promising ABA-mimics were analyzed in vitro for ligand-receptor interaction complemented by physiological analyses. Several CCPs activated ABA signaling in yeast and plant cells. CCP1, CCP2, and CCP5 were by an order of magnitude more efficient than ABA in minimizing transpiration of Arabidopsis plants. In a progressive drought experiment, CCP2 mediated an increase in water use efficiency superior to ABA without trade-offs in biomass accumulation.
Collapse
Affiliation(s)
- Jan Roeder
- Department of Botany, Technical University of Munich, Freising, Germany
| | - Jinghui Liu
- Department of Botany, Technical University of Munich, Freising, Germany
| | - Isabel Doch
- Department of Botany, Technical University of Munich, Freising, Germany
| | - Moritz Ruschhaupt
- Department of Botany, Technical University of Munich, Freising, Germany
| | | | - Erwin Grill
- Department of Botany, Technical University of Munich, Freising, Germany
| | - Hendrik Helmke
- Research and Development, Weed Control Research, Division Crop Science, Bayer AG, Frankfurt am Main, Germany
| | - Sabine Hohmann
- Research and Development, Weed Control Research, Division Crop Science, Bayer AG, Frankfurt am Main, Germany
| | - Stefan Lehr
- Research and Development, Weed Control Research, Division Crop Science, Bayer AG, Frankfurt am Main, Germany
| | - Jens Frackenpohl
- Research and Development, Weed Control Research, Division Crop Science, Bayer AG, Frankfurt am Main, Germany
| | - Zhenyu Yang
- Department of Botany, Technical University of Munich, Freising, Germany
| |
Collapse
|
13
|
Liu H, Song S, Zhang H, Li Y, Niu L, Zhang J, Wang W. Signaling Transduction of ABA, ROS, and Ca 2+ in Plant Stomatal Closure in Response to Drought. Int J Mol Sci 2022; 23:ijms232314824. [PMID: 36499153 PMCID: PMC9736234 DOI: 10.3390/ijms232314824] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Drought is a global threat that affects agricultural production. Plants have evolved several adaptive strategies to cope with drought. Stomata are essential structures for plants to control water status and photosynthesis rate. Stomatal closure is an efficient way for plants to reduce water loss and improve survivability under drought conditions. The opening and closure of stomata depend on the turgor pressure in guard cells. Three key signaling molecules, including abscisic acid (ABA), reactive oxygen species (ROS), and calcium ion (Ca2+), play pivotal roles in controlling stomatal closure. Plants sense the water-deficit signal mainly via leaves and roots. On the one hand, ABA is actively synthesized in root and leaf vascular tissues and transported to guard cells. On the other hand, the roots sense the water-deficit signal and synthesize CLAVATA3/EMBRYO-SURROUNDING REGION RELATED 25 (CLE25) peptide, which is transported to the guard cells to promote ABA synthesis. ABA is perceived by pyrabactin resistance (PYR)/PYR1-like (PYL)/regulatory components of ABA receptor (RCAR) receptors, which inactivate PP2C, resulting in activating the protein kinases SnRK2s. Many proteins regulating stomatal closure are activated by SnRK2s via protein phosphorylation. ABA-activated SnRK2s promote apoplastic ROS production outside of guard cells and transportation into the guard cells. The apoplastic H2O2 can be directly sensed by a receptor kinase, HYDROGEN PEROXIDE-INDUCED CA2+ INCREASES1 (HPCA1), which induces activation of Ca2+ channels in the cytomembrane of guard cells, and triggers an increase in Ca2+ in the cytoplasm of guard cells, resulting in stomatal closure. In this review, we focused on discussing the signaling transduction of ABA, ROS, and Ca2+ in controlling stomatal closure in response to drought. Many critical genes are identified to have a function in stomatal closure under drought conditions. The identified genes in the process can serve as candidate genes for genetic engineering to improve drought resistance in crops. The review summarizes the recent advances and provides new insights into the signaling regulation of stomatal closure in response to water-deficit stress and new clues on the improvement of drought resistance in crops.
Collapse
|
14
|
Bi G, Hu M, Fu L, Zhang X, Zuo J, Li J, Yang J, Zhou JM. The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H 2O 2 that regulates plant immunity through a redox relay. NATURE PLANTS 2022; 8:1160-1175. [PMID: 36241731 DOI: 10.1038/s41477-022-01252-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Rapid production of H2O2 is a hallmark of plant responses to diverse pathogens and plays a crucial role in signalling downstream of various receptors that perceive immunogenic patterns. However, mechanisms by which plants sense H2O2 to regulate immunity remain poorly understood. We show that endogenous H2O2 generated upon immune activation is sensed by the thiol peroxidase PRXIIB via oxidation at Cys51, and this is essential for stomatal immunity against Pseudomonas syringae. We further show that in immune-stimulated cells, PRXIIB conjugates via Cys51 with the type 2C protein phosphatase ABA insensitive 2 (ABI2), subsequently transducing H2O2 signal to ABI2. This oxidation dramatically sensitizes H2O2-mediated inhibition of the ABI2 phosphatase activity in vitro and is required for stomatal immunity in plants. Together, our results illustrate a redox relay, with PRXIIB as a sensor for H2O2 and ABI2 as a target protein, that mediates reactive oxygen species signalling during plant immunity.
Collapse
Affiliation(s)
- Guozhi Bi
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Man Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, Beijing Institute of Lifeomics, Beijing, China.
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| |
Collapse
|
15
|
Wen D, Bao L, Huang X, Qian X, Chen E, Shen B. OsABT Is Involved in Abscisic Acid Signaling Pathway and Salt Tolerance of Roots at the Rice Seedling Stage. Int J Mol Sci 2022; 23:10656. [PMID: 36142568 PMCID: PMC9504391 DOI: 10.3390/ijms231810656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Rice is a staple cereal crop worldwide, and increasing its yields is vital to ensuring global food security. Salinity is a major factor that affects rice yield. Therefore, it is necessary to investigate salt tolerance mechanisms in rice. Proteins containing WD40 repeats play important roles in eukaryotic development and environmental adaptation. Here, we showed that overexpression of OsABT, a gene encoding a WD40-repeat protein, enhanced salt tolerance in rice seedlings by regulating root activity, relative conductivity, malondialdehyde and H2O2 content, and O2•- production rate. Root ion concentrations indicated that OsABT overexpression lines could maintain lower Na+ and higher K+/Na+ ratios and upregulated expression of salt-related genes OsSOS1 and OsHAK5 compared with the wild-type (WT) Nipponbare plants. Furthermore, Overexpression of OsABT decreased the abscisic acid (ABA) content, while downregulating the ABA synthesis genes OsNCED3 and OsNCED4 and upregulating the ABA catabolic gene OsABA8ox2. The yeast two-hybrid and bimolecular fluorescence complementation analyses showed that OsABT interacted with the ABA receptor proteins OsPYL4, OsPYL10, and PP2C phosphatase OsABIL2. A transcriptome analysis revealed that the differentially expressed genes between OsABT overexpression lines and WT plants were enriched in plant hormone signal transduction, including ABA signaling pathway under salt stress. Thus, OsABT can improve the salt tolerance in rice seedling roots by inhibiting reactive oxygen species accumulation, thereby regulating the intracellular Na+/K+ balance, ABA content, and ABA signaling pathway.
Collapse
Affiliation(s)
- Danni Wen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lingran Bao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xuanzhu Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xueduo Qian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Eryong Chen
- Life School of Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bo Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
16
|
Lee J, Chen H, Lee G, Emonet A, Kim S, Shim D, Lee Y. MSD2-mediated ROS metabolism fine-tunes the timing of floral organ abscission in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:2466-2480. [PMID: 35689444 PMCID: PMC9543660 DOI: 10.1111/nph.18303] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/27/2022] [Indexed: 06/14/2023]
Abstract
The timely removal of end-of-purpose flowering organs is as essential for reproduction and plant survival as timely flowering. Despite much progress in understanding the molecular mechanisms of floral organ abscission, little is known about how various environmental factors are integrated into developmental programmes that determine the timing of abscission. Here, we investigated whether reactive oxygen species (ROS), mediators of various stress-related signalling pathways, are involved in determining the timing of abscission and, if so, how they are integrated with the developmental pathway in Arabidopsis thaliana. MSD2, encoding a secretory manganese superoxide dismutase, was preferentially expressed in the abscission zone of flowers, and floral organ abscission was accelerated by the accumulation of ROS in msd2 mutants. The expression of the genes encoding the receptor-like kinase HAESA (HAE) and its cognate peptide ligand INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), the key signalling components of abscission, was accelerated in msd2 mutants, suggesting that MSD2 acts upstream of IDA-HAE. Further transcriptome and pharmacological analyses revealed that abscisic acid and nitric oxide facilitate abscission by regulating the expression of IDA and HAE during MSD2-mediated signalling. These results suggest that MSD2-dependent ROS metabolism is an important regulatory point integrating environmental stimuli into the developmental programme leading to abscission.
Collapse
Affiliation(s)
- Jinsu Lee
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Korea
- Research Centre for Plant PlasticitySeoul National UniversitySeoul08826Korea
| | - Huize Chen
- Research Institute of Basic SciencesSeoul National UniversitySeoul08826Korea
- Higher Education Key Laboratory of Plant Molecular and Environmental Stress Response in Shanxi ProvinceShanxi Normal UniversityTaiyuan030000ShanxiChina
| | - Gisuk Lee
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Aurélia Emonet
- Department of Plant Molecular BiologyUniversity of Lausanne1015LausanneSwitzerland
| | - Sang‐Gyu Kim
- Department of Biological SciencesKorea Advanced Institute for Science and TechnologyDaejeon34141Korea
| | - Donghwan Shim
- Department of Biological SciencesChungnam National UniversityDaejeon34134Korea
| | - Yuree Lee
- Research Centre for Plant PlasticitySeoul National UniversitySeoul08826Korea
- School of Biological SciencesSeoul National UniversitySeoul08826Korea
- Plant Genomics and Breeding InstituteSeoul National UniversitySeoul08826Korea
| |
Collapse
|
17
|
Berrios L, Rentsch JD. Linking Reactive Oxygen Species (ROS) to Abiotic and Biotic Feedbacks in Plant Microbiomes: The Dose Makes the Poison. Int J Mol Sci 2022; 23:ijms23084402. [PMID: 35457220 PMCID: PMC9030523 DOI: 10.3390/ijms23084402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
In nature, plants develop in complex, adaptive environments. Plants must therefore respond efficiently to environmental stressors to maintain homeostasis and enhance their fitness. Although many coordinated processes remain integral for achieving homeostasis and driving plant development, reactive oxygen species (ROS) function as critical, fast-acting orchestrators that link abiotic and biotic responses to plant homeostasis and development. In addition to the suite of enzymatic and non-enzymatic ROS processing pathways that plants possess, they also rely on their microbiota to buffer and maintain the oxidative window needed to balance anabolic and catabolic processes. Strong evidence has been communicated recently that links ROS regulation to the aggregated function(s) of commensal microbiota and plant-growth-promoting microbes. To date, many reports have put forth insightful syntheses that either detail ROS regulation across plant development (independent of plant microbiota) or examine abiotic–biotic feedbacks in plant microbiomes (independent of clear emphases on ROS regulation). Here we provide a novel synthesis that incorporates recent findings regarding ROS and plant development in the context of both microbiota regulation and plant-associated microbes. Specifically, we discuss various roles of ROS across plant development to strengthen the links between plant microbiome functioning and ROS regulation for both basic and applied research aims.
Collapse
Affiliation(s)
- Louis Berrios
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| | - Jeremy D. Rentsch
- Department of Biology, Francis Marion University, Florence, SC 29502, USA;
| |
Collapse
|
18
|
Lohani N, Singh MB, Bhalla PL. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. BIODESIGN RESEARCH 2022; 2022:9819314. [PMID: 37850130 PMCID: PMC10521667 DOI: 10.34133/2022/9819314] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2023] Open
Abstract
It is vital to ramp up crop production dramatically by 2050 due to the increasing global population and demand for food. However, with the climate change projections showing that droughts and heatwaves becoming common in much of the globe, there is a severe threat of a sharp decline in crop yields. Thus, developing crop varieties with inbuilt genetic tolerance to environmental stresses is urgently needed. Selective breeding based on genetic diversity is not keeping up with the growing demand for food and feed. However, the emergence of contemporary plant genetic engineering, genome-editing, and synthetic biology offer precise tools for developing crops that can sustain productivity under stress conditions. Here, we summarize the systems biology-level understanding of regulatory pathways involved in perception, signalling, and protective processes activated in response to unfavourable environmental conditions. The potential role of noncoding RNAs in the regulation of abiotic stress responses has also been highlighted. Further, examples of imparting abiotic stress tolerance by genetic engineering are discussed. Additionally, we provide perspectives on the rational design of abiotic stress tolerance through synthetic biology and list various bioparts that can be used to design synthetic gene circuits whose stress-protective functions can be switched on/off in response to environmental cues.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mohan B. Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
19
|
Lee Y, Heo S, Lee S. Inhibition of Type 2C Protein Phosphatases by ABA Receptors in Abscisic Acid-Mediated Plant Stress Responses. Methods Mol Biol 2022; 2462:1-16. [PMID: 35152376 DOI: 10.1007/978-1-0716-2156-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abscisic acid (ABA) signaling pathway constitutes a key stress response mechanism in plants. Alternate interaction of a type 2C protein phosphatase (PP2C) with either an ABA receptor or a SNF1-related protein kinase 2 (SnRK2) is at the core of regulation of the ABA signaling pathway. Binding of an ABA receptor to a PP2C inhibits the enzymatic activity of the PP2C. Presence of multiple paralogs of ABA receptors and PP2Cs necessitates development of an inhibition assay. Here, we describe how to prepare the recombinant proteins of ABA receptors and PP2Cs for the inhibition assay and how to perform a colorimetry-based inhibition assay.
Collapse
Affiliation(s)
- Yeongmok Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Suhyeon Heo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
20
|
Herb M, Gluschko A, Schramm M. Reactive Oxygen Species: Not Omnipresent but Important in Many Locations. Front Cell Dev Biol 2021; 9:716406. [PMID: 34557488 PMCID: PMC8452931 DOI: 10.3389/fcell.2021.716406] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS), such as the superoxide anion or hydrogen peroxide, have been established over decades of research as, on the one hand, important and versatile molecules involved in a plethora of homeostatic processes and, on the other hand, as inducers of damage, pathologies and diseases. Which effects ROS induce, strongly depends on the cell type and the source, amount, duration and location of ROS production. Similar to cellular pH and calcium levels, which are both strictly regulated and only altered by the cell when necessary, the redox balance of the cell is also tightly regulated, not only on the level of the whole cell but in every cellular compartment. However, a still widespread view present in the scientific community is that the location of ROS production is of no major importance and that ROS randomly diffuse from their cellular source of production throughout the whole cell and hit their redox-sensitive targets when passing by. Yet, evidence is growing that cells regulate ROS production and therefore their redox balance by strictly controlling ROS source activation as well as localization, amount and duration of ROS production. Hopefully, future studies in the field of redox biology will consider these factors and analyze cellular ROS more specifically in order to revise the view of ROS as freely flowing through the cell.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Alexander Gluschko
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| |
Collapse
|
21
|
Maszkowska J, Szymańska KP, Kasztelan A, Krzywińska E, Sztatelman O, Dobrowolska G. The Multifaceted Regulation of SnRK2 Kinases. Cells 2021; 10:cells10092180. [PMID: 34571829 PMCID: PMC8465348 DOI: 10.3390/cells10092180] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
SNF1-related kinases 2 (SnRK2s) are central regulators of plant responses to environmental cues simultaneously playing a pivotal role in the plant development and growth in favorable conditions. They are activated in response to osmotic stress and some of them also to abscisic acid (ABA), the latter being key in ABA signaling. The SnRK2s can be viewed as molecular switches between growth and stress response; therefore, their activity is tightly regulated; needed only for a short time to trigger the response, it has to be induced transiently and otherwise kept at a very low level. This implies a strict and multifaceted control of SnRK2s in plant cells. Despite emerging new information concerning the regulation of SnRK2s, especially those involved in ABA signaling, a lot remains to be uncovered, the regulation of SnRK2s in an ABA-independent manner being particularly understudied. Here, we present an overview of available data, discuss some controversial issues, and provide our perspective on SnRK2 regulation.
Collapse
Affiliation(s)
- Justyna Maszkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Katarzyna Patrycja Szymańska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland;
| | - Adrian Kasztelan
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Ewa Krzywińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Correspondence: (O.S.); (G.D.); Tel.: +48-22-5925718 (G.D.)
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; (J.M.); (A.K.); (E.K.)
- Correspondence: (O.S.); (G.D.); Tel.: +48-22-5925718 (G.D.)
| |
Collapse
|
22
|
Bheri M, Mahiwal S, Sanyal SK, Pandey GK. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J 2020; 288:756-785. [PMID: 32542989 DOI: 10.1111/febs.15454] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022]
Abstract
Protein phosphorylation is a major reversible post-translational modification. Protein phosphatases function as 'critical regulators' in signaling networks through dephosphorylation of proteins, which have been phosphorylated by protein kinases. A large understanding of their working has been sourced from animal systems rather than the plant or the prokaryotic systems. The eukaryotic protein phosphatases include phosphoprotein phosphatases (PPP), metallo-dependent protein phosphatases (PPM), protein tyrosine (Tyr) phosphatases (PTP), and aspartate (Asp)-dependent phosphatases. The PPP and PPM families are serine(Ser)/threonine(Thr)-specific phosphatases (STPs), while PTP family is Tyr specific. Dual-specificity phosphatases (DsPTPs/DSPs) dephosphorylate Ser, Thr, and Tyr residues. PTPs lack sequence homology with STPs, indicating a difference in catalytic mechanisms, while the PPP and PPM families share a similar structural fold indicating a common catalytic mechanism. The catalytic cysteine (Cys) residue in the conserved HCX5 R active site motif of the PTPs acts as a nucleophile during hydrolysis. The PPP members require metal ions, which coordinate the phosphate group of the substrate, followed by a nucleophilic attack by a water molecule and hydrolysis. The variable holoenzyme assembly of protein phosphatase(s) and the overlap with other post-translational modifications like acetylation and ubiquitination add to their complexity. Though their functional characterization is extensively reported in plants, the mechanistic nature of their action is still being explored by researchers. In this review, we exclusively overview the plant protein phosphatases with an emphasis on their mechanistic action as well as structural characteristics.
Collapse
Affiliation(s)
- Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
23
|
Hong Y, Wang Z, Shi H, Yao J, Liu X, Wang F, Zeng L, Xie Z, Zhu JK. Reciprocal regulation between nicotinamide adenine dinucleotide metabolism and abscisic acid and stress response pathways in Arabidopsis. PLoS Genet 2020; 16:e1008892. [PMID: 32569316 PMCID: PMC7332101 DOI: 10.1371/journal.pgen.1008892] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/02/2020] [Accepted: 05/27/2020] [Indexed: 12/28/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential coenzyme that has emerged as a central hub linking redox equilibrium and signal transduction in living organisms. The homeostasis of NAD is required for plant growth, development, and adaption to environmental cues. In this study, we isolated a chilling hypersensitive Arabidopsis thaliana mutant named qs-2 and identified the causal mutation in the gene encoding quinolinate synthase (QS) critical for NAD biosynthesis. The qs-2 mutant is also hypersensitive to salt stress and abscisic acid (ABA) but resistant to drought stress. The qs-2 mutant accumulates a reduced level of NAD and over-accumulates reactive oxygen species (ROS). The ABA-hypersensitivity of qs-2 can be rescued by supplementation of NAD precursors and by mutations in the ABA signaling components SnRK2s or RBOHF. Furthermore, ABA-induced over-accumulation of ROS in the qs-2 mutant is dependent on the SnRK2s and RBOHF. The expression of QS gene is repressed directly by ABI4, a transcription factor in the ABA response pathway. Together, our findings reveal an unexpected interplay between NAD biosynthesis and ABA and stress signaling, which is critical for our understanding of the regulation of plant growth and stress responses.
Collapse
Affiliation(s)
- Yechun Hong
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Zhen Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (ZW); (JKZ)
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Juanjuan Yao
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xue Liu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fuxing Wang
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Liang Zeng
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Xie
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (ZW); (JKZ)
| |
Collapse
|
24
|
Postiglione AE, Muday GK. The Role of ROS Homeostasis in ABA-Induced Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:968. [PMID: 32695131 PMCID: PMC7338657 DOI: 10.3389/fpls.2020.00968] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/12/2020] [Indexed: 05/19/2023]
Abstract
The hormonal and environmental regulation of stomatal aperture is mediated by a complex signaling pathway found within the guard cells that surround stomata. Abscisic acid (ABA) induces stomatal closure in response to drought stress by binding to its guard cell localized receptor, initiating a signaling cascade that includes synthesis of reactive oxygen species (ROS). Genetic evidence in Arabidopsis indicates that ROS produced by plasma membrane respiratory burst oxidase homolog (RBOH) enzymes RBOHD and RBOHF modulate guard cell signaling and stomatal closure. However, ABA-induced ROS accumulates in many locations such as the cytoplasm, chloroplasts, nucleus, and endomembranes, some of which do not coincide with plasma membrane localized RBOHs. ABA-induced guard cell ROS accumulation has distinct spatial and temporal patterns that drive stomatal closure. Productive ROS signaling requires both rapid increases in ROS, as well as the ability of cells to prevent ROS from reaching damaging levels through synthesis of antioxidants, including flavonols. The relationship between locations of ROS accumulation and ABA signaling and the role of enzymatic and small molecule ROS scavengers in maintaining ROS homeostasis in guard cells are summarized in this review. Understanding the mechanisms of ROS production and homeostasis and the role of ROS in guard cell signaling can provide a better understanding of plant response to stress and could provide an avenue for the development of crop plants with increased stress tolerance.
Collapse
|
25
|
The interactome of 2-Cys peroxiredoxins in Plasmodium falciparum. Sci Rep 2019; 9:13542. [PMID: 31537845 PMCID: PMC6753162 DOI: 10.1038/s41598-019-49841-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractPeroxiredoxins (Prxs) are crucially involved in maintaining intracellular H2O2homeostasis via their peroxidase activity. However, more recently, this class of proteins was found to also transmit oxidizing equivalents to selected downstream proteins, which suggests an important function of Prxs in the regulation of cellular protein redox relays. Using a pull-down assay based on mixed disulfide fishing, we characterized the thiol-dependent interactome of cytosolic Prx1a and mitochondrial Prx1m from the apicomplexan malaria parasitePlasmodium falciparum(Pf). Here, 127 cytosolic and 20 mitochondrial proteins that are components of essential cellular processes were found to interact withPfPrx1a andPfPrx1m, respectively. Notably, our data obtained with active-site mutants suggests that reducing equivalents might also be transferred from Prxs to target proteins. Initial functional analyses indicated that the interaction with Prx can strongly impact the activity of target proteins. The results provide initial insights into the interactome of Prxs at the level of a eukaryotic whole cell proteome. Furthermore, they contribute to our understanding of redox regulatory principles and thiol-dependent redox relays of Prxs in subcellular compartments.
Collapse
|
26
|
Wang LR, Yang XN, Gao YS, Zhang XY, Hu W, Zhou Z, Meng YL. Investigating seed dormancy in cotton (Gossypium hirsutum L.): understanding the physiological changes in embryo during after-ripening and germination. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:911-919. [PMID: 31077623 DOI: 10.1111/plb.13005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/07/2019] [Indexed: 05/06/2023]
Abstract
The dormancy of seeds of upland cotton can be broken during dry after-ripening, but the mechanism of its dormancy release remains unclear. Freshly harvested cotton seeds were subjected to after-ripening for 180 days. Cotton seeds from different days of after-ripening (DAR) were sampled for dynamic physiological determination and germination tests. The intact seeds and isolated embryos were germinated to assess effects of the seed coat on embryo germination. Content of H2 O2 and phytohormones and activities of antioxidant enzymes and glucose-6-phosphate dehydrogenase were measured during after-ripening and germination. Germination of intact seeds increased from 7% upon harvest to 96% at 30 DAR, while embryo germination improved from an initial rate of 82% to 100% after 14 DAR. Based on T50 (time when 50% of seeds germinate) and germination index, the intact seed and isolated embryo needed 30 and 21 DAR, respectively, to acquire relatively stable germination. The content of H2 O2 increased during after-ripening and continued to increase within the first few hours of imbibition, along with a decrease in abscisic acid (ABA) content. A noticeable increase was observed in gibberellic acid content during germination when ABA content decreased to a lower level. Coat removal treatment accelerated embryo absorption of water, which further improved the accumulation of H2 O2 and changed peroxidase content during germination. For cotton seed, the alleviation of coat-imposed dormancy required 30 days of after-ripening, accompanied by rapid dormancy release (within 21 DAR) in naked embryos. H2 O2 acted as a core link between the response to environmental changes and induction of other physiological changes for breaking seed dormancy.
Collapse
Affiliation(s)
- L R Wang
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - X N Yang
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Y S Gao
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - X Y Zhang
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - W Hu
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Z Zhou
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Y L Meng
- Laboratory of Crop Physiology & Ecology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
27
|
Zdunek-Zastocka E, Grabowska A. The interplay of PsABAUGT1 with other abscisic acid metabolic genes in the regulation of ABA homeostasis during the development of pea seeds and germination in the presence of H 2O 2. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:79-90. [PMID: 31203896 DOI: 10.1016/j.plantsci.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/08/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Inactivation of abscisic acid (ABA) in vitro may be catalyzed either by ABA 8'-hydroxylase (ABA8'OH) or by ABA uridine diphosphate glucosyltransferase (ABAUGT), which conjugates ABA with glucose. However, the involvement of these enzymes in the control of ABA content in vivo, especially ABAUGT, has not been fully elucidated. In pea seeds, both PsABAUGT1 and PsABA8'OH1 contribute to the reduction of ABA content during seed maturation and imbibition; however, during the first hours of imbibition, a high expression of only PsABAUGT1 was observed. Imbibition of seeds with H2O2 increased the ABA content despite the oxygen availability and altered the expression of metabolic genes. The expression of the biosynthetic gene 9-cis-epoxycarotene dioxygenase (PsNCED2) was increased, while that of PsABAUGT1 was decreased in each H2O2 experiment despite O2 availability. Under hypoxia, only seeds imbibed with H2O2 germinated, while under nonlimiting oxygen conditions, the germination rate was not altered by H2O2. Under hypoxia, the germination rate of H2O2-imbibed seeds seemed to not depend on the absolute ABA content and rather on the balance between ABA and gibberellins (GA), as H2O2 increased the expression of GA synthesis genes. Overexpression of PsABAUGT1 in Arabidopsis decreases seed ABA content, accelerates germination and reduces seed sensitivity to exogenously applied ABA, confirming the ability of PsABAUGT1 to inactivate ABA. Thus, PsABAUGT1 is a new player in the regulation of ABA content in maturating and imbibed pea seeds, both under standard conditions and in response to H2O2.
Collapse
Affiliation(s)
- Edyta Zdunek-Zastocka
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Agnieszka Grabowska
- Department of Biochemistry, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
28
|
Máthé C, Garda T, Freytag C, M-Hamvas M. The Role of Serine-Threonine Protein Phosphatase PP2A in Plant Oxidative Stress Signaling-Facts and Hypotheses. Int J Mol Sci 2019; 20:ijms20123028. [PMID: 31234298 PMCID: PMC6628354 DOI: 10.3390/ijms20123028] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Abiotic and biotic factors induce oxidative stress involving the production and scavenging of reactive oxygen species (ROS). This review is a survey of well-known and possible roles of serine-threonine protein phosphatases in plant oxidative stress signaling, with special emphasis on PP2A. ROS mediated signaling involves three interrelated pathways: (i) perception of extracellular ROS triggers signal transduction pathways, leading to DNA damage and/or the production of antioxidants; (ii) external signals induce intracellular ROS generation that triggers the relevant signaling pathways and (iii) external signals mediate protein phosphorylation dependent signaling pathway(s), leading to the expression of ROS producing enzymes like NADPH oxidases. All pathways involve inactivation of serine-threonine protein phosphatases. The metal dependent phosphatase PP2C has a negative regulatory function during ABA mediated ROS signaling. PP2A is the most abundant protein phosphatase in eukaryotic cells. Inhibitors of PP2A exert a ROS inducing activity as well and we suggest that there is a direct relationship between these two effects of drugs. We present current findings and hypotheses regarding PP2A-ROS signaling connections related to all three ROS signaling pathways and anticipate future research directions for this field. These mechanisms have implications in the understanding of stress tolerance of vascular plants, having applications regarding crop improvement.
Collapse
Affiliation(s)
- Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Tamás Garda
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Csongor Freytag
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| | - Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1., H-4032 Debrecen, Hungary.
| |
Collapse
|
29
|
Islam MM, Ye W, Matsushima D, Rhaman MS, Munemasa S, Okuma E, Nakamura Y, Biswas MS, Mano J, Murata Y. Reactive Carbonyl Species Function as Signal Mediators Downstream of H2O2 Production and Regulate [Ca2+]cyt Elevation in ABA Signal Pathway in Arabidopsis Guard Cells. PLANT & CELL PHYSIOLOGY 2019; 60:1146-1159. [PMID: 30796836 DOI: 10.1093/pcp/pcz031] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 02/09/2019] [Indexed: 05/06/2023]
Abstract
We have demonstrated that reactive carbonyl species (RCS) function as an intermediate downstream of hydrogen peroxide (H2O2) production in abscisic acid (ABA) signaling for stomatal closure in guard cells using transgenic tobacco plants overexpressing alkenal reductase. We investigated the conversion of the RCS production into downstream signaling events in the guard cells. Both ABA and H2O2 induced production of the RCS, such as acrolein and 4-hydroxy-(E)-2-nonenal (HNE), in epidermal tissues of wild-type Arabidopsis thaliana plants. Application of the RCS scavengers, carnosine and pyridoxamine, did not affect the ABA-induced H2O2 production but inhibited the ABA- and H2O2-induced stomatal closure. Both acrolein and HNE induced stomatal closure in a plasma membrane NAD(P)H oxidase mutant atrbohD atrbohF as well as in the wild type, but not in a calcium-dependent kinase mutant cpk6. Acrolein activated plasma membrane Ca2+-permeable cation channels, triggered cytosolic free Ca2+ concentration ([Ca2+]cyt) elevation, and induced stomatal closure accompanied by depletion of glutathione in the guard cells. These results suggest that RCS production is a signaling event between the ROS production and [Ca2+]cyt elevation during guard cell ABA signaling.
Collapse
Affiliation(s)
- Md Moshiul Islam
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, Japan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Wenxiu Ye
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, Japan
| | - Daiki Matsushima
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, Japan
| | - Mohammad Saidur Rhaman
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, Japan
| | - Shintaro Munemasa
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, Japan
| | - Eiji Okuma
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, Japan
| | - Md Sanaullah Biswas
- The United Graduate School of Agriculture, Tottori University, Koyama-cho Minami 4-101, Tottori, Japan
- Department of Horticulture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Jun'ichi Mano
- The United Graduate School of Agriculture, Tottori University, Koyama-cho Minami 4-101, Tottori, Japan
- Science Research Center, Yamaguchi University, Yoshida 1677-1, Yamaguchi, Japan
| | - Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama, Japan
| |
Collapse
|
30
|
Ehonen S, Yarmolinsky D, Kollist H, Kangasjärvi J. Reactive Oxygen Species, Photosynthesis, and Environment in the Regulation of Stomata. Antioxid Redox Signal 2019; 30:1220-1237. [PMID: 29237281 DOI: 10.1089/ars.2017.7455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Stomata sense the intercellular carbon dioxide (CO2) concentration (Ci) and water availability under changing environmental conditions and adjust their apertures to maintain optimal cellular conditions for photosynthesis. Stomatal movements are regulated by a complex network of signaling cascades where reactive oxygen species (ROS) play a key role as signaling molecules. Recent Advances: Recent research has uncovered several new signaling components involved in CO2- and abscisic acid-triggered guard cell signaling pathways. In addition, we are beginning to understand the complex interactions between different signaling pathways. CRITICAL ISSUES Plants close their stomata in reaction to stress conditions, such as drought, and the subsequent decrease in Ci leads to ROS production through photorespiration and over-reduction of the chloroplast electron transport chain. This reduces plant growth and thus drought may cause severe yield losses for agriculture especially in arid areas. FUTURE DIRECTIONS The focus of future research should be drawn toward understanding the interplay between various signaling pathways and how ROS, redox, and hormonal balance changes in space and time. Translating this knowledge from model species to crop plants will help in the development of new drought-resistant crop species with high yields.
Collapse
Affiliation(s)
- Sanna Ehonen
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland.,2 Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | | | - Hannes Kollist
- 3 Institute of Technology, University of Tartu, Tartu, Estonia
| | - Jaakko Kangasjärvi
- 1 Division of Plant Biology, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
Baier M, Bittner A, Prescher A, van Buer J. Preparing plants for improved cold tolerance by priming. PLANT, CELL & ENVIRONMENT 2019; 42:782-800. [PMID: 29974962 DOI: 10.1111/pce.13394] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 05/26/2023]
Abstract
Cold is a major stressor, which limits plant growth and development in many parts of the world, especially in the temperate climate zones. A large number of experimental studies has demonstrated that not only acclimation and entrainment but also the experience of single short stress events of various abiotic or biotic kinds (priming stress) can improve the tolerance of plants to chilling temperatures. This process, called priming, depends on a stress "memory". It does not change cold sensitivity per se but beneficially modifies the response to cold and can last for days, months, or even longer. Elicitor factors and antagonists accumulate due to increased biosynthesis or decreased degradation either during or after the priming stimulus. Comparison of priming studies investigating improved tolerance to chilling temperatures highlighted key regulatory functions of ROS/RNS and antioxidant enzymes, plant hormones, especially jasmonates, salicylates, and abscisic acid, and signalling metabolites, such as β- and γ-aminobutyric acid (BABA and GABA) and melatonin. We conclude that these elicitors and antagonists modify local and systemic cold tolerance by integration into cold-induced signalling cascades.
Collapse
Affiliation(s)
- Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andras Bittner
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Andreas Prescher
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of Berlin, Berlin, Germany
| |
Collapse
|
32
|
Herb M, Gluschko A, Wiegmann K, Farid A, Wolf A, Utermöhlen O, Krut O, Krönke M, Schramm M. Mitochondrial reactive oxygen species enable proinflammatory signaling through disulfide linkage of NEMO. Sci Signal 2019; 12:12/568/eaar5926. [PMID: 30755476 DOI: 10.1126/scisignal.aar5926] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A major function of macrophages during infection is initiation of the proinflammatory response, leading to the secretion of cytokines that help to orchestrate the immune response. Here, we identify reactive oxygen species (ROS) as crucial mediators of proinflammatory signaling leading to cytokine secretion in Listeria monocytogenes-infected macrophages. ROS produced by NADPH oxidases (Noxes), such as Nox2, are key components of the macrophage response to invading pathogens; however, our data show that the ROS that mediated proinflammatory signaling were produced by mitochondria (mtROS). We identified the inhibitor of κB (IκB) kinase (IKK) complex regulatory subunit NEMO [nuclear factor κB (NF-κB) essential modulator] as a target for mtROS. Specifically, mtROS induced intermolecular covalent linkage of NEMO through disulfide bonds formed by Cys54 and Cys347, which was essential for activation of the IKK complex and subsequent signaling through the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and NF-κB pathways that eventually led to the secretion of proinflammatory cytokines. We thus identify mtROS-dependent disulfide linkage of NEMO as an essential regulatory step of the proinflammatory response of macrophages to bacterial infection.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Alexander Gluschko
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Katja Wiegmann
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Alina Farid
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Anne Wolf
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany.,Center of Molecular Medicine Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), 50931 Cologne, Germany
| | - Oleg Krut
- Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany.,Center of Molecular Medicine Cologne, 50931 Cologne, Germany.,German Center for Infection Research (DZIF), 50931 Cologne, Germany.,Cologne Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD), 50931 Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50935 Cologne, Germany.
| |
Collapse
|
33
|
Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK, Gong Z. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:805-826. [PMID: 29660240 DOI: 10.1111/jipb.12654] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/08/2018] [Indexed: 05/18/2023]
Abstract
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.
Collapse
Affiliation(s)
- Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chun-Peng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Baoshan Wang
- Key Lab of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250000, China
| | - Jianmin Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
34
|
Beauvieux R, Wenden B, Dirlewanger E. Bud Dormancy in Perennial Fruit Tree Species: A Pivotal Role for Oxidative Cues. FRONTIERS IN PLANT SCIENCE 2018; 9:657. [PMID: 29868101 PMCID: PMC5969045 DOI: 10.3389/fpls.2018.00657] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2018] [Indexed: 05/07/2023]
Abstract
For perennial plants, bud dormancy is a crucial step as its progression over winter determines the quality of bud break, flowering, and fruiting. In the past decades, many studies, based on metabolic, physiological, subcellular, genetic, and genomic analyses, have unraveled mechanisms underlying bud dormancy progression. Overall, all the pathways identified are interconnected in a very complex manner. Here, we review early and recent findings on the dormancy processes in buds of temperate fruit trees species including hormonal signaling, the role of plasma membrane, carbohydrate metabolism, mitochondrial respiration and oxidative stress, with an effort to link them together and emphasize the central role of reactive oxygen species accumulation in the control of dormancy progression.
Collapse
|
35
|
Pashkovskiy PP, Soshinkova TN, Korolkova DV, Kartashov AV, Zlobin IE, Lyubimov VY, Kreslavski VD, Kuznetsov VV. The effect of light quality on the pro-/antioxidant balance, activity of photosystem II, and expression of light-dependent genes in Eutrema salsugineum callus cells. PHOTOSYNTHESIS RESEARCH 2018; 136:199-214. [PMID: 29071562 DOI: 10.1007/s11120-017-0459-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
The antioxidant balance, photochemical activity of photosystem II (PSII), and photosynthetic pigment content, as well as the expression of genes involved in the light signalling of callus lines of Eutrema salsugineum plants (earlier Thellungiella salsuginea) under different spectral light compositions were studied. Growth of callus in red light (RL, maximum 660 nm), in contrast to blue light (BL, maximum 450 nm), resulted in a lower H2O2 content and thiobarbituric acid reactive substances (TBARS). The BL increased the activities of key antioxidant enzymes in comparison with the white light (WL) and RL and demonstrated the minimum level of PSII photochemical activity. The activities of catalase (CAT) and peroxidase (POD) had the highest values in BL, which, along with the increased H2O2 and TBARS content, indicate a higher level of oxidative stress in the cells. The expression levels of the main chloroplast protein genes of PSII (PSBA and PSBD), the NADPH-dependent oxidase gene of the plasma membrane (RbohD), the protochlorophyllide oxidoreductase genes (POR B, C) involved in the biosynthesis of chlorophyll, and the key photoreceptor signalling genes (CIB1, CRY2, PhyB, PhyA, and PIF3) were determined. Possible mechanisms of light quality effects on the physiological parameters of callus cells are discussed.
Collapse
Affiliation(s)
- P P Pashkovskiy
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia.
| | - T N Soshinkova
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - D V Korolkova
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - A V Kartashov
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - I E Zlobin
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - V Yu Lyubimov
- Institute of Basic Biological Problems Russian Academy of Sciences, Pushchino, Russia
| | - V D Kreslavski
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
- Institute of Basic Biological Problems Russian Academy of Sciences, Pushchino, Russia
| | - Vl V Kuznetsov
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
36
|
Demidchik V. ROS-Activated Ion Channels in Plants: Biophysical Characteristics, Physiological Functions and Molecular Nature. Int J Mol Sci 2018; 19:E1263. [PMID: 29690632 PMCID: PMC5979493 DOI: 10.3390/ijms19041263] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/16/2022] Open
Abstract
Ion channels activated by reactive oxygen species (ROS) have been found in the plasma membrane of charophyte Nitella flixilis, dicotyledon Arabidopsis thaliana, Pyrus pyrifolia and Pisum sativum, and the monocotyledon Lilium longiflorum. Their activities have been reported in charophyte giant internodes, root trichoblasts and atrichoblasts, pollen tubes, and guard cells. Hydrogen peroxide and hydroxyl radicals are major activating species for these channels. Plant ROS-activated ion channels include inwardly-rectifying, outwardly-rectifying, and voltage-independent groups. The inwardly-rectifying ROS-activated ion channels mediate Ca2+-influx for growth and development in roots and pollen tubes. The outwardly-rectifying group facilitates K⁺ efflux for the regulation of osmotic pressure in guard cells, induction of programmed cell death, and autophagy in roots. The voltage-independent group mediates both Ca2+ influx and K⁺ efflux. Most studies suggest that ROS-activated channels are non-selective cation channels. Single-channel studies revealed activation of 14.5-pS Ca2+ influx and 16-pS K⁺ efflux unitary conductances in response to ROS. The molecular nature of ROS-activated Ca2+ influx channels remains poorly understood, although annexins and cyclic nucleotide-gated channels have been proposed for this role. The ROS-activated K⁺ channels have recently been identified as products of Stellar K⁺ Outward Rectifier (SKOR) and Guard cell Outwardly Rectifying K⁺ channel (GORK) genes.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Horticulture, School of Food Science and Engineering, Foshan University, Foshan 528000, China.
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, 220030 Minsk, Belarus.
- Russian Academy of Sciences, Komarov Botanical Institute, 2 Professora Popova Street, 197376 St. Petersburg, Russia.
| |
Collapse
|
37
|
Tian Y, Fan M, Qin Z, Lv H, Wang M, Zhang Z, Zhou W, Zhao N, Li X, Han C, Ding Z, Wang W, Wang ZY, Bai MY. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat Commun 2018. [PMID: 29540799 PMCID: PMC5852159 DOI: 10.1038/s41467-018-03463-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important signaling molecule in plant developmental processes and stress responses. However, whether H2O2-mediated signaling crosstalks with plant hormone signaling is largely unclear. Here, we show that H2O2 induces the oxidation of the BRASSINAZOLE-RESISTANT1 (BZR1) transcription factor, which functions as a master regulator of brassinosteroid (BR) signaling. Oxidative modification enhances BZR1 transcriptional activity by promoting its interaction with key regulators in the auxin-signaling and light-signaling pathways, including AUXIN RESPONSE FACTOR6 (ARF6) and PHYTOCHROME INTERACTING FACTOR4 (PIF4). Genome-wide analysis shows that H2O2-dependent regulation of BZR1 activity plays a major role in modifying gene expression related to several BR-mediated biological processes. Furthermore, we show that the thioredoxin TRXh5 can interact with BZR1 and catalyzes its reduction. We conclude that reversible oxidation of BZR1 connects H2O2-mediated and thioredoxin-mediated redox signaling to BR signaling to regulate plant development. Hydrogen peroxide and brassinosteroids (BR) both regulate plant development and stress responses. Here Tian et al. show that hydrogen peroxide can trigger oxidation of the BR-responsive BZR1 transcription factor and promote its transcriptional activity, thereby linking BR and redox signaling.
Collapse
Affiliation(s)
- Yanchen Tian
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Min Fan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Zhaoxia Qin
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Hongjun Lv
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Minmin Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Zhe Zhang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenying Zhou
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Na Zhao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Xiaohui Li
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Chao Han
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Zhaojun Ding
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Wenfei Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Ming-Yi Bai
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China.
| |
Collapse
|
38
|
Chen QM, Yu Y, Lin CM, Cui N, Zhao JY, Song TF, Fan HY. Glucohexaose-induced protein phosphatase 2C regulates cell redox status of cucumber seedling. J Biosci 2018. [DOI: 10.1007/s12038-018-9738-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Functions and dysfunctions of Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) and CaMKP-N/PPM1E. Arch Biochem Biophys 2018; 640:83-92. [DOI: 10.1016/j.abb.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
|
40
|
Albert R, Acharya BR, Jeon BW, Zañudo JGT, Zhu M, Osman K, Assmann SM. A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops. PLoS Biol 2017; 15:e2003451. [PMID: 28937978 PMCID: PMC5627951 DOI: 10.1371/journal.pbio.2003451] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/04/2017] [Accepted: 09/04/2017] [Indexed: 11/19/2022] Open
Abstract
Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA). This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs) of the protein kinase OPEN STOMATA 1 (OST1) and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich) component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure) and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed several predictions of the model with regard to reactive oxygen species, cytosolic Ca2+ (Ca2+c), and heterotrimeric G-protein signaling. We analyzed dynamics-determining positive and negative feedback loops, thereby elucidating the attractor (dynamic behavior) repertoire of the system and the groups of nodes that determine each attractor. Based on this analysis, we predict the likely presence of a previously unrecognized feedback mechanism dependent on Ca2+c. This mechanism would provide model agreement with 10 additional experimental observations, for a validation rate of 85%. Our research underscores the importance of feedback regulation in generating robust and adaptable biological responses. The high validation rate of our model illustrates the advantages of discrete dynamic modeling for complex, nonlinear systems common in biology.
Collapse
Affiliation(s)
- Réka Albert
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Biswa R. Acharya
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Byeong Wook Jeon
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jorge G. T. Zañudo
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mengmeng Zhu
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Karim Osman
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sarah M. Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
41
|
Abstract
Kinase-mediated phosphorylation is a pivotal regulatory process in stomatal responses to stresses. Through a redox proteomics study, a sucrose non-fermenting 1-related protein kinase (SnRK2.4) was identified to be redox-regulated in Brassica napus guard cells upon abscisic acid treatment. There are six genes encoding SnRK2.4 paralogs in B. napus Here, we show that recombinant BnSnRK2.4-1C exhibited autophosphorylation activity and preferentially phosphorylated the N-terminal region of B. napus slow anion channel (BnSLAC1-NT) over generic substrates. The in vitro activity of BnSnRK2.4-1C requires the presence of manganese (Mn2+). Phosphorylation sites of autophosphorylated BnSnRK2.4-1C were mapped, including serine and threonine residues in the activation loop. In vitro BnSnRK2.4-1C autophosphorylation activity was inhibited by oxidants such as H2O2 and recovered by active thioredoxin isoforms, indicating redox regulation of BnSnRK2.4-1C. Thiol-specific isotope tagging followed by mass spectrometry analysis revealed specific cysteine residues responsive to oxidant treatments. The in vivo activity of BnSnRK2.4-1C is inhibited by 15 min of H2O2 treatment. Taken together, these data indicate that BnSnRK2.4-1C, an SnRK preferentially expressed in guard cells, is redox-regulated with potential roles in guard cell signal transduction.
Collapse
|
42
|
Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A, Inupakutika MA, Mittler R. ABA is required for the accumulation of APX1 and MBF1c during a combination of water deficit and heat stress. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5381-5390. [PMID: 27497287 PMCID: PMC5049388 DOI: 10.1093/jxb/erw299] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) plays a key role in plant acclimation to abiotic stress. Although recent studies suggested that ABA could also be important for plant acclimation to a combination of abiotic stresses, its role in this response is currently unknown. Here we studied the response of mutants impaired in ABA signalling (abi1-1) and biosynthesis (aba1-1) to a combination of water deficit and heat stress. Both mutants displayed reduced growth, biomass, and survival when subjected to stress combination. Focusing on abi1-1, we found that although its stomata had an impaired response to water deficit, remaining significantly more open than wild type, its stomatal aperture was surprisingly reduced when subjected to the stress combination. Stomatal closure during stress combination in abi1-1 was accompanied by higher levels of H2O2 in leaves, suggesting that H2O2 might play a role in this response. In contrast to the almost wild-type stomatal closure phenotype of abi1-1 during stress combination, the accumulation of ascorbate peroxidase 1 and multiprotein bridging factor 1c proteins, required for acclimation to a combination of water deficit and heat stress, was significantly reduced in abi1-1 Our findings reveal a key function for ABA in regulating the accumulation of essential proteins during a combination of water deficit and heat stress.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, E- 12071 Castello de la Plana, Spain
| | - Damián Balfagón
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, E- 12071 Castello de la Plana, Spain
| | - Vicent Arbona
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, E- 12071 Castello de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, E- 12071 Castello de la Plana, Spain
| | - Madhuri A Inupakutika
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| | - Ron Mittler
- Department of Biological Sciences, College of Arts and Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA
| |
Collapse
|
43
|
Krzywińska E, Bucholc M, Kulik A, Ciesielski A, Lichocka M, Dębski J, Ludwików A, Dadlez M, Rodriguez PL, Dobrowolska G. Phosphatase ABI1 and okadaic acid-sensitive phosphoprotein phosphatases inhibit salt stress-activated SnRK2.4 kinase. BMC PLANT BIOLOGY 2016; 16:136. [PMID: 27297076 PMCID: PMC4907068 DOI: 10.1186/s12870-016-0817-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/23/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND SNF1-related protein kinases 2 (SnRK2s) are key regulators of the plant response to osmotic stress. They are transiently activated in response to drought and salinity. Based on a phylogenetic analysis SnRK2s are divided into three groups. The classification correlates with their response to abscisic acid (ABA); group 1 consists SnRK2s non-activated in response to ABA, group 2, kinases non-activated or weakly activated (depending on the plant species) by ABA treatment, and group 3, ABA-activated kinases. The activity of all SnRK2s is regulated by phosphorylation. It is well established that clade A phosphoprotein phosphatases 2C (PP2Cs) are negative regulators of ABA-activated SnRK2s, whereas regulators of SnRK2s from group 1 remain unidentified. RESULTS Here, we show that ABI1, a PP2C clade A phosphatase, interacts with SnRK2.4, member of group 1 of the SnRK2 family, dephosphorylates Ser158, whose phosphorylation is needed for the kinase activity, and inhibits the kinase, both in vitro and in vivo. Our data indicate that ABI1 and the kinase regulate primary root growth in response to salinity; the phenotype of ABI1 knockout mutant (abi1td) exposed to salt stress is opposite to that of the snrk2.4 mutant. Moreover, we show that the activity of SnRK2s from group 1 is additionally regulated by okadaic acid-sensitive phosphatase(s) from the phosphoprotein phosphatase (PPP) family. CONCLUSIONS Phosphatase ABI1 and okadaic acid-sensitive phosphatases of the PPP family are negative regulators of salt stress-activated SnRK2.4. The results show that ABI1 inhibits not only the ABA-activated SnRK2s but also at least one ABA-non-activated SnRK2, suggesting that the phosphatase is involved in the cross talk between ABA-dependent and ABA-independent stress signaling pathways in plants.
Collapse
Affiliation(s)
- Ewa Krzywińska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Present address: Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093, Warsaw, Poland
| | - Maria Bucholc
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Arkadiusz Ciesielski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Present address: Department of Chemistry, Warsaw University, Pasteur 1, 02-093, Warsaw, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Janusz Dębski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Agnieszka Ludwików
- Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Institute of Genetics and Biotechnology, University of Warsaw, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022, Valencia, Spain
| | - Grażyna Dobrowolska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
44
|
Kerchev P, De Smet B, Waszczak C, Messens J, Van Breusegem F. Redox Strategies for Crop Improvement. Antioxid Redox Signal 2015; 23:1186-205. [PMID: 26062101 DOI: 10.1089/ars.2014.6033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Recently, the agro-biotech industry has been driven by overcoming the limitations imposed by fluctuating environmental stress conditions on crop productivity. A common theme among (a)biotic stresses is the perturbation of the redox homeostasis. RECENT ADVANCES As a strategy to engineer stress-tolerant crops, many approaches have been centered on restricting the negative impact of reactive oxygen species (ROS) accumulation. CRITICAL ISSUES In this study, we discuss the scientific background of the existing redox-based strategies to improve crop performance and quality. In this respect, a special focus goes to summarizing the current patent landscape because this aspect is very often ignored, despite constituting the forefront of applied research. FUTURE DIRECTIONS The current increased understanding of ROS acting as signaling molecules has opened new avenues to exploit redox biology for crop improvement required for sustainable food security.
Collapse
Affiliation(s)
- Pavel Kerchev
- 1 Department of Plant Systems Biology , VIB, Ghent, Belgium .,2 Department of Plant Biotechnology and Bioinformatics, Ghent University , Ghent, Belgium
| | - Barbara De Smet
- 1 Department of Plant Systems Biology , VIB, Ghent, Belgium .,2 Department of Plant Biotechnology and Bioinformatics, Ghent University , Ghent, Belgium .,3 Structural Biology Research Center , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussel, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussel, Belgium
| | - Cezary Waszczak
- 1 Department of Plant Systems Biology , VIB, Ghent, Belgium .,2 Department of Plant Biotechnology and Bioinformatics, Ghent University , Ghent, Belgium .,3 Structural Biology Research Center , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussel, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussel, Belgium
| | - Joris Messens
- 3 Structural Biology Research Center , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussel, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussel, Belgium
| | - Frank Van Breusegem
- 1 Department of Plant Systems Biology , VIB, Ghent, Belgium .,2 Department of Plant Biotechnology and Bioinformatics, Ghent University , Ghent, Belgium
| |
Collapse
|
45
|
Vidigal P, Martin-Hernandez AM, Guiu-Aragonés C, Amâncio S, Carvalho L. Selective silencing of 2Cys and type-IIB Peroxiredoxins discloses their roles in cell redox state and stress signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:591-601. [PMID: 25319151 DOI: 10.1111/jipb.12296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/08/2014] [Indexed: 05/12/2023]
Abstract
Peroxiredoxins (Prx) catalyse the reduction of hydrogen peroxide (H2O2) and, in association with catalases and other peroxidases, may participate in signal transduction by regulating intercellular H2O2 concentration that in turn can control gene transcription and cell signaling. Using virus-induced-gene-silencing (VIGS), 2-Cys Peroxiredoxin (2CysPrx) family and type-II Peroxiredoxin B (PrxIIB) gene were silenced in Nicotiana benthamiana, to study the impact that the loss of function of each Prx would have in the antioxidant system under control (22 °C) and severe heat stress conditions (48 °C). The results showed that both Prxs, although in different organelles, influence the regeneration of ascorbate to a significant extent, but with different purposes. 2CysPrx affects abscisic acid (ABA) biosynthesis through ascorbate, while PrxIIB does it probably through the xanthophyll cycle. Moreover, 2CysPrx is key in H2O2 scavenging and in consequence in the regulation of ABA signaling downstream of reactive oxygen species and PrxIIB provides an important assistance for H2O2 peroxisome scavenges.
Collapse
Affiliation(s)
- Patrícia Vidigal
- Departamento de Recursos Naturais, Ambiente e Território (DRAT)/Centro de Botânica Aplicada à Agricultura (CBAA), Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ana Montserrat Martin-Hernandez
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Campus Universitat Autonoma de Barcelona (UAB), Edificio Center for Research in Agricultural Genomics (CRAG), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Cèlia Guiu-Aragonés
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB) Campus Universitat Autonoma de Barcelona (UAB), Edificio Center for Research in Agricultural Genomics (CRAG), Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Sara Amâncio
- Departamento de Recursos Naturais, Ambiente e Território (DRAT)/Centro de Botânica Aplicada à Agricultura (CBAA), Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Luísa Carvalho
- Departamento de Recursos Naturais, Ambiente e Território (DRAT)/Centro de Botânica Aplicada à Agricultura (CBAA), Institute of Agronomy, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| |
Collapse
|
46
|
Waszczak C, Akter S, Jacques S, Huang J, Messens J, Van Breusegem F. Oxidative post-translational modifications of cysteine residues in plant signal transduction. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2923-34. [PMID: 25750423 DOI: 10.1093/jxb/erv084] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, fluctuation of the redox balance by altered levels of reactive oxygen species (ROS) can affect many aspects of cellular physiology. ROS homeostasis is governed by a diversified set of antioxidant systems. Perturbation of this homeostasis leads to transient or permanent changes in the redox status and is exploited by plants in different stress signalling mechanisms. Understanding how plants sense ROS and transduce these stimuli into downstream biological responses is still a major challenge. ROS can provoke reversible and irreversible modifications to proteins that act in diverse signalling pathways. These oxidative post-translational modifications (Ox-PTMs) lead to oxidative damage and/or trigger structural alterations in these target proteins. Characterization of the effect of individual Ox-PTMs on individual proteins is the key to a better understanding of how cells interpret the oxidative signals that arise from developmental cues and stress conditions. This review focuses on ROS-mediated Ox-PTMs on cysteine (Cys) residues. The Cys side chain, with its high nucleophilic capacity, appears to be the principle target of ROS. Ox-PTMs on Cys residues participate in various signalling cascades initiated by plant stress hormones. We review the mechanistic aspects and functional consequences of Cys Ox-PTMs on specific target proteins in view of stress signalling events.
Collapse
Affiliation(s)
- Cezary Waszczak
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium * Present address: Division of Plant Biology, Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | - Salma Akter
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium Faculty of Biological Sciences, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Silke Jacques
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium Department of Medical Protein Research, VIB, 9000 Gent, Belgium
| | - Jingjing Huang
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium Brussels Center for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
47
|
Benson CL, Kepka M, Wunschel C, Rajagopalan N, Nelson KM, Christmann A, Abrams SR, Grill E, Loewen MC. Abscisic acid analogs as chemical probes for dissection of abscisic acid responses in Arabidopsis thaliana. PHYTOCHEMISTRY 2015; 113:96-107. [PMID: 24726371 DOI: 10.1016/j.phytochem.2014.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/06/2014] [Accepted: 03/13/2014] [Indexed: 05/08/2023]
Abstract
Abscisic acid (ABA) is a phytohormone known to mediate numerous plant developmental processes and responses to environmental stress. In Arabidopsis thaliana, ABA acts, through a genetically redundant family of ABA receptors entitled Regulatory Component of ABA Receptor (RCAR)/Pyrabactin Resistant 1 (PYR1)/Pyrabactin Resistant-Like (PYL) receptors comprised of thirteen homologues acting in concert with a seven-member set of phosphatases. The individual contributions of A. thaliana RCARs and their binding partners with respect to specific physiological functions are as yet poorly understood. Towards developing efficacious plant growth regulators selective for specific ABA functions and tools for elucidating ABA perception, a panel of ABA analogs altered specifically on positions around the ABA ring was assembled. These analogs have been used to probe thirteen RCARs and four type 2C protein phosphatases (PP2Cs) and were also screened against representative physiological assays in the model plant Arabidopsis. The 1'-O methyl ether of (S)-ABA was identified as selective in that, at physiologically relevant levels, it regulates stomatal aperture and improves drought tolerance, but does not inhibit germination or root growth. Analogs with the 7'- and 8'-methyl groups of the ABA ring replaced with bulkier groups generally retained the activity and stereoselectivity of (S)- and (R)-ABA, while alteration of the 9'-methyl group afforded an analog that substituted for ABA in inhibiting germination but neither root growth nor stomatal closure. Further in vitro testing indicated differences in binding of analogs to individual RCARs, as well as differences in the enzyme activity resulting from specific PP2Cs bound to RCAR-analog complexes. Ultimately, these findings highlight the potential of a broader chemical genetics approach for dissection of the complex network mediating ABA-perception, signaling and functionality within a given species and modifications in the future design of ABA agonists.
Collapse
Affiliation(s)
- Chantel L Benson
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Michal Kepka
- Lehrstuhl für Botanik, Technische Universität München, D-85354 Freising, Germany
| | - Christian Wunschel
- Lehrstuhl für Botanik, Technische Universität München, D-85354 Freising, Germany
| | | | - Ken M Nelson
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Alexander Christmann
- Lehrstuhl für Botanik, Technische Universität München, D-85354 Freising, Germany
| | - Suzanne R Abrams
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Erwin Grill
- Lehrstuhl für Botanik, Technische Universität München, D-85354 Freising, Germany
| | - Michele C Loewen
- National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada; Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
48
|
Vainonen JP, Kangasjärvi J. Plant signalling in acute ozone exposure. PLANT, CELL & ENVIRONMENT 2015; 38:240-52. [PMID: 24417414 DOI: 10.1111/pce.12273] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/17/2013] [Accepted: 12/27/2013] [Indexed: 05/08/2023]
Abstract
Exposure of plants to high ozone concentrations causes lesion formation in sensitive plants. Plant responses to ozone involve fast and massive changes in protein activities, gene expression and metabolism even before any tissue damage can be detected. Degradation of ozone and subsequent accumulation of reactive oxygen species (ROS) in the extracellular space activates several signalling cascades, which are integrated inside the cell into a fine-balanced network of ROS signalling. Reversible protein phosphorylation and degradation plays an important role in the regulation of signalling mechanisms in a complex crosstalk with plant hormones and calcium, an essential second messenger. In this review, we discuss the recent advances in understanding the molecular mechanisms of ozone uptake, perception and signalling pathways activated during the early steps of ozone response, and discuss the use of ozone as a tool to study the function of apoplastic ROS in signalling.
Collapse
Affiliation(s)
- Julia P Vainonen
- Plant Biology Division, Department of Biosciences, University of Helsinki, FI-00014, Helsinki, Finland
| | | |
Collapse
|
49
|
Lu Y, Yamaguchi J, Sato T. Integration of C/N-nutrient and multiple environmental signals into the ABA signaling cascade. PLANT SIGNALING & BEHAVIOR 2015; 10:e1048940. [PMID: 26786013 PMCID: PMC4854351 DOI: 10.1080/15592324.2015.1048940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/04/2015] [Indexed: 06/05/2023]
Abstract
Due to their immobility, plants have developed sophisticated mechanisms to robustly monitor and appropriately respond to dynamic changes in nutrient availability. Carbon (C) and nitrogen (N) are especially important in regulating plant metabolism and development, thereby affecting crop productivity. In addition to their independent utilization, the ratio of C to N metabolites in the cell, referred to as the "C/N balance", is important for the regulation of plant growth, although molecular mechanisms mediating C/N signaling remain unclear. Recently ABI1, a protein phosphatase type 2C (PP2C), was shown to be a regulator of C/N response in Arabidopsis plants. ABI1 functions as a negative regulator of abscisic acid (ABA) signal transduction. ABA is versatile phytohormone that regulates multiple aspects of plant growth and adaptation to environmental stress. This review highlights the regulation of the C/N response mediated by a non-canonical ABA signaling pathway that is independent of ABA biosynthesis, as well as recent findings on the direct crosstalk between multiple cellular signals and the ABA signaling cascade.
Collapse
Affiliation(s)
- Yu Lu
- Faculty of Science and Graduate School of Life Science; Hokkaido University; Kita-ku Sapporo, Japan
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science; Hokkaido University; Kita-ku Sapporo, Japan
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Science; Hokkaido University; Kita-ku Sapporo, Japan
| |
Collapse
|
50
|
Ludwików A. Targeting proteins for proteasomal degradation-a new function of Arabidopsis ABI1 protein phosphatase 2C. FRONTIERS IN PLANT SCIENCE 2015; 6:310. [PMID: 25999974 PMCID: PMC4419600 DOI: 10.3389/fpls.2015.00310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/19/2015] [Indexed: 05/08/2023]
Abstract
The ubiquitin/26S proteasome system (UPS) has been implicated in the regulation of many physiological processes including hormone signaling. The plant hormone abscisic acid (ABA) employs the UPS to control its own synthesis and signaling and to regulate stress response and tolerance. Among the known effectors of ABA signaling, the ABI1 (abscisic acid-insensitive 1) protein phosphatase, which belongs to group A of the type 2C protein phosphatases, is recognized as a key component of the pathway. Molecular and genetic evidence implicates this protein phosphatase in numerous plant responses. This mini-review discusses recent progress in understanding the role of ABI1 in ABA signaling, with particular emphasis on recent data that link ABI1 to protein degradation via the UPS.
Collapse
Affiliation(s)
- Agnieszka Ludwików
- *Correspondence: Agnieszka Ludwików, Department of Biotechnology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89 Street, Collegium Biologicum, 61-614 Poznan, Poland,
| |
Collapse
|