1
|
Yin Y, Wu C, Zhou Y, Zhang M, Mai S, Chen M, Wang HY. Ezetimibe Induces Paraptosis through Niemann-Pick C1-like 1 Inhibition of Mammalian-Target-of-Rapamycin Signaling in Hepatocellular Carcinoma Cells. Genes (Basel) 2023; 15:4. [PMID: 38275586 PMCID: PMC10815321 DOI: 10.3390/genes15010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Currently, hepatocellular carcinoma (HCC) is characterized by its unfavorable prognosis and resistance to conventional chemotherapy and radiotherapy. Drug repositioning, an approach aimed at identifying novel therapeutic applications for existing drugs, presents a cost-effective strategy for developing new anticancer agents. We explored the anticancer properties of Ezetimibe, a widely used oral lipid-lowering drug, in the context of HCC. Our findings demonstrate that Ezetimibe effectively suppresses HCC cell proliferation through paraptosis, an apoptotic-independent cell death pathway. The examination of HCC cells lines treated with Ezetimibe using light microscopy and transmission electron microscopy (TEM) showed cytoplasmic vacuolation in the perinuclear region. Notably, the nuclear membrane remained intact in both Ezetimibe-treated and untreated HCC cell lines. Probe staining assays confirmed that the cytoplasmic vacuoles originated from dilated endoplasmic reticulum (ER) compartments rather than mitochondria. Furthermore, a dose-dependent accumulation of reactive oxygen species (ROS) was observed in Ezetimibe-treated HCC cell lines. Co-treatment with the general antioxidant NAC attenuated vacuolation and improved cell viability in Ezetimibe-treated HCC cells. Moreover, Ezetimibe induced paraptosis through proteasome activity inhibition and initiation of the unfolded protein response (UPR) in HCC cell lines. In our in vivo experiment, Ezetimibe significantly impeded the growth of HCC tumors. Furthermore, when combined with Sorafenib, Ezetimibe exhibited a synergistic antitumor effect on HCC cell lines. Mechanistically, Ezetimibe induced paraptosis by targeting NPC1L1 to inhibit the PI3K/AKT/mTOR signaling pathway. In conclusion, our study highlights the potential of Ezetimibe as an anticancer agent by triggering paraptosis in HCC cells.
Collapse
Affiliation(s)
- Yuting Yin
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Chun Wu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yufeng Zhou
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Meiyin Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Shijuan Mai
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Minshan Chen
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China;
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; (Y.Y.); (C.W.); (Y.Z.); (M.Z.); (S.M.)
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
2
|
Bu Z, Yang J, Zhang Y, Luo T, Fang C, Liang X, Peng Q, Wang D, Lin N, Zhang K, Tang W. Sequential Ubiquitination and Phosphorylation Epigenetics Reshaping by MG132-Loaded Fe-MOF Disarms Treatment Resistance to Repulse Metastatic Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301638. [PMID: 37303273 PMCID: PMC10427397 DOI: 10.1002/advs.202301638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/07/2023] [Indexed: 06/13/2023]
Abstract
Abnormal epigenetic regulation is identified to correlate with cancer progression and renders tumor refractory and resistant to reactive oxygen species (ROS)-based anti-tumor actions. To address it, a sequential ubiquitination and phosphorylation epigenetics modulation strategy is developed and exemplified by the well-established Fe-metal-organic framework (Fe-MOF)-based chemodynamic therapy (CDT) nanoplatforms that load the 26S proteasome inhibitor (i.e., MG132). The encapsulated MG132 can blockade 26S proteasome, terminate ubiquitination, and further inhibit transcription factor phosphorylation (e.g., NF-κB p65), which can boost pro-apoptotic or misfolded protein accumulations, disrupt tumor homeostasis, and down-regulate driving genes expression of metastatic colorectal cancer (mCRC). Contributed by them, Fe-MOF-unlocked CDT is magnified to considerably elevate ROS content for repulsing mCRC, especially after combining with macrophage membrane coating-enabled tropism accumulation. Systematic experiments reveal the mechanism and signaling pathway of such a sequential ubiquitination and phosphorylation epigenetics modulation and explain how it could blockade ubiquitination and phosphorylation to liberate the therapy resistance to ROS and activate NF-κB-related acute immune responses. This unprecedented sequential epigenetics modulation lays a solid foundation to magnify oxidative stress and can serve as a general method to enhance other ROS-based anti-tumor methods.
Collapse
Affiliation(s)
- Zhaoting Bu
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| | - Jianjun Yang
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Yan Zhang
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Tao Luo
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| | - Chao Fang
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Xiayi Liang
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Qiuxia Peng
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
| | - Duo Wang
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| | - Ningjing Lin
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| | - Kun Zhang
- Central Laboratory and Department of OrthopaedicsShanghai Tenth People's HospitalTongji University School of MedicineTongji University.No. 301 Yan‐chang‐zhong RoadShanghai200072P. R. China
- Central LaboratorySichuan Academy of Medical SciencesSichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaNo. 32, West Second Section, First Ring RoadChengduSichuan610072P. R. China
| | - Weizhong Tang
- Department of Gastrointestinal SurgeryGuangxi Medical University Cancer HospitalGuangxi Medical University.No. 71 Hedi RoadNanningGuangxi530021P. R. China
| |
Collapse
|
3
|
Wu JH, Lee JC, Ho CC, Chiu PW, Sun CH. A myeloid leukemia factor homolog is involved in tolerance to stresses and stress-induced protein metabolism in Giardia lamblia. Biol Direct 2023; 18:20. [PMID: 37095576 PMCID: PMC10127389 DOI: 10.1186/s13062-023-00378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The eukaryotic membrane vesicles contain specific sets of proteins that determine vesicle function and shuttle with specific destination. Giardia lamblia contains unknown cytosolic vesicles that are related to the identification of a homolog of human myeloid leukemia factor (MLF) named MLF vesicles (MLFVs). Previous studies suggest that MLF also colocalized with two autophagy machineries, FYVE and ATG8-like protein, and that MLFVs are stress-induced compartments for substrates of the proteasome or autophagy in response to rapamycin, MG132, and chloroquine treatment. A mutant protein of cyclin-dependent kinase 2, CDK2m3, was used to understand whether the aberrant proteins are targeted to degradative compratments. Interestingly, MLF was upregulated by CDK2m3 and they both colocalized within the same vesicles. Autophagy is a self-digestion process that is activated to remove damaged proteins for preventing cell death in response to various stresses. Because of the absence of some autophagy machineries, the mechanism of autophagy is unclear in G. lamblia. RESULTS In this study, we tested the six autophagosome and stress inducers in mammalian cells, including MG132, rapamycin, chloroquine, nocodazole, DTT, and G418, and found that their treatment increased reactive oxygen species production and vesicle number and level of MLF, FYVE, and ATG8-like protein in G. lamblia. Five stress inducers also increased the CDK2m3 protein levels and vesicles. Using stress inducers and knockdown system for MLF, we identified that stress induction of CDK2m3 was positively regulated by MLF. An autophagosome-reducing agent, 3-methyl adenine, can reduce MLF and CDK2m3 vesicles and proteins. In addition, knockdown of MLF with CRISPR/Cas9 system reduced cell survival upon treatment with stress inducers. Our newly developed complementation system for CRISPR/Cas9 indicated that complementation of MLF restored cell survival in response to stress inducers. Furthermore, human MLF2, like Giardia MLF, can increase cyst wall protein expression and cyst formation in G. lamblia, and it can colocalize with MLFVs and interact with MLF. CONCLUSIONS Our results suggest that MLF family proteins are functionally conserved in evolution. Our results also suggest an important role of MLF in survival in stress conditions and that MLFVs share similar stress-induced characteristics with autophagy compartments.
Collapse
Affiliation(s)
- Jui-Hsuan Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan, Republic of China
| | - Jen-Chi Lee
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan, Republic of China
| | - Chun-Che Ho
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan, Republic of China
| | - Pei-Wei Chiu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan, Republic of China
| | - Chin-Hung Sun
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan, Republic of China.
| |
Collapse
|
4
|
Santos CV, Rogers SL, Carter AP. CryoET shows cofilactin filaments inside the microtubule lumen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535077. [PMID: 37034688 PMCID: PMC10081314 DOI: 10.1101/2023.03.31.535077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Cytoplasmic microtubules are tubular polymers that can harbor small proteins or filaments inside their lumen. The identity of these objects and what causes their accumulation has not been conclusively established. Here, we used cryogenic electron tomography (cryoET) of Drosophila S2 cell protrusions and found filaments inside the microtubule lumen, which resemble those reported recently in human HAP1 cells. The frequency of these filaments increased upon inhibition of the sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA) with the small-molecule drug thapsigargin. Subtomogram averaging showed that the luminal filaments adopt a helical structure reminiscent of cofilin-bound actin (cofilactin). Consistent with this, cofilin was activated in cells under the same conditions that increased luminal filament occurrence. Furthermore, RNAi knock-down of cofilin reduced the frequency of luminal filaments with cofilactin morphology. These results suggest that cofilin activation stimulates its accumulation on actin filaments inside the microtubule lumen.
Collapse
Affiliation(s)
| | - Stephen L. Rogers
- Department of Biology and Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill
| | - Andrew P. Carter
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| |
Collapse
|
5
|
KARPUZ B, ÇAKIR Ö. Effect of proteasome inhibitor MG132 on the expression of oxidative metabolism related genes in tomato. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.52420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Kucuksayan E, Bozkurt F, Yilmaz MT, Sircan-Kucuksayan A, Hanikoglu A, Ozben T. A new combination strategy to enhance apoptosis in cancer cells by using nanoparticles as biocompatible drug delivery carriers. Sci Rep 2021; 11:13027. [PMID: 34158544 PMCID: PMC8219778 DOI: 10.1038/s41598-021-92447-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
Some experimental and clinical studies have been conducted for the usage of chemotherapeutic drugs encapsulated into nanoparticles (NPs). However, no study has been conducted so far on the co-encapsulation of doxorubicin (Dox) and epoxomicin (Epo) into NPs as biocompatible drug delivery carriers. Therefore, we investigated if co-encapsulation of doxorubicin (Dox) and/or epoxomicin (Epo) into NPs enhance their anticancer efficiency and prevent drug resistance and toxicity to normal cells. We synthesized Dox and/or Epo loaded poly (lactic-co-glycolic acid) (PLGA) NPs using a multiple emulsion solvent evaporation technique and characterized them in terms of their particle size and stability, surface, molecular, thermal, encapsulation efficiency and in vitro release properties. We studied the effects of drug encapsulated NPs on cellular accumulation, intracellular drug levels, oxidative stress status, cellular viability, drug resistance, 20S proteasome activity, cytosolic Nuclear Factor Kappa B (NF-κB-p65), and apoptosis in breast cancer and normal cells. Our results proved that the nanoparticles we synthesized were thermally stable possessing higher encapsulation efficiency and particle stability. Thermal, morphological and molecular analyses demonstrated the presence of Dox and/or Epo within NPs, indicating that they were successfully loaded. Cell line assays proved that Dox and Epo loaded NPs were less cytotoxic to single-layer normal HUVECs than free Dox and Epo, suggesting that the NPs would be biocompatible drug delivery carriers. The apoptotic index of free Dox and Epo increased 50% through their encapsulation into NPs, proving combination strategy to enhance apoptosis in breast cancer cells. Our results demonstrated that the co-encapsulation of Dox and Epo within NPs would be a promising treatment strategy to overcome multidrug resistance and toxicity to normal tissues that can be studied in further in vivo and clinical studies in breast cancer.
Collapse
Affiliation(s)
- Ertan Kucuksayan
- Faculty of Medicine, Department of Medical Biochemistry, Alanya Alaaddin Keykubat University (ALKU), Antalya, 07490, Turkey.,Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Fatih Bozkurt
- Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Engineering and Architecture, Department of Food Engineering, Mus Alparslan University, Mus, Turkey
| | - Mustafa Tahsin Yilmaz
- Chemical and Metallurgical Engineering Faculty, Department of Food Engineering, Yildiz Technical University, Istanbul, Turkey.,Faculty of Engineering, Department of Industrial Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Aslinur Sircan-Kucuksayan
- Faculty of Medicine, Department of Biophysics, Alanya Alaaddin Keykubat University (ALKU), Antalya, 07490, Turkey
| | - Aysegul Hanikoglu
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey
| | - Tomris Ozben
- Faculty of Medicine, Department of Medical Biochemistry, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
7
|
Hussein NA, Malla S, Pasternak MA, Terrero D, Brown NG, Ashby CR, Assaraf YG, Chen ZS, Tiwari AK. The role of endolysosomal trafficking in anticancer drug resistance. Drug Resist Updat 2021; 57:100769. [PMID: 34217999 DOI: 10.1016/j.drup.2021.100769] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Multidrug resistance (MDR) remains a major obstacle towards curative treatment of cancer. Despite considerable progress in delineating the basis of intrinsic and acquired MDR, the underlying molecular mechanisms remain to be elucidated. Emerging evidences suggest that dysregulation in endolysosomal compartments is involved in mediating MDR through multiple mechanisms, such as alterations in endosomes, lysosomes and autophagosomes, that traffic and biodegrade the molecular cargo through macropinocytosis, autophagy and endocytosis. For example, altered lysosomal pH, in combination with transcription factor EB (TFEB)-mediated lysosomal biogenesis, increases the sequestration of hydrophobic anti-cancer drugs that are weak bases, thereby producing an insufficient and off-target accumulation of anti-cancer drugs in MDR cancer cells. Thus, the use of well-tolerated, alkalinizing compounds that selectively block Vacuolar H⁺-ATPase (V-ATPase) may be an important strategy to overcome MDR in cancer cells and increase chemotherapeutic efficacy. Other mechanisms of endolysosomal-mediated drug resistance include increases in the expression of lysosomal proteases and cathepsins that are involved in mediating carcinogenesis and chemoresistance. Therefore, blocking the trafficking and maturation of lysosomal proteases or direct inhibition of cathepsin activity in the cytosol may represent novel therapeutic modalities to overcome MDR. Furthermore, endolysosomal compartments involved in catabolic pathways, such as macropinocytosis and autophagy, are also shown to be involved in the development of MDR. Here, we review the role of endolysosomal trafficking in MDR development and discuss how targeting endolysosomal pathways could emerge as a new therapeutic strategy to overcome chemoresistance in cancer.
Collapse
Affiliation(s)
- Noor A Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Mariah A Pasternak
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Noah G Brown
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, St. John's University, Queens, NY, USA.
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, 43614, OH, USA; Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, 43614, OH, USA.
| |
Collapse
|
8
|
Kahya U, Köseer AS, Dubrovska A. Amino Acid Transporters on the Guard of Cell Genome and Epigenome. Cancers (Basel) 2021; 13:E125. [PMID: 33401748 PMCID: PMC7796306 DOI: 10.3390/cancers13010125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is driven by metabolic reprogramming. Oncogenic mutations and epigenetic alterations that cause metabolic rewiring may also upregulate the reactive oxygen species (ROS). Precise regulation of the intracellular ROS levels is critical for tumor cell growth and survival. High ROS production leads to the damage of vital macromolecules, such as DNA, proteins, and lipids, causing genomic instability and further tumor evolution. One of the hallmarks of cancer metabolism is deregulated amino acid uptake. In fast-growing tumors, amino acids are not only the source of energy and building intermediates but also critical regulators of redox homeostasis. Amino acid uptake regulates the intracellular glutathione (GSH) levels, endoplasmic reticulum stress, unfolded protein response signaling, mTOR-mediated antioxidant defense, and epigenetic adaptations of tumor cells to oxidative stress. This review summarizes the role of amino acid transporters as the defender of tumor antioxidant system and genome integrity and discusses them as promising therapeutic targets and tumor imaging tools.
Collapse
Affiliation(s)
- Uğur Kahya
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| | - Ayşe Sedef Köseer
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany; (U.K.); (A.S.K.)
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
9
|
Vanden Oever M, Muldoon D, Mathews W, Tolar J. Fludarabine modulates expression of type VII collagen during haematopoietic stem cell transplantation for recessive dystrophic epidermolysis bullosa. Br J Dermatol 2020; 185:380-390. [PMID: 33368156 DOI: 10.1111/bjd.19757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recessive dystrophic epidermolysis bullosa (RDEB) is a severe, complicated inherited blistering skin disease with few treatment options currently available. Recently, haematopoietic stem cell transplantation (HCT) has been used as an alternative therapy that can improve skin integrity, but it is not known if the preparative HCT regimen also contributes to the therapeutic response. OBJECTIVES To determine whether chemotherapy drugs used in the HCT preparative regimen influence type VII collagen (C7) expression, which is inherently reduced or absent in RDEB skin, and to explore the pathomechanisms of such responses, if present. METHODS Drugs from the HCT preparative regimen (busulfan, cyclophosphamide, ciclosporin A, fludarabine and mycophenolate) with inhibitors (PD98059, U0126, LY294002, SR11302, SIS3 and N-acetyl-l-cysteine) were added to normal human dermal and human RDEB fibroblasts. C7 expression was measured using reversetranscription polymerase chain reaction and immunoblotting. RESULTS We uncovered a previously unknown consequence of fludarabine whereby dermal fibroblasts exposed to fludarabine upregulate C7. This effect is mediated, in part, through activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinase/protein kinase B and transforming growth factor-β pathways. Activation of these pathways leads to activation of downstream transcription factors, including activator protein 1 (AP-1) and SMAD. Subsequently, both AP-1 and SMAD bind the COL7A1 promoter and increase COL7A1 expression. CONCLUSIONS Fludarabine influences the production of type VII collagen in RDEB fibroblasts.
Collapse
Affiliation(s)
- M Vanden Oever
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - D Muldoon
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - W Mathews
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - J Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
10
|
Tsunoda M, Fukasawa M, Nishihara A, Takada L, Asano M. JunB can enhance the transcription of IL-8 in oral squamous cell carcinoma. J Cell Physiol 2020; 236:309-317. [PMID: 32510596 DOI: 10.1002/jcp.29843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 11/09/2022]
Abstract
Proteasome inhibitor MG132 was shown to enhance the secretion of interleukin 8 (IL-8) by various cells. The enhancement is regulated by the transcription factor activator protein-1 (AP-1) at the transcriptional level. AP-1 is a dimer formed by AP-1 family proteins. The purpose of the present study was to explore the combinations of the AP-1 family proteins that contribute to MG132-driven IL-8 secretion. Oral squamous cell carcinoma-derived cell lines, Ca9-22 and HSC3, were used to demonstrate their response to MG132. IL-8 secretion was augmented by MG132 in both cell lines. c-Jun expression was detected in both the cell lines, whereas c-Fos expression was detected only in the HSC3. The influence of MG132 stimulation on c-Jun and c-Fos expression was further examined by western blot analysis. c-Jun expression was increased by MG132 stimulation, whereas c-Fos expression was not detected even after MG132 stimulation. As JunB is reported to inhibit the transcriptional activity of the AP-1 complex, we speculated that the c-Jun homodimer should contribute to IL-8 enhancement. Expression vectors encoding wild type and c-Jun mutants, M17 and M22-23, respectively, were constructed and transfected into the Ca9-22 cells. In contrast to our expectations, MG132-induced IL-8 secretion was significantly reduced in all the transfectants suggesting that other c-Jun members might form homodimers with c-Jun and contribute to IL-8 enhancement. Transfection of the cells with c-Jun or JunB small hairpin RNA (shRNA) reduced IL-8 secretion up to 50% and 65% of the control shRNA transfectant. Furthermore, cotransfection of both shRNA almost completely inhibited the IL-8 secretion. These results indicate that JunB not only inhibits but also enhances the transcription of c-Jun targets in combination with c-Jun.
Collapse
Affiliation(s)
- Mariko Tsunoda
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Mai Fukasawa
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Anna Nishihara
- Division of Oral Structural and Functional Biology, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Leo Takada
- Division of Oral Health Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry, Tokyo, Japan.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
11
|
Ciliberti MG, Albenzio M, De Palo P, Santillo A, Caroprese M. Nexus Between Immune Responses and Oxidative Stress: The Role of Dietary Hydrolyzed Lignin in ex vivo Bovine Peripheral Blood Mononuclear Cell Response. Front Vet Sci 2020; 7:9. [PMID: 32154273 PMCID: PMC7045060 DOI: 10.3389/fvets.2020.00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/08/2020] [Indexed: 01/23/2023] Open
Abstract
The control of immune responses is particularly critical when an increase of oxidative stress occurs, causing an impairment of immune cell response and a condition of systemic inflammation, named oxinflammation. Nutritional strategies based on the use in the diet of phytochemicals extracted from plants, rich in antioxidants, could help restore the antioxidant/oxidant balance and obtain a modulation of immune response. Lignin represents a valuable resource of phenolic compounds, which are characterized by a corroborated antioxidant effect. To date, there are no studies reporting the effects of lignin in the diet on immune responses and oxidative stress in ruminants. The objective of the present experiment was the evaluation of the dietary inclusion of Pinus taeda hydrolyzed lignin on the ex vivo immune responses and oxidative stress biomarkers by peripheral blood mononuclear cells (PBMCs) isolated from beef steers. In order to test the effect during oxidative stress exposition, cells were treated with hydrogen peroxide (H2O2). The proliferation test and the viability assay were carried out on cells, whereas, on supernatants, the cytokine profile and the oxidative stress biomarkers were evaluated. The dietary inclusion with P. taeda hydrolyzed lignin resulted in cytoprotection after H2O2 exposition, increasing the number of viable monocytes and decreasing the reactive oxygen/nitrogen species production in supernatants. The cytokine profile indicated the modulatory role of hydrolyzed lignin on immune response, with a concomitant decrease of TNF-α and increase of IL-8 production, which are strictly connected with monocyte activation and antioxidant response pathway. These results demonstrated that hydrolyzed lignin may provide a modulation of oxidative stress and inflammatory response in PBMCs; thus, the P. taeda hydrolyzed lignin could be suggested as an innovative phytochemical in ruminant feed.
Collapse
Affiliation(s)
- Maria Giovanna Ciliberti
- Department of Sciences of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Marzia Albenzio
- Department of Sciences of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Pasquale De Palo
- Department of Veterinary Medicine, University of Bari A. Moro, Bari, Italy
| | - Antonella Santillo
- Department of Sciences of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Mariangela Caroprese
- Department of Sciences of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| |
Collapse
|
12
|
Niarakis A, Giannopoulou E, Syggelos SA, Panagiotopoulos E. Effects of proteasome inhibitors on cytokines, metalloproteinases and their inhibitors and collagen type-I expression in periprosthetic tissues and fibroblasts from loose arthroplasty endoprostheses. Connect Tissue Res 2019; 60:555-570. [PMID: 30931650 DOI: 10.1080/03008207.2019.1601186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objective: Aseptic loosening is a major problem in total joint replacement. Implant wear debris provokes a foreign body host response and activates cells to produce a variety of mediators and ROS, leading to periprosthetic osteolysis. Elevated ROS levels can harm proteasome function. Proteasome inhibitors have been reported to alter the secretory profile of cells involved in inflammation and also to induce ROS production. In this work, we aimed to document the effects of proteasome inhibitors MG-132 and Epoxomicin, on the production of factors involved in aseptic loosening, in periprosthetic tissues and fibroblasts, and investigate the role of proteasome impairment in periprosthetic osteolysis. Materials and methods: IL-6 levels in tissue cultures were determined by sandwich ELISA. MMP-1, -3, -13, -14 and TIMP-1 levels in tissue or cell cultures were determined by indirect ELISA. Results for MMP-1 and TIMP-1 in tissue cultures were confirmed by Western blotting. MMP-2 and MMP-9 levels were determined by gelatin zymography. Gene expression of IL-6, MMP-1,-3,-14, TIMP-1 and collagen type-I was determined by RT-PCR. Results: Results show that proteasome inhibition induces the expression of ΜΜΡ-1, -2, -3, -9 and suppresses that of IL-6, MMP-14, -13, TIMP-1 and collagen type I, enhancing the collagenolytic and gelatinolytic activity already present in periprosthetic tissues, as documented in various studies. Conclusions: These findings suggest that proteasome impairment could be a contributing factor to aseptic loosening. Protection and enhancement of proteasome efficacy could thus be considered as an alternative strategy toward disease treatment.
Collapse
Affiliation(s)
- Anna Niarakis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras , Patras , Greece.,GenHotel EA3886, Univ Evry, Université Paris-Saclay , Evry , France
| | | | - Spyros A Syggelos
- Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras , Patras , Greece
| | - Elias Panagiotopoulos
- Department of Orthopaedics, School of Medicine, University of Patras , Patras , Greece
| |
Collapse
|
13
|
Girisha KM, von Elsner L, Neethukrishna K, Muranjan M, Shukla A, Bhavani GS, Nishimura G, Kutsche K, Mortier G. The homozygous variant c.797G>A/p.(Cys266Tyr) in PISD is associated with a Spondyloepimetaphyseal dysplasia with large epiphyses and disturbed mitochondrial function. Hum Mutat 2018; 40:299-309. [PMID: 30488656 DOI: 10.1002/humu.23693] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/16/2018] [Accepted: 11/24/2018] [Indexed: 02/06/2023]
Abstract
Spondyloepimetaphyseal dysplasias (SEMD) are a group of genetically heterogeneous skeletal disorders characterized by abnormal vertebral bodies and epimetaphyseal abnormalities. We investigated two families with a new SEMD type with one proband each. They showed mild facial dysmorphism, flat vertebral bodies (platyspondyly), large epiphyses, metaphyseal dysplasia, and hallux valgus as common clinical features. By trio-exome sequencing, the homozygous missense variant c.797G>A/p.(Cys266Tyr) in PISD was found in both affected individuals. Based on exome data analyses for homozygous regions, the two patients shared a single homozygous block on chromosome 22 including PISD, indicating their remote consanguinity. PISD encodes phosphatidylserine (PS) decarboxylase that is localized in the inner mitochondrial membrane and catalyzes the decarboxylation of PS to phosphatidylethanolamine (PE) in mammalian cells. PE occurs at high abundance in mitochondrial membranes. Patient-derived fibroblasts showed fragmented mitochondrial morphology. Treatment of patient cells with MG-132 or staurosporine to induce activation of the intrinsic apoptosis pathway revealed significantly decreased cell viability with increased caspase-3 and caspase-7 activation. Remarkably, ethanolamine (Etn) supplementation largely restored cell viability and enhanced apoptosis in MG-132-stressed patient cells. Our data demonstrate that the biallelic hypomorphic PISD variant p.(Cys266Tyr) is associated with a novel SEMD form, which may be treatable with Etn administration.
Collapse
Affiliation(s)
- Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Leonie von Elsner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kausthubham Neethukrishna
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Mamta Muranjan
- Department of Clinical Genetics, Seth GS Medical College and KEM Hospital, Mumbai, India.,Consultant in Clinical Genetics, P.D. Hinduja National Hospital & MRC, Mumbai, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Gen Nishimura
- Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Geert Mortier
- Centre of Medical Genetics, University of Antwerp & University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
14
|
Uetake Y, Sluder G. Activation of the apoptotic pathway during prolonged prometaphase blocks daughter cell proliferation. Mol Biol Cell 2018; 29:2632-2643. [PMID: 30133342 PMCID: PMC6249836 DOI: 10.1091/mbc.e18-01-0026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When untransformed human cells spend >1.5 h in prometaphase under standard culture conditions, all daughters arrest in G1 despite normal division of their mothers. We investigate what happens during prolonged prometaphase that leads to daughter cell arrest in the absence of DNA damage. We find that progressive loss of anti-apoptotic MCL-1 activity and oxidative stress act in concert to partially activate the apoptosis pathway, resulting in the delayed death of some daughters and senescence for the rest. At physiological oxygen levels, longer prometaphase durations are needed for all daughters to arrest. Partial activation of apoptosis during prolonged prometaphase leads to persistent caspase activity, which activates the kinase cascade mediating the post–mitotic activation of p38. This in turn activates p53, and the consequent expression of p21stops the cell cycle. This mechanism can prevent cells suffering intractable mitotic defects, which modestly prolong mitosis but allow its completion without DNA damage, from producing future cell generations that are susceptible to the evolution of a transformed phenotype.
Collapse
Affiliation(s)
- Yumi Uetake
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Greenfield Sluder
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
15
|
Sheng XJ, Tu HJ, Chien WL, Kang KH, Lu DH, Liou HH, Lee MJ, Fu WM. Antagonism of proteasome inhibitor-induced heme oxygenase-1 expression by PINK1 mutation. PLoS One 2017; 12:e0183076. [PMID: 28806787 PMCID: PMC5555616 DOI: 10.1371/journal.pone.0183076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/29/2017] [Indexed: 11/25/2022] Open
Abstract
PTEN-induced putative kinase 1 (PINK1) is an integral protein in the mitochondrial membrane and maintains mitochondrial fidelity. Pathogenic mutations in PINK1 have been identified as a cause of early-onset autosomal recessive familial Parkinson’s disease (PD). The ubiquitin proteasome pathway is associated with neurodegenerative diseases. In this study, we investigated whether mutations of PINK1 affects the cellular stress response following proteasome inhibition. Administration of MG132, a peptide aldehyde proteasome inhibitor, significantly increased the expression of heme oxygenase-1 (HO-1) in rat dopaminergic neurons in the substantia nigra and in the SH-SY5Y neuronal cell line. The induction of HO-1 expression by proteasome inhibition was reduced in PINK1 G309D mutant cells. MG132 increased the levels of HO-1 through the Akt, p38, and Nrf2 signaling pathways. Compared with the cells expressing WT-PINK1, the phosphorylation of Akt and p38 was lower in those cells expressing the PINK1 G309D mutant, which resulted in the inhibition of the nuclear translocation of Nrf2. Furthermore, MG132-induced neuronal death was enhanced by the PINK1 G309D mutation. In this study, we demonstrated that the G309D mutation impairs the neuroprotective function of PINK1 following proteasome inhibition, which may be related to the pathogenesis of PD.
Collapse
Affiliation(s)
- Xiang-Jun Sheng
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hunag-Ju Tu
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Lin Chien
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Hsiang Kang
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dai-Hua Lu
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Horng-Huei Liou
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Jen Lee
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (WF); (ML)
| | - Wen-Mei Fu
- Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail: (WF); (ML)
| |
Collapse
|
16
|
Fan JB, Miyauchi-Ishida S, Arimoto KI, Liu D, Yan M, Liu CW, Győrffy B, Zhang DE. Type I IFN induces protein ISGylation to enhance cytokine expression and augments colonic inflammation. Proc Natl Acad Sci U S A 2015; 112:14313-8. [PMID: 26515094 PMCID: PMC4655505 DOI: 10.1073/pnas.1505690112] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Type I IFNs have broad activity in tissue inflammation and malignant progression that depends on the expression of IFN-stimulated genes (ISGs). ISG15, one such ISG, can form covalent conjugates to many cellular proteins, a process termed "protein ISGylation." Although type I IFNs are involved in multiple inflammatory disorders, the role of protein ISGylation during inflammation has not been evaluated. Here we report that protein ISGylation exacerbates intestinal inflammation and colitis-associated colon cancer in mice. Mechanistically, we demonstrate that protein ISGylation negatively regulates the ubiquitin-proteasome system, leading to increased production of IFN-induced reactive oxygen species (ROS). The increased cellular ROS then enhances LPS-induced activation of p38 MAP kinase and the expression of inflammation-related cytokines in macrophages. Thus our studies reveal a regulatory role for protein ISGylation in colonic inflammation and its related malignant progression, indicating that targeting ubiquitin-activating enzyme E1 homolog has therapeutic potential in treating inflammatory diseases.
Collapse
Affiliation(s)
- Jun-Bao Fan
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | | | - Kei-ichiro Arimoto
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Dan Liu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Ming Yan
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045
| | - Balázs Győrffy
- Hungarian Academy of Sciences, Research Centre for Natural Sciences, Momentum Cancer Biomarker Research Group, Budapest, H-1117, Hungary; Second Department of Pediatrics, Semmelweis University, Budapest, H-1094, Hungary; Hungarian Academy of Sciences and Semmelweis University, Pediatrics and Nephrology Research Group, Budapest, H-1085, Hungary
| | - Dong-Er Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093; Department of Pathology and Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
17
|
Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther 2015; 147:32-54. [DOI: 10.1016/j.pharmthera.2014.11.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 12/27/2022]
|
18
|
Refsnes M, Skuland T, Låg M, Schwarze PE, Øvrevik J. Differential NF-κB and MAPK activation underlies fluoride- and TPA-mediated CXCL8 (IL-8) induction in lung epithelial cells. J Inflamm Res 2014; 7:169-85. [PMID: 25540590 PMCID: PMC4270361 DOI: 10.2147/jir.s69646] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Different toxic agents have a varying potential to induce the production of the proinflammatory chemokine, CXCL8 (interleukin [IL]-8), in lung cells. A critical question is which mechanisms determine the magnitude and persistence of the CXCL8 responses to different stimuli. To approach this, we compared the potential of the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), and sodium fluoride (NaF) to induce CXCL8 responses in A549 cells, with emphasis on the importance of nuclear factor kappa B (NF-κB)- and mitogen-activated protein kinase (MAPK) signaling. Notably, TPA induced a greater release of CXCL8 than did NaF. Furthermore, TPA induced a strong, rapid, but transient upregulation of CXCL8 messenger (m)RNA, whereas NaF induced a weaker, more delayed, but persistent upregulation. With respect to signaling, TPA led to an early, strong, and relatively transient extracellular signal-regulated kinase (ERK)1/2 phosphorylation, and a less marked and even more transient phosphorylation of c-jun-N-terminal kinases (JNK1/2) and p38. In contrast, NaF elicited a lower, but relatively sustained increase in phosphorylation of ERK1/2, and a marked phosphorylation of p38 and JNK1/2, with the JNK1/2 response as most transient. Only ERK1/2 inhibition affected the TPA response, whereas inhibition of all the three MAPK cascades reduced NaF-induced CXCL8 release. TPA also induced an early, marked phosphorylation/translocation of p65 (NF-κB), whereas NaF induced slower, less pronounced effects on p65. The CXCL8 responses by TPA and NaF were reduced by p65-siRNA. In conclusion, all MAPK cascades were involved in NaF-induced CXCL8 release, whereas only ERK1/2 activation was involved in response to TPA. Furthermore, NF-κB activation appeared to be indispensable for CXCL8 induction. The early response, magnitude, and persistency of MAPK and NF-κB signaling seemed to be critical determinants for the potential to induce CXCL8. These findings underscore that a strong, rapid, and relatively transient activation of ERK1/2 in combination with NF-kB may be sufficient for a strong induction of CXCL8, which may exceed the effects of a more moderate ERK1/2 activation in combination with activation of p38, JNK1/2, and NF-κB.
Collapse
Affiliation(s)
- Magne Refsnes
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Tonje Skuland
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Per E Schwarze
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
19
|
Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 2013. [PMID: 24265619 DOI: 10.3389/fphys.2013.00324.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The adrenergic system plays a central role in stress signaling and stress is often associated with increased production of ROS. However, ROS overproduction generates oxidative stress, that occurs in response to several stressors. β-adrenergic signaling is markedly attenuated in conditions such as heart failure, with downregulation and desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory and profibrotic signaling, while antioxidant treatment protected hearts against these abnormalities, indicating ROS production to be central to the detrimental signaling of β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes, key elements in cell survival. More studies are needed to better clarify the involvement of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by which tools such as exercise training are able to counteract the oxidative stress, by both activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be used to prevent or treat diseases such as heart failure.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Rae C, Tesson M, Babich JW, Boyd M, Mairs RJ. Radiosensitization of noradrenaline transporter-expressing tumour cells by proteasome inhibitors and the role of reactive oxygen species. EJNMMI Res 2013; 3:73. [PMID: 24219987 PMCID: PMC3828419 DOI: 10.1186/2191-219x-3-73] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/01/2013] [Indexed: 12/24/2022] Open
Abstract
Background The radiopharmaceutical 131I-metaiodobenzylguanidine (131I-MIBG) is used for the targeted radiotherapy of noradrenaline transporter (NAT)-expressing neuroblastoma. Enhancement of 131I-MIBG's efficacy is achieved by combination with the topoisomerase I inhibitor topotecan - currently being evaluated clinically. Proteasome activity affords resistance of tumour cells to radiation and topoisomerase inhibitors. Therefore, the proteasome inhibitor bortezomib was evaluated with respect to its cytotoxic potency as a single agent and in combination with 131I-MIBG and topotecan. Since elevated levels of reactive oxygen species (ROS) are induced by bortezomib, the role of ROS in tumour cell kill was determined following treatment with bortezomib or the alternative proteasome inhibitor, MG132. Methods Clonogenic assay and growth of tumour xenografts were used to investigate the effects of proteasome inhibitors alone or in combination with radiation treatment. Synergistic interactions in vitro were evaluated by combination index analysis. The dependency of proteasome inhibitor-induced clonogenic kill on ROS generation was assessed using antioxidants. Results Bortezomib, in the dose range 1 to 30 nM, decreased clonogenic survival of both SK-N-BE(2c) and UVW/NAT cells, and this was prevented by antioxidants. It also acted as a sensitizer in vitro when administered with X-radiation, with 131I-MIBG, or with 131I-MIBG and topotecan. Moreover, bortezomib enhanced the delay of the growth of human tumour xenografts in athymic mice when administered in combination with 131I-MIBG and topotecan. MG132 and bortezomib had similar radiosensitizing potency, but only bortezomib-induced cytotoxicity was ROS-dependent. Conclusions Proteasome inhibition shows promise for the treatment of neuroblastoma in combination with 131I-MIBG and topotecan. Since the cytotoxicity of MG132, unlike that of bortezomib, was not ROS-dependent, the latter proteasome inhibitor may have a favourable toxicity profile in normal tissues.
Collapse
Affiliation(s)
| | | | | | | | - Robert J Mairs
- Radiation Oncology, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1BD, Scotland.
| |
Collapse
|
21
|
Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 2013; 4:324. [PMID: 24265619 PMCID: PMC3820966 DOI: 10.3389/fphys.2013.00324] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022] Open
Abstract
The adrenergic system plays a central role in stress signaling and stress is often associated with increased production of ROS. However, ROS overproduction generates oxidative stress, that occurs in response to several stressors. β-adrenergic signaling is markedly attenuated in conditions such as heart failure, with downregulation and desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory and profibrotic signaling, while antioxidant treatment protected hearts against these abnormalities, indicating ROS production to be central to the detrimental signaling of β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes, key elements in cell survival. More studies are needed to better clarify the involvement of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by which tools such as exercise training are able to counteract the oxidative stress, by both activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be used to prevent or treat diseases such as heart failure.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Laifenfeld D, Qiu L, Swiss R, Park J, Macoritto M, Will Y, Younis HS, Lawton M. Utilization of causal reasoning of hepatic gene expression in rats to identify molecular pathways of idiosyncratic drug-induced liver injury. Toxicol Sci 2013; 137:234-48. [PMID: 24136188 DOI: 10.1093/toxsci/kft232] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drug-induced liver injury (DILI) represents a leading cause of acute liver failure. Although DILI can be discovered in preclinical animal toxicology studies and/or early clinical trials, some human DILI reactions, termed idiosyncratic DILI (IDILI), are less predictable, occur in a small number of individuals, and do not follow a clear dose-response relationship. The emergence of IDILI poses a critical health challenge for patients and a financial challenge for the pharmaceutical industry. Understanding the cellular and molecular mechanisms underlying IDILI is key to the development of models that can assess potential IDILI risk. This study used Reverse Causal Reasoning (RCR), a method to assess activation of molecular signaling pathways, on gene expression data from rats treated with IDILI or pharmacologic/chemical comparators (NON-DILI) at the maximum tolerated dose to identify mechanistic pathways underlying IDILI. Detailed molecular networks involved in mitochondrial injury, inflammation, and endoplasmic reticulum (ER) stress were found in response to IDILI drugs but not negative controls (NON-DILI). In vitro assays assessing mitochondrial or ER function confirmed the effect of IDILI compounds on these systems. Together our work suggests that using gene expression data can aid in understanding mechanisms underlying IDILI and can guide in vitro screening for IDILI. Specifically, RCR should be considered for compounds that do not show evidence of DILI in preclinical animal studies positive for mitochondrial dysfunction and ER stress assays, especially when the therapeutic index toward projected human maximum drug plasma concentration is low.
Collapse
|
23
|
Cho KS, Kwon KJ, Jeon SJ, Joo SH, Kim KC, Cheong JH, Bahn GH, Kim HY, Han SH, Shin CY, Yang SI. Transcriptional Upregulation of Plasminogen Activator Inhibitor-1 in Rat Primary Astrocytes by a Proteasomal Inhibitor MG132. Biomol Ther (Seoul) 2013; 21:107-13. [PMID: 24009867 PMCID: PMC3762318 DOI: 10.4062/biomolther.2012.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/23/2013] [Accepted: 01/29/2013] [Indexed: 01/09/2023] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a member of serine protease inhibitor family, which regulates the activity of tissue plasminogen activator (tPA). In CNS, tPA/PAI-1 activity is involved in the regulation of a variety of cellular processes such as neuronal development, synaptic plasticity and cell survival. To gain a more insights into the regulatory mechanism modulating tPA/PAI-1 activity in brain, we investigated the effects of proteasome inhibitors on tPA/PAI-1 expression and activity in rat primary astrocytes, the major cell type expressing both tPA and PAI-1. We found that submicromolar concentration of MG132, a cell permeable peptide-aldehyde inhibitor of ubiquitin proteasome pathway selectively upregulates PAI-1 expression. Upregulation of PAI-1 mRNA as well as increased PAI-1 promoter reporter activity suggested that MG132 transcriptionally increased PAI-1 expression. The induction of PAI-1 downregulated tPA activity in rat primary astrocytes. Another proteasome inhibitor lactacystin similarly increased the expression of PAI-1 in rat primary astrocytes. MG132 activated MAPK pathways as well as PI3K/Akt pathways. Inhibitors of these signaling pathways reduced MG132-mediated upregulation of PAI-1 in varying degrees and most prominent effects were observed with SB203580, a p38 MAPK pathway inhibitor. The regulation of tPA/PAI-1 activity by proteasome inhibitor in rat primary astrocytes may underlie the observed CNS effects of MG132 such as neuroprotection.
Collapse
Affiliation(s)
- Kyu Suk Cho
- Departments of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701, Repulic of Korea ; Departments of SMART Institute of Advanced Biomedical Science, Konkuk University, Seoul 143-701, Repulic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Extracellular matrix degradation and tissue remodeling in periprosthetic loosening and osteolysis: focus on matrix metalloproteinases, their endogenous tissue inhibitors, and the proteasome. BIOMED RESEARCH INTERNATIONAL 2013; 2013:230805. [PMID: 23862137 PMCID: PMC3703793 DOI: 10.1155/2013/230805] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 12/18/2022]
Abstract
The leading complication of total joint replacement is periprosthetic osteolysis, which often results in aseptic loosening of the implant, leading to revision surgery. Extracellular matrix degradation and connective tissue remodeling around implants have been considered as major biological events in the periprosthetic loosening. Critical mediators of wear particle-induced inflammatory osteolysis released by periprosthetic synovial cells (mainly macrophages) are inflammatory cytokines, chemokines, and proteolytic enzymes, mainly matrix metalloproteinases (MMPs). Numerous studies reveal a strong interdependence of MMP expression and activity with the molecular mechanisms that control the composition and turnover of periprosthetic matrices. MMPs can either actively modulate or be modulated by the molecular mechanisms that determine the debris-induced remodeling of the periprosthetic microenvironment. In the present study, the molecular mechanisms that control the composition, turnover, and activity of matrix macromolecules within the periprosthetic microenvironment exposed to wear debris are summarized and presented. Special emphasis is given to MMPs and their endogenous tissue inhibitors (TIMPs), as well as to the proteasome pathway, which appears to be an elegant molecular regulator of specific matrix macromolecules (including specific MMPs and TIMPs). Furthermore, strong rationale for potential clinical applications of the described molecular mechanisms to the treatment of periprosthetic loosening and osteolysis is provided.
Collapse
|
25
|
Cheng H, Wang B, Tang C, Feng G, Zhang C, Li L, Lin T, Du F, Duan H, Shi M, Zhao G. Infrasonic noise induces axonal degeneration of cultured neurons via a Ca2+ influx pathway. Toxicol Lett 2012; 212:190-7. [DOI: 10.1016/j.toxlet.2012.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 11/17/2022]
|
26
|
Keyaerts M, Caveliers V, Lahoutte T. Bioluminescence imaging: looking beyond the light. Trends Mol Med 2012; 18:164-72. [PMID: 22321645 DOI: 10.1016/j.molmed.2012.01.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 01/04/2012] [Accepted: 01/16/2012] [Indexed: 11/17/2022]
Abstract
Bioluminescence imaging (BLI) enables in vivo imaging of molecular and cellular processes. It has gained in popularity over the past decade because of its easy translation from in vitro to in vivo experiments, its sensitivity, and its ease of use. However, experience in applying BLI in living subjects is still limited, and many researchers have encountered unexpected or biased BLI readout and reported important influencing factors. In this review, we summarize both the biological and physical effects that occur at the enzyme level or during light propagation towards the camera. The knowledge and detection of such factors, together with the development of new strategies and better BLI compounds, will improve the accuracy of the technique in the future.
Collapse
Affiliation(s)
- Marleen Keyaerts
- In Vivo Cellular and Molecular Imaging (ICMI) Laboratory, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | |
Collapse
|
27
|
Park WH, Kim SH. MG132, a proteasome inhibitor, induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion. Oncol Rep 2012; 27:1284-91. [PMID: 22266922 PMCID: PMC3583605 DOI: 10.3892/or.2012.1642] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/30/2011] [Indexed: 12/31/2022] Open
Abstract
MG132 as a proteasome inhibitor can induce apoptotic cell death in lung cancer cells. However, little is known about the toxicological cellular effects of MG132 on normal primary lung cells. Here, we investigated the effects of N-acetyl cysteine (NAC) and vitamin C (well known antioxidants) or L-buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) on MG132-treated human pulmonary fibroblast (HPF) cells in relation to cell death, reactive oxygen species (ROS) and glutathione (GSH). MG132 induced growth inhibition and death in HPF cells, accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). MG132 increased ROS levels and GSH-depleted cell numbers in HPF cells. Both antioxidants, NAC and vitamin C, prevented growth inhibition, death and MMP (ΔΨm) loss in MG132-treated HPF cells and also attenuated ROS levels in these cells. BSO showed a strong increase in ROS levels in MG132-treated HPF cells and slightly enhanced the growth inhibition, cell death, MMP (ΔΨm) loss and GSH depletion. In addition, NAC decreased anonymous ubiquitinated protein levels in MG132-treated HPF cells. Furthermore, superoxide dismutase (SOD) 2, catalase (CTX) and GSH peroxidase (GPX) siRNAs enhanced HPF cell death by MG132, which was not correlated with ROS and GSH level changes. In conclusion, MG132 induced the growth inhibition and death of HPF cells, which were accompanied by increasing ROS levels and GSH depletion. Both NAC and vitamin C attenuated HPF cell death by MG132, whereas BSO slightly enhanced the death.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Chonbuk National University, Jeonju 561-180, Republic of Korea.
| | | |
Collapse
|
28
|
Czupryna J, Tsourkas A. Firefly luciferase and RLuc8 exhibit differential sensitivity to oxidative stress in apoptotic cells. PLoS One 2011; 6:e20073. [PMID: 21603648 PMCID: PMC3094452 DOI: 10.1371/journal.pone.0020073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 04/25/2011] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, firefly Luciferase (fLuc) has been used in a wide range of biological assays, providing insight into gene regulation, protein-protein interactions, cell proliferation, and cell migration. However, it has also been well established that fLuc activity can be highly sensitive to its surrounding environment. In this study, we found that when various cancer cell lines (HeLa, MCF-7, and 293T) stably expressing fLuc were treated with staurosporine (STS), there was a rapid loss in bioluminescence. In contrast, a stable variant of Renilla luciferase (RLuc), RLuc8, exhibited significantly prolonged functionality under the same conditions. To identify the specific underlying mechanism(s) responsible for the disparate sensitivity of RLuc8 and fLuc to cellular stress, we conducted a series of inhibition studies that targeted known intracellular protein degradation/modification pathways associated with cell death. Interestingly, these studies suggested that reactive oxygen species, particularly hydrogen peroxide (H(2)O(2)), was responsible for the diminution of fLuc activity. Consistent with these findings, the direct application of H(2)O(2) to HeLa cells also led to a reduction in fLuc bioluminescence, while H(2)O(2) scavengers stabilized fLuc activity. Comparatively, RLuc8 was far less sensitive to ROS. These observations suggest that fLuc activity can be substantially altered in studies where ROS levels become elevated and can potentially lead to ambiguous or misleading findings.
Collapse
Affiliation(s)
- Julie Czupryna
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | |
Collapse
|
29
|
Park WH. Mitogen-activated protein kinase inhibitors differently affect the growth inhibition and death of a proteasome inhibitor, MG132-treated human pulmonary fibroblast cells. Hum Exp Toxicol 2011; 30:1945-54. [PMID: 21421692 DOI: 10.1177/0960327111403173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carbobenzoxy-Leu-Leu-leucinal (MG132) as a proteasome inhibitor can induce growth inhibition and death in lung cancer or normal cells. However, little is known about relationship between proteasome inhibition and mitogen-activated protein kinase (MAPK) signaling in normal lung cells. Thus, in the present study, we investigated the effects of MAPK inhibitors on MG132-treated human pulmonary fibroblast (HPF) cells in relation to cell growth inhibition, cell death, reactive oxygen species (ROS) and glutathione (GSH). Treatment with 15 μM MG132 increased ROS levels including mitochondrial O(2•)(-) and GSH depleted cell numbers in HPF cells at 24 hours. MAP kinase or ERK kinase (MEK) inhibitor did not significantly affect cell growth inhibition, cell death, the loss of mitochondrial membrane potential (MMP; ΔΨ(m)), ROS level and GSH depletion in MG132-treated HPF cells. c-Jun N-terminal kinase (JNK) inhibitor attenuated the growth inhibition and death by MG132. This inhibitor also significantly decreased O(2•)(-) level in MG132-treated HPF cells. Although p38 inhibitor slightly enhanced HPF cell growth inhibition by MG132, this inhibitor and siRNA prevented HPF cell death induced by MG132. p38 inhibitor also attenuated d O(2•)(-) level and GSH depletion. Moreover, extracellular signal regulated kinase (ERK), JNK or p38 siRNA did not strongly affect ROS levels in MG132-treated HPF cells. ERK and JNK siRNAs decreased anonymous ubiquitinated protein levels in MG132-treated HPF cells. In conclusion, MAPK inhibitors differently affected the growth inhibition and death of MG132-treated HPF cells. Especially, p38 inhibitor attenuated HPF cell death by MG132, which was in part related to changes in ROS and GSH levels.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, JeonJu, Republic of Korea.
| |
Collapse
|
30
|
Mastronicola D, Giuffrè A, Testa F, Mura A, Forte E, Bordi E, Pucillo LP, Fiori PL, Sarti P. Giardia intestinalis escapes oxidative stress by colonizing the small intestine: A molecular hypothesis. IUBMB Life 2011; 63:21-5. [PMID: 21280173 DOI: 10.1002/iub.409] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/28/2010] [Indexed: 11/07/2022]
Abstract
Giardia intestinalis is the microaerophilic protozoon causing giardiasis, a common infectious intestinal disease. Giardia possesses an O(2) -scavenging activity likely essential for survival in the host. We report that Giardia trophozoites express the O(2) -detoxifying flavodiiron protein (FDP), detected by immunoblotting, and are able to reduce O(2) to H(2) O rapidly (∼3 μM O(2) × min × 10(6) cells at 37 °C) and with high affinity (C(50) = 3.4 ± 0.7 μM O(2)). Following a short-term (minutes) exposure to H(2) O(2) ≥ 100 μM, the O(2) consumption by the parasites is irreversibly impaired, and the FDP undergoes a degradation, prevented by the proteasome-inhibitor MG132. Instead, H(2) O(2) does not cause degradation or inactivation of the isolated FDP. On the basis of the elevated susceptibility of Giardia to oxidative stress, we hypothesize that the parasite preferentially colonizes the small intestine since, compared with colon, it is characterized by a greater capacity for redox buffering and a lower propensity to oxidative stress.
Collapse
Affiliation(s)
- Daniela Mastronicola
- Department of Biochemical Sciences, CNR Institute of Molecular Biology and Pathology and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Han YH, Kim SZ, Kim SH, Park WH. Reactive oxygen species and glutathione level changes by a proteasome inhibitor, MG132, partially affect calf pulmonary arterial endothelial cell death. Drug Chem Toxicol 2011; 33:403-9. [PMID: 20088736 DOI: 10.3109/01480540903524350] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MG132 as a proteasome inhibitor has been shown to induce apoptotic cell death through the formation of reactive oxygen species (ROS). Here, we evaluated the effects of MG132 on the growth of endothelial cells (ECs), especially calf pulmonary artery endothelial cells (CPAECs), in relation to cell death, ROS, and glutathione (GSH) levels. MG132 dose dependently inhibited the growth of CPAEC and human umbilical vein endothelial cells (HUVECs) at 24 hours. MG132 also induced apoptotic cell death in CPAEC, which were accompanied by the loss of mitochondrial membrane potential (MMP; DeltaPsi(m)). MG132 increased ROS levels, including O(2)(*-) in CPAEC, but not in HUVEC. MG132 also dose dependently increased GSH-depleted cells in both ECs. N-acetyl-cysteine (NAC; a well-known antioxidant) reduced ROS levels in MG132-treated CPAEC with the slight prevention of cell death and GSH depletion. Buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) increased ROS levels and decreased GSH levels in MG132-treated CPAEC without the enhancement of cell death. In conclusion, MG132 inhibited the growth of ECs, especially CPAEC. The changes of ROS and GSH levels by MG132 partially affect CPAEC death.
Collapse
Affiliation(s)
- Yong Hwan Han
- Department of Physiology, Medical School, Research Institute of Clinical Medicine, Center for Healthcare Technology Development Chonbuk National University, JeonJu, Republic of Korea
| | | | | | | |
Collapse
|
32
|
You BR, Park WH. MG132, a proteasome inhibitor-induced calf pulmonary arterial endothelial cell growth and death, are changed by MAPK inhibitors. Drug Chem Toxicol 2010; 34:45-52. [PMID: 20954830 DOI: 10.3109/01480545.2010.494663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MG132, as a proteasome inhibitor, has been shown to induce apoptotic cell death through the formation of reactive oxygen species (ROS). In this study, we investigated the effects of MAPK inhibitors on MG132-treated calf pulmonary artery endothelial cells (CPAECs) in relation to cell death, ROS, and glutathione (GSH). MG132 inhibited the growth of CPAEC and also induced apoptosis, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨ(m)). MG132 increased ROS levels and GSH-depleted cell numbers in CPAEC. Treatment with MAPK (MEK, JNK, and p38) inhibitors showed a slight enhancement of cell-growth inhibition by MG132. All the MAPK inhibitors decreased cell death by MG132. Especially, the JNK inhibitor showed a strong effect. They all did not affect ROS levels and GSH depletion in MG132-treated CPAEC, but increased ROS and GSH levels in MG132-untreated CPAEC. In conclusion, MG132 induced apoptosis in CPAEC, which was accompanied by ROS increase and GSH depletion. The changes of MG132-induced CPAEC growth inhibition and death by MAPK inhibitors were not tightly correlated to ROS and GSH levels.
Collapse
Affiliation(s)
- Bo Ra You
- Department of Physiology, Medical School, Institute for Medical Sciences Chonbuk National University, JeonJu, 561-180, Republic of Korea
| | | |
Collapse
|
33
|
Orlichenko LS, Behari J, Yeh TH, Liu S, Stolz DB, Saluja AK, Singh VP. Transcriptional regulation of CXC-ELR chemokines KC and MIP-2 in mouse pancreatic acini. Am J Physiol Gastrointest Liver Physiol 2010; 299:G867-76. [PMID: 20671197 PMCID: PMC2957341 DOI: 10.1152/ajpgi.00177.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neutrophils and their chemoattractants, the CXC-ELR chemokines keratinocyte cytokine (KC) and macrophage inflammatory protein-2 (MIP-2), play a critical role in pancreatitis. While acute pancreatitis is initiated in acinar cells, it is unclear if these are a source of CXC-ELR chemokines. KC and MIP-2 have NF-κB, activator protein-1 (AP-1) sites in their promoter regions. However, previous studies have shown increased basal and reduced caerulein-induced AP-1 activation in harvested pancreatic tissue in vitro, which limits interpreting the caerulein-induced response. Moreover, recent studies suggest that NF-κB silencing in acinar cells alone may not be sufficient to reduce inflammation in acute pancreatitis. Thus the aim of this study was to determine whether acinar cells are a source of KC and MIP-2 and to understand their transcriptional regulation. Primary overnight-cultured murine pancreatic acini were used after confirming their ability to replicate physiological and pathological acinar cell responses. Upstream signaling resulting in KC, MIP-2 upregulation was studied along with activation of the transcription factors NF-κB and AP-1. Cultured acini replicated critical responses to physiological and pathological caerulein concentrations. KC and MIP-2 mRNA levels increased in response to supramaximal but not to physiological caerulein doses. This upregulation was calcium and protein kinase C (PKC), but not cAMP, dependent. NF-κB inhibition completely prevented upregulation of KC but not MIP-2. Complete suppression of MIP-2 upregulation required dual inhibition of NF-κB and AP-1. Acinar cells are a likely source of KC and MIP-2 upregulation during pancreatitis. This upregulation is dependent on calcium and PKC. MIP-2 upregulation requires both NF-κB and AP-1 in these cells. Thus dual inhibition of NF-κB and AP-1 may be a more successful strategy to reduce inflammation in pancreatitis than targeting NF-κB alone.
Collapse
Affiliation(s)
| | | | | | | | - Donna B. Stolz
- 2Cell Biology and Physiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and
| | - Ashok K. Saluja
- 3Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
34
|
Ebert B, Kisiela M, Malátková P, El-Hawari Y, Maser E. Regulation of human carbonyl reductase 3 (CBR3; SDR21C2) expression by Nrf2 in cultured cancer cells. Biochemistry 2010; 49:8499-511. [PMID: 20806931 DOI: 10.1021/bi100814d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Carbonyl reduction is a central metabolic process that controls the level of key regulatory molecules as well as xenobiotics. Carbonyl reductase 3 (CBR3; SDR21C2), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, has been poorly characterized so far, and the regulation of its expression is a complete mystery. Here, we show that CBR3 expression is regulated via Nrf2, a key regulator in response to oxidative stress. In human cancer cell lines, CBR3 mRNA was expressed differentially, ranging from very high (A549, lung) to very low (HT-29, colon; HepG2, liver) levels. CBR3 protein was highly expressed in SW-480 (colon) cells but was absent in HCT116 (colon) and HepG2 cells. CBR3 mRNA could be induced in HT-29 cells by Nrf2 agonists [sulforaphane (SUL, 7-fold) and diethyl maleate (DEM, 4-fold)] or hormone receptor ligand Z-guggulsterone (5-fold). Aryl hydrocarbon receptor agonist B[k]F failed to induce CBR3 mRNA after incubation for 8 h but elevated CBR3 levels after 24 h, most likely mediated by B[k]F metabolites that can activate Nrf2 signaling. Inhibition of Nrf2-activating upstream kinase MEK/ERK by PD98059 weakened DEM-mediated induction of CBR3 mRNA. Proteasome inhibitors MG-132 (5 μM) and bortezomib (50 nM) dramatically increased the level of CBR3 mRNA, obviously because of the increase in the level of Nrf2 protein. While siRNA-mediated knockdown of Nrf2 led to a decrease in the level of CBR3 mRNA in A549 cells (30% of control), Keap1 knockdown increased the level of CBR3 mRNA expression in HepG2 (9.3-fold) and HT-29 (2.7-fold) cells. Here, we provide for the first time evidence that human CBR3 is a new member of the Nrf2 gene battery.
Collapse
Affiliation(s)
- Bettina Ebert
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | | | | | | | | |
Collapse
|
35
|
Han YH, Park WH. Treatment with p38 inhibitor partially prevents Calu-6 lung cancer cell death by a proteasome inhibitor, MG132. ACTA ACUST UNITED AC 2010; 199:81-8. [PMID: 20471510 DOI: 10.1016/j.cancergencyto.2010.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/24/2009] [Accepted: 02/01/2010] [Indexed: 11/18/2022]
Abstract
MG132 (carbobenzoxy-Leu-Leu-leucinal) as a proteasome inhibitor has been shown to induce apoptotic cell death through formation of reactive oxygen species (ROS). In this study, we investigated the effects of MEK (mitogen-activated protein [MAP] kinase or extracellular signal-regulated kinase [ERK] kinase) or p38 inhibitor on MG132-treated Calu-6 lung cancer cells in relation to cell growth, cell death, ROS, and glutathione (GSH) levels. Treatment with 10 mumol/L MG132 inhibited the growth of Calu-6 cells at 24 hours. MG132 induced apoptosis in Calu-6 cells, which was accompanied by the loss of mitochondrial membrane potential (MMP; DeltaPsi(m)). ROS were increased in MG132-treated Calu-6 cells. MG132 also induced GSH depletion in Calu-6 cells. Treatment with MEK inhibitor did not significantly affect cell growth, cell death, ROS, and GSH levels in MG132-treated Calu-6 cells. Furthermore, MG132 increased the phosphorylation of p38 in Calu-6 cells at 1 and 24 hours. Treatment with p38 inhibitor significantly prevented cell growth inhibition, MMP (DeltaPsi(m)) loss and apoptosis in MG132-treated Calu-6 cells. This inhibitor increased ROS level and decreased GSH depletion in these cells. In conclusion, p38 inhibitor partially prevented Calu-6 cell death by MG132, which might be affected by GSH level changes.
Collapse
Affiliation(s)
- Yong Hwan Han
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeon Ju, 561-180, Republic of Korea
| | | |
Collapse
|
36
|
Han YH, Park WH. Proteasome inhibitor MG132 reduces growth of As4.1 juxtaglomerular cells via caspase-independent apoptosis. Arch Toxicol 2010; 84:689-98. [DOI: 10.1007/s00204-010-0550-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
|
37
|
The changes of reactive oxygen species and glutathione by MG132, a proteasome inhibitor affect As4.1 juxtaglomerular cell growth and death. Chem Biol Interact 2010; 184:319-27. [DOI: 10.1016/j.cbi.2010.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/18/2010] [Accepted: 01/18/2010] [Indexed: 11/23/2022]
|
38
|
Han YH, Park WH. MG132, a proteasome inhibitor decreased the growth of Calu-6 lung cancer cells via apoptosis and GSH depletion. Toxicol In Vitro 2010; 24:1237-42. [PMID: 20149858 DOI: 10.1016/j.tiv.2010.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 01/21/2010] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
The inhibition of proteasome function has emerged as a useful strategy to maneuver apoptosis. In the present study, we evaluated the effects of MG132 as a proteasome inhibitor on the growth of Calu-6 lung cancer cells in relation to the cell cycle, cell death, reactive oxygen species (ROS) and glutathione (GSH) levels. MG132 dose-dependently inhibited the growth of Calu-6 cells at 24h. DNA flow cytometric analysis indicated that 1-30 microM MG132 induced an S phase arrest in Calu-6 cells. MG132 also induced apoptosis, which was accompanied by the loss of mitochondrial membrane potential (MMP; Deltapsi(m)). The pan-caspase inhibitor (Z-VAD) significantly rescued Calu-6 cells from MG132-induced cell death. The intracellular ROS levels including O(2)(-) were increased in MG132-treated Calu-6 cells. MG132 also increased GSH-depleted cell numbers in Calu-6 cells. Z-VAD significantly decreased O(2)(-) levels and GSH-depleted cell numbers in MG132-treated Calu-6 cells. In conclusion, MG132 inhibited the growth of Calu-6 cells via apoptosis and GSH depletion.
Collapse
Affiliation(s)
- Yong Hwan Han
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, JeonJu 561-180, Republic of Korea
| | | |
Collapse
|
39
|
Han YH, Park WH. The effects of MAPK inhibitors on a proteasome inhibitor, MG132-induced HeLa cell death in relation to reactive oxygen species and glutathione. Toxicol Lett 2010; 192:134-40. [DOI: 10.1016/j.toxlet.2009.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/12/2009] [Accepted: 10/13/2009] [Indexed: 11/29/2022]
|
40
|
Yong Hwan Han, Woo Hyun Park. MG132 as a proteasome inhibitor induces cell growth inhibition and cell death in A549 lung cancer cells via influencing reactive oxygen species and GSH level. Hum Exp Toxicol 2010; 29:607-14. [DOI: 10.1177/0960327109358733] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Carbobenzoxy-Leu-Leu-leucinal (MG132) as a proteasome inhibitor has been shown to induce apoptotic cell death through formation of reactive oxygen species (ROS). In the present study, we evaluated the effects of MG132 on the growth of A549 lung cancer cells in relation to cell growth, ROS and glutathione (GSH) levels. Treatment with MG132 inhibited the growth of A549 cells with an IC50 of approximately 20 μM at 24 hours. DNA flow cytometric analysis indicated that 0.5 ∼ 30 μM MG132 induced a G1 phase arrest of the cell cycle in A549 cells. Treatment with 10 or 30 μM MG132 also induced apoptosis, as evidenced by sub-G1 cells and annexin V staining cells. This was accompanied by the loss of mitochondrial membrane potential (MMP; Δψm). The intracellular ROS levels including O2•- were strongly increased in 10 or 30 μM MG132-treated A549 cells but were down-regulated in 0.1, 0.5 or 1 μM MG132-treated cells. Furthermore, 10 or 30 μM MG132 increased mitochondrial O2•- level but 0.1, 0.5 or 1 μM MG132 decreased that. In addition, 10 or 30 μM MG132 induced GSH depletion in A549 cells. In conclusion, MG132 inhibited the growth of human A549 cells via inducing the cell cycle arrest as well as triggering apoptosis, which was in part correlated with the changes of ROS and GSH levels. Our present data provide important information on the anti-growth mechanisms of MG132 in A549 lung cancer cells in relation to ROS and GSH.
Collapse
Affiliation(s)
- Yong Hwan Han
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, Republic of Korea
| | - Woo Hyun Park
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, Republic of Korea,
| |
Collapse
|
41
|
Sun F, Kanthasamy A, Song C, Yang Y, Anantharam V, Kanthasamy AG. Proteasome inhibitor-induced apoptosis is mediated by positive feedback amplification of PKCdelta proteolytic activation and mitochondrial translocation. J Cell Mol Med 2008; 12:2467-81. [PMID: 18298651 PMCID: PMC2957660 DOI: 10.1111/j.1582-4934.2008.00293.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 02/11/2008] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence implicates impaired protein degradation by the ubiquitin proteasome system (UPS) in Parkinson's disease; however cellular mechanisms underlying dopaminergic degeneration during proteasomal dysfunction are yet to be characterized. In the present study, we identified that the novel PKC isoform PKCdelta plays a central role in mediating apoptotic cell death following UPS dysfunction in dopaminergic neuronal cells. Inhibition of proteasome function by MG-132 in dopaminergic neuronal cell model (N27 cells) rapidly depolarized mitochondria independent of ROS generation to activate the apoptotic cascade involving cytochrome c release, and caspase-9 and caspase-3 activation. PKCdelta was a key downstream effector of caspase-3 because the kinase was proteolytically cleaved by caspase-3 following exposure to proteasome inhibitors MG-132 or lactacystin, resulting in a persistent increase in the kinase activity. Notably MG-132 treatment resulted in translocation of proteolytically cleaved PKCdelta fragments to mitochondria in a time-dependent fashion, and the PKCdelta inhibition effectively blocked the activation of caspase-9 and caspase-3, indicating that the accumulation of the PKCdelta catalytic fragment in the mitochondrial fraction possibly amplifies mitochondria-mediated apoptosis. Overexpression of the kinase active catalytic fragment of PKCdelta (PKCdelta-CF) but not the regulatory fragment (RF), or mitochondria-targeted expression of PKCdelta-CF triggers caspase-3 activation and apoptosis. Furthermore, inhibition of PKCdelta proteolytic cleavage by a caspase-3 cleavage-resistant mutant (PKCdelta-CRM) or suppression of PKCdelta expression by siRNA significantly attenuated MG-132-induced caspase-9 and -3 activation and DNA fragmentation. Collectively, these results demonstrate that proteolytically activated PKCdelta has a significant feedback regulatory role in amplification of the mitochondria-mediated apoptotic cascade during proteasome dysfunction in dopaminergic neuronal cells.
Collapse
Affiliation(s)
- Faneng Sun
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State UniversityAmes, IA, USA
| | - Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State UniversityAmes, IA, USA
| | - Chunjuan Song
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State UniversityAmes, IA, USA
| | - Yongjie Yang
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State UniversityAmes, IA, USA
| | - Vellareddy Anantharam
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State UniversityAmes, IA, USA
| | - Anumantha G Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State UniversityAmes, IA, USA
| |
Collapse
|
42
|
Fernandes AF, Zhou J, Zhang X, Bian Q, Sparrow J, Taylor A, Pereira P, Shang F. Oxidative inactivation of the proteasome in retinal pigment epithelial cells. A potential link between oxidative stress and up-regulation of interleukin-8. J Biol Chem 2008; 283:20745-53. [PMID: 18502748 PMCID: PMC2475710 DOI: 10.1074/jbc.m800268200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 04/04/2008] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress and inflammation are implicated in the pathogenesis of many age-related diseases. Stress-induced overproduction of inflammatory cytokines, such as interleukin-8 (IL-8), is one of the early events of inflammation. The objective of this study was to elucidate mechanistic links between oxidative stress and overproduction of IL-8 in retinal pigment epithelial (RPE) cells. We found that exposure of RPE cells to H(2)O(2), paraquat, or A2E-mediated photooxidation resulted in increased expression and secretion of IL-8. All of these oxidative stressors also inactivated the proteasome in RPE cells. In contrast, tert-butylhydroperoxide (TBH), a lipophilic oxidant that did not stimulate IL-8 production, also did not inactivate the proteasome. Moreover, prolonged treatment of RPE cells with proteasome-specific inhibitors recapitulated the stimulation of IL-8 production. These data suggest that oxidative inactivation of the proteasome is a potential mechanistic link between oxidative stress and up-regulation of the proinflammatory IL-8. The downstream signaling pathways that govern the production of IL-8 include NF-kappaB and p38 MAPK. Proteasome inhibition both attenuated the activation and delayed the turnoff of NF-kappaB, resulting in biphasic effects on the production of IL-8. Prolonged proteasome inhibition (>2 h) resulted in activation of p38 MAPK via activation of MKK3/6 and increased the production of IL-8. Chemically inhibiting the p38 MAPK blocked the proteasome inhibition-induced up-regulation of IL-8. Together, these data indicate that oxidative inactivation of the proteasome and the related activation of the p38 MAPK pathway provide a potential link between oxidative stress and overproduction of proinflammatory cytokines, such as IL-8.
Collapse
Affiliation(s)
- Alexandre F. Fernandes
- Jean Mayer United States Department of
Agriculture Human Nutrition Research Center on Aging, Tufts University,
Boston, Massachusetts 02111, the Center of
Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra,
3000–354 Portugal, and the Department of
Ophthalmology, Columbia University, New York, New York 10032
| | - Jilin Zhou
- Jean Mayer United States Department of
Agriculture Human Nutrition Research Center on Aging, Tufts University,
Boston, Massachusetts 02111, the Center of
Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra,
3000–354 Portugal, and the Department of
Ophthalmology, Columbia University, New York, New York 10032
| | - Xinyu Zhang
- Jean Mayer United States Department of
Agriculture Human Nutrition Research Center on Aging, Tufts University,
Boston, Massachusetts 02111, the Center of
Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra,
3000–354 Portugal, and the Department of
Ophthalmology, Columbia University, New York, New York 10032
| | - Qingning Bian
- Jean Mayer United States Department of
Agriculture Human Nutrition Research Center on Aging, Tufts University,
Boston, Massachusetts 02111, the Center of
Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra,
3000–354 Portugal, and the Department of
Ophthalmology, Columbia University, New York, New York 10032
| | - Janet Sparrow
- Jean Mayer United States Department of
Agriculture Human Nutrition Research Center on Aging, Tufts University,
Boston, Massachusetts 02111, the Center of
Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra,
3000–354 Portugal, and the Department of
Ophthalmology, Columbia University, New York, New York 10032
| | - Allen Taylor
- Jean Mayer United States Department of
Agriculture Human Nutrition Research Center on Aging, Tufts University,
Boston, Massachusetts 02111, the Center of
Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra,
3000–354 Portugal, and the Department of
Ophthalmology, Columbia University, New York, New York 10032
| | - Paulo Pereira
- Jean Mayer United States Department of
Agriculture Human Nutrition Research Center on Aging, Tufts University,
Boston, Massachusetts 02111, the Center of
Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra,
3000–354 Portugal, and the Department of
Ophthalmology, Columbia University, New York, New York 10032
| | - Fu Shang
- Jean Mayer United States Department of
Agriculture Human Nutrition Research Center on Aging, Tufts University,
Boston, Massachusetts 02111, the Center of
Ophthalmology, IBILI, Faculty of Medicine, University of Coimbra,
3000–354 Portugal, and the Department of
Ophthalmology, Columbia University, New York, New York 10032
| |
Collapse
|
43
|
Cervia D, Garcia-Gil M, Simonetti E, Di Giuseppe G, Guella G, Bagnoli P, Dini F. Molecular mechanisms of euplotin C-induced apoptosis: involvement of mitochondrial dysfunction, oxidative stress and proteases. Apoptosis 2007; 12:1349-63. [PMID: 17440817 DOI: 10.1007/s10495-007-0075-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The metabolite euplotin C (EC), isolated from the marine ciliate Euplotes crassus, is a powerful cytotoxic and pro-apoptotic agent in tumour cell lines. For instance, EC induces the rapid depletion of ryanodine Ca(2+) stores, the release of cytochrome c from the mitochondria, and the activation of caspase-3, leading to apoptosis. The purpose of this study was to gain further insight into the mechanisms of EC-induced apoptosis in rat pheochromocytoma PC12 cells. We found that EC increases Bax/Bcl-2 ratio and that Bax is responsible of the EC-induced dissipation of the mitochondrial membrane potential (Deltapsi(m)). In addition, EC induces the generation of reactive oxygene species (ROS) without involvement of p53. The inhibition of ROS generation prevents, at least in part, the pro-apoptotic effects of EC as well as the effects of EC on Bax, Deltapsi(m) and intracellular free Ca(2+), indicating a cross-talk between different pathways. However, definition of the effector cascade turns out to be more complex than expected and caspase-independent mechanisms, acting in parallel with caspases, should also be considered. Among them, EC increases the expression/activity of calpains downstream of ROS generation, although calpains seem to exert protective effects.
Collapse
Affiliation(s)
- Davide Cervia
- Department of Environmental Sciences, University of Tuscia, Viterbo, Italy.
| | | | | | | | | | | | | |
Collapse
|
44
|
Miller CP, Ban K, Dujka ME, McConkey DJ, Munsell M, Palladino M, Chandra J. NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood 2007; 110:267-77. [PMID: 17356134 PMCID: PMC1896116 DOI: 10.1182/blood-2006-03-013128] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The proteasome has been successfully targeted for the treatment of multiple myeloma and mantle cell lymphoma; however, in other hematologic malignancies, bortezomib has been less effective as a single agent. Here, we describe effects of NPI-0052, a novel proteasome inhibitor, in leukemia model systems. In cell lines, NPI-0052 inhibits all 3 proteolytic activities associated with the proteasome: chymotrypsin-, trypsin-, and caspase-like. NPI-0052 also induces DNA fragmentation in leukemia lines and in mononuclear cells from a Ph + acute lymphoblastic leukemia (ALL) patient. Caspase-3 activation by NPI-0052 was seen in wild-type Jurkat cells, but was significantly lessened in Fas-associated death domain (FADD)-deficient or caspase-8-deficient counterparts. NPI-0052-induced apoptosis was further probed using caspase-8 inhibitors, which were more protective than caspase-9 inhibitors. N-acetyl cysteine (NAC) also conferred protection against NPI-0052-induced apoptosis, indicating a role for oxidative stress by NPI-0052. In support of the drug's in vitro activities, biweekly treatment with NPI-0052 lessened total white blood cell (WBC) burden over 35 days in leukemic mice. Interestingly, combining NPI-0052 with either MS-275 or valproic acid (VPA) induced greater levels of cell death than the combination of bortezomib with these histone deacetylase inhibitors (HDACi). These effects of NPI-0052, alone and in combination with HDACi, warrant further testing to determine the compound's clinical efficacy in leukemia.
Collapse
Affiliation(s)
- Claudia P Miller
- Department of Pediatrics Research, University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Choi EY, Park ZY, Choi EJ, Oh HM, Lee S, Choi SC, Lee KM, Im SH, Chun JS, Jun CD. Transcriptional regulation of IL-8 by iron chelator in human epithelial cells is independent from NF-κB but involves ERK1/2- and p38 kinase-dependent activation of AP-1. J Cell Biochem 2007; 102:1442-57. [PMID: 17471497 DOI: 10.1002/jcb.21367] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have shown that the bacterial iron chelator, deferoxamine (DFO), triggers inflammatory signals including the production of CXC chemokine IL-8, in human intestinal epithelial cells (IECs) by activating the ERK1/2 and p38 kinase pathways. In this study we investigated the mechanisms involved in IL-8 generation by DFO, focusing on the transcription factors involved and the roles of both mitogen-activated protein kinases (MAPKs) in the transcription factor activation. Treatment of human epithelial HT-29 cells with DFO markedly up-regulated the expression of the essential components of the transcription factor AP-1 at a transcriptional level, while it minimally affected the expression of the NF-kappaB subunits. DFO also induced AP-1-dependent transcriptional activity in HT-29 cells, and this activity was further augmented by the wild-type c-Jun transfection. In contrast, the AP-1 activity by DFO was markedly decreased by the dominant-negative c-Jun transfection. Electrophoretic mobility shift assays revealed that DFO increases the specific binding of AP-1 but not of NF-kappaB. Such AP-1 binding and transcriptional activities were blocked by the inhibitors of the ERK1/2 and p38 kinase pathways, suggesting that both mitogen-activated protein kinases (MAPKs) lie upstream of AP-1. Besides its action on AP-1, DFO also induced the specific binding of other transcription factors such as CREB and Egr-1. In summary, our results indicate that iron chelator-induced IL-8 generation in IECs involves activation of ERK1/2 and p38 kinase and downstream activation of AP-1. A possible link between iron status and two additional transcription factors, that is, CREB and Egr-1, rather than NF-kappaB, was also suggested.
Collapse
Affiliation(s)
- Eun-Young Choi
- Department of Life Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Guo W, Zingg JM, Meydani M, Azzi A. Alpha-Tocopherol counteracts ritonavir-induced proinflammatory cytokines expression in differentiated THP-1 cells. Biofactors 2007; 31:171-9. [PMID: 18997280 DOI: 10.1002/biof.5520310304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Treatment of HIV-infected individuals with HIV protease inhibitor (HPI) drugs has significantly increased their life span. However, one of the side effects of HPI drugs is the development of premature atherosclerosis, whose molecular pathogenesis remains unclear. Previously we have reported that alpha-tocopherol (alpha-T) normalizes CD36 overexpression induced by ritonavir treatment and reduces oxLDL uptake in THP-1 cells. Since inflammation is a major player in the pathogenesis of atherosclerosis, we hypothesized that HPI drugs, such as ritonavir, increase proinflammatory cytokines synthesis and that alpha-T supplementation counteracts this effect by suppressing proinflammatory cytokines levels. Here, we report that after differentiating THP-1 cells to macrophages, ritonavir treatment (10 microg/mL) significantly increases expression of proinflammatory cytokines, IL-6, MCP-1 and IL-8, at both mRNA and protein levels. This ritonavir-induced effect is significantly suppressed by treatment of THP-1/macrophages with 50 muM alpha-T. We conclude that ritonavir can induce proinflammatory cytokines synthesis in THP-1/macrophages, which might be associated with the development of premature atherosclerosis in ritonavir-treated patients and that this effect is prevented by alpha-T.
Collapse
Affiliation(s)
- Weimin Guo
- Vascular Biology Laboratory, JM USDA-HNRCA at Tufts University, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
47
|
Halliwell B. Proteasomal dysfunction: a common feature of neurodegenerative diseases? Implications for the environmental origins of neurodegeneration. Antioxid Redox Signal 2006; 8:2007-19. [PMID: 17034346 DOI: 10.1089/ars.2006.8.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The neurodegenerative diseases that afflict humans affect different part of the nervous system and have different symptoms and prognoses, yet they have certain things in common. One of them is defects in the clearance of abnormal or other "unwanted" proteins, particularly affecting the proteasome system. In this review, I advance two concepts: (a) that defects in protein clearance can be a fundamental cause of neurodegeneration, and (b) that because proteasome inhibitors are widespread in nature, their ingestion may contribute to "spontaneous" neurodegeneration.
Collapse
Affiliation(s)
- B Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
48
|
Fernández-Calotti P, Gamberale R, Costas M, Sánchez Avalos J, Geffner J, Giordano M. Fludarabine induces pro-inflammatory activation of human monocytic cells through a MAPK/ERK pathway. Int Immunopharmacol 2006; 6:715-23. [PMID: 16546701 DOI: 10.1016/j.intimp.2005.08.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/07/2005] [Accepted: 08/29/2005] [Indexed: 10/25/2022]
Abstract
Fludarabine is a nucleoside analogue that has been successfully employed for the treatment of low-grade lymphoid malignancies and, more recently, in nonmyeloablative preparative regimens for stem cell transplantation, due to its strong cytotoxic activity on lymphocytes. In this paper, we show that fludarabine can also induce pro-inflammatory stimulation of monocytic cells, as evaluated by increased expression of ICAM-1 and IL-8 release. To study the mechanisms involved, we employed selective inhibitors of MAPK and NF-kappaB pathways, both of which have been implicated in the modulation of ICAM-1 and IL-8. Our results showed that fludarabine effects were mediated through the activation of ERK and were independent on p38, JNK or NF-kappaB pathways. By Western blotting analysis we corroborated that fludarabine induced a rapid activation of ERK that was sustained for at least 30 min. Moreover, pro-inflammatory activation of monocytic cells by fludarabine was largely attenuated by coadministration of the free radical scavenger N-acetylcysteine suggesting the involvement of reactive oxygen species in fludarabine effects. Finally, we showed that fludarabine induced the activation of the transcription factor AP-1 not only in monocytic cells but also in non-proliferating lymphocytes from chronic lymphocytic leukemia. It is possible that some of fludarabine side effects in vivo may be attributed to cell activation/differentiation rather than induction of apoptosis.
Collapse
Affiliation(s)
- Paula Fernández-Calotti
- Laboratorio de Inmunología Oncológica, IIHEMA, Academia Nacional de Medicina, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
49
|
Woo KJ, Park JW, Kwon TK. Proteasome inhibitor-induced cyclooxygenase-2 expression in Raw264.7 cells is potentiated by inhibition of c-Jun N-terminal kinase activation. Biochem Biophys Res Commun 2006; 342:1334-40. [PMID: 16516846 DOI: 10.1016/j.bbrc.2006.02.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 02/16/2006] [Indexed: 12/16/2022]
Abstract
Prostaglandins play regulatory roles in a variety of physiological and pathological processes in immune response and inflammation. MG132, proteasome inhibitor, is known to anti-tumor agent activity and anti-inflammation with inhibitory property of NF-kappaB. We investigated the effect of MG132 on the expression of cyclooxygenase-2 (COX-2), the rate-limiting enzyme in the synthesis of PGE(2), using macrophage cell line, Raw264.7. Our results showed that COX-2 expression is up-regulated by MG132 treatment and that this induction of COX-2 is regulated in part at the transcriptional level. In addition, we demonstrated the signal transduction pathway of mitogen-activated protein kinase (MAP kinase) in MG132-induced COX-2 expression. The p38 MAPK inhibitor (SB 203580) prevented MG132-induced COX-2 expression, whereas c-Jun N-terminal kinase (JNK) inhibitor (SP 600125) and MAPK kinase 4 (MKK4)-DN (dominant negative mutant) and MKK7-DN significantly enhanced COX-2 expression. These results suggest that MG132-induced COX-2 expression is associated with the activation of p38 MAPK and the inhibition of JNK signaling pathways.
Collapse
Affiliation(s)
- Kyung Jin Woo
- Department of Immunology, School of Medicine, Keimyung University, 194 DongSan-Dong Jung-Gu, Taegu 700-712, Republic of Korea
| | | | | |
Collapse
|
50
|
DeMeritt IB, Podduturi JP, Tilley AM, Nogalski MT, Yurochko AD. Prolonged activation of NF-kappaB by human cytomegalovirus promotes efficient viral replication and late gene expression. Virology 2006; 346:15-31. [PMID: 16303162 PMCID: PMC2600890 DOI: 10.1016/j.virol.2005.09.065] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 08/12/2005] [Accepted: 09/23/2005] [Indexed: 01/04/2023]
Abstract
Infection of fibroblasts by human cytomegalovirus (HCMV) rapidly activates the NF-kappaB signaling pathway, which we documented promotes efficient transactivation of the major immediate-early promoter (DeMeritt, I.B., Milford, L.E., Yurochko, A.D. (2004). Activation of the NF-kappaB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. J. Virol. 78, 4498-4507). Because a second, sustained increase in NF-kappaB activity following the initial phase of NF-kappaB activation was also observed, we investigated the role that this prolonged NF-kappaB activation played in viral replication and late gene expression. We first investigated HCMV replication in cells in which NF-kappaB activation was blocked by pretreatment with NF-kappaB inhibitors: HCMV replication was significantly decreased in these cultures. A decrease in replication was also observed when NF-kappaB was inhibited up to 48 h post-infection, suggesting a previously unidentified role for NF-kappaB in the regulation of the later class of viral genes.
Collapse
Affiliation(s)
- Ian B. DeMeritt
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Jagat P. Podduturi
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - A. Michael Tilley
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Maciej T. Nogalski
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| | - Andrew D. Yurochko
- Department of Microbiology and Immunology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932
| |
Collapse
|