1
|
Moaeen-ud-Din M, Khan MS, Muner RD, Reecy JM. Potential SNPs and candidate genes influencing growth characteristics in Pakistani Beetal goat identified by GWAS analysis. THE JOURNAL OF BASIC AND APPLIED ZOOLOGY 2025; 86:18. [DOI: 10.1186/s41936-025-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/22/2025] [Indexed: 04/20/2025]
Abstract
Abstract
Background
A higher body weight at a younger age is an economically important trait for profitable goat farming. This study focussed on the identification of regions of the genome that harbour genetic variants associated with body weight using the Illumina GoatSNP50K Bead Chip. A total of 631 purebred Beetal goats (151 males and 480 females) were recorded for body weight, age and body measurement and then genotyped. Genome-wide association analysis was carried out with GEMMA.
Results
After application of quality control filters with Plink 1.9 i.e. call rate less than or equal to 0.9, minor allele frequency < 0.05 and HWE P value < 0.001, 594 animals and 45,744 SNPs were used to carry out the analyses for association. The association analysis for body weight with covariates of age, sex, morphometric measurements and contemporary group returned 10 significant SNPs (P = − log10e-4 to − log10e-6). Three associated SNPs were present within genes i.e. BTAF1 (snp1131-scaffold1029-1983670 on chromosome 26), NTM (snp53070-scaffold799-1,702,189 on chromosome 29) and GRID1 (snp3363-scaffold1102-797993 on chromosome 28) when blasted against ARS1(accession GCA_001704415.1). Moreover, some associated SNPs were localized close to genes i.e. CEP78 (snp44634-scaffold606-4621460 on chromosome 8), ROBO1 (snp11793-scaffold1437-557,127 on chromosome 1), ZFP36L2 (snp9758-scaffold135-2,388,277 on chromosome 11), SPTLC3 (snp25720-scaffold265-581,526 on chromosome 13), CTR9 (snp31951-scaffold358-554,703 on chromosome 15) and ZFHX3 (snp9581-scaffold1344-19,492 on chromosome 18) genes.
Conclusions
The study identified SNPs and genes with potential role in growth of goat which may be useful for generation of customized chip in the future.
Collapse
|
2
|
Carrion SA, Michal JJ, Jiang Z. Alternative Transcripts Diversify Genome Function for Phenome Relevance to Health and Diseases. Genes (Basel) 2023; 14:2051. [PMID: 38002994 PMCID: PMC10671453 DOI: 10.3390/genes14112051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Manipulation using alternative exon splicing (AES), alternative transcription start (ATS), and alternative polyadenylation (APA) sites are key to transcript diversity underlying health and disease. All three are pervasive in organisms, present in at least 50% of human protein-coding genes. In fact, ATS and APA site use has the highest impact on protein identity, with their ability to alter which first and last exons are utilized as well as impacting stability and translation efficiency. These RNA variants have been shown to be highly specific, both in tissue type and stage, with demonstrated importance to cell proliferation, differentiation and the transition from fetal to adult cells. While alternative exon splicing has a limited effect on protein identity, its ubiquity highlights the importance of these minor alterations, which can alter other features such as localization. The three processes are also highly interwoven, with overlapping, complementary, and competing factors, RNA polymerase II and its CTD (C-terminal domain) chief among them. Their role in development means dysregulation leads to a wide variety of disorders and cancers, with some forms of disease disproportionately affected by specific mechanisms (AES, ATS, or APA). Challenges associated with the genome-wide profiling of RNA variants and their potential solutions are also discussed in this review.
Collapse
Affiliation(s)
| | | | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-7620, USA; (S.A.C.); (J.J.M.)
| |
Collapse
|
3
|
Basha S, Jin-Smith B, Sun C, Pi L. The SLIT/ROBO Pathway in Liver Fibrosis and Cancer. Biomolecules 2023; 13:785. [PMID: 37238655 PMCID: PMC10216401 DOI: 10.3390/biom13050785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Liver fibrosis is a common outcome of most chronic liver insults/injuries that can develop into an irreversible process of cirrhosis and, eventually, liver cancer. In recent years, there has been significant progress in basic and clinical research on liver cancer, leading to the identification of various signaling pathways involved in tumorigenesis and disease progression. Slit glycoprotein (SLIT)1, SLIT2, and SLIT3 are secreted members of a protein family that accelerate positional interactions between cells and their environment during development. These proteins signal through Roundabout receptor (ROBO) receptors (ROBO1, ROBO2, ROBO3, and ROBO4) to achieve their cellular effects. The SLIT and ROBO signaling pathway acts as a neural targeting factor regulating axon guidance, neuronal migration, and axonal remnants in the nervous system. Recent findings suggest that various tumor cells differ in SLIT/ROBO signaling levels and show varying degrees of expression patterns during tumor angiogenesis, cell invasion, metastasis, and infiltration. Emerging roles of the SLIT and ROBO axon-guidance molecules have been discovered in liver fibrosis and cancer development. Herein, we examined the expression patterns of SLIT and ROBO proteins in normal adult livers and two types of liver cancers: hepatocellular carcinoma and cholangiocarcinoma. This review also summarizes the potential therapeutics of this pathway for anti-fibrosis and anti-cancer drug development.
Collapse
Affiliation(s)
| | | | | | - Liya Pi
- Department of Pathology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Johnson V, Junge HJ, Chen Z. Temporal regulation of axonal repulsion by alternative splicing of a conserved microexon in mammalian Robo1 and Robo2. eLife 2019; 8:e46042. [PMID: 31392959 PMCID: PMC6687390 DOI: 10.7554/elife.46042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022] Open
Abstract
Proper connectivity of the nervous system requires temporal and spatial control of axon guidance signaling. As commissural axons navigate across the CNS midline, ROBO-mediated repulsion has traditionally been thought to be repressed before crossing, and then to become upregulated after crossing. The regulation of the ROBO receptors involves multiple mechanisms that control protein expression, trafficking, and activity. Here, we report that mammalian ROBO1 and ROBO2 are not uniformly inhibited precrossing and are instead subject to additional temporal control via alternative splicing at a conserved microexon. The NOVA splicing factors regulate the developmental expression of ROBO1 and ROBO2 variants with small sequence differences and distinct guidance activities. As a result, ROBO-mediated axonal repulsion is activated early in development to prevent premature crossing and becomes inhibited later to allow crossing. Postcrossing, the ROBO1 and ROBO2 isoforms are disinhibited to prevent midline reentry and to guide postcrossing commissural axons to distinct mediolateral positions.
Collapse
Affiliation(s)
- Verity Johnson
- Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUnited States
| | - Harald J Junge
- Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUnited States
| | - Zhe Chen
- Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUnited States
- Linda Crnic Institute for Down SyndromeUniversity of Colorado school of MedicineAuroraUnited States
| |
Collapse
|
5
|
Abstract
The creation of complex neuronal networks relies on ligand-receptor interactions that mediate attraction or repulsion towards specific targets. Roundabouts comprise a family of single-pass transmembrane receptors facilitating this process upon interaction with the soluble extracellular ligand Slit protein family emanating from the midline. Due to the complexity and flexible nature of Robo receptors , their overall structure has remained elusive until now. Recent structural studies of the Robo 1 and Robo 2 ectodomains have provided the basis for a better understanding of their signalling mechanism. These structures reveal how Robo receptors adopt an auto-inhibited conformation on the cell surface that can be further stabilised by cis and/or trans oligmerisation arrays. Upon Slit -N binding Robo receptors must undergo a conformational change for Ig4 mediated dimerisation and signaling, probably via endocytosis. Furthermore, it's become clear that Robo receptors do not only act alone, but as large and more complex cell surface receptor assemblies to manifest directional and growth effects in a concerted fashion. These context dependent assemblies provide a mechanism to fine tune attractive and repulsive signals in a combinatorial manner required during neuronal development. While a mechanistic understanding of Slit mediated Robo signaling has advanced significantly further structural studies on larger assemblies are required for the design of new experiments to elucidate their role in cell surface receptor complexes. These will be necessary to understand the role of Slit -Robo signaling in neurogenesis, angiogenesis, organ development and cancer progression. In this chapter, we provide a review of the current knowledge in the field with a particular focus on the Roundabout receptor family.
Collapse
Affiliation(s)
- Francesco Bisiak
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue Des Martyrs, 38042, Grenoble, France.
| | - Andrew A McCarthy
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue Des Martyrs, 38042, Grenoble, France.
| |
Collapse
|
6
|
Zhao J, Mommersteeg MTM. Slit-Robo signalling in heart development. Cardiovasc Res 2018; 114:794-804. [PMID: 29538649 PMCID: PMC5909645 DOI: 10.1093/cvr/cvy061] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/16/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
The Slit ligands and their Robo receptors are well-known for their roles during axon guidance in the central nervous system but are still relatively unknown in the cardiac field. However, data from different animal models suggest a broad involvement of the pathway in many aspects of heart development, from cardiac cell migration and alignment, lumen formation, chamber formation, to the formation of the ventricular septum, semilunar and atrioventricular valves, caval veins, and pericardium. Absence of one or more of the genes in the pathway results in defects ranging from bicuspid aortic valves to ventricular septal defects and abnormal venous connections to the heart. Congenital heart defects are the most common congenital malformations found in life new-born babies and progress in methods for large scale human genetic testing has significantly enhanced the identification of new causative genes involved in human congenital heart disease. Recently, loss of function variants in ROBO1 have also been linked to ventricular septal defects and tetralogy of Fallot in patients. Here, we will give an overview of the role of the Slit-Robo signalling pathway in Drosophila, zebrafish, and mouse heart development. The extent of these data warrant further attention on the SLIT-ROBO signalling pathway as a candidate for an array of human congenital heart defects.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Mathilda T M Mommersteeg
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
7
|
Charoy C, Dinvaut S, Chaix Y, Morlé L, Sanyas I, Bozon M, Kindbeiter K, Durand B, Skidmore JM, De Groef L, Seki M, Moons L, Ruhrberg C, Martin JF, Martin DM, Falk J, Castellani V. Genetic specification of left-right asymmetry in the diaphragm muscles and their motor innervation. eLife 2017. [PMID: 28639940 PMCID: PMC5481184 DOI: 10.7554/elife.18481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left–right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L–R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry. DOI:http://dx.doi.org/10.7554/eLife.18481.001 The diaphragm is a dome-shaped muscle that forms the floor of the rib cage, separating the lungs from the abdomen. As we breathe in, the diaphragm contracts. This causes the chest cavity to expand, drawing air into the lungs. A pair of nerves called the phrenic nerves carry signals from the spinal cord to the diaphragm to tell it when to contract. These nerves project from the left and right sides of the spinal cord to the left and right sides of the diaphragm respectively. The left and right sides of the diaphragm are not entirely level, but it was not known why. To investigate, Charoy et al. studied how the diaphragm develops in mouse embryos. This revealed that the left and right phrenic nerves are not symmetrical. Neither are the muscles on each side of the diaphragm. Further investigation revealed that a genetic program that establishes other differences between the left and right sides of the embryo also gives rise to the differences between the left and right sides of the diaphragm. This program switches on different genes in the left and right phrenic nerves, which activate different molecular pathways in the left and right sides of the diaphragm muscle. The differences between the nerves and muscles on the left and right sides of the diaphragm could explain why some muscle disorders affect only one side of the diaphragm. Similarly, they could explain why congenital hernias caused by abdominal organs pushing through the diaphragm into the chest cavity mostly affect the left side of the diaphragm. Further studies are now needed to investigate these possibilities. The techniques used by Charoy et al. to map the molecular diversity of spinal cord neurons could also lead to new strategies for repairing damage to the spinal cord following injury or disease. DOI:http://dx.doi.org/10.7554/eLife.18481.002
Collapse
Affiliation(s)
- Camille Charoy
- University of Lyon, Claude Bernard University Lyon 1, INMG UMR CNRS 5310, INSERM U1217, Lyon, France
| | - Sarah Dinvaut
- University of Lyon, Claude Bernard University Lyon 1, INMG UMR CNRS 5310, INSERM U1217, Lyon, France
| | - Yohan Chaix
- University of Lyon, Claude Bernard University Lyon 1, INMG UMR CNRS 5310, INSERM U1217, Lyon, France
| | - Laurette Morlé
- University of Lyon, Claude Bernard University Lyon 1, INMG UMR CNRS 5310, INSERM U1217, Lyon, France
| | - Isabelle Sanyas
- University of Lyon, Claude Bernard University Lyon 1, INMG UMR CNRS 5310, INSERM U1217, Lyon, France
| | - Muriel Bozon
- University of Lyon, Claude Bernard University Lyon 1, INMG UMR CNRS 5310, INSERM U1217, Lyon, France
| | - Karine Kindbeiter
- University of Lyon, Claude Bernard University Lyon 1, INMG UMR CNRS 5310, INSERM U1217, Lyon, France
| | - Bénédicte Durand
- University of Lyon, Claude Bernard University Lyon 1, INMG UMR CNRS 5310, INSERM U1217, Lyon, France
| | - Jennifer M Skidmore
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, United States.,Department of Communicable Diseases, University of Michigan Medical Center, Ann Arbor, United States
| | - Lies De Groef
- Animal Physiology and Neurobiology Section, Department of Biology, Laboratory of Neural Circuit Development and Regeneration, Leuven, Belgium
| | - Motoaki Seki
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Lieve Moons
- Animal Physiology and Neurobiology Section, Department of Biology, Laboratory of Neural Circuit Development and Regeneration, Leuven, Belgium
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Donna M Martin
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, United States.,Department of Communicable Diseases, University of Michigan Medical Center, Ann Arbor, United States.,Department of Human Genetics, University of Michigan Medical Center, Ann Arbor, United States
| | - Julien Falk
- University of Lyon, Claude Bernard University Lyon 1, INMG UMR CNRS 5310, INSERM U1217, Lyon, France
| | - Valerie Castellani
- University of Lyon, Claude Bernard University Lyon 1, INMG UMR CNRS 5310, INSERM U1217, Lyon, France
| |
Collapse
|
8
|
Abstract
Slits are secreted proteins that bind to Roundabout (Robo) receptors. Slit-Robo signaling is best known for mediating axon repulsion in the developing nervous system. However, in recent years the functional repertoire of Slits and Robo has expanded tremendously and Slit-Robo signaling has been linked to roles in neurogenesis, angiogenesis and cancer progression among other processes. Likewise, our mechanistic understanding of Slit-Robo signaling has progressed enormously. Here, we summarize new insights into Slit-Robo evolutionary and system-dependent diversity, receptor-ligand interactions, signaling crosstalk and receptor activation.
Collapse
Affiliation(s)
- Heike Blockus
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris 75012, France Ecole des Neurosciences de Paris, Paris F-75005, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris 75012, France
| |
Collapse
|
9
|
Leggere JC, Saito Y, Darnell RB, Tessier-Lavigne M, Junge HJ, Chen Z. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord. eLife 2016; 5. [PMID: 27223328 PMCID: PMC4930329 DOI: 10.7554/elife.14264] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/23/2016] [Indexed: 02/03/2023] Open
Abstract
RNA-binding proteins (RBPs) control multiple aspects of post-transcriptional gene regulation and function during various biological processes in the nervous system. To further reveal the functional significance of RBPs during neural development, we carried out an in vivo RNAi screen in the dorsal spinal cord interneurons, including the commissural neurons. We found that the NOVA family of RBPs play a key role in neuronal migration, axon outgrowth, and axon guidance. Interestingly, Nova mutants display similar defects as the knockout of the Dcc transmembrane receptor. We show here that Nova deficiency disrupts the alternative splicing of Dcc, and that restoring Dcc splicing in Nova knockouts is able to rescue the defects. Together, our results demonstrate that the production of DCC splice variants controlled by NOVA has a crucial function during many stages of commissural neuron development.
Collapse
Affiliation(s)
- Janelle C Leggere
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
| | - Yuhki Saito
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, United States
| | - Harald J Junge
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
| | - Zhe Chen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, United States
| |
Collapse
|
10
|
Nedelko T, Kollmus H, Klawonn F, Spijker S, Lu L, Heßman M, Alberts R, Williams RW, Schughart K. Distinct gene loci control the host response to influenza H1N1 virus infection in a time-dependent manner. BMC Genomics 2012; 13:411. [PMID: 22905720 PMCID: PMC3479429 DOI: 10.1186/1471-2164-13-411] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/10/2012] [Indexed: 02/08/2023] Open
Abstract
Background There is strong but mostly circumstantial evidence that genetic factors modulate the severity of influenza infection in humans. Using genetically diverse but fully inbred strains of mice it has been shown that host sequence variants have a strong influence on the severity of influenza A disease progression. In particular, C57BL/6J, the most widely used mouse strain in biomedical research, is comparatively resistant. In contrast, DBA/2J is highly susceptible. Results To map regions of the genome responsible for differences in influenza susceptibility, we infected a family of 53 BXD-type lines derived from a cross between C57BL/6J and DBA/2J strains with influenza A virus (PR8, H1N1). We monitored body weight, survival, and mean time to death for 13 days after infection. Qivr5 (quantitative trait for influenza virus resistance on chromosome 5) was the largest and most significant QTL for weight loss. The effect of Qivr5 was detectable on day 2 post infection, but was most pronounced on days 5 and 6. Survival rate mapped to Qivr5, but additionally revealed a second significant locus on chromosome 19 (Qivr19). Analysis of mean time to death affirmed both Qivr5 and Qivr19. In addition, we observed several regions of the genome with suggestive linkage. There are potentially complex combinatorial interactions of the parental alleles among loci. Analysis of multiple gene expression data sets and sequence variants in these strains highlights about 30 strong candidate genes across all loci that may control influenza A susceptibility and resistance. Conclusions We have mapped influenza susceptibility loci to chromosomes 2, 5, 16, 17, and 19. Body weight and survival loci have a time-dependent profile that presumably reflects the temporal dynamic of the response to infection. We highlight candidate genes in the respective intervals and review their possible biological function during infection.
Collapse
Affiliation(s)
- Tatiana Nedelko
- Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, 38124, Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Weigand JE, Boeckel JN, Gellert P, Dimmeler S. Hypoxia-induced alternative splicing in endothelial cells. PLoS One 2012; 7:e42697. [PMID: 22876330 PMCID: PMC3411717 DOI: 10.1371/journal.pone.0042697] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/11/2012] [Indexed: 01/12/2023] Open
Abstract
Background Adaptation to low oxygen by changing gene expression is vitally important for cell survival and tissue development. The sprouting of new blood vessels, initiated from endothelial cells, restores the oxygen supply of ischemic tissues. In contrast to the transcriptional response induced by hypoxia, which is mainly mediated by members of the HIF family, there are only few studies investigating alternative splicing events. Therefore, we performed an exon array for the genome-wide analysis of hypoxia-related changes of alternative splicing in endothelial cells. Methodology/Principal findings Human umbilical vein endothelial cells (HUVECs) were incubated under hypoxic conditions (1% O2) for 48 h. Genome-wide transcript and exon expression levels were assessed using the Affymetrix GeneChip Human Exon 1.0 ST Array. We found altered expression of 294 genes after hypoxia treatment. Upregulated genes are highly enriched in glucose metabolism and angiogenesis related processes, whereas downregulated genes are mainly connected to cell cycle and DNA repair. Thus, gene expression patterns recapitulate known adaptations to low oxygen supply. Alternative splicing events, until now not related to hypoxia, are shown for nine genes: six which are implicated in angiogenesis-mediated cytoskeleton remodeling (cask, itsn1, larp6, sptan1, tpm1 and robo1); one, which is involved in the synthesis of membrane-anchors (pign) and two universal regulators of gene expression (cugbp1 and max). Conclusions/Significance For the first time, this study investigates changes in splicing in the physiological response to hypoxia on a genome-wide scale. Nine alternative splicing events, until now not related to hypoxia, are reported, considerably expanding the information on splicing changes due to low oxygen supply. Therefore, this study provides further knowledge on hypoxia induced gene expression changes and presents new starting points to study the hypoxia adaptation of endothelial cells.
Collapse
Affiliation(s)
- Julia E Weigand
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Johann Wolfgang Goethe University Frankfurt, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
12
|
Lamminmäki S, Massinen S, Nopola-Hemmi J, Kere J, Hari R. Human ROBO1 regulates interaural interaction in auditory pathways. J Neurosci 2012; 32:966-71. [PMID: 22262894 PMCID: PMC6621165 DOI: 10.1523/jneurosci.4007-11.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/17/2011] [Accepted: 11/23/2011] [Indexed: 11/21/2022] Open
Abstract
In rodents, the Robo1 gene regulates midline crossing of major nerve tracts, a fundamental property of the mammalian CNS. However, the neurodevelopmental function of the human ROBO1 gene remains unknown, apart from a suggested role in dyslexia. We therefore studied axonal crossing with a functional approach, based on magnetoencephalography, in 10 dyslexic individuals who all share the same rare, weakly expressing haplotype of the ROBO1 gene. Auditory-cortex responses were recorded separately to left- and right-ear sounds that were amplitude modulated at different frequencies. We found impaired interaural interaction that depended on the ROBO1 in a dose-dependent manner. Our results indicate that normal crossing of the auditory pathways requires an adequate ROBO1 expression level.
Collapse
Affiliation(s)
- Satu Lamminmäki
- Brain Research Unit, OV Lounasmaa Laboratory, School of Science, Aalto University, FI-00076 AALTO, Espoo, Finland.
| | | | | | | | | |
Collapse
|
13
|
Abstract
The Slit family of secreted proteins and their transmembrane receptor, Robo, were originally identified in the nervous system where they function as axon guidance cues and branching factors during development. Since their discovery, a great number of additional roles have been attributed to Slit/Robo signaling, including regulating the critical processes of cell proliferation and cell motility in a variety of cell and tissue types. These processes are often deregulated during cancer progression, allowing tumor cells to bypass safeguarding mechanisms in the cell and the environment in order to grow and escape to new tissues. In the past decade, it has been shown that the expression of Slit and Robo is altered in a wide variety of cancer types, identifying them as potential therapeutic targets. Further, studies have demonstrated dual roles for Slits and Robos in cancer, acting as both oncogenes and tumor suppressors. This bifunctionality is also observed in their roles as axon guidance cues in the developing nervous system, where they both attract and repel neuronal migration. The fact that this signaling axis can have opposite functions depending on the cellular circumstance make its actions challenging to define. Here, we summarize our current understanding of the dual roles that Slit/Robo signaling play in development, epithelial tumor progression, and tumor angiogenesis.
Collapse
Affiliation(s)
- Mimmi S. Ballard
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| | - Lindsay Hinck
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz CA 95064
| |
Collapse
|
14
|
Abstract
Guidance molecules were first described in the nervous system to control axon outgrowth direction. They are also widely expressed outside the nervous system where they control cell migration, tissue development and establishment of the vascular network. In addition, they are involved in cancer development, tumor angiogenesis and metastasis. This review is primarily focused on their functions in lung cancer and their involvement in lung development is also presented. Five guidance molecule families and their corresponding receptors are described, including the semaphorins/neuropilins/plexins, ephrins and Eph receptors, netrin/DCC/UNC5, Slit/Robo and Notch/Delta. In addition, the possibility to target these molecules as a therapeutic approach in cancer is discussed.
Collapse
Affiliation(s)
- Patrick Nasarre
- Medical University of South Carolina, Division of Hematology/Oncology, Charleston, SC, USA
| | | | | | | |
Collapse
|
15
|
Cody NAL, Shen Z, Ripeau JS, Provencher DM, Mes-Masson AM, Chevrette M, Tonin PN. Characterization of the 3p12.3-pcen region associated with tumor suppression in a novel ovarian cancer cell line model genetically modified by chromosome 3 fragment transfer. Mol Carcinog 2009; 48:1077-92. [PMID: 19347865 DOI: 10.1002/mc.20535] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The genetic analysis of nontumorigenic radiation hybrids generated by transfer of chromosome 3 fragments into the tumorigenic OV-90 ovarian cancer cell line identified the 3p12.3-pcen region as a candidate tumor suppressor gene (TSG) locus. In the present study, polymorphic microsatellite repeat analysis of the hybrids further defined the 3p12.3-pcen interval to a 16.1 Mb common region containing 12 known or hypothetical genes: 3ptel-ROBO2-ROBO1-GBE1-CADM2-VGLL3-CHMP2B-POU1F1-HTR1F-CGGBP1-ZNF654-C3orf38-EPHA3-3pcen. Seven of these genes, ROBO1, GBE1, VGLL3, CHMP2B, CGGBP1, ZNF654, and C3orf38, exhibited gene expression in the hybrids, placing them as top TSG candidates for further analysis. The expression of all but one (VGLL3) of these genes was also detected in the parental OV-90 cell line. Mutations were not identified in a comparative sequence analysis of the predicted protein coding regions of these candidates in OV-90 and donor normal chromosome 3 contig. However, the nondeleterious sequence variants identified in the transcribed regions distinguished parent of origin alleles for ROBO1, VGLL3, CHMP2B, and CGGBP1 and cDNA sequencing of the hybrids revealed biallelic expression of these genes. Interestingly, underexpression of VGLL3 and ZNF654 were observed in malignant ovarian tumor samples as compared with primary cultures of normal ovarian surface epithelial cells or benign ovarian tumors, and this occurred regardless of allelic content of 3p12.3-pcen. The results taken together suggest that dysregulation of VGLL3 and/or ZNF654 expression may have affected pathways important in ovarian tumorigenesis which was offset by the transfer of chromosome 3 fragments in OV-90, a cell line hemizygous for 3p.
Collapse
Affiliation(s)
- Neal A L Cody
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1A4
| | | | | | | | | | | | | |
Collapse
|
16
|
Tole S, Mukovozov IM, Huang YW, Magalhaes MAO, Yan M, Crow MR, Liu GY, Sun CX, Durocher Y, Glogauer M, Robinson LA. The axonal repellent, Slit2, inhibits directional migration of circulating neutrophils. J Leukoc Biol 2009; 86:1403-15. [PMID: 19759280 DOI: 10.1189/jlb.0609391] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In inflammatory diseases, circulating neutrophils are recruited to sites of injury. Attractant signals are provided by many different chemotactic molecules, such that blockade of one may not prevent neutrophil recruitment effectively. The Slit family of secreted proteins and their transmembrane receptor, Robo, repel axonal migration during CNS development. Emerging evidence shows that by inhibiting the activation of Rho-family GTPases, Slit2/Robo also inhibit migration of other cell types toward a variety of chemotactic factors in vitro and in vivo. The role of Slit2 in inflammation, however, has been largely unexplored. We isolated primary neutrophils from human peripheral blood and mouse bone marrow and detected Robo-1 expression. Using video-microscopic live cell tracking, we found that Slit2 selectively impaired directional migration but not random movement of neutrophils toward fMLP. Slit2 also inhibited neutrophil migration toward other chemoattractants, namely C5a and IL-8. Slit2 inhibited neutrophil chemotaxis by preventing chemoattractant-induced actin barbed end formation and cell polarization. Slit2 mediated these effects by suppressing inducible activation of Cdc42 and Rac2 but did not impair activation of other major kinase pathways involved in neutrophil migration. We further tested the effects of Slit2 in vivo using mouse models of peritoneal inflammation induced by sodium periodate, C5a, and MIP-2. In all instances, Slit2 reduced neutrophil recruitment effectively (P<0.01). Collectively, these data demonstrate that Slit2 potently inhibits chemotaxis but not random motion of circulating neutrophils and point to Slit2 as a potential new therapeutic for preventing localized inflammation.
Collapse
Affiliation(s)
- Soumitra Tole
- The Hospital for Sick Children Research Institute, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Huang L, Yu W, Li X, Niu L, Li K, Li J. Robo1/robo4: different expression patterns in retinal development. Exp Eye Res 2009; 88:583-8. [PMID: 19084519 DOI: 10.1016/j.exer.2008.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/29/2008] [Accepted: 11/13/2008] [Indexed: 01/30/2023]
Abstract
Two members of the roundabout (Robo) family, Robo1 and Robo4, serve as neuronal guidance receptors. During neurogenesis, Robo1 and Robo4 participate in axonal guidance by mediating a repulsive signal. It has been reported that Robo4 is mainly expressed in the vasculature and that Robo1 is expressed both in neural and non-neural tissues. However, the roles of these Robo proteins in the mammalian vasculature are still unclear. In this current study, the expression patterns of Robo1 and Robo4 in the retinal vasculature were determined using C57BL/6J mice at postnatal days (P) 1, P3, P5, P7, P9, P12, P14, P17, P21 and adult mice (1month). We found that Robo4 was expressed not only in the retinal vessels but also in the retinal ganglion cell and photoreceptor layers during retinal development. Robo4 expression peaked at P3 and P9, which suggest that Robo4 may function in stabilizing the retinal vasculature. Robo1 expression was observed in the retina neuronal cells and vessels. Both Robo1 mRNA and protein expression showed a typical expression pattern, which related to Robo1's roles in the different stages of retinal vascular development in the murine retina. Robo1 displayed high expression levels at P1 (correlated with superficial vascular plexus formation) and P7 (correlated with deep vascular plexus formation). The high levels of Robo1 during these two well-defined phases of retinal capillary plexus formation indicate that Robo1 is likely to play a part in retinal neovascularization.
Collapse
Affiliation(s)
- Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
| | | | | | | | | | | |
Collapse
|
18
|
Dickinson RE, Myers M, Duncan WC. Novel regulated expression of the SLIT/ROBO pathway in the ovary: possible role during luteolysis in women. Endocrinology 2008; 149:5024-34. [PMID: 18566128 DOI: 10.1210/en.2008-0204] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The human corpus luteum (CL) undergoes luteolysis, associated with marked tissue and vascular remodeling, unless conception occurs and the gland is rescued by human chorionic gonadotropin (hCG). In Drosophila the Slit gene product, a secreted glycoprotein, acts as a ligand for the roundabout (robo) transmembrane receptor. Together they influence the guidance and migration of neuronal and nonneuronal cells. In vertebrates three Slit (Slit1, Slit2, Slit3) and four Robo (Robo1, Robo2, Robo3/Rig-1, Robo4/Magic Robo) genes have been identified. ROBO1, SLIT2, and SLIT3 are also inactivated in human cancers and may regulate apoptosis and metastasis. Because processes such as apoptosis and tissue remodeling occur during the regression of the CL, the aim of this study was to investigate the expression, regulation, and effects of the SLIT and ROBO genes in human luteal cells. Immunohistochemistry and RT-PCR revealed that SLIT2, SLIT3, ROBO1, and ROBO2 are expressed in luteal steroidogenic cells and fibroblast-like cells of the human CL. Furthermore, using real-time quantitative PCR, expression of SLIT2, SLIT3, and ROBO2 was maximal in the late-luteal phase and significantly reduced after luteal rescue in vivo with exogenous hCG (P<0.05). Additionally, hCG significantly inhibited SLIT2, SLIT3, and ROBO2 expression in cultured luteinized granulosa cells (P<0.05). Blocking SLIT-ROBO activity increased migration and significantly decreased levels of apoptosis in primary cultures of luteal cells (P<0.05). Overall, these results suggest the SLIT/ROBO pathway could play an important role in luteolysis in women.
Collapse
Affiliation(s)
- Rachel E Dickinson
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Department of Reproductive and Developmental Sciences, The Queen's Medical Research Institute, Edinburgh, Scotland, United Kingdom.
| | | | | |
Collapse
|
19
|
Juhl K, Sarkar SA, Wong R, Jensen J, Hutton JC. Mouse pancreatic endocrine cell transcriptome defined in the embryonic Ngn3-null mouse. Diabetes 2008; 57:2755-61. [PMID: 18599526 PMCID: PMC2551686 DOI: 10.2337/db07-1126] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To document the transcriptome of the pancreatic islet during the early and late development of the mouse pancreas and highlight the qualitative and quantitative features of gene expression that contribute to the specification, growth, and differentiation of the major endocrine cell types. A further objective was to identify endocrine cell biomarkers, targets of diabetic autoimmunity, and regulatory pathways underlying islet responses to physiological and pathological stimuli. RESEARCH DESIGN AND METHODS mRNA expression profiling was performed by microarray analysis of e12.5-18.5 embryonic pancreas from neurogenin 3 (Ngn3)-null mice, a background that abrogates endocrine pancreatic differentiation. The intersection of this data with mRNA expression in isolated adult pancreatic islets and pancreatic endocrine tumor cell lines was determined to compile lists of genes that are specifically expressed in endocrine cells. RESULTS The data provided insight into the transcriptional and morphogenetic factors that may play major roles in patterning and differentiation of the endocrine lineage before and during the secondary transition of endocrine development, as well as genes that control the glucose responsiveness of the beta-cells and candidate diabetes autoantigens, such as insulin, IA-2 and Slc30a8 (ZnT8). The results are presented as downloadable gene lists, available at https://www.cbil.upenn.edu/RADQuerier/php/displayStudy.php?study_id=1330, stratified by predictive scores of relative cell-type specificity. CONCLUSIONS The deposited data provide a rich resource that can be used to address diverse questions related to islet developmental and cell biology and the pathogenesis of type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Kirstine Juhl
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Biological processes are regulated to provide cells with exquisite adaptability to changing environmental conditions and cellular demands. The mechanisms regulating secretory and membrane protein translocation into the endoplasmic reticulum (ER) are unknown. A conceptual framework for translocational regulation is proposed based on our current mechanistic understanding of ER protein translocation and general principles of regulatory control.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
21
|
Chen Z, Gore BB, Long H, Ma L, Tessier-Lavigne M. Alternative splicing of the Robo3 axon guidance receptor governs the midline switch from attraction to repulsion. Neuron 2008; 58:325-32. [PMID: 18466743 DOI: 10.1016/j.neuron.2008.02.016] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 01/29/2007] [Accepted: 02/15/2008] [Indexed: 11/19/2022]
Abstract
Alternative splicing provides a means to increase the complexity of gene function in numerous biological processes, including nervous system wiring. Navigating axons switch responses from attraction to repulsion at intermediate targets, allowing them to grow to each intermediate target and then to move on. The mechanisms underlying this switch remain poorly characterized. We previously showed that the Slit receptor Robo3 is required for spinal commissural axons to enter and cross the midline intermediate target. We report here the existence of two functionally antagonistic isoforms of Robo3 with distinct carboxy termini arising from alternative splicing. Robo3.1 is deployed on the precrossing and crossing portions of commissural axons and allows midline crossing by silencing Slit repulsion. Robo3.2 becomes expressed on the postcrossing portion and blocks midline recrossing, favoring Slit repulsion. The tight spatial regulation of opponent splice variants helps ensure high-fidelity transition of axonal responses from attraction to repulsion at the midline.
Collapse
Affiliation(s)
- Zhe Chen
- Division of Research, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
22
|
Nural HF, Todd Farmer W, Mastick GS. The Slit receptor Robo1 is predominantly expressed via the Dutt1 alternative promoter in pioneer neurons in the embryonic mouse brain and spinal cord. Gene Expr Patterns 2007; 7:837-45. [PMID: 17826360 PMCID: PMC2080859 DOI: 10.1016/j.modgep.2007.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 07/27/2007] [Accepted: 07/31/2007] [Indexed: 10/23/2022]
Abstract
Robo1 is a member of the Roundabout (Robo) family of receptors for the Slit axon guidance cues. In mice (and humans), the Robo1 locus has alternative promoters producing two transcript isoforms, Robo1 and Dutt1. These isoforms have unique 5' termini, predicted to encode distinct N-terminal amino acids, but share the rest of their 3' exons. To determine the spatial expression of the Robo1 and Dutt1 isoforms, we generated isoform-specific RNA probes, and carried out in situ hybridization on E10.5 mouse embryos, the stage in early neuron differentiation when many major axon pathways are established. The two isoforms had distinct expression patterns that partially overlapped. Dutt1 was the predominant isoform, with widespread expression in regions of post-mitotic neurons and neuroepithelial cells. The Robo1 isoform had a distinct expression pattern restricted to subsets of neurons, many of which were Dutt1-negative. Dutt1 was the main isoform expressed in spinal cord commissural neurons. For both probes, the main hybridization signal was limited to two spots in the nuclei of individual cells. This study shows distinct expression patterns for the Dutt1 and Robo1 alternative promoters in the embryonic nervous system.
Collapse
|
23
|
Bielinska M, Jay PY, Erlich JM, Mannisto S, Urban Z, Heikinheimo M, Wilson DB. Molecular genetics of congenital diaphragmatic defects. Ann Med 2007; 39:261-74. [PMID: 17558598 PMCID: PMC2174621 DOI: 10.1080/07853890701326883] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a severe birth defect that is accompanied by malformations of the lung, heart, testis, and other organs. Patients with CDH may have any combination of these extradiaphragmatic defects, suggesting that CDH is often a manifestation of a global embryopathy. This review highlights recent advances in human and mouse genetics that have led to the identification of genes involved in CDH. These include genes for transcription factors, molecules involved in cell migration, and extracellular matrix components. The expression patterns of these genes in the developing embryo suggest that mesenchymal cell function is compromised in the diaphragm and other affected organs in patients with CDH. We discuss potential mechanisms underlying the seemingly random combination of diaphragmatic, pulmonary, cardiovascular, and gonadal defects in these patients.
Collapse
Affiliation(s)
- Malgorzata Bielinska
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Patrick Y. Jay
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
- Department of Genetics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Jonathan M. Erlich
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Susanna Mannisto
- Program for Developmental & Reproductive Biology, Biomedicum Helsinki and Children's Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Zsolt Urban
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
- Department of Genetics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
- Program for Developmental & Reproductive Biology, Biomedicum Helsinki and Children's Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - David B. Wilson
- Department of Pediatrics, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
- Department of Molecular Biology & Pharmacology, Washington University and St. Louis Children's Hospital, St. Louis, MO 63110 USA
| |
Collapse
|
24
|
Yue Y, Grossmann B, Galetzka D, Zechner U, Haaf T. Isolation and differential expression of two isoforms of the ROBO2/Robo2 axon guidance receptor gene in humans and mice. Genomics 2006; 88:772-778. [PMID: 16829019 DOI: 10.1016/j.ygeno.2006.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 05/23/2006] [Accepted: 05/30/2006] [Indexed: 01/28/2023]
Abstract
Expression of Robo receptor molecules is important for axon guidance across the midline of the mammalian central nervous system. Here we describe novel isoform a of human ROBO2, which is initially strongly expressed in the fetal human brain but thereafter only weakly expressed in adult brain and a few other tissues. The known isoform b of ROBO2 shows a more or less ubiquitous expression pattern, suggesting diverse functional roles. The genomic structure and distinct expression patterns of Robo2a and Robo2b have been conserved in the mouse, but in contrast to human ROBO2a mouse Robo2a is also abundant in adult brain. Exons 1 and 2 of human ROBO2a lie in an inherently unstable DNA segment at human chromosome 3p12.3 that is associated with segmental duplications, independent chromosome rearrangements during primate evolution, and homozygous deletion and loss of heterozygosity in various human cancers. The 5' end of mouse Robo2a lies in a <150-kb DNA segment of break in synteny between mouse chromosome 16C3.1 and the human genome.
Collapse
Affiliation(s)
- Ying Yue
- Institute for Human Genetics, Mainz University School of Medicine, Langenbeckstrasse 1, Building 601, 55131 Mainz, Germany
| | - Bärbel Grossmann
- Institute for Human Genetics, Mainz University School of Medicine, Langenbeckstrasse 1, Building 601, 55131 Mainz, Germany
| | - Danuta Galetzka
- Institute for Human Genetics, Mainz University School of Medicine, Langenbeckstrasse 1, Building 601, 55131 Mainz, Germany
| | - Ulrich Zechner
- Institute for Human Genetics, Mainz University School of Medicine, Langenbeckstrasse 1, Building 601, 55131 Mainz, Germany
| | - Thomas Haaf
- Institute for Human Genetics, Mainz University School of Medicine, Langenbeckstrasse 1, Building 601, 55131 Mainz, Germany.
| |
Collapse
|
25
|
Dalkic E, Kuscu C, Sucularli C, Aydin IT, Akcali KC, Konu O. Alternatively spliced Robo2 isoforms in zebrafish and rat. Dev Genes Evol 2006; 216:555-63. [PMID: 16625395 DOI: 10.1007/s00427-006-0070-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 03/13/2006] [Indexed: 11/27/2022]
Abstract
Robo2, a member of the robo gene family, functions as a repulsive axon guidance receptor as well as a regulator of cell migration and tissue morphogenesis in different taxa. In this study, a novel isoform of the zebrafish robo2 (robo2_tv2), which included an otherwise alternatively spliced exon (CAE), has been characterized. Robo2_tv2 is expressed differentially in most non-neuronal tissues of adult zebrafish whereas robo2_tv1 expression to a great extent is restricted to the brain and eye. In zebrafish, robo2_tv2 exhibits a very-low-level basal expression starting from 1 day post fertilization until the mid-larval stages, at which time its expression increases dramatically and could be detected throughout adulthood. Our findings demonstrate that the amino acid sequence coded by CAE of the robo2 gene is highly conserved between zebrafish and mammals, and also contains conserved motifs shared with robo1 and robo4 but not with robo3. Furthermore, we provide an account of differential transcription of the CAE homolog in various tissues of the adult rat. These results suggest that the alternatively spliced robo2 isoforms may exhibit tissue specificity.
Collapse
Affiliation(s)
- Ertugrul Dalkic
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
26
|
Strickland P, Shin GC, Plump A, Tessier-Lavigne M, Hinck L. Slit2 and netrin 1 act synergistically as adhesive cues to generate tubular bi-layers during ductal morphogenesis. Development 2006; 133:823-32. [PMID: 16439476 DOI: 10.1242/dev.02261] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of many organs, including the mammary gland, involves ductal morphogenesis. Mammary ducts are bi-layered tubular structures comprising an outer layer of cap/myoepithelial cells (MECs) and an inner layer of luminal epithelial cells (LECs). Slit2 is expressed by cells in both layers, with secreted SLIT2 broadly distributed throughout the epithelial compartment. By contrast, Robo1 is expressed specifically by cap/MECs. Loss-of-function mutations in Slit2 and Robo1 yield similar phenotypes, characterized by disorganized end buds (EBs) reminiscent of those present in Ntn1(-/-) glands, suggesting that SLIT2 and NTN1 function in concert during mammary development. Analysis of Slit2(-/-);Ntn1(-/-) glands demonstrates an enhanced phenotype that extends through the ducts and is characterized by separated cell layers and occluded lumens. Aggregation assays show that Slit2(-/-);Ntn1(-/-) cells, in contrast to wild-type cells, do not form bi-layered organoids, a defect rescued by addition of SLIT2. NTN1 has no effect alone, but synergistically enhances this rescue. Thus, our data establish a novel role for SLIT2 as an adhesive cue, acting in parallel with NTN1 to generate cell boundaries along ducts during bi-layered tube formation.
Collapse
Affiliation(s)
- Phyllis Strickland
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, 95064, USA
| | | | | | | | | |
Collapse
|
27
|
Camurri L, Mambetisaeva E, Davies D, Parnavelas J, Sundaresan V, Andrews W. Evidence for the existence of two Robo3 isoforms with divergent biochemical properties. Mol Cell Neurosci 2005; 30:485-93. [PMID: 16226035 DOI: 10.1016/j.mcn.2005.07.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 07/22/2005] [Accepted: 07/25/2005] [Indexed: 11/18/2022] Open
Abstract
Robo3 is a member of the roundabout (Robo) family of proteins that plays a key role in axon guidance and cell migration in the developing nervous system. Recent studies have shown that Robo3 plays a crucial role in controlling axon guidance at the midline of the CNS. Here we describe and compare two human Robo3 isoforms, Robo3A and Robo3B, which differ by the insertion of 26 amino acids at the N-terminus, and these forms appear to be evolutionary conserved. We investigated the bioactivity of these isoforms and show that they have different binding properties to Slit, and that orthologs of these forms are expressed in the mouse embryo. In addition, we show that, like other members of the Robo family, Robo3 can bind homophilically, but it is also capable of binding heterophilically to Robo1 and NCAM. We propose that these properties of Robo3 may contribute to its function at the midline of the CNS.
Collapse
Affiliation(s)
- Laura Camurri
- MRC Centre for Developmental Neurobiology, New Hunt's House, King's College, London, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | | | |
Collapse
|
28
|
Xian J, Aitchison A, Bobrow L, Corbett G, Pannell R, Rabbitts T, Rabbitts P. Targeted disruption of the 3p12 gene, Dutt1/Robo1, predisposes mice to lung adenocarcinomas and lymphomas with methylation of the gene promoter. Cancer Res 2004; 64:6432-7. [PMID: 15374951 DOI: 10.1158/0008-5472.can-04-2561] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The DUTT1 gene is located on human chromosome 3, band p12, within a region of nested homozygous deletions in breast and lung tumors. It is therefore a candidate tumor suppressor gene in humans and is the homologue (ROBO1) of the Drosophila axonal guidance receptor gene, Roundabout. We have shown previously that mice with a targeted homozygous deletion within the Dutt1/Robo1 gene generally die at birth due to incomplete lung development: survivors die within the first year of life with epithelial bronchial hyperplasia as a common feature. Because Dutt1/Robo1 heterozygous mice develop normally, we have determined their tumor susceptibility. Mice with a targeted deletion within one Dutt1/Robo1 allele spontaneously develop lymphomas and carcinomas in their second year of life with a 3-fold increase in incidence compared with controls: invasive lung adenocarcinomas are by far the predominant carcinoma. In addition to the mutant allele, loss of heterozygosity analysis indicates that these tumors retain the structurally normal allele but with substantial methylation of the gene's promoter. Substantial reduction of Dutt1/Robo1 protein expression in tumors is observed by Western blotting and immunohistochemistry. This suggests that Dutt1/Robo1 is a classic tumor suppressor gene requiring inactivation of both alleles to elicit tumorigenesis in these mice.
Collapse
Affiliation(s)
- Jian Xian
- Department of Oncology, University of Cambridge, Medical Research Council Centre, Cambridge, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
29
|
Greenberg JM, Thompson FY, Brooks SK, Shannon JM, Akeson AL. Slit and robo expression in the developing mouse lung. Dev Dyn 2004; 230:350-60. [PMID: 15162513 DOI: 10.1002/dvdy.20045] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mammalian lung development is mediated through complex interactions between foregut endoderm and surrounding mesenchyme. As airway branching progresses, the mesenchyme undergoes dramatic remodeling and differentiation. Little is understood about the mechanisms that direct mesenchymal organization during lung development. A screen for candidate genes mediating this process identified Slit, a ligand for the Roundabout (Robo) receptor previously associated with guidance of axonal projections during central nervous system development. Here, we demonstrate by in situ hybridization that two Slit genes (Slit-2 and Slit-3) and two Robo genes (Robo-1 and Robo-2) are expressed in fetal lung mesenchyme. Slit-2 and Robo-1 expression is present throughout mesenchyme at midgestation and is not detectable by newborn day 1. Slit-3 and Robo-2 expression is restricted to specific, complementary subsets of mesenchyme. Robo-2 is expressed in mesenchymal cells immediately adjacent to large airways, whereas Slit-3 expression predominates in mesenchyme remote from airway epithelium. The temporal and spatial distribution of Slit and Robo mRNAs indicate that these genes may direct the functional organization and differentiation of fetal lung mesenchyme.
Collapse
Affiliation(s)
- James M Greenberg
- Divisions of Pulmonary Biology and Neonatology, Cincinnati Children's Hospital Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.
| | | | | | | | | |
Collapse
|
30
|
Yuan W, Rao Y, Babiuk RP, Greer JJ, Wu JY, Ornitz DM. A genetic model for a central (septum transversum) congenital diaphragmatic hernia in mice lacking Slit3. Proc Natl Acad Sci U S A 2003; 100:5217-22. [PMID: 12702769 PMCID: PMC154325 DOI: 10.1073/pnas.0730709100] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2002] [Accepted: 02/05/2003] [Indexed: 01/13/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a significant cause of pediatric mortality in humans with a heterogeneous and poorly understood etiology. Here we show that mice lacking Slit3 developed a central (septum transversum) CDH. Slit3 encodes a member of the Slit family of guidance molecules and is expressed predominantly in the mesothelium of the diaphragm during embryonic development. In Slit3 null mice, the central tendon region of the diaphragm fails to separate from liver tissue because of abnormalities in morphogenesis. The CDH progresses through continuous growth of the liver into the thoracic cavity. This study establishes the first genetic model for CDH and identifies a previously unsuspected role for Slit3 in regulating the development of the diaphragm.
Collapse
Affiliation(s)
- Wenlin Yuan
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
31
|
Anselmo MA, Dalvin S, Prodhan P, Komatsuzaki K, Aidlen JT, Schnitzer JJ, Wu JY, Kinane TB. Slit and robo: expression patterns in lung development. Gene Expr Patterns 2003; 3:13-9. [PMID: 12609596 DOI: 10.1016/s1567-133x(02)00095-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
First described as an axonal guidance cue through its repulsive effect on neurons expressing its receptor Roundabout (Robo), the Slit ligand has effects on cell migration, axon branching and elongation. Indirect evidence implicates Slit and Robo in lung development. We now demonstrate that Slit-2 and Slit-3 are developmentally regulated in embryonic murine lung. Immunohistochemistry demonstrates Slit-2 and Slit-3 expression by the pulmonary mesenchyme and airway epithelium. Robo-1 and Robo-2 are also expressed by the developing mesenchyme and airway epithelium. As lung development progresses, Robo-1 and Robo-2 expression localizes to only the airway epithelium. We conclude Slit/Robo are expressed in temporo-spatially adjacent domains suggesting interactive roles in pulmonary bronchiolar development.
Collapse
Affiliation(s)
- Mark A Anselmo
- Pediatric Pulmonary Unit, Massachusetts General Hospital for Children, Harvard Medical School, Jackson 14, GRJ 1416, 55 Fruit St, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|