1
|
Howard JM, Manning AC, Clark RC, Williams T, Nobile CJ, Kazakov S, Barberan-Soler S. Characterization of transcriptomic changes across Coccidioides morphologies using RiboMarker®-enhanced RNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.634332. [PMID: 39990421 PMCID: PMC11844464 DOI: 10.1101/2025.02.11.634332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Coccidioides is a dimorphic, pathogenic fungus responsible for transmission of the mammalian disease colloquially known as "Valley fever". To better understand the molecular basis of Coccidioides pathogenesis, previous studies have characterized transcriptomes that define transitions between the saprobic and pathogenic life stages of the two species that cause Valley fever - Coccidioides immitis and Coccidioides posadasii . However, none of these studies have focused on small RNA profiles, which have been shown in several pathogenic fungi to play crucial roles in host-pathogen communication, affecting virulence and infectivity. In this study, we analyzed changes in small RNA expression across three major morphologies of C. posadasii : arthroconidia, mycelia, and spherules, from both intracellular and extracellular fractions. Utilizing RiboMarker® small RNA and RNA fragment library preparation, we show enhanced coverage across the transcriptome by increasing incorporation of normally incompatible RNAs into the sequencing pool. Using these data, we observed transcriptomic shifts during the transition of arthroconidia to either mycelia or spherules, marked largely by changes in both protein-coding, tRNA, and unannotated loci. As little is known regarding the mechanisms governing these life stage transitions, these data provide better insight into those small RNA- and fragment-producing genes and loci that may be required for progression between Coccidioides saprobic and parasitic life cycles. Additionally, analysis of fragmentation patterns across all morphologies suggests unique patterns of RNA fragmentation across a cohort of RNA species that correlate with a given ecotype. Finally, we noted evidence of RNA export to the extracellular space, particularly regarding snRNA and tRNA-derived fragments as well as mRNA-derived transcripts, during the transition to either mycelia or spherules, which may play roles in cell-cell, and/or host-pathogen communication. Going forward, this newly established intra- and extracellular Coccidioides sRNA atlas will provide a foundation for potential biomarker discovery and contribute to our understanding of the molecular basis for virulence in Valley fever.
Collapse
|
2
|
Abstract
We review the mechanisms responsible for amino acid homeostasis in Saccharomyces cerevisiae and other fungi. Amino acid homeostasis is essential for cell growth and survival. Hence, the de novo synthesis reactions, metabolic conversions, and transport of amino acids are tightly regulated. Regulation varies from nitrogen pool sensing to control by individual amino acids and takes place at the gene (transcription), protein (posttranslational modification and allostery), and vesicle (trafficking and endocytosis) levels. The pools of amino acids are controlled via import, export, and compartmentalization. In yeast, the majority of the amino acid transporters belong to the APC (amino acid-polyamine-organocation) superfamily, and the proteins couple the uphill transport of amino acids to the electrochemical proton gradient. Although high-resolution structures of yeast amino acid transporters are not available, homology models have been successfully exploited to determine and engineer the catalytic and regulatory functions of the proteins. This has led to a further understanding of the underlying mechanisms of amino acid sensing and subsequent downregulation of transport. Advances in optical microscopy have revealed a new level of regulation of yeast amino acid transporters, which involves membrane domain partitioning. The significance and the interrelationships of the latest discoveries on amino acid homeostasis are put in context.
Collapse
|
3
|
Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. THE NEW PHYTOLOGIST 2019; 223:1127-1142. [PMID: 30843207 DOI: 10.1111/nph.15775] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/20/2019] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.
Collapse
Affiliation(s)
- Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Franziska Krajinski
- Institute of Biology, Faculty of Life Sciences, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Diederik van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Ghislaine Recorbet
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
4
|
Gournas C, Athanasopoulos A, Sophianopoulou V. On the Evolution of Specificity in Members of the Yeast Amino Acid Transporter Family as Parts of Specific Metabolic Pathways. Int J Mol Sci 2018; 19:E1398. [PMID: 29738448 PMCID: PMC5983819 DOI: 10.3390/ijms19051398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/04/2018] [Accepted: 05/05/2018] [Indexed: 12/11/2022] Open
Abstract
In the recent years, molecular modeling and substrate docking, coupled with biochemical and genetic analyses have identified the substrate-binding residues of several amino acid transporters of the yeast amino acid transporter (YAT) family. These consist of (a) residues conserved across YATs that interact with the invariable part of amino acid substrates and (b) variable residues that interact with the side chain of the amino acid substrate and thus define specificity. Secondary structure sequence alignments showed that the positions of these residues are conserved across YATs and could thus be used to predict the specificity of YATs. Here, we discuss the potential of combining molecular modeling and structural alignments with intra-species phylogenetic comparisons of transporters, in order to predict the function of uncharacterized members of the family. We additionally define some orphan branches which include transporters with potentially novel, and to be characterized specificities. In addition, we discuss the particular case of the highly specific l-proline transporter, PrnB, of Aspergillus nidulans, whose gene is part of a cluster of genes required for the utilization of proline as a carbon and/or nitrogen source. This clustering correlates with transcriptional regulation of these genes, potentially leading to the efficient coordination of the uptake of externally provided l-Pro via PrnB and its enzymatic degradation in the cell.
Collapse
Affiliation(s)
- Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications (IBE), National Centre for Scientific Research "Demokritos" (NCSRD), Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece.
| | - Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications (IBE), National Centre for Scientific Research "Demokritos" (NCSRD), Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece.
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications (IBE), National Centre for Scientific Research "Demokritos" (NCSRD), Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece.
| |
Collapse
|
5
|
Saliba E, Evangelinos M, Gournas C, Corrillon F, Georis I, André B. The yeast H +-ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H +-coupled nutrient uptake. eLife 2018; 7:31981. [PMID: 29570051 PMCID: PMC5915174 DOI: 10.7554/elife.31981] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/22/2018] [Indexed: 11/25/2022] Open
Abstract
The yeast Target of Rapamycin Complex 1 (TORC1) plays a central role in controlling growth. How amino acids and other nutrients stimulate its activity via the Rag/Gtr GTPases remains poorly understood. We here report that the signal triggering Rag/Gtr-dependent TORC1 activation upon amino-acid uptake is the coupled H+ influx catalyzed by amino-acid/H+ symporters. H+-dependent uptake of other nutrients, ionophore-mediated H+ diffusion, and inhibition of the vacuolar V-ATPase also activate TORC1. As the increase in cytosolic H+ elicited by these processes stimulates the compensating H+-export activity of the plasma membrane H+-ATPase (Pma1), we have examined whether this major ATP-consuming enzyme might be involved in TORC1 control. We find that when the endogenous Pma1 is replaced with a plant H+-ATPase, H+ influx or increase fails to activate TORC1. Our results show that H+ influx coupled to nutrient uptake stimulates TORC1 activity and that Pma1 is a key actor in this mechanism. Cells adapt their growth rate depending on the amount of nutrients available. The protein complex called TORC1 plays a central role in this. When nutrients are abundant, TORC1 is very active and stimulates the production of proteins and other molecules needed for the cell to grow. However, when nutrients such as amino acids become scarce, TORC1 reduces its activity and allows the cells to adapt to starvation. This TORC1-mediated control of the metabolism is crucial for the cell to survive, and faulty TORC1 proteins have been associated with several diseases including cancers. TORC1 was originally discovered in yeast, which provides a powerful model to study this control system. However, until now, it was not known how TORC1 is reactivated when amino acids are added to cells that have been starved of these molecules. Knowing the answer to this question would allow us to better understand how the availability of nutrients controls the activity of TORC1. Now, Saliba et al. have discovered that TORC1 is not reactivated by the amino acids themselves, but by protons, which are positively charged hydrogen ions that travel into the cell together with the amino acids. This influx of protons is the driving force behind the active transport of amino acids and other nutrients into the cell, and potentially serves as a general signal to activate TORC1 in response to the uptake of nutrients, especially when cells have been starved. Furthermore, the results showed that a specific enzyme in the cell membrane plays an essential role in activating TORC1. This enzyme pumps the protons out of the cell to compensate for their influx and to maintain the proton gradient in the membrane that drives the absorption of nutrients. When this enzyme was replaced with an equivalent plant enzyme, the proton-coupled nutrient uptake did not activate TORC1 in the yeast cells. These findings may help scientists who are interested in how TORC1 is regulated in organisms other than mammals, such as plants or fungi. A next step will be to find out how exactly the proton pump in the cell membrane helps to activate TORC1.
Collapse
Affiliation(s)
- Elie Saliba
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Minoas Evangelinos
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Christos Gournas
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Florent Corrillon
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| | - Isabelle Georis
- Institut de Recherches Microbiologiques J.-M. Wiame, Brussels, Belgium
| | - Bruno André
- Molecular Physiology of the Cell, Université Libre de Bruxelles, Biopark, Gosselies, Belgium
| |
Collapse
|
6
|
Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, Barry KW, Girlanda M, Grigoriev IV, Martin F, Balestrini R, Perotto S. Fungal and plant gene expression in the Tulasnella calospora-Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. THE NEW PHYTOLOGIST 2017; 213:365-379. [PMID: 27859287 DOI: 10.1111/nph.14279] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/19/2016] [Indexed: 05/03/2023]
Abstract
Orchids are highly dependent on their mycorrhizal fungal partners for nutrient supply, especially during early developmental stages. In addition to organic carbon, nitrogen (N) is probably a major nutrient transferred to the plant because orchid tissues are highly N-enriched. We know almost nothing about the N form preferentially transferred to the plant or about the key molecular determinants required for N uptake and transfer. We identified, in the genome of the orchid mycorrhizal fungus Tulasnella calospora, two functional ammonium transporters and several amino acid transporters but found no evidence of a nitrate assimilation system, in agreement with the N preference of the free-living mycelium grown on different N sources. Differential expression in symbiosis of a repertoire of fungal and plant genes involved in the transport and metabolism of N compounds suggested that organic N may be the main form transferred to the orchid host and that ammonium is taken up by the intracellular fungus from the apoplatic symbiotic interface. This is the first study addressing the genetic determinants of N uptake and transport in orchid mycorrhizas, and provides a model for nutrient exchanges at the symbiotic interface, which may guide future experiments.
Collapse
Affiliation(s)
- Valeria Fochi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Annegret Kohler
- Lab of Excellence ARBRE, INRA-Nancy and Lorraine University, Unité Mixte de Recherche 1136, 54280, Champenoux, France
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
| | - Vasanth R Singan
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Erika A Lindquist
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Kerrie W Barry
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Mariangela Girlanda
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Francis Martin
- Lab of Excellence ARBRE, INRA-Nancy and Lorraine University, Unité Mixte de Recherche 1136, 54280, Champenoux, France
| | | | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| |
Collapse
|
7
|
Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE. Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. TRENDS IN PLANT SCIENCE 2016; 21:937-950. [PMID: 27514454 DOI: 10.1016/j.tplants.2016.07.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 05/21/2023]
Abstract
Soil nutrient acquisition and exchanges through symbiotic plant-fungus interactions in the rhizosphere are key features for the current agricultural and environmental challenges. Improved crop yield and plant mineral nutrition through a fungal symbiont has been widely described. In return, the host plant supplies carbon substrates to its fungal partner. We review here recent progress on molecular players of membrane transport involved in nutritional exchanges between mycorrhizal plants and fungi. We cover the transportome, from the transport proteins involved in sugar fluxes from plants towards fungi, to the uptake from the soil and exchange of nitrogen, phosphate, potassium, sulfate, and water. Together, these advances in the comprehension of the mycorrhizal transportome will help in developing the future engineering of new agro-ecological systems.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joan Doidy
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sabine D Zimmermann
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, Université de Montpellier, 34060 Montpellier, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Pierre-Emmanuel Courty
- University of Fribourg, Department of Biology, 3 rue Albert Gockel, 1700 Fribourg, Switzerland.
| |
Collapse
|
8
|
Xie Y, Zhao JL, Wang CW, Yu AX, Liu N, Chen L, Lin F, Xu HH. Glycinergic-Fipronil Uptake Is Mediated by an Amino Acid Carrier System and Induces the Expression of Amino Acid Transporter Genes in Ricinus communis Seedlings. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3810-8. [PMID: 27092815 DOI: 10.1021/acs.jafc.5b06042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phloem-mobile insecticides are efficient for piercing and sucking insect control. Introduction of sugar or amino acid groups to the parent compound can improve the phloem mobility of insecticides, so a glycinergic-fipronil conjugate (GlyF), 2-(3-(3-cyano-1-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-((trifluoromethyl)sulfinyl)-1H-pyrazole-5-yl)ureido) acetic acid, was designed and synthesized. Although the "Kleier model" predicted that this conjugate is not phloem mobile, GlyF can be continually detected during a 5 h collection of Ricinus communis phloem sap. Furthermore, an R. communis seedling cotyledon disk uptake experiment demonstrates that the uptake of GlyF is sensitive to pH, carbonyl cyanide m-chlorophenylhydrazone (CCCP), temperature, and p-chloromercuribenzenesulfonic acid (pCMBS) and is likely mediated by amino acid carrier system. To explore the roles of amino acid transporters (AATs) in GlyF uptake, a total of 62 AAT genes were identified from the R. communis genome in silico. Phylogenetic analysis revealed that AATs in R. communis were organized into the ATF (amino acid transporter) and APC (amino acid, polyaminem and choline transporter) superfamilies, with five subfamilies in ATF and two in APC. Furthermore, the expression profiles of 20 abundantly expressed AATs (cycle threshold (Ct) values <27) were analyzed at 1, 3, and 6 h after GlyF treatment by RT-qPCR. The results demonstrated that expression levels of four AAT genes, RcLHT6, RcANT15, RcProT2, and RcCAT2, were induced by the GlyF treatment in R. communis seedlings. On the basis of the observation that the expression profile of the four candidate genes is similar to the time course observation for GlyF foliar disk uptake, it is suggested that those four genes are possible candidates involved in the uptake of GlyF. These results contribute to a better understanding of the mechanism of GlyF uptake as well as phloem loading from a molecular biology perspective and facilitate functional characterization of candidate AAT genes in future studies.
Collapse
Affiliation(s)
- Yun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Jun-Long Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Chuan-Wei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Ai-Xin Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Niu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Li Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| | - Han-Hong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University , Guangzhou, Guangdong 510642, People's Republic of China
| |
Collapse
|
9
|
Abstract
Fungi contribute extensively to a wide range of ecosystem processes, including decomposition of organic carbon, deposition of recalcitrant carbon, and transformations of nitrogen and phosphorus. In this review, we discuss the current knowledge about physiological and morphological traits of fungi that directly influence these processes, and we describe the functional genes that encode these traits. In addition, we synthesize information from 157 whole fungal genomes in order to determine relationships among selected functional genes within fungal taxa. Ecosystem-related traits varied most at relatively coarse taxonomic levels. For example, we found that the maximum amount of variance for traits associated with carbon mineralization, nitrogen and phosphorus cycling, and stress tolerance could be explained at the levels of order to phylum. Moreover, suites of traits tended to co-occur within taxa. Specifically, the genetic capacities for traits that improve stress tolerance-β-glucan synthesis, trehalose production, and cold-induced RNA helicases-were positively related to one another, and they were more evident in yeasts. Traits that regulate the decomposition of complex organic matter-lignin peroxidases, cellobiohydrolases, and crystalline cellulases-were also positively related, but they were more strongly associated with free-living filamentous fungi. Altogether, these relationships provide evidence for two functional groups: stress tolerators, which may contribute to soil carbon accumulation via the production of recalcitrant compounds; and decomposers, which may reduce soil carbon stocks. It is possible that ecosystem functions, such as soil carbon storage, may be mediated by shifts in the fungal community between stress tolerators and decomposers in response to environmental changes, such as drought and warming.
Collapse
Affiliation(s)
- Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
10
|
Wullschleger SD, Breen AL, Iversen CM, Olson MS, Näsholm T, Ganeteg U, Wallenstein MD, Weston DJ. Genomics in a changing arctic: critical questions await the molecular ecologist. Mol Ecol 2015; 24:2301-9. [PMID: 25809088 DOI: 10.1111/mec.13166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 12/24/2022]
Abstract
Molecular ecology is poised to tackle a host of interesting questions in the coming years. The Arctic provides a unique and rapidly changing environment with a suite of emerging research needs that can be addressed through genetics and genomics. Here we highlight recent research on boreal and tundra ecosystems and put forth a series of questions related to plant and microbial responses to climate change that can benefit from technologies and analytical approaches contained within the molecular ecologist's toolbox. These questions include understanding (i) the mechanisms of plant acquisition and uptake of N in cold soils, (ii) how these processes are mediated by root traits, (iii) the role played by the plant microbiome in cycling C and nutrients within high-latitude ecosystems and (iv) plant adaptation to extreme Arctic climates. We highlight how contributions can be made in these areas through studies that target model and nonmodel organisms and emphasize that the sequencing of the Populus and Salix genomes provides a valuable resource for scientific discoveries related to the plant microbiome and plant adaptation in the Arctic. Moreover, there exists an exciting role to play in model development, including incorporating genetic and evolutionary knowledge into ecosystem and Earth System Models. In this regard, the molecular ecologist provides a valuable perspective on plant genetics as a driver for community biodiversity, and how ecological and evolutionary forces govern community dynamics in a rapidly changing climate.
Collapse
Affiliation(s)
- Stan D Wullschleger
- Environmental Sciences Division, Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Struck C. Amino acid uptake in rust fungi. FRONTIERS IN PLANT SCIENCE 2015; 6:40. [PMID: 25699068 PMCID: PMC4318339 DOI: 10.3389/fpls.2015.00040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/15/2015] [Indexed: 05/05/2023]
Abstract
The plant pathogenic rust fungi colonize leaf tissue and feed off their host plants without killing them. Certain economically important species of different genera such as Melampsora, Phakopsora, Puccinia, or Uromyces are extensively studied for resolving the mechanisms of the obligate biotrophy. As obligate parasites rust fungi only can complete their life cycle on living hosts where they grow through the leaf tissue by developing an extended network of intercellular hyphae from which intracellular haustoria are differentiated. Haustoria are involved in key functions of the obligate biotrophic lifestyle: suppressing host defense responses and acquiring nutrients. This review provides a survey of rust fungi nitrogen nutrition with special emphasis on amino acid uptake. A variety of sequences of amino acid transporter genes of rust fungi have been published; however, transport activity of only three in planta highly up-regulated amino acid permeases have been characterized. Functional and immunohistochemical investigations have shown the specificity and localization of these transporters. Sequence data of various genome projects allowed identification of numerous rust amino acid transporter genes. An in silico analysis reveals that these genes can be classified into different transporter families. In addition, genetic and molecular data of amino acid transporters have provided new insights in the corresponding metabolic pathways.
Collapse
Affiliation(s)
- Christine Struck
- *Correspondence: Christine Struck, Group Crop Health, Faculty of Agricultural and Environmental Sciences, University of Rostock, Satower Straße 48, 18059 Rostock, Germany e-mail:
| |
Collapse
|
12
|
Belmondo S, Fiorilli V, Pérez-Tienda J, Ferrol N, Marmeisse R, Lanfranco L. A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. FRONTIERS IN PLANT SCIENCE 2014; 5:436. [PMID: 25232358 PMCID: PMC4153046 DOI: 10.3389/fpls.2014.00436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/15/2014] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF), which form an ancient and widespread mutualistic symbiosis with plants, are a crucial but still enigmatic component of the plant micro biome. Nutrient exchange has probably been at the heart of the success of this plant-fungus interaction since the earliest days of plants on land. To characterize genes from the fungal partner involved in nutrient exchange, and presumably important for the functioning of the AM symbiosis, genome-wide transcriptomic data obtained from the AMF Rhizophagus irregularis were exploited. A gene sequence, showing amino acid sequence and transmembrane domains profile similar to members of the PTR2 family of fungal oligopeptide transporters, was identified and called RiPTR2. The functional properties of RiPTR2 were investigated by means of heterologous expression in Saccharomyces cerevisiae mutants defective in either one or both of its di/tripeptide transporter genes PTR2 and DAL5. These assays showed that RiPTR2 can transport dipeptides such as Ala-Leu, Ala-Tyr or Tyr-Ala. From the gene expression analyses it seems that RiPTR2 responds to different environmental clues when the fungus grows inside the root and in the extraradical phase.
Collapse
Affiliation(s)
- Simone Belmondo
- Department of Life Sciences and Systems Biology, University of TorinoTorino, Italy
| | - Valentina Fiorilli
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle RicercheTorino, Italy
| | - Jacob Pérez-Tienda
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Consejo Superior de Investigaciones CientificasGranada, Spain
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Consejo Superior de Investigaciones CientificasGranada, Spain
| | - Roland Marmeisse
- Department of Life Sciences and Systems Biology, University of TorinoTorino, Italy
- Ecologie Microbienne, UMR CNRS 5557 - USC INRA 1364, Université Lyon 1, Université de LyonVilleurbanne, France
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of TorinoTorino, Italy
| |
Collapse
|
13
|
Bailey BA, Melnick RL, Strem MD, Crozier J, Shao J, Sicher R, Phillips-Mora W, Ali SS, Zhang D, Meinhardt L. Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field. MOLECULAR PLANT PATHOLOGY 2014; 15:711-29. [PMID: 24612180 PMCID: PMC6638715 DOI: 10.1111/mpp.12134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Frosty pod rot (FPR) of Theobroma cacao (cacao) is caused by the hemibiotrophic fungus Moniliophthora roreri. Cacao clones tolerant to FPR are being planted throughout Central America. To determine whether M. roreri shows a differential molecular response during successful infections of tolerant clones, we collected field-infected pods at all stages of symptomatology for two highly susceptible clones (Pound-7 and CATIE-1000) and three tolerant clones (UF-273, CATIE-R7 and CATIE-R4). Metabolite analysis was carried out on clones Pound-7, CATIE-1000, CATIE-R7 and CATIE-R4. As FPR progressed, the concentrations of sugars in pods dropped, whereas the levels of trehalose and mannitol increased. Associations between symptoms and fungal loads and some organic and amino acid concentrations varied depending on the clone. RNA-Seq analysis identified 873 M. roreri genes that were differentially expressed between clones, with the primary difference being whether the clone was susceptible or tolerant. Genes encoding transcription factors, heat shock proteins, transporters, enzymes modifying membranes or cell walls and metabolic enzymes, such as malate synthase and alternative oxidase, were differentially expressed. The differential expression between clones of 43 M. roreri genes was validated by real-time quantitative reverse transcription polymerase chain reaction. The expression profiles of some genes were similar in susceptible and tolerant clones (other than CATIE-R4) and varied with the biotrophic/necrotropic shift. Moniliophthora roreri genes associated with stress metabolism and responses to heat shock and anoxia were induced early in tolerant clones, their expression profiles resembling that of the necrotrophic phase. Moniliophthora roreri stress response genes, induced during the infection of tolerant clones, may benefit the fungus in overcoming cacao defense mechanisms.
Collapse
Affiliation(s)
- Bryan A Bailey
- Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD, 20705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shah F, Rineau F, Canbäck B, Johansson T, Tunlid A. The molecular components of the extracellular protein-degradation pathways of the ectomycorrhizal fungus Paxillus involutus. THE NEW PHYTOLOGIST 2013; 200:875-887. [PMID: 23902518 PMCID: PMC4282482 DOI: 10.1111/nph.12425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/25/2013] [Indexed: 05/20/2023]
Abstract
Proteins contribute to a major part of the organic nitrogen (N) in forest soils. This N is mobilized and becomes available to trees as a result of the depolymerizing activities of symbiotic ectomycorrhizal fungi. The mechanisms by which these fungi depolymerize proteins and assimilate the released N are poorly characterized. Biochemical analysis and transcriptome profiling were performed to examine the proteolytic machinery and the uptake system of the ectomycorrhizal basidiomycete Paxillus involutus during the assimilation of organic N from various protein sources and extracts of organic matter. All substrates induced secretion of peptidase activity with an acidic pH optimum, mostly contributed by aspartic peptidases. The peptidase activity was transiently repressed by ammonium. Transcriptional analysis revealed a large number of extracellular endo- and exopeptidases. The expression levels of these peptidases were regulated in parallel with transporters and enzymes involved in the assimilation and metabolism of the released peptides and amino acids. For the first time the molecular components of the protein degradation pathways of an ectomycorrhizal fungus are described. The data suggest that the transcripts encoding these components are regulated in response to the chemical properties and the availability of the protein substrates.
Collapse
Affiliation(s)
- Firoz Shah
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| | - Francois Rineau
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| | - Björn Canbäck
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| | - Tomas Johansson
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
15
|
Casieri L, Ait Lahmidi N, Doidy J, Veneault-Fourrey C, Migeon A, Bonneau L, Courty PE, Garcia K, Charbonnier M, Delteil A, Brun A, Zimmermann S, Plassard C, Wipf D. Biotrophic transportome in mutualistic plant-fungal interactions. MYCORRHIZA 2013; 23:597-625. [PMID: 23572325 DOI: 10.1007/s00572-013-0496-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 03/13/2013] [Indexed: 05/08/2023]
Abstract
Understanding the mechanisms that underlie nutrient use efficiency and carbon allocation along with mycorrhizal interactions is critical for managing croplands and forests soundly. Indeed, nutrient availability, uptake and exchange in biotrophic interactions drive plant growth and modulate biomass allocation. These parameters are crucial for plant yield, a major issue in the context of high biomass production. Transport processes across the polarized membrane interfaces are of major importance in the functioning of the established mycorrhizal association as the symbiotic relationship is based on a 'fair trade' between the fungus and the host plant. Nutrient and/or metabolite uptake and exchanges, at biotrophic interfaces, are controlled by membrane transporters whose regulation patterns are essential for determining the outcome of plant-fungus interactions and adapting to changes in soil nutrient quantity and/or quality. In the present review, we summarize the current state of the art regarding transport systems in the two major forms of mycorrhiza, namely ecto- and arbuscular mycorrhiza.
Collapse
Affiliation(s)
- Leonardo Casieri
- UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065, Dijon Cedex, France,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Garcia K, Haider MZ, Delteil A, Corratgé-Faillie C, Conéjero G, Tatry MV, Becquer A, Amenc L, Sentenac H, Plassard C, Zimmermann S. Promoter-dependent expression of the fungal transporter HcPT1.1 under Pi shortage and its spatial localization in ectomycorrhiza. Fungal Genet Biol 2013; 58-59:53-61. [DOI: 10.1016/j.fgb.2013.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 11/17/2022]
|
17
|
Abstract
Often referred to as the "building blocks of proteins", the 20 canonical proteinogenic amino acids are ubiquitous in biological systems as the functional units in proteins. Sometimes overlooked are their varying additional roles that include serving as metabolic intermediaries, playing structural roles in bioactive natural products, acting as cosubstrates in enzymatic transformations, and as key regulators of cellular physiology. Amino acids can also serve as biological sources of both carbon and nitrogen and are found in the rhizosphere as a result of lysis or cellular efflux from plants and microbes and proteolysis of existing peptides. While both plants and microbes apparently prefer to take up nitrogen in its inorganic form, their ability to take up and use amino acids may confer a selective advantage in certain environments where organic nitrogen is abundant. Further, certain amino acids (e.g., glutamate and proline) and their betaines (e.g., glycine betaine) serve as compatible solutes necessary for osmoregulation in plants and microbes and can undergo rapid cellular flux. This ability is of particular importance in an ecological niche such as the rhizosphere, which is prone to significant variations in solute concentrations. Amino acids are also shown to alter key phenotypes related to plant root growth and microbial colonization, symbiotic interactions, and pathogenesis in the rhizosphere. This review will focus on the sources, transport mechanisms, and potential roles of the 20 canonical proteinogenic amino acids in the rhizosphere.
Collapse
Affiliation(s)
- Luke A Moe
- Department of Plant & Soil Sciences, 311 Plant Science Building, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| |
Collapse
|
18
|
Avolio M, Müller T, Mpangara A, Fitz M, Becker B, Pauck A, Kirsch A, Wipf D. Regulation of genes involved in nitrogen utilization on different C/N ratios and nitrogen sources in the model ectomycorrhizal fungus Hebeloma cylindrosporum. MYCORRHIZA 2012; 22:515-24. [PMID: 22302131 DOI: 10.1007/s00572-011-0428-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 12/20/2011] [Indexed: 05/26/2023]
Abstract
Nitrogen (N) utilization by ectomycorrhizal fungi is an essential aspect of their ecosystem function. N deposition changes both the N pools and the carbon/nitrogen (C/N) ratio of the substrates where ectomycorrhizal fungi are found, and it is important to understand how these changes affect the N forms used by ectomycorrhizal fungi. To overcome the difficulties of studying ectomycorrhizal fungi in situ, we investigated all known N genes in the model fungus, Hebeloma cylindrosporum in a culture study. In addition to studying the regulation of all known N utilization genes, we aimed to understand whether there are gene clusters that undergo similar regulation. Lastly we studied how C/N ratio, N transporter type, and N source affected relative gene expression levels. We grew the D2 strain of H. cylindrosporum on a range of inorganic and organic N sources under low, medium, and high C/N ratios. We found three gene clusters that were regulated in a similar pattern. Lastly, we found C/N ratio, N source and N transporter type all affected gene expression levels. Relative expression levels were highest on the high C/N ratio, BSA and diLeucine N sources, and inorganic N transporters were always expressed at higher levels than organic N transporters. These results suggest that inorganic N sources may always the default preference for H. cylindrosporum, regardless of both the N sources and the C/N ratio of the substrate.
Collapse
Affiliation(s)
- Meghan Avolio
- University Bonn, IZMB, Transport in Ectomycorrhiza, Kirschallee 1, 53115 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Miyara I, Shnaiderman C, Meng X, Vargas WA, Diaz-Minguez JM, Sherman A, Thon M, Prusky D. Role of nitrogen-metabolism genes expressed during pathogenicity of the alkalinizing Colletotrichum gloeosporioides and their differential expression in acidifying pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1251-63. [PMID: 22571816 DOI: 10.1094/mpmi-01-12-0017-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pathogens can actively alter fruit pH around the infection site, signaling modulation of pathogenicity-factor expression, as found for alkalinizing (Colletotrichum and Alternaria spp.) and acidifying (Penicillium, Botrytis, and Sclerotinia spp.) fungi. The nitrogen-metabolism genes GDH2, GS1, GLT, and MEP genes are differentially expressed during colonization by Colletotrichum gloeosporioides, and a Δgdh2 strain reduces ammonia accumulation and pathogenicity. We analyzed the contribution of transporters GLT and MEPB to C. gloeosporiodes pathogenicity. Germinating spores of Δglt strains showed reduced appressorium formation; those of ΔmepB mutants showed rapid ammonia uptake and accumulation inside the hyphae, indicating deregulated uptake. Both mutants reduced pathogenicity, indicating that these transporters function during alkalinizing species pathogenicity. We compared the expressions of these genes in C. gloeosporioides and Sclerotinia sclerotiorum, and found five to 10-fold higher expression at the transcript level in the former. Interestingly, GLT and MEPB in the alkalinizing species showed no and very low sequence identity, respectively, with their counterparts in the acidifying species. Knockout analysis of GLT and MEPB and their differential transcript regulation in the alkalinizing and acidifying species suggest that the ammonia accumulation contributing to pathogenicity in the former is modulated by factors at the gene-regulation levels that are lacking in the acidifying species.
Collapse
Affiliation(s)
- I Miyara
- Department of Postharvest Science of Fresh Produce, ARO, Bet Dagan, Israel
| | | | | | | | | | | | | | | |
Collapse
|
20
|
McGuire KL, Bent E, Borneman J, Majumder A, Allison SD, Tresederi KK. Functional diversity in resource use by fungi. Ecology 2010; 91:2324-32. [PMID: 20836454 DOI: 10.1890/09-0654.1] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Fungi influence nutrient cycling in terrestrial ecosystems, as they are major regulators of decomposition and soil respiration. However, little is known about the substrate preferences of individual fungal species outside of laboratory culture studies. If active fungi differ in their substrate preferences in situ, then changes in fungal diversity due to global change may dramatically influence nutrient cycling in ecosystems. To test the responses of individual fungal taxa to specific substrates, we used a nucleotide-analogue procedure in the boreal forest of Alaska (USA). Specifically, we added four organic N compounds commonly found in plant litter (arginine, glutamate, lignocellulose, and tannin-protein) to litterbags filled with decomposed leaf litter (black spruce and aspen) and assessed the responses of active fungal species using qPCR (quantitative polymerase chain reaction), oligonucleotide fingerprinting of rRNA genes, and sequencing. We also compared the sequences from our experiment with a concurrent warming experiment to see if active fungi that targeted more recalcitrant compounds would respond more positively to soil warming. We found that individual fungal taxa responded differently to substrate additions and that active fungal communities were different across litter types (spruce vs. aspen). Active fungi that targeted lignocellulose also responded positively to experimental warming. Additionally, resource-use patterns in different fungal taxa were genetically correlated, suggesting that it may be possible to predict the ecological function of active fungal communities based on genetic information. Together, these results imply that fungi are functionally diverse and that reductions in fungal diversity may have consequences for ecosystem functioning.
Collapse
Affiliation(s)
- Krista L McGuire
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Couturier J, de Faÿ E, Fitz M, Wipf D, Blaudez D, Chalot M. PtAAP11, a high affinity amino acid transporter specifically expressed in differentiating xylem cells of poplar. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1671-82. [PMID: 20190041 DOI: 10.1093/jxb/erq036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Amino acids are the currency of nitrogen exchange between source and sink tissues in plants and constitute a major source of the components used for cellular growth and differentiation. The characterization of a new amino acid transporter belonging to the amino acid permease (AAP) family, AAP11, expressed in the perennial species Populus trichocarpa is reported here. PtAAP11 expression analysis was performed by semi-quantitative RT-PCR and GUS activity after poplar transformation. PtAAP11 function was studied in detail by heterologous expression in yeast. The poplar genome contains 14 putative AAPs which is quite similar to other species analysed except Arabidopsis. PtAAP11 was mostly expressed in differentiating xylem cells in different organs. Functional characterization demonstrated that PtAAP11 was a high affinity amino acid transporter, more particularly for proline. Compared with other plant amino acid transporters, PtAAP11 represents a novel high-affinity system for proline. Thus, the functional characterization and expression studies suggest that PtAAP11 may play a major role in xylogenesis by providing proline required for xylem cell wall proteins. The present study provides important information highlighting the role of a specific amino acid transporter in xylogenesis in poplar.
Collapse
Affiliation(s)
- Jérémy Couturier
- UMR INRA/UHP 1136 Interactions Arbres-Microorganismes, IFR 110 Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation, Nancy University, Faculté des Sciences et Techniques, BP 70239, F-54506 Vandoeuvre-les-Nancy Cedex, France.
| | | | | | | | | | | |
Collapse
|
22
|
Avolio ML, Tuininga AR, Lewis JD, Marchese M. Ectomycorrhizal responses to organic and inorganic nitrogen sources when associating with two host species. ACTA ACUST UNITED AC 2009; 113:897-907. [PMID: 19465124 DOI: 10.1016/j.mycres.2009.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/08/2009] [Accepted: 05/12/2009] [Indexed: 11/16/2022]
Abstract
While it is established that increasing atmospheric inorganic nitrogen (N) deposition reduces ectomycorrhizal fungal biomass and shifts the relative abundances of fungal species, little is known about effects of organic N deposition. The effects of organic and inorganic N deposition on ectomycorrhizal fungi may differ because responses to inorganic N deposition may reflect C-limitation. To compare the effects of organic and inorganic N additions on ectomycorrhizal fungi, and to assess whether host species may influence the response of ectomycorrhizal fungi to N additions, we conducted an N addition experiment at a field site in the New Jersey pine barrens. Seedlings of two host species, Quercus velutina (black oak) and Pinus rigida (pitch pine), were planted at the base of randomly-selected mature pitch pine trees. Nitrogen was added as glutamic acid, ammonium, or nitrate at a rate equivalent to 227.5 kg ha(-1) y(-1) for eight weeks, to achieve a total application of 35 kg ha(-1) during the 10-week study period. Organic and inorganic N additions differed in their effects on total ectomycorrhizal root tip abundance across hosts, and these effects differed for individual morphotypes between oak and pine seedlings. Mycorrhizal root tip abundance across hosts was 90 % higher on seedlings receiving organic N compared to seedlings in the control treatment, while abundances were similar among seedlings receiving the inorganic N treatments and seedlings in the control. On oak, 33-83 % of the most-common morphotypes exhibited increased root tip abundances in response to the three forms of N, relative to the control. On pine, 33-66 % of the most-common morphotypes exhibited decreased root tip abundance in response to inorganic N, while responses to organic N were mixed. Plant chemistry and regression analyses suggested that, on oak seedlings, mycorrhizal colonization increased in response to N limitation. In contrast, pine root and shoot N and C contents did not vary in response to any form of N added, and mycorrhizal root tip abundance was not associated with seedling N or C status, indicating that pine received sufficient N. These results suggest that in situ organic and inorganic N additions differentially affect ectomycorrhizal root tip abundance and that ectomycorrhizal fungal responses to N addition may be mediated by host tree species.
Collapse
Affiliation(s)
- Meghan L Avolio
- Louis Calder Center and Department of Biological Sciences, Fordham University, 53 Whippoorwill Road, Armonk, NY 10504, USA.
| | | | | | | |
Collapse
|
23
|
AgtA, the dicarboxylic amino acid transporter of Aspergillus nidulans, is concertedly down-regulated by exquisite sensitivity to nitrogen metabolite repression and ammonium-elicited endocytosis. EUKARYOTIC CELL 2009; 8:339-52. [PMID: 19168757 DOI: 10.1128/ec.00270-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We identified agtA, a gene that encodes the specific dicarboxylic amino acid transporter of Aspergillus nidulans. The deletion of the gene resulted in loss of utilization of aspartate as a nitrogen source and of aspartate uptake, while not completely abolishing glutamate utilization. Kinetic constants showed that AgtA is a high-affinity dicarboxylic amino acid transporter and are in agreement with those determined for a cognate transporter activity identified previously. The gene is extremely sensitive to nitrogen metabolite repression, depends on AreA for its expression, and is seemingly independent from specific induction. We showed that the localization of AgtA in the plasma membrane necessitates the ShrA protein and that an active process elicited by ammonium results in internalization and targeting of AgtA to the vacuole, followed by degradation. Thus, nitrogen metabolite repression and ammonium-promoted vacuolar degradation act in concert to downregulate dicarboxylic amino acid transport activity.
Collapse
|
24
|
Abstract
Languishing for many years in the shadow of plant inorganic nitrogen (N) nutrition research, studies of organic N uptake have attracted increased attention during the last decade. The capacity of plants to acquire organic N, demonstrated in laboratory and field settings, has thereby been well established. Even so, the ecological significance of organic N uptake for plant N nutrition is still a matter of discussion. Several lines of evidence suggest that plants growing in various ecosystems may access organic N species. Many soils display amino acid concentrations similar to, or higher than, those of inorganic N, mainly as a result of rapid hydrolysis of soil proteins. Transporters mediating amino acid uptake have been identified both in mycorrhizal fungi and in plant roots. Studies of endogenous metabolism of absorbed amino acids suggest that L- but not D-enantiomers are efficiently utilized. Dual labelled amino acids supplied to soil have provided strong evidence for plant uptake of organic N in the field but have failed to provide information on the quantitative importance of this process. Thus, direct evidence that organic N contributes significantly to plant N nutrition is still lacking. Recent progress in our understanding of the mechanisms underlying plant organic N uptake may open new avenues for the exploration of this subject.
Collapse
Affiliation(s)
- Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Knut Kielland
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska 99775-0180, USA
| | - Ulrika Ganeteg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| |
Collapse
|
25
|
Nuutinen JT, Timonen S. Identification of nitrogen mineralization enzymes, L-amino acid oxidases, from the ectomycorrhizal fungi Hebeloma spp. and Laccaria bicolor. ACTA ACUST UNITED AC 2008; 112:1453-64. [PMID: 18675352 DOI: 10.1016/j.mycres.2008.06.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 01/28/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Amino acids are major nitrogen sources in soils and they harbour a central position in the nitrogen metabolism of cells. We determined whether Hebeloma spp. and Laccaria bicolor expressed the enzyme L-amino acid oxidase (LAO), which catalyses the oxidative deamination of the alpha-amino group of L-amino acids. We measured LAO activities from the mycelial extracts of seven laboratory-grown fungal strains with three methods, and we measured how LAO activities were expressed in one Hebeloma sp. strain grown on four nitrogen sources. Hebeloma spp. and L. bicolor converted L-phenylalanine, but not D-phenylalanine, to hydrogen peroxide, 2-oxoacid, and ammonia, suggesting that they expressed LAO enzymes. The enzymes utilized five out of seven tested L-amino acids as substrates. LAO activities were maximal at pH 8, where Michaelis constant (Km) values were 2-5mm. The LAO of Hebeloma sp. was expressed on every nitrogen source analysed, and the activities were the highest in mycelia grown in nitrogen-rich conditions. We suggest that LAO is a mechanism for cellular amino acid catabolism in Hebeloma spp. and L. bicolor. Many soil bacteria and fungi also express LAO enzymes that have broad substrate specificities. Therefore, LAO is a potential candidate for a mechanism that catalyses nitrogen mineralization from amino acids at the ecosystem level.
Collapse
Affiliation(s)
- Jaro T Nuutinen
- University of Helsinki, Department of Applied Biology, P.O. Box 27, FI-00014 University of Helsinki, Finland.
| | | |
Collapse
|
26
|
Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P. Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. PLANT PHYSIOLOGY 2008; 147:429-37. [PMID: 18344417 PMCID: PMC2330287 DOI: 10.1104/pp.108.117820] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 03/11/2008] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are capable of exploiting organic nitrogen sources, but the molecular mechanisms that control such an uptake are still unknown. Polymerase chain reaction-based approaches, bioinformatic tools, and a heterologous expression system have been used to characterize a sequence coding for an amino acid permease (GmosAAP1) from the AM fungus Glomus mosseae. The GmosAAP1 shows primary and secondary structures that are similar to those of other fungal amino acid permeases. Functional complementation and uptake experiments in a yeast mutant that was defective in the multiple amino acid uptake system demonstrated that GmosAAP1 is able to transport proline through a proton-coupled, pH- and energy-dependent process. A competitive test showed that GmosAAP1 binds nonpolar and hydrophobic amino acids, thus indicating a relatively specific substrate spectrum. GmosAAP1 mRNAs were detected in the extraradical fungal structures. Transcript abundance was increased upon exposure to organic nitrogen, in particular when supplied at 2 mm concentrations. These findings suggest that GmosAAP1 plays a role in the first steps of amino acid acquisition, allowing direct amino acid uptake from the soil and extending the molecular tools by which AM fungi exploit soil resources.
Collapse
Affiliation(s)
- Gilda Cappellazzo
- Dipartimento di Biologia Vegetale, Università di Torino, 10125 Torino, Italy
| | | | | | | | | |
Collapse
|
27
|
Lucic E, Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A. A gene repertoire for nitrogen transporters in Laccaria bicolor. THE NEW PHYTOLOGIST 2008; 180:343-364. [PMID: 18665901 DOI: 10.1111/j.1469-8137.2008.02580.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ectomycorrhizal interactions established between the root systems of terrestrial plants and hyphae from soil-borne fungi are the most ecologically widespread plant symbioses. The efficient uptake of a broad range of nitrogen (N) compounds by the fungal symbiont and their further transfer to the host plant is a major feature of this symbiosis. Nevertheless, we far from understand which N form is preferentially transferred and what are the key molecular determinants required for this transfer. Exhaustive in silico analysis of N-compound transporter families were performed within the genome of the ectomycorrhizal model fungus Laccaria bicolor. A broad phylogenetic approach was undertaken for all families and gene regulation was investigated using whole-genome expression arrays. A repertoire of proteins involved in the transport of N compounds in L. bicolor was established that revealed the presence of at least 128 gene models in the genome of L. bicolor. Phylogenetic comparisons with other basidiomycete genomes highlighted the remarkable expansion of some families. Whole-genome expression arrays indicate that 92% of these gene models showed detectable transcript levels. This work represents a major advance in the establishment of a transportome blueprint at a symbiotic interface, which will guide future experiments.
Collapse
Affiliation(s)
- Eva Lucic
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Claire Fourrey
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Annegret Kohler
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Francis Martin
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Michel Chalot
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| | - Annick Brun-Jacob
- Research Unit INRA/UHP 1136 'Tree-microbe Interactions', Nancy-University, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France
| |
Collapse
|
28
|
Kafasla P, Bouzarelou D, Frillingos S, Sophianopoulou V. The proline permease of Aspergillus nidulans: Functional replacement of the native cysteine residues and properties of a cysteine-less transporter. Fungal Genet Biol 2007; 44:615-26. [PMID: 17350864 DOI: 10.1016/j.fgb.2007.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 01/23/2007] [Accepted: 01/25/2007] [Indexed: 11/30/2022]
Abstract
The major proline transporter (PrnB) of Aspergillus nidulans belongs to the Amino acid Polyamine Organocation (APC) transporter superfamily. Members of this family have not been subjected to systematic structure-function relationship studies. In this report, we examine the functional replacement of the three native Cys residues (Cys54, Cys352 and Cys530) of PrnB and the properties of an engineered Cys-less PrnB protein, as background for employing a Cys-scanning mutagenesis approach. We show that simultaneous replacement of Cys54 with Ala, Cys352 with Ala and Cys530 with Ser results in a functional Cys-less PrnB transporter. We also introduce the use of a biotin-acceptor domain tag to quantitate protein levels of the engineered PrnB mutants by Western blot analysis. Finally, by using the background of the Cys-less PrnB transporter, we evaluate the functional importance of amino acids Q219, K245 and F248 of PrnB, which our previous data had suggested to be involved in the mechanism of PrnB-mediated proline uptake. In the current study, we show that K245 and F248 but not Q219 are critical for PrnB-mediated proline uptake.
Collapse
Affiliation(s)
- Panagiota Kafasla
- Institute of Biology, National Center for Scientific Research Demokritos, Aghia Paraskevi, 153 10 Athens, Greece
| | | | | | | |
Collapse
|
29
|
Rentsch D, Schmidt S, Tegeder M. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 2007; 581:2281-9. [PMID: 17466985 DOI: 10.1016/j.febslet.2007.04.013] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
Nitrogen is an essential macronutrient for plant growth. Following uptake from the soil or assimilation within the plant, organic nitrogen compounds are transported between organelles, from cell to cell and over long distances in support of plant metabolism and development. These translocation processes require the function of integral membrane transporters. The review summarizes our current understanding of the molecular mechanisms of organic nitrogen transport processes, with a focus on amino acid, ureide and peptide transporters.
Collapse
Affiliation(s)
- Doris Rentsch
- University of Bern, Institute of Plant Sciences, Altenbergrain 21, 3011 Bern, Switzerland.
| | | | | |
Collapse
|
30
|
Rekangalt D, Verner MC, Kües U, Walser PJ, Marmeisse R, Debaud JC, Fraissinet-Tachet L. Green fluorescent protein expression in the symbiotic basidiomycete fungusHebeloma cylindrosporum. FEMS Microbiol Lett 2007; 268:67-72. [PMID: 17263849 DOI: 10.1111/j.1574-6968.2006.00564.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The symbiotic basidiomycete Hebeloma cylindrosporum is a model fungal species used to study ectomycorrhizal symbiosis at the molecular level. In order to have a vital marker, we developed a green fluorescent protein (GFP) reporter system efficiently expressed in H. cylindrosporum using the sgfp coding region bordered by two introns fused to the saprophytic basidiomycete Coprinopsis cinerea cgl1 promoter. Expression of this reporter system was tested under different environmental conditions in two transformants, and glucose was shown to repress gfp expression. Such a reporter system will be used in plant-fungus interaction to evaluate sugar supply by the plant to the compatible mycorrhizal symbiont and to compare the expression of various genes of interest in the free-living mycelia, in the symbiotic (mycorrhizas) and the reproductive (fruit bodies) structures formed by H. cylindrosporum.
Collapse
Affiliation(s)
- David Rekangalt
- Université de Lyon, Université Lyon 1, Ecologie Microbienne (UMR CNRS 5557, USC INRA 1193), Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
31
|
López MF, Männer P, Willmann A, Hampp R, Nehls U. Increased trehalose biosynthesis in Hartig net hyphae of ectomycorrhizas. THE NEW PHYTOLOGIST 2007; 174:389-398. [PMID: 17388901 DOI: 10.1111/j.1469-8137.2007.01983.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
To obtain photoassimilates in ectomycorrhizal symbiosis, the fungus has to create a strong sink, for example, by conversion of plant-derived hexoses into fungus-specific compounds. Trehalose is present in large quantities in Amanita muscaria and may thus constitute an important carbon sink. In Amanita muscaria-poplar (Populus tremula x tremuloides) ectomycorrhizas, the transcript abundances of genes encoding key enzymes of fungal trehalose biosynthesis, namely trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP) and trehalose phosphorylase (TP), were increased. When mycorrhizas were separated into mantle and Hartig net, TPS, TPP and TP expression was specifically enhanced in Hartig net hyphae. Compared with the extraradical mycelium, TPS and TPP expression was only slightly increased in the fungal sheath, while the increase in the expression of TP was more pronounced. TPS enzyme activity was also elevated in Hartig net hyphae, displaying a direct correlation between transcript abundance and turnover rate. In accordance with enhanced gene expression and TPS activity, trehalose content was 2.7 times higher in the Hartig net. The enhanced trehalose biosynthesis at the plant-fungus interface indicates that trehalose is a relevant carbohydrate sink in symbiosis. As sugar and nitrogen supply affected gene expression only slightly, the strongly increased expression of the investigated genes in mycorrhizas is presumably developmentally regulated.
Collapse
Affiliation(s)
- Mónica Fajardo López
- Eberhard Karls Universität, Physiologische Ökologie der Pflanzen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Philipp Männer
- Eberhard Karls Universität, Physiologische Ökologie der Pflanzen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Anita Willmann
- Eberhard Karls Universität, Physiologische Ökologie der Pflanzen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Rüdiger Hampp
- Eberhard Karls Universität, Physiologische Ökologie der Pflanzen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Uwe Nehls
- Eberhard Karls Universität, Physiologische Ökologie der Pflanzen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| |
Collapse
|
32
|
Willmann A, Weiss M, Nehls U. Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria. Curr Genet 2006; 51:71-8. [PMID: 17072660 DOI: 10.1007/s00294-006-0106-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 10/06/2006] [Accepted: 10/07/2006] [Indexed: 10/24/2022]
Abstract
A main function of ectomycorrhizas, a symbiosis between certain soil fungi and fine roots of woody plants, is the exchange of plant-derived carbohydrates for fungus-derived nutrients. As it is required in large amounts, nitrogen is of special interest. A gene (AmAMT2) coding for a putative fungal ammonium importer was identified in an EST project of functional Amanita muscaria/poplar ectomycorrhizas. Heterologous expression of the entire AmAMT2 coding region in yeast revealed the corresponding protein to be a high-affinity ammonium importer. In axenically grown Amanita hyphae AmAMT2 expression was strongly repressed by nitrogen, independent of whether the offered nitrogen source was transported by AmAMT2 or not. In functional ectomycorrhizas the AmAMT2 transcript level was further decreased in both hyphal networks (sheath and Hartig net), while extraradical hyphae revealed strong gene expression. Together our data suggest that (1) AmAMT2 expression is regulated by the endogenous nitrogen content of hyphae and (2) fungal hyphae in ectomycorrhizas are well supported with nitrogen even when the extraradical mycelium is nitrogen limited. As a consequence of AmAMT2 repression in mycorrhizas, ammonium can be suggested as a potential nitrogen source delivered by fungal hyphae in symbiosis.
Collapse
Affiliation(s)
- Anita Willmann
- Physiologische Okologie der Pflanzen, Eberhard Karls Universität, Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | | | | |
Collapse
|
33
|
Müller T, Benjdia M, Avolio M, Voigt B, Menzel D, Pardo A, Frommer WB, Wipf D. Functional expression of the green fluorescent protein in the ectomycorrhizal model fungus Hebeloma cylindrosporum. MYCORRHIZA 2006; 16:437-442. [PMID: 16912848 DOI: 10.1007/s00572-006-0060-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 05/09/2006] [Indexed: 05/11/2023]
Abstract
Hebeloma cylindrosporum is a model fungus for mycorrhizal studies because of its fast growth rate, simple nutritional requirements, and completion of its life cycle in vitro, and because it is amenable to transformation. To advance cell biological research during establishment of symbiosis, a tool that would enable the direct visualisation of fusion proteins in the different symbiotic tissues [namely, the expression of reporter genes such as Green Fluorescent Protein (GFP)] was still a missing tool. In the present study, H. cylindrosporum was transformed using Agrobacterium carrying the binary plasmid pBGgHg containing the Escherichia coli hygromycin B phosphotransferase (hph) and the EGFP genes, both under the control of the Agaricus bisporus glyceraldehyde-3-phosphate dehydrogenase promoter. EGFP expression was successfully detected in transformants. The fluorescence was uniformly distributed in the hyphae, while no significant background signal was detected in control hyphae. The suitability of EGFP for reporter gene studies in Hebeloma cylindrosporum was demonstrated opening up new perspectives in the Hebeloma genetics.
Collapse
Affiliation(s)
- Tobias Müller
- Transport in Ectomycorrhiza, Institute of Cellular and Molecular Botany (IZMB), University Bonn, 53115, Bonn, Germany
| | - Mariam Benjdia
- Plant Physiology, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Meghan Avolio
- Transport in Ectomycorrhiza, Institute of Cellular and Molecular Botany (IZMB), University Bonn, 53115, Bonn, Germany
| | - Boris Voigt
- IZMB, Department of Plant Cell Biology, University of Bonn, 53115, Bonn, Germany
| | - Diedrik Menzel
- IZMB, Department of Plant Cell Biology, University of Bonn, 53115, Bonn, Germany
| | - Alejandro Pardo
- Programa de Investigacion en Interacciones Biologicas, Universidad Nacional de Quilmes, Roque Saenz Peña 180, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Wolf B Frommer
- Plant Physiology, Center for Plant Molecular Biology (ZMBP), Auf der Morgenstelle 1, 72076, Tübingen, Germany
| | - Daniel Wipf
- Transport in Ectomycorrhiza, Institute of Cellular and Molecular Botany (IZMB), University Bonn, 53115, Bonn, Germany.
| |
Collapse
|
34
|
Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. THE PLANT CELL 2006; 18:1931-46. [PMID: 16816136 PMCID: PMC1533986 DOI: 10.1105/tpc.106.041012] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Amino acid transport in plants is mediated by at least two large families of plasma membrane transporters. Arabidopsis thaliana, a nonmycorrhizal species, is able to grow on media containing amino acids as the sole nitrogen source. Arabidopsis amino acid permease (AAP) subfamily genes are preferentially expressed in the vascular tissue, suggesting roles in long-distance transport between organs. We show that the broad-specificity, high-affinity amino acid transporter LYSINE HISTIDINE TRANSPORTER1 (LHT1), an AAP homolog, is expressed in both the rhizodermis and mesophyll of Arabidopsis. Seedlings deficient in LHT1 cannot use Glu or Asp as sole nitrogen sources because of the severe inhibition of amino acid uptake from the medium, and uptake of amino acids into mesophyll protoplasts is inhibited. Interestingly, lht1 mutants, which show growth defects on fertilized soil, can be rescued when LHT1 is reexpressed in green tissue. These findings are consistent with two major LHT1 functions: uptake in roots and supply of leaf mesophyll with xylem-derived amino acids. The capacity for amino acid uptake, and thus nitrogen use efficiency under limited inorganic N supply, is increased severalfold by LHT1 overexpression. These results suggest that LHT1 overexpression may improve the N efficiency of plant growth under limiting nitrogen, and the mutant analyses may enhance our understanding of N cycling in plants.
Collapse
Affiliation(s)
- Axel Hirner
- Zentrum für Molekularbiologie der Pflanzen, Plant Physiology Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Schmidt S, Handley LL, Sangtiean T. Effects of nitrogen source and ectomycorrhizal association on growth and δ 15N of two subtropical Eucalyptus species from contrasting ecosystems. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:367-379. [PMID: 32689243 DOI: 10.1071/fp05260] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 12/22/2005] [Indexed: 06/11/2023]
Abstract
Ectomycorrhizal (EM) associations facilitate plant nitrogen (N) acquisition, but the contribution of EM associations to tree N nutrition is difficult to ascertain in ecosystems. We studied the abilities of subtropical EM fungi and nutritionally contrasting Eucalyptus species, Eucalyptus grandis W.Hill ex Maiden and Eucalyptus racemosa Cav, to use N sources in axenic and soil cultures, and determined the effect of EM fungi on plant N use and plant 15N natural abundance (δ15N). As measured by seedling growth, both species showed little dependence on EM when growing in the N-rich minerotrophic soil from E. grandis rainforest habitat or in axenic culture with inorganic N sources. Both species were heavily dependent on EM associations when growing in the N-poor, organotrophic soil from the E. racemosa wallum habitat or in axenic culture with organic N sources. In axenic culture, EM associations enabled both species to use organic N when supplied with amide-, peptide- or protein-N. Grown axenically with glutamine- or protein-N, δ15N of almost all seedlings was lower than source N. The δ15N of all studied organisms was higher than the N source when grown on glutathione. This unexpected 15N enrichment was perhaps due to preferential uptake of an N moiety more 15N-enriched than the bulk molecular average. Grown with ammonium-N, the δ15N of non-EM seedlings was mostly higher than that of source N. In contrast, the δ15N of EM seedlings was mostly lower than that of source N, except at the lowest ammonium concentration. Discrimination against 15N was strongest when external ammonium concentration was high. We suggest that ammonium assimilation via EM fungi may be the cause of the often observed distinct foliar δ15N of EM and non-EM species, rather than use of different N sources by species with different root specialisations. In support of this notion, δ15N of soil and leaves in the rainforest were similar for E. grandis and co-occurring non-mycorrhizal Proteaceae. In contrast, in wallum forest, E. racemosa leaves and roots were strongly 15N-depleted relative to wallum soil and Proteaceae leaves. We conclude that foliar δ15N may be used in conjunction with other ecosystem information as a rapid indicator of plant dependency on EM associations for N acquisition.
Collapse
Affiliation(s)
- Susanne Schmidt
- School of Integrative Biology, University of Queensland, Brisbane, Qld 4072, Australia
| | - Linda L Handley
- School of Integrative Biology, University of Queensland, Brisbane, Qld 4072, Australia
| | | |
Collapse
|
36
|
Benjdia M, Rikirsch E, Müller T, Morel M, Corratgé C, Zimmermann S, Chalot M, Frommer WB, Wipf D. Peptide uptake in the ectomycorrhizal fungus Hebeloma cylindrosporum: characterization of two di- and tripeptide transporters (HcPTR2A and B). THE NEW PHYTOLOGIST 2006; 170:401-10. [PMID: 16608464 DOI: 10.1111/j.1469-8137.2006.01672.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Constraints on plant growth imposed by low availability of nitrogen are a characteristic feature of ecosystems dominated by ectomycorrhizal plants. Ectomycorrhizal fungi play a key role in the N nutrition of plants, allowing their host plants to access decomposition products of dead plant and animal materials. Ectomycorrhizal plants are thus able to compensate for the low availability of inorganic N in forest ecosystems. The capacity to take up peptides, as well as the transport mechanisms involved, were analysed in the ectomycorrhizal fungus Hebeloma cylindrosporum. The present study demonstrated that H. cylindrosporum mycelium was able to take up di- and tripeptides and use them as sole N source. Two peptide transporters (HcPTR2A and B) were isolated by yeast functional complementation using an H. cylindrosporum cDNA library, and were shown to mediate dipeptide uptake. Uptake capacities and expression regulation of both genes were analysed, indicating that HcPTR2A was involved in the high-efficiency peptide uptake under conditions of limited N availability, whereas HcPTR2B was expressed constitutively.
Collapse
Affiliation(s)
- Mariam Benjdia
- ZMBP, Plant Physiology, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wright DP, Johansson T, Le Quéré A, Söderström B, Tunlid A. Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms. THE NEW PHYTOLOGIST 2005; 167:579-96. [PMID: 15998408 DOI: 10.1111/j.1469-8137.2005.01441.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Functional compartmentation of the extramatrical mycelium of ectomycorrhizal (ECM) fungi is considered important for the operation of ECM associations, although the molecular basis is poorly characterized. Global gene expression profiles of mycelium colonizing an ammonium sulphate ((NH4)2SO4) nutrient patch, rhizomorphs and ECM root tips of the Betula pendula-Paxillus involutus association were compared by cDNA microarray analysis. The expression profiles of rhizomorphs and nutrient patch mycelium were similar to each other but distinctly different from that of mycorrhizal tips. Statistical analyses revealed 337 of 1075 fungal genes differentially regulated among these three tissues. Clusters of genes exhibiting distinct expression patterns within specific tissues were identified. Genes implicated in the glutamine synthetase/glutamate synthase (GS/GOGAT) and urea cycles, and the provision of carbon skeletons for ammonium assimilation via beta-oxidation and the glyoxylate cycle, were highly expressed in rhizomorph and nutrient patch mycelium. Genes implicated in vesicular transport, cytoskeleton organization and morphogenesis and protein degradation were also differentially expressed. Differential expression of genes among the extramatrical mycelium and mycorrhizal tips indicates functional specialization of tissues forming ECM associations.
Collapse
Affiliation(s)
- Derek P Wright
- Department of Microbial Ecology, Ecology Building, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | | | | | | | | |
Collapse
|
38
|
Guidot A, Verner MC, Debaud JC, Marmeisse R. Intraspecific variation in use of different organic nitrogen sources by the ectomycorrhizal fungus Hebeloma cylindrosporum. MYCORRHIZA 2005; 15:167-177. [PMID: 15322964 DOI: 10.1007/s00572-004-0318-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 06/07/2004] [Indexed: 05/24/2023]
Abstract
The ectomycorrhizal (ECM) fungus Hebeloma cylindrosporum is an appropriate model to study the intraspecific functional diversity of ECM fungi in forest ecosystems. Numerous metabolic genes, specifically genes related to nitrogen assimilation, have been characterised for this species and the spatial and temporal structures of its natural populations have been extensively worked out. In this paper, we reveal the extent to which intraspecific variation exists within this fungus for the ability to use organic nitrogen, an important functional characteristic of ECM fungi. In addition to ammonium and nitrate, H. cylindrosporum can use at least 13 different amino acids out of 21 tested as sole nitrogen source, as well as urea and proteins. By screening 22 genetically different wild type haploid strains we identified obvious differences in use of six nitrogen sources: alanine, glycine, phenylalanine, serine, bovine serum albumin and gelatine. Of the 22 haploid strains, 11 could not use at least one of these six nitrogen sources. The inability of some haploid strains to use a nitrogen source was found to be a recessive character. Nevertheless, obvious differences in use of the four amino acids tested were also measured between wild type dikaryons colonising a common Pinus pinaster root system. This study constitutes the basis for future experiments that will address the consequences of the functional diversity of an ECM fungus on the functioning of the ECM symbiosis under natural conditions.
Collapse
Affiliation(s)
- Alice Guidot
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Villeurbanne Cedex, France.
| | | | | | | |
Collapse
|
39
|
Su YH, Frommer WB, Ludewig U. Molecular and functional characterization of a family of amino acid transporters from Arabidopsis. PLANT PHYSIOLOGY 2004; 136:3104-13. [PMID: 15377779 PMCID: PMC523371 DOI: 10.1104/pp.104.045278] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Revised: 07/29/2004] [Accepted: 07/30/2004] [Indexed: 05/18/2023]
Abstract
More than 50 distinct amino acid transporter genes have been identified in the genome of Arabidopsis, indicating that transport of amino acids across membranes is a highly complex feature in plants. Based on sequence similarity, these transporters can be divided into two major superfamilies: the amino acid transporter family and the amino acid polyamine choline transporter family. Currently, mainly transporters of the amino acid transporter family have been characterized. Here, a molecular and functional characterization of amino acid polyamine choline transporters is presented, namely the cationic amino acid transporter (CAT) subfamily. CAT5 functions as a high-affinity, basic amino acid transporter at the plasma membrane. Uptake of toxic amino acid analogs implies that neutral or acidic amino acids are preferentially transported by CAT3, CAT6, and CAT8. The expression profiles suggest that CAT5 may function in reuptake of leaking amino acids at the leaf margin, while CAT8 is expressed in young and rapidly dividing tissues such as young leaves and root apical meristem. CAT2 is localized to the tonoplast in transformed Arabidopsis protoplasts and thus may encode the long-sought vacuolar amino acid transporter.
Collapse
Affiliation(s)
- Yan-Hua Su
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, 72076 Tübingen, Germany
| | | | | |
Collapse
|
40
|
Marmeisse R, Guidot A, Gay G, Lambilliotte R, Sentenac H, Combier JP, Melayah D, Fraissinet-Tachet L, Debaud JC. Hebeloma cylindrosporum- a model species to study ectomycorrhizal symbiosis from gene to ecosystem. THE NEW PHYTOLOGIST 2004; 163:481-498. [PMID: 33873734 DOI: 10.1111/j.1469-8137.2004.01148.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The basidiomycete Hebeloma cylindrosporum has been extensively studied with respect to mycorrhiza differentiation and metabolism and also to population dynamics. Its life cycle can be reproduced in vitro and it can be genetically transformed. Combined biochemical, cytological, genetical and molecular approaches led to the characterisation of mutant strains affected in mycorrhiza formation. These studies demonstrated the role of fungal auxin as a signal molecule in mycorrhiza formation and should allow the characterisation of essential fungal genes necessary to achieve a compatible symbiotic interaction. Random sequencing of cDNAs has identified numerous key functional genes which allowed dissection of essential nitrogen assimilation pathways. H. cylindrosporum also proved to be a remarkable model species to uncover the dynamics of natural populations of ectomycorrhizal fungi and the way in which they respond and adapt to anthropogenic disturbance of the forest ecosystem. Although studies on mycorrhiza differentiation and functioning and those on the population dynamics of H. cylindrosporum have been carried out independently, they are likely to converge in a renewed molecular ecophysiology which will envisage how ectomycorrhizal symbiosis functions under varying field conditions. Contents Summary 481 I. Introduction 482 II. Taxonomy, distribution, autecology, and host range of H. cylindrosporum 482 III. The Hebeloma cylindrosporum toolbox 483 IV. Mycorrhiza differentiation 486 V. Nutritional interactions 488 VI. Genetic diversity and dynamics of H. cylindrosporum populations in P. pinaster forest ecosystems 491 VII. Future directions 494 Acknowledgements 494 References 494.
Collapse
Affiliation(s)
- R Marmeisse
- Université Claude Bernard Lyon 1, Ecologie Microbienne (UMR CNRS 5557), Bât. A. Lwoff, 43 Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - A Guidot
- Université Claude Bernard Lyon 1, Ecologie Microbienne (UMR CNRS 5557), Bât. A. Lwoff, 43 Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - G Gay
- Université Claude Bernard Lyon 1, Ecologie Microbienne (UMR CNRS 5557), Bât. A. Lwoff, 43 Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - R Lambilliotte
- Ecole Nationale Supérieure d'Agronomie de Montpellier, Biochimie et Physiologie Moléculaire des Plantes (UMR 5004 Agro-M/CNRS/INRA/UM2), Place Viala, F-34060 Montpellier Cedex 1, France
| | - H Sentenac
- Ecole Nationale Supérieure d'Agronomie de Montpellier, Biochimie et Physiologie Moléculaire des Plantes (UMR 5004 Agro-M/CNRS/INRA/UM2), Place Viala, F-34060 Montpellier Cedex 1, France
| | - J-P Combier
- Université Claude Bernard Lyon 1, Ecologie Microbienne (UMR CNRS 5557), Bât. A. Lwoff, 43 Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - D Melayah
- Université Claude Bernard Lyon 1, Ecologie Microbienne (UMR CNRS 5557), Bât. A. Lwoff, 43 Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - L Fraissinet-Tachet
- Université Claude Bernard Lyon 1, Ecologie Microbienne (UMR CNRS 5557), Bât. A. Lwoff, 43 Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| | - J C Debaud
- Université Claude Bernard Lyon 1, Ecologie Microbienne (UMR CNRS 5557), Bât. A. Lwoff, 43 Bd. du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
| |
Collapse
|
41
|
Breuninger M, Trujillo CG, Serrano E, Fischer R, Requena N. Different nitrogen sources modulate activity but not expression of glutamine synthetase in arbuscular mycorrhizal fungi. Fungal Genet Biol 2004; 41:542-52. [PMID: 15050543 DOI: 10.1016/j.fgb.2004.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Accepted: 01/07/2004] [Indexed: 11/29/2022]
Abstract
Glutamine synthetase (GS) is a central enzyme of nitrogen metabolism that allows assimilation of nitrogen and biosynthesis of glutamine. We isolated the cDNA encoding GS from two arbuscular mycorrhizal fungi, Glomus mosseae (GmGln1) and Glomus intraradices (GiGln1). The deduced protein orthologues have a high degree of similarity (92%) with each other as well as with GSs from other fungi. GmGln1 was constitutively expressed during all stages of the fungal life cycle, i.e., spore germination, intraradical and extraradical mycelium. Feeding experiments with different nitrogen sources did not induce any change in the mRNA level of both genes independent of the symbiotic status of the fungus. However, GS activity of extraradical hypahe in G. intraradices was considerably modulated in response to different nitrogen sources. Thus, in a N re-supplementation time-course experiment, GS activity responded quickly to addition of nitrate, ammonium or glutamine. Re-feeding with ammonium produced a general increase in GS activity when compared with hyphae grown in nitrate as a sole N source.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Base Sequence
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- DNA, Fungal/chemistry
- DNA, Fungal/isolation & purification
- Enzyme Activators/metabolism
- Fungi/enzymology
- Fungi/genetics
- Fungi/growth & development
- Gene Expression Regulation, Fungal
- Glutamate-Ammonia Ligase/chemistry
- Glutamate-Ammonia Ligase/genetics
- Glutamate-Ammonia Ligase/metabolism
- Glutamine/metabolism
- Molecular Sequence Data
- Mycelium/enzymology
- Mycelium/genetics
- Mycelium/growth & development
- Mycorrhizae/metabolism
- Nitrates/metabolism
- Nitrogen/metabolism
- Phylogeny
- Quaternary Ammonium Compounds/metabolism
- RNA, Fungal/analysis
- RNA, Messenger/analysis
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Spores, Fungal/enzymology
- Spores, Fungal/genetics
- Spores, Fungal/growth & development
Collapse
Affiliation(s)
- Magdalene Breuninger
- Physiological Ecology of Plants Department, University of Tübingen, Auf der Morgenstelle 1, Tübingen 72076, Germany
| | | | | | | | | |
Collapse
|
42
|
Jargeat P, Rekangalt D, Verner MC, Gay G, Debaud JC, Marmeisse R, Fraissinet-Tachet L. Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr Genet 2003; 43:199-205. [PMID: 12665993 DOI: 10.1007/s00294-003-0387-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2002] [Revised: 12/03/2002] [Accepted: 02/18/2003] [Indexed: 10/25/2022]
Abstract
Symbiotic ectomycorrhizal fungi contribute to the nitrogen nutrition of their host-plants but little information is available on the molecular control of their nitrogen metabolism. We cloned and characterised genes encoding a nitrite reductase and a nitrate transporter in the ectomycorrhizal basidiomycete Hebeloma cylindrosporum. These two genes are divergently transcribed and linked to a previously cloned nitrate reductase gene, thus demonstrating that nitrate assimilation gene clusters occur in homobasidiomycetes. The nitrate transporter polypeptide (NRT2) is characterised by 12 transmembrane domains and presents both a long putative intracellular loop and a short C-terminal tail, two structural features which distinguish fungal high-affinity transporters from their plant homologues. In different wild-type genetic backgrounds, transcription of the two genes was repressed by ammonium and was strongly stimulated not only in the presence of nitrate but also in the presence of organic nitrogen sources or under nitrogen deficiency.
Collapse
Affiliation(s)
- Patricia Jargeat
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, Université Claude Bernard Lyon 1, Bât. A. Lwoff, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Wipf D, Benjdia M, Rikirsch E, Zimmermann S, Tegeder M, Frommer WB. An expression cDNA library for suppression cloning in yeast mutants, complementation of a yeast his4 mutant, and EST analysis from the symbiotic basidiomycete Hebeloma cylindrosporum. Genome 2003; 46:177-81. [PMID: 12723033 DOI: 10.1139/g02-121] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An oriented expression library was constructed from the mycelia of the symbiotic model fungus Hebeloma cylindrosporum in the high-level yeast expression vector pDR196. DNA sequencing of approximately 500 expressed sequence tags (ESTs) showed that 15% correspond to known genes, two thirds contain sequences with unknown function, andthe remaining 20% showed no significant similarity to any known genes. The ESTs had a GC content between 44 and 56%, with most of them having a GC content of 52-54%, which could be correlated with GC contents of fungal genes. The library was successfully used to identify the Hebeloma HIS4 gene by functional complementation of a yeast his4 mutant. Thus, the library may serve as a powerful tool for identification and characterization of mycorrhizal genes by EST analysis and for the identification of ectomycorrhizal genes by means of suppression cloning.
Collapse
Affiliation(s)
- Daniel Wipf
- ZMBP, Plant Physiology, Auf der Morgenstelle 1, D-72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Javelle A, Morel M, Rodríguez-Pastrana BR, Botton B, André B, Marini AM, Brun A, Chalot M. Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol 2003; 47:411-30. [PMID: 12519192 DOI: 10.1046/j.1365-2958.2003.03303.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
External hyphae, which play a key role in nitrogen nutrition of trees, are considered as the absorbing structures of the ectomycorrhizal symbiosis. Here, we have cloned and characterized Hebeloma cylindrosporum AMT1, GLNA and GDHA genes, which encode a third ammonium transporter, a glutamine synthetase and an NADP-dependent glutamate dehydrogenase respectively. Amt1 can fully restore the pseudohyphal growth defect of a Saccharomyces cerevisiae mep2 mutant, and this is the first evidence that a heterologous member of the Mep/Amt family complements this dimorphic change defect. Dixon plots of the inhibition of methylamine uptake by ammonium indicate that Amt1 has a much higher affinity than the two previously characterized members (Amt2 and Amt3) of the Amt/Mep family in H. cylindrosporum. We also identified the intracellular nitrogen pool(s) responsible for the modulation of expression of AMT1, AMT2, AMT3, GDHA and GLNA. In response to exogenously supplied ammonium or glutamine, AMT1, AMT2 and GDHA were downregulated and, therefore, these genes are subjected to nitrogen repression in H. cylindrosporum. Exogenously supplied nitrate failed to induce a downregulation of the five mRNAs after transfer of mycelia from a N-starved condition. Our results demonstrate that glutamine is the main effector for AMT1 and AMT2 repression, whereas GDHA repression is controlled by intracellular ammonium, independently of the intracellular glutamine or glutamate concentration. Ammonium transport activity may be controlled by intracellular NH4+. AMT3 and GLNA are highly expressed but not highly regulated. A model for ammonium assimilation in H. cylindrosporum is presented.
Collapse
Affiliation(s)
- Arnaud Javelle
- Université Henri Poincaré, Nancy 1, Faculté des Sciences et Techniques, UMR INRA/UHP 1136, Interactions Arbres/Micro-organismes, BP 239, 54506 Vandoeuvre-les-Nancy Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|