1
|
Thilakarathne AS, Liu F, Zou Z. Plant Signaling Hormones and Transcription Factors: Key Regulators of Plant Responses to Growth, Development, and Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:1070. [PMID: 40219138 PMCID: PMC11990802 DOI: 10.3390/plants14071070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Plants constantly encounter a wide range of biotic and abiotic stresses that adversely affect their growth, development, and productivity. Phytohormones such as abscisic acid, jasmonic acid, salicylic acid, and ethylene serve as crucial regulators, integrating internal and external signals to mediate stress responses while also coordinating key developmental processes, including seed germination, root and shoot growth, flowering, and senescence. Transcription factors (TFs) such as WRKY, NAC, MYB, and AP2/ERF play complementary roles by orchestrating complex transcriptional reprogramming, modulating stress-responsive genes, and facilitating physiological adaptations. Recent advances have deepened our understanding of hormonal networks and transcription factor families, revealing their intricate crosstalk in shaping plant resilience and development. Additionally, the synthesis, transport, and signaling of these molecules, along with their interactions with stress-responsive pathways, have emerged as critical areas of study. The integration of cutting-edge biotechnological tools, such as CRISPR-mediated gene editing and omics approaches, provides new opportunities to fine-tune these regulatory networks for enhanced crop resilience. By leveraging insights into transcriptional regulation and hormone signaling, these advancements provide a foundation for developing stress-tolerant, high-yielding crop varieties tailored to the challenges of climate change.
Collapse
Affiliation(s)
| | - Fei Liu
- School of Life Sciences, Henan University, Kaifeng 475001, China;
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada;
| |
Collapse
|
2
|
Nicolas Mala KL, Skalak J, Zemlyanskaya E, Dolgikh V, Jedlickova V, Robert HS, Havlickova L, Panzarova K, Trtilek M, Bancroft I, Hejatko J. Primary multistep phosphorelay activation comprises both cytokinin and abiotic stress responses: insights from comparative analysis of Brassica type-A response regulators. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6346-6368. [PMID: 39171371 PMCID: PMC11523033 DOI: 10.1093/jxb/erae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Multistep phosphorelay (MSP) signaling integrates hormonal and environmental signals to control both plant development and adaptive responses. Type-A RESPONSE REGULATOR (RRA) genes, the downstream members of the MSP cascade and cytokinin primary response genes, are thought to mediate primarily the negative feedback regulation of (cytokinin-induced) MSP signaling. However, transcriptional data also suggest the involvement of RRA genes in stress-related responses. By employing evolutionary conservation with the well-characterized Arabidopsis thaliana RRA genes, we identified five and 38 novel putative RRA genes in Brassica oleracea and Brassica napus, respectively. Our phylogenetic analysis suggests the existence of gene-specific selective pressure, maintaining the homologs of ARR3, ARR6, and ARR16 as singletons during the evolution of Brassicaceae. We categorized RRA genes based on the kinetics of their cytokinin-mediated up-regulation and observed both similarities and specificities in this type of response across Brassicaceae species. Using bioinformatic analysis and experimental data demonstrating the cytokinin and abiotic stress responsiveness of the A. thaliana-derived TCSv2 reporter, we unveil the mechanistic conservation of cytokinin- and stress-mediated up-regulation of RRA genes in B. rapa and B. napus. Notably, we identify partial cytokinin dependency of cold stress-induced RRA transcription, thus further demonstrating the role of cytokinin signaling in crop adaptive responses.
Collapse
Affiliation(s)
- Katrina Leslie Nicolas Mala
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Jan Skalak
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Elena Zemlyanskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Vladislav Dolgikh
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Veronika Jedlickova
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | - Helene S Robert
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| | | | - Klara Panzarova
- PSI (Photon Systems Instruments), Ltd, Drásov, 66424 Drásov, Czech Republic
| | - Martin Trtilek
- PSI (Photon Systems Instruments), Ltd, Drásov, 66424 Drásov, Czech Republic
| | - Ian Bancroft
- Department of Biology, University of York, York, UK
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5/A2, 625 00 Brno, Czech Republic
| |
Collapse
|
3
|
Liu H, Yu M, Zhou S, Wang Y, Xia Z, Wang Z, Song B, An M, Wu Y. Unveiling novel anti-viral mechanisms of ε-poly-l-lysine on tobacco mosaic virus-infected Nicotiana tabacum through microRNA and transcriptome sequencing. Int J Biol Macromol 2024; 268:131628. [PMID: 38631577 DOI: 10.1016/j.ijbiomac.2024.131628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
MicroRNAs (miRNAs) play important roles in plant defense against various pathogens. ε-poly-l-lysine (ε-PL), a natural anti-microbial peptide produced by microorganisms, effectively suppresses tobacco mosaic virus (TMV) infection. To investigate the anti-viral mechanism of ε-PL, the expression profiles of miRNAs in TMV-infected Nicotiana tabacum after ε-PL treatment were analyzed. The results showed that the expression levels of 328 miRNAs were significantly altered by ε-PL. Degradome sequencing was used to identify their target genes. Integrative analysis of miRNAs target genes and gene-enriched GO/KEGG pathways indicated that ε-PL regulates the expression of miRNAs involved in critical pathways of plant hormone signal transduction, host defense response, and plant pathogen interaction. Subsequently, virus induced gene silencing combined with the short tandem targets mimic technology was used to analyze the function of these miRNAs and their target genes. The results indicated that silencing miR319 and miR164 reduced TMV accumulation in N. benthamiana, indicating the essential roles of these miRNAs and their target genes during ε-PL-mediated anti-viral responses. Collectively, this study reveals that microbial source metabolites can inhibit plant viruses by regulating crucial host miRNAs and further elucidate anti-viral mechanisms of ε-PL.
Collapse
Affiliation(s)
- He Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Shidong Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yan Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zhiping Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
4
|
Hornai EML, Aycan M, Mitsui T. The Promising B-Type Response Regulator hst1 Gene Provides Multiple High Temperature and Drought Stress Tolerance in Rice. Int J Mol Sci 2024; 25:2385. [PMID: 38397061 PMCID: PMC10889171 DOI: 10.3390/ijms25042385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
High temperatures, drought, and salt stresses severely inhibit plant growth and production due to the effects of climate change. The Arabidopsis ARR1, ARR10, and ARR12 genes were identified as negative salt and drought stress regulators. However, in rice, the tolerance capacity of the hst1 gene, which is orthologous to the ARR1, ARR10, and ARR12 genes, to drought and multiple high temperature and drought stresses remains unknown. At the seedling and reproductive stages, we investigated the drought (DS) high temperature (HT) and multiple high temperature and drought stress (HT+DS) tolerance capacity of the YNU31-2-4 (YNU) genotype, which carries the hst1 gene, and its nearest genomic relative Sister Line (SL), which has a 99% identical genome without the hst1 gene. At the seedling stage, YNU demonstrated greater growth, photosynthesis, antioxidant enzyme activity, and decreased ROS accumulation under multiple HT+DS conditions. The YNU genotype also demonstrated improved yield potential and grain quality due to higher antioxidant enzyme activity and lower ROS generation throughout the reproductive stage under multiple HT+DS settings. Furthermore, for the first time, we discovered that the B-type response regulator hst1 gene controls ROS generation and antioxidant enzyme activities by regulating upstream and downstream genes to overcome yield reduction under multiple high temperatures and drought stress. This insight will help us to better understand the mechanisms of high temperature and drought stress tolerance in rice, as well as the evolution of tolerant crops that can survive increased salinity to provide food security during climate change.
Collapse
Affiliation(s)
- Ermelinda Maria Lopes Hornai
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
- National Division of Research and Statistics, Timor-Leste Ministry of Agriculture, Fisheries and Forest, Dili 626, Timor-Leste
| | - Murat Aycan
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
5
|
Kasapoglu AG, Ilhan E, Aydin M, Yigider E, Inal B, Buyuk I, Taspinar MS, Ciltas A, Agar G. Characterization of Two-Component System gene ( TCS) in melatonin-treated common bean under salt and drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1733-1754. [PMID: 38162914 PMCID: PMC10754802 DOI: 10.1007/s12298-023-01406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
The two-component system (TCS) generally consists of three elements, namely the histidine kinase (HK), response regulator (RR), and histidine phosphotransfer (HP) gene families. This study aimed to assess the expression of TCS genes in P. vulgaris leaf tissue under salt and drought stress and perform a genome-wide analysis of TCS gene family members using bioinformatics methods. This study identified 67 PvTCS genes, including 10 PvHP, 38 PvRR, and 19 PvHK, in the bean genome. PvHK2 had the maximum number of amino acids with 1261, whilst PvHP8 had the lowest number with 87. In addition, their theoretical isoelectric points were between 4.56 (PvHP8) and 9.15 (PvPRR10). The majority of PvTCS genes are unstable. Phylogenetic analysis of TCS genes in A. thaliana, G. max, and bean found that PvTCS genes had close phylogenetic relationships with the genes of other plants. Segmental and tandem duplicate gene pairs were detected among the TCS genes and TCS genes have been subjected to purifying selection pressure in the evolutionary process. Furthermore, the TCS gene family, which has an important role in abiotic stress and hormonal responses in plants, was characterized for the first time in beans, and its expression of TCS genes in bean leaves under salt and drought stress was established using RNAseq and qRT-PCR analyses. The findings of this study will aid future functional and genomic studies by providing essential information about the members of the TCS gene family in beans. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01406-5.
Collapse
Affiliation(s)
- Ayse Gul Kasapoglu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Emre Ilhan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Murat Aydin
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25050 Erzurum, Turkey
| | - Esma Yigider
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25050 Erzurum, Turkey
| | - Behcet Inal
- Department of Agricultural Biotechnology, Faculty of Agriculture, Siirt University, 56100 Siirt, Turkey
| | - Ilker Buyuk
- Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Mahmut Sinan Taspinar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25050 Erzurum, Turkey
| | - Abdulkadir Ciltas
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ataturk University, 25050 Erzurum, Turkey
| | - Guleray Agar
- Department of Biology, Faculty of Science, Ataturk University, 25050 Erzurum, Turkey
| |
Collapse
|
6
|
Liu H, Chen R, Li H, Lin J, Wang Y, Han M, Wang T, Wang H, Chen Q, Chen F, Chu P, Liang C, Ren C, Zhang Y, Yang F, Sheng Y, Wei J, Wu X, Yu G. Genome-wide identification and expression analysis of SlRR genes in response to abiotic stress in tomato. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:322-333. [PMID: 36457231 DOI: 10.1111/plb.13494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The cytokinin two-component signal transduction system (TCS) is involved in many biological processes, including hormone signal transduction and plant growth regulation. Although cytokinin TCS has been well characterized in Arabidopsis thaliana, its role in tomato remains elusive. In this study, we characterized the diversity and function of response regulator (RR) genes, a critical component of TCS, in tomato. In total, we identified 31 RR genes in the tomato genome. These SlRR genes were classified into three subgroups (type-A, type-B and type-C). Various stress-responsive cis-elements were present in the tomato RR gene promoters. Their expression responses under pesticide treatment were evaluated by transcriptome analysis. Their expression under heat, cold, ABA, salinity and NaHCO3 treatments was further investigated by qRT-PCR and complemented with the available transcription data under these treatments. Specifically, SlRR13 expression was significantly upregulated under salinity, drought, cold and pesticide stress and was downregulated under ABA treatment. SlRR23 expression was induced under salt treatment, while the transcription level of SlRR1 was increased under cold and decreased under salt stress. We also found that GATA transcription factors played a significant role in the regulation of SlRR genes. Based on our results, tomato SlRR genes are involved in responses to abiotic stress in tomato and could be implemented in molecular breeding approaches to increase resistance of tomato to environmental stresses.
Collapse
Affiliation(s)
- H Liu
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - R Chen
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - H Li
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - J Lin
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Y Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - M Han
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - T Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - H Wang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Q Chen
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - F Chen
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - P Chu
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - C Liang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - C Ren
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Y Zhang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - F Yang
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - Y Sheng
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - J Wei
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - X Wu
- Heilongjiang Bayi Agricultural University, Daqing, China
| | - G Yu
- Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
7
|
Zhu L, Wang Y, Zhang Z, Hu D, Wang Z, Hu J, Ma C, Yang L, Sun S, Li Y. Chromosomal fragment deletion in APRR2-repeated locus modulates the dark stem color in Cucurbita pepo. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4277-4288. [PMID: 36098750 DOI: 10.1007/s00122-022-04217-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Cp4.1LG15g03420 (CpDsc-1), which encodes a two-component response regulator-like protein (APRR2) in the nucleus, influences dark green stem formation in Cucurbita pepo by regulating the chlorophyll content. Stem color is an important agronomic trait in zucchini (Cucurbita pepo) for robust seeding and high yield. However, the gene controlling the stem color has not been characterized. In this study, we identified a single locus accounting for the dark green stem color of C. pepo (CpDsc-1). Genetic analysis of this trait in segregated populations derived from two parental lines (line 296 with dark green stems and line 274 with light green stems) revealed that stem color was controlled by a single dominant gene (dark green vs. light green). In bulked segregant analysis, CpDsc-1 was mapped to a 2.09-Mb interval on chromosome 15. This region was further narrowed to 65.2 kb using linkage analysis of the F2 population. Sequencing analysis revealed a 14 kb deletion between Cp4.1LG15g03420 and Cp4.1LG15g03360; these two genes both encoded a two-component response regulator-like protein (APRR2). The incomplete structures of the two APRR2 genes and abnormal chloroplasts in line 274 might be the main cause of the light green phenotype. Gene expression pattern analysis showed that only Cp4.1LG15g03420 was upregulated in line 296. Subcellular localization analysis indicated that Cp4.1LG15g03420 was a nuclear gene. Furthermore, a co-dominant marker, G4563 (93% accuracy rate), and a co-segregation marker, Fra3, were established in 111 diverse germplasms; both of these markers were tightly linked with the color trait. This study provided insights into chlorophyll regulation mechanisms and revealed the markers valuable for marker-assisted selection in future zucchini breeding.
Collapse
Affiliation(s)
- Lei Zhu
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Yong Wang
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China
| | - Zhenli Zhang
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Deju Hu
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Zanlin Wang
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Jianbin Hu
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Changsheng Ma
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Luming Yang
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | - Shouru Sun
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China.
- International Joint Laboratory of Horticultural Biology, College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China.
| | - Yanman Li
- Henan Engineering Technology Research Center of Germplasm Innovation and Utilization of Melon Crops, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
8
|
Zhao L, Sun L, Guo L, Lu X, Malik WA, Chen X, Wang D, Wang J, Wang S, Chen C, Nie T, Ye W. Systematic analysis of Histidine photosphoto transfer gene family in cotton and functional characterization in response to salt and around tolerance. BMC PLANT BIOLOGY 2022; 22:548. [PMID: 36443680 PMCID: PMC9703675 DOI: 10.1186/s12870-022-03947-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phosphorylation regulated by the two-component system (TCS) is a very important approach signal transduction in most of living organisms. Histidine phosphotransfer (HP) is one of the important members of the TCS system. Members of the HP gene family have implications in plant stresses tolerance and have been deeply studied in several crops. However, upland cotton is still lacking with complete systematic examination of the HP gene family. RESULTS A total of 103 HP gene family members were identified. Multiple sequence alignment and phylogeny of HPs distributed them into 7 clades that contain the highly conserved amino acid residue "XHQXKGSSXS", similar to the Arabidopsis HP protein. Gene duplication relationship showed the expansion of HP gene family being subjected with whole-genome duplication (WGD) in cotton. Varying expression profiles of HPs illustrates their multiple roles under altering environments particularly the abiotic stresses. Analysis is of transcriptome data signifies the important roles played by HP genes against abiotic stresses. Moreover, protein regulatory network analysis and VIGS mediated functional approaches of two HP genes (GhHP23 and GhHP27) supports their predictor roles in salt and drought stress tolerance. CONCLUSIONS This study provides new bases for systematic examination of HP genes in upland cotton, which formulated the genetic makeup for their future survey and examination of their potential use in cotton production.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Liangqing Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
- Cotton Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Taili Nie
- Cotton Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China.
| |
Collapse
|
9
|
Zhao L, Guo L, Lu X, Malik WA, Zhang Y, Wang J, Chen X, Wang S, Wang J, Wang D, Ye W. Structure and character analysis of cotton response regulator genes family reveals that GhRR7 responses to draught stress. Biol Res 2022; 55:27. [PMID: 35974357 PMCID: PMC9380331 DOI: 10.1186/s40659-022-00394-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Cytokinin signal transduction is mediated by a two-component system (TCS). Two-component systems are utilized in plant responses to hormones as well as to biotic and abiotic environmental stimuli. In plants, response regulatory genes (RRs) are one of the main members of the two-component system (TCS). Method From the aspects of gene structure, evolution mode, expression type, regulatory network and gene function, the evolution process and role of RR genes in the evolution of the cotton genome were analyzed. Result A total of 284 RR genes in four cotton species were identified. Including 1049 orthologous/paralogous gene pairs were identified, most of which were whole genome duplication (WGD). The RR genes promoter elements contain phytohormone responses and abiotic or biotic stress-related cis-elements. Expression analysis showed that RR genes family may be negatively regulate and involved in salt stress and drought stress in plants. Protein regulatory network analysis showed that RR family proteins are involved in regulating the DNA-binding transcription factor activity (COG5641) pathway and HP kinase pathways. VIGS analysis showed that the GhRR7 gene may be in the same regulatory pathway as GhAHP5 and GhPHYB, ultimately negatively regulating cotton drought stress by regulating POD, SOD, CAT, H2O2 and other reactive oxygen removal systems. Conclusion This study is the first to gain insight into RR gene members in cotton. Our research lays the foundation for discovering the genes related to drought and salt tolerance and creating new cotton germplasm materials for drought and salt tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00394-2.
Collapse
Affiliation(s)
- Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Waqar Afzal Malik
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Yuexin Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Jing Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences/Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Anyang, 455000, Henan, China.
| |
Collapse
|
10
|
Freyria NJ, Kuo A, Chovatia M, Johnson J, Lipzen A, Barry KW, Grigoriev IV, Lovejoy C. Salinity tolerance mechanisms of an Arctic Pelagophyte using comparative transcriptomic and gene expression analysis. Commun Biol 2022; 5:500. [PMID: 35614207 PMCID: PMC9133084 DOI: 10.1038/s42003-022-03461-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Little is known at the transcriptional level about microbial eukaryotic adaptations to short-term salinity change. Arctic microalgae are exposed to low salinity due to sea-ice melt and higher salinity with brine channel formation during freeze-up. Here, we investigate the transcriptional response of an ice-associated microalgae over salinities from 45 to 8. Our results show a bracketed response of differential gene expression when the cultures were exposed to progressively decreasing salinity. Key genes associated with salinity changes were involved in specific metabolic pathways, transcription factors and regulators, protein kinases, carbohydrate active enzymes, and inorganic ion transporters. The pelagophyte seemed to use a strategy involving overexpression of Na+-H+ antiporters and Na+ -Pi symporters as salinity decreases, but the K+ channel complex at higher salinities. Specific adaptation to cold saline arctic conditions was seen with differential expression of several antifreeze proteins, an ice-binding protein and an acyl-esterase involved in cold adaptation.
Collapse
Affiliation(s)
- Nastasia J Freyria
- Département de biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada.
- Québec Océan, Département de biologie, Université Laval, Québec, Canada.
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mansi Chovatia
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie W Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Connie Lovejoy
- Département de biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada.
- Québec Océan, Département de biologie, Université Laval, Québec, Canada.
| |
Collapse
|
11
|
Nissan N, Hooker J, Pattang A, Charette M, Morrison M, Yu K, Hou A, Golshani A, Molnar SJ, Cober ER, Samanfar B. Novel QTL for Low Seed Cadmium Accumulation in Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:1146. [PMID: 35567147 PMCID: PMC9102923 DOI: 10.3390/plants11091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Soybean is a valuable crop, used in animal feed and for human consumption. Selecting soybean cultivars with low seed cadmium (Cd) concentration is important for the purpose of minimizing the transfer of Cd into the human body. To ensure international trade, farmers need to produce soybean that meets the European Union (EU) Cd limit of 0.2 mg kg-1. In this study, we evaluated two populations of recombinant inbred lines (RILs), X5154 and X4050, for seed Cd accumulation. Linkage maps were constructed with 325 and 280 polymorphic simple sequence repeat (SSR) markers, respectively, and used to identify a novel minor quantitative trait locus (QTL) on chromosome 13 in the X4050 population between SSR markers Satt522 and Satt218. Based on a gene ontology search within the QTL region, seven genes were identified as candidates responsible for low seed Cd accumulation, including Glyma.13G308700 and Glyma.13G309100. In addition, we confirmed the known major gene, Cda1, in the X5154 population and developed KASP and CAPS/dCAPS allele-specific markers for efficient marker-assisted breeding for Cda1.
Collapse
Affiliation(s)
- Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Julia Hooker
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Arezo Pattang
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Martin Charette
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
| | - Malcolm Morrison
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
| | - Kangfu Yu
- Agriculture and Agri-Food Canada, Harrow Research and Development Centre, Harrow, ON N0R 1G0, Canada;
| | - Anfu Hou
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, MB R6M 1Y5, Canada;
| | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Stephen J. Molnar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1A 0C6, Canada; (N.N.); (J.H.); (A.P.); (M.C.); (M.M.); (S.J.M.); (E.R.C.)
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| |
Collapse
|
12
|
Singh D, Singla-Pareek SL, Pareek A. Two-component signaling system in plants: interaction network and specificity in response to stress and hormones. PLANT CELL REPORTS 2021; 40:2037-2046. [PMID: 34109469 DOI: 10.1007/s00299-021-02727-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Plants are exposed to various environmental challenges that can hamper their growth, development, and productivity. Being sedentary, plants cannot escape from these unfavorable environmental conditions and have evolved various signaling cascades to endure them. The two-component signaling (TCS) system is one such essential signaling circuitry present in plants regulating responses against multiple abiotic and biotic stresses. It is among the most ancient and evolutionary conserved signaling pathways in plants, which include membrane-bound histidine kinases (HKs), cytoplasmic histidine phosphotransfer proteins (Hpts), and nuclear or cytoplasmic response regulators (RRs). At the same time, TCS also involved in many signaling circuitries operative in plants in response to diverse hormones. These plant growth hormones play a significant role in diverse physiological and developmental processes, and their contribution to plant stress responses is coming up in a big way. Therefore, it is intriguing to know how TCS and various plant growth regulators, along with the key transcription factors, directly or indirectly control the responses of plants towards diverse stresses. The present review attempts to explore this relationship, hoping that this knowledge will contribute towards developing crop plants with enhanced climate resilience.
Collapse
Affiliation(s)
- Deepti Singh
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India.
- National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| |
Collapse
|
13
|
Men X, Sun L, Li Y, Li W, Xing S. Multi-omics analysis reveals the ontogenesis of basal chichi in Ginkgo biloba L. Genomics 2021; 113:2317-2326. [PMID: 34048909 DOI: 10.1016/j.ygeno.2021.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 05/23/2021] [Indexed: 11/30/2022]
Abstract
Chichi is a unique biological phenomenon observed in Ginkgo biloba L.. In this study, multi-omics analysis was used to compare basal chichi (C) with roots (R) and stems (S) to explore the regulatory mechanisms of basal chichi ontogenesis. The results showed that compared with roots and stems, the tZ, SA and ABA contents in basal chichi were the highest, and the ratio of IAA/tZ was the lowest. Nucleotides and their derivatives in basal chichi were upregulated, and phenylpropane metabolites were downregulated. Some differentially expressed genes (DEGs) strongly correlated to plant hormones were screened. We speculate that auxin and cytokinin are involved in the morphogenesis of basal chichi and that cytokinin plays a major role. The ontogenesis of basal chichi is closely related to environmental stress, and it may be a coping strategy of G. biloba in the face of environmental stress.
Collapse
Affiliation(s)
- Xiaoyan Men
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Limin Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Ying Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Weinan Li
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shiyan Xing
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Forestry College of Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
14
|
Bhaskar A, Paul LK, Sharma E, Jha S, Jain M, Khurana JP. OsRR6, a type-A response regulator in rice, mediates cytokinin, light and stress responses when over-expressed in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 161:98-112. [PMID: 33581623 DOI: 10.1016/j.plaphy.2021.01.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/28/2021] [Indexed: 05/27/2023]
Abstract
Plants have evolved a complex network of components that sense and respond to diverse signals. In the present study, we have characterized OsRR6, a type-A response regulator, which is part of the two-component sensor-regulator machinery in rice. The expression of OsRR6 is induced by exogenous cytokinin and various abiotic stress treatments, including drought, cold and salinity stress. Organ-specific expression analysis revealed that its expression is high in anther and low in shoot apical meristem. The Arabidopsis plants constitutively expressing OsRR6 (OsRR6OX) exhibited reduced cytokinin sensitivity, adventitious root formation and enhanced anthocyanin accumulation in seeds. OsRR6OX plants were more tolerant to drought and salinity conditions when compared to wild-type. The hypocotyl growth in OsRR6OX seedlings was significantly inhibited under red, far-red and blue-light conditions and also a decline in transcript levels of OsRR6 was observed in rice under the above monochromatic as well as white light treatments. Transcriptome profiling revealed that the genes associated with defense responses and anthocyanin metabolism are up-regulated in OsRR6OX seedlings. Comparative transcriptome analysis showed that the genes associated with phenylpropanoid and triterpenoid biosynthesis are enriched among differentially expressed genes in OsRR6OX seedlings of Arabidopsis, which is in conformity with reanalysis of the transcriptome data performed in rice transgenics for OsRR6. Further, genes like DREB1A/CBF3, COR15A, KIN1, ERD10 and RD29A are significantly upregulated in OsRR6OX seedlings when subjected to ABA and abiotic stress treatments. Thus, a negative regulator of cytokinin signaling, OsRR6, plays a positive role in imparting abiotic stress tolerance.
Collapse
Affiliation(s)
- Avantika Bhaskar
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Laju K Paul
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Eshan Sharma
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sampoornananda Jha
- Central Department of Biotechnology, Institute of Science and Technology, Tribhuvan University, Kathmandu, Nepal
| | - Mukesh Jain
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India; School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics & Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
15
|
Sultana N, Islam S, Juhasz A, Yang R, She M, Alhabbar Z, Zhang J, Ma W. Transcriptomic Study for Identification of Major Nitrogen Stress Responsive Genes in Australian Bread Wheat Cultivars. Front Genet 2020; 11:583785. [PMID: 33193713 PMCID: PMC7554635 DOI: 10.3389/fgene.2020.583785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
High nitrogen use efficiency (NUE) in bread wheat is pivotal to sustain high productivity. Knowledge about the physiological and transcriptomic changes that regulate NUE, in particular how plants cope with nitrogen (N) stress during flowering and the grain filling period, is crucial in achieving high NUE. Nitrogen response is differentially manifested in different tissues and shows significant genetic variability. A comparative transcriptome study was carried out using RNA-seq analysis to investigate the effect of nitrogen levels on gene expression at 0 days post anthesis (0 DPA) and 10 DPA in second leaf and grain tissues of three Australian wheat (Triticum aestivum) varieties that were known to have varying NUEs. A total of 12,344 differentially expressed genes (DEGs) were identified under nitrogen stress where down-regulated DEGs were predominantly associated with carbohydrate metabolic process, photosynthesis, light-harvesting, and defense response, whereas the up-regulated DEGs were associated with nucleotide metabolism, proteolysis, and transmembrane transport under nitrogen stress. Protein–protein interaction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis further revealed that highly interacted down-regulated DEGs were involved in light-harvesting and photosynthesis, and up-regulated DEGs were mostly involved in steroid biosynthesis under N stress. The common down-regulated genes across the cultivars included photosystem II 10 kDa polypeptide family proteins, plant protein 1589 of uncharacterized protein function, etc., whereas common up-regulated genes included glutamate carboxypeptidase 2, placenta-specific8 (PLAC8) family protein, and a sulfate transporter. On the other hand, high NUE cultivar Mace responded to nitrogen stress by down-regulation of a stress-related gene annotated as beta-1,3-endoglucanase and pathogenesis-related protein (PR-4, PR-1) and up-regulation of MYB/SANT domain-containing RADIALIS (RAD)-like transcription factors. The medium NUE cultivar Spitfire and low NUE cultivar Volcani demonstrated strong down-regulation of Photosystem II 10 kDa polypeptide family protein and predominant up-regulation of 11S globulin seed storage protein 2 and protein transport protein Sec61 subunit gamma. In grain tissue, most of the DEGs were related to nitrogen metabolism and proteolysis. The DEGs with high abundance in high NUE cultivar can be good candidates to develop nitrogen stress-tolerant variety with improved NUE.
Collapse
Affiliation(s)
- Nigarin Sultana
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Shahidul Islam
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Angela Juhasz
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.,School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Rongchang Yang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Maoyun She
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zaid Alhabbar
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jingjuan Zhang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Wujun Ma
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
16
|
Wang WC, Lin TC, Kieber J, Tsai YC. Response Regulators 9 and 10 Negatively Regulate Salinity Tolerance in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:2549-2563. [PMID: 31359043 DOI: 10.1093/pcp/pcz149] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/19/2019] [Indexed: 05/23/2023]
Abstract
Cytokinins are involved in the regulation of many plant growth and development processes, and function in response to abiotic stress. Cytokinin signaling is similar to the prokaryotic two-component signaling systems and includes the transcriptional upregulation of type-A response regulators (RRs), which in turn act to inhibit cytokinin signal response via negative feedback. Cytokinin signaling consists of several gene families and only a handful full of genes is studied. In this study, we demonstrated the function of two highly identical type-A RR genes from rice, OsRR9 and OsRR10, which are induced by cytokinin and only OsRR10 repressed by salinity stress in rice. Loss-of-function mutations give rise to mutant genes, osrr9/osrr10, which have higher salinity tolerance than wild type rice seedlings. The transcriptomic analysis uncovered several ion transporter genes, which were upregulated in response to salt stress in the osrr9/osrr10 mutants relative to the wild type seedlings. These include high-affinity potassium transporters, such as OsHKT1;1, OsHKT1;3 and OsHKT2;1, which play an important role in sodium and potassium homeostasis. In addition, disruption of the genes OsRR9 and OsRR10 also affects the expression of multiple genes related to photosynthesis, transcription and phytohormone signaling. Taken together, these results suggest that the genes OsRR9 and OsRR10 function as negative regulators in response to salinity in rice.
Collapse
Affiliation(s)
- Wei-Chen Wang
- Department of Agronomy, National Taiwan University, Roosevelt Road, Taipei, Taiwan
| | - Te-Che Lin
- Department of Agronomy, National Taiwan University, Roosevelt Road, Taipei, Taiwan
| | - Joseph Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Yu-Chang Tsai
- Department of Agronomy, National Taiwan University, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
17
|
Abiotic stress induced miRNA-TF-gene regulatory network: A structural perspective. Genomics 2019; 112:412-422. [PMID: 30876925 DOI: 10.1016/j.ygeno.2019.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/17/2018] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) and transcription factors (TFs) are the largest families of trans-acting gene regulatory species, which are pivotal players in a complex regulatory network. Recently, extensive research on miRNAs and TFs in agriculture has identified these trans-acting regulatory species, as an effective tool for engineering new crop cultivars to increase yield and quality as well tolerance to environmental stresses but our knowledge of regulatory network is still not sufficient to decipher the exact mechanism. In the current work, stress-specific TF-miRNA-gene network was built for Arabidopsis under drought, cold, salt and waterlogging stress using data from reliable publically available databases; and transcriptome and degradome sequence data analysis by meta-analysis approach. Further network analysis elucidated significantly dense, scale-free, small world and hierarchical backbone of interactions. The various centrality measures highlighted several genes/TF/miRNAs as potential targets for tolerant variety cultivation. This comprehensive regulatory information will accelerate the advancement of current understanding on stress specific transcriptional and post-transcriptional regulatory mechanism and has promising utilizations for experimental biologist who are intended to improve plant crop performance under multiple Abiotic stress environments.
Collapse
|
18
|
Kaltenegger E, Leng S, Heyl A. The effects of repeated whole genome duplication events on the evolution of cytokinin signaling pathway. BMC Evol Biol 2018; 18:76. [PMID: 29843594 PMCID: PMC5975490 DOI: 10.1186/s12862-018-1153-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/14/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND It is thought that after whole-genome duplications (WGDs), a large fraction of the duplicated gene copies is lost over time while few duplicates are retained. Which factors promote survival or death of a duplicate remains unclear and the underlying mechanisms are poorly understood. According to the model of gene dosage balance, genes encoding interacting proteins are predicted to be preferentially co-retained after WGDs. Among these are genes encoding proteins involved in complexes or in signal transduction. RESULTS We have investigated the way that repeated WGDs during land plant evolution have affected cytokinin signaling to study patterns of gene duplicability and co-retention in this important signal transduction pathway. Through the integration of phylogenetic analyses with comparisons of genome collinearity, we have found that signal input mediated by cytokinin receptors proved to be highly conserved over long evolutionary time-scales, with receptors showing predominantly gene loss after repeated WGDs. However, the downstream elements, e,g. response regulators, were mainly retained after WGDs and thereby formed gene families in most plant lineages. CONCLUSIONS Gene dosage balance between the interacting components indicated by co-retention after WGDs seems to play a minor role in the evolution of cytokinin signaling pathway. Overall, core genes of cytokinin signaling show a highly heterogeneous pattern of gene retention after WGD, reflecting complex relationships between the various factors that shape the long-term fate of a duplicated gene.
Collapse
Affiliation(s)
- Elisabeth Kaltenegger
- Department Biochemical Ecology and Molecular Evolution, Botanical Institute, Christian-Albrechts-University, Kiel, Germany
- Institute of Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Svetlana Leng
- Institute of Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Alexander Heyl
- Institute of Applied Genetics, Freie Universität Berlin, Berlin, Germany
- Biology Department, Adelphi University, Garden City, USA
| |
Collapse
|
19
|
Wang WF, Chen P, Lv J, Chen L, Sun YH. Transcriptomic analysis of topping-induced axillary shoot outgrowth in Nicotiana tabacum. Gene 2018; 646:169-180. [PMID: 29292191 DOI: 10.1016/j.gene.2017.12.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022]
Abstract
Topping is an important agronomic practice that significantly impacts the yield of various crop plants. Topping and the regulation of axillary shoot outgrowth are common agronomic practices in tobacco. However, the effects of topping on gene expression in tobacco remain unknown. We applied the Illumina HiSeq™ 2000 platform and analyzed differentially expressed genes (DEGs) from untopped and topped plants to study the global changes in gene expression in response to topping. We found that the number of DEGs varied from 7609 to 18,770 based on the reads per kilobase per million mapped reads (RPKM) values. The Gene Ontology (GO) enrichment analysis revealed that the cellular carbohydrate metabolic process and the disaccharide metabolic process, which may contribute to starch accumulation and stress/defense, were overrepresented terms for the DEGs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that many DEGs were involved in starch and sucrose metabolism, glycolysis/gluconeogenesis, pyruvate metabolism, and plant hormone signal transduction, among other processes. The knowledge gained will improve our understanding of the processes of axillary shoot formation and enlargement at the transcriptional level. This study lays a solid foundation for future studies on molecular mechanisms underlying the growth of axillary shoots.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Peng Chen
- College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Jing Lv
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Lei Chen
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yu-He Sun
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
20
|
Pareek A, Khurana A, Sharma AK, Kumar R. An Overview of Signaling Regulons During Cold Stress Tolerance in Plants. Curr Genomics 2017; 18:498-511. [PMID: 29204079 PMCID: PMC5684653 DOI: 10.2174/1389202918666170228141345] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/23/2016] [Accepted: 10/05/2016] [Indexed: 11/22/2022] Open
Abstract
Plants, being sessile organisms, constantly withstand environmental fluctuations, including low-temperature, also referred as cold stress. Whereas cold poses serious challenges at both physiological and developmental levels to plants growing in tropical or sub-tropical regions, plants from temperate climatic regions can withstand chilling or freezing temperatures. Several cold inducible genes have already been isolated and used in transgenic approach to generate cold tolerant plants. The conventional breeding methods and marker assisted selection have helped in developing plant with improved cold tolerance, however, the development of freezing tolerant plants through cold acclimation remains an unaccomplished task. Therefore, it is essential to have a clear understanding of how low temperature sensing strategies and corresponding signal transduction act during cold acclimation process. Herein, we synthesize the available information on the molecular mechanisms underlying cold sensing and signaling with an aim that the summarized literature will help develop efficient strategies to obtain cold tolerant plants.
Collapse
Affiliation(s)
- Amit Pareek
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Ashima Khurana
- Ashima Khurana, Botany Department, Zakir Husain Delhi College, University of Delhi, New Delhi-110002, India
| | - Arun K. Sharma
- Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Rahul Kumar
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad500046, India
| |
Collapse
|
21
|
Sharan A, Soni P, Nongpiur RC, Singla-Pareek SL, Pareek A. Mapping the 'Two-component system' network in rice. Sci Rep 2017; 7:9287. [PMID: 28839155 PMCID: PMC5571105 DOI: 10.1038/s41598-017-08076-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/06/2017] [Indexed: 01/20/2023] Open
Abstract
Two-component system (TCS) in plants is a histidine to aspartate phosphorelay based signaling system. Rice genome has multifarious TCS signaling machinery comprising of 11 histidine kinases (OsHKs), 5 histidine phosphotransferases (OsHPTs) and 36 response regulators (OsRRs). However, how these TCS members interact with each other and comprehend diverse signaling cascades remains unmapped. Using a highly stringent yeast two-hybrid (Y2H) platform and extensive in planta bimolecular fluorescence complementation (BiFC) assays, distinct arrays of interaction between various TCS proteins have been identified in the present study. Based on these results, an interactome map of TCS proteins has been assembled. This map clearly shows a cross talk in signaling, mediated by different sensory OsHKs. It also highlights OsHPTs as the interaction hubs, which interact with OsRRs, mostly in a redundant fashion. Remarkably, interactions between type-A and type-B OsRRs have also been revealed for the first time. These observations suggest that feedback regulation by type-A OsRRs may also be mediated by interference in signaling at the level of type-B OsRRs, in addition to OsHPTs, as known previously. The interactome map presented here provides a starting point for in-depth molecular investigations for signal(s) transmitted by various TCS modules into diverse biological processes.
Collapse
Affiliation(s)
- Ashutosh Sharan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Praveen Soni
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramsong Chantre Nongpiur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
22
|
Hess M, Wildhagen H, Junker LV, Ensminger I. Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat. BMC Genomics 2016; 17:682. [PMID: 27565139 PMCID: PMC5002200 DOI: 10.1186/s12864-016-3022-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 08/16/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Local adaptation and phenotypic plasticity are important components of plant responses to variations in environmental conditions. While local adaptation has been widely studied in trees, little is known about plasticity of gene expression in adult trees in response to ever changing environmental conditions in natural habitats. Here we investigate plasticity of gene expression in needle tissue between two Douglas-fir provenances represented by 25 adult trees using deep RNA sequencing (RNA-Seq). RESULTS Using linear mixed models we investigated the effect of temperature, soil water availability and photoperiod on the abundance of 59189 detected transcripts. Expression of more than 80 % of all identified transcripts revealed a response to variations in environmental conditions in the field. GO term overrepresentation analysis revealed gene expression responses to temperature, soil water availability and photoperiod that are highly conserved among many plant taxa. However, expression differences between the two Douglas-fir provenances were rather small compared to the expression differences observed between individual trees. Although the effect of environment on global transcript expression was high, the observed genotype by environment (GxE) interaction of gene expression was surprisingly low, since only 21 of all detected transcripts showed a GxE interaction. CONCLUSIONS The majority of the transcriptome responses in plant leaf tissue is driven by variations in environmental conditions. The small variation between individuals and populations suggests strong conservation of this response within Douglas-fir. Therefore we conclude that plastic transcriptome responses to variations in environmental conditions are only weakly affected by local adaptation in Douglas-fir.
Collapse
Affiliation(s)
- Moritz Hess
- Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestrasse 4, D-79100 Freiburg i. Brsg., Germany
- Institute for Biology III, Faculty of Biology, Albert Ludwigs University Freiburg, Schänzlestrasse 1, D-79104 Freiburg i. Brsg., Germany
- Present Address: Institute of Medical Biometry, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Obere Zahlbacher Strasse 69, 55131 Mainz, Germany
| | - Henning Wildhagen
- Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestrasse 4, D-79100 Freiburg i. Brsg., Germany
- Present Address: Department of Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
| | - Laura Verena Junker
- Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestrasse 4, D-79100 Freiburg i. Brsg., Germany
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada
| | - Ingo Ensminger
- Forest Research Institute of Baden-Württemberg (FVA), Wonnhaldestrasse 4, D-79100 Freiburg i. Brsg., Germany
- Department of Biology, Graduate Programs in Cell & Systems Biology and Ecology & Evolutionary Biology, University of Toronto, 3359 Mississauga Road, Mississauga, ON L5L 1C6 Canada
| |
Collapse
|
23
|
Singh A, Kushwaha HR, Soni P, Gupta H, Singla-Pareek SL, Pareek A. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm. FRONTIERS IN PLANT SCIENCE 2015; 6:711. [PMID: 26442025 PMCID: PMC4566072 DOI: 10.3389/fpls.2015.00711] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/25/2015] [Indexed: 05/24/2023]
Abstract
Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice.
Collapse
Affiliation(s)
- Anupama Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Hemant R. Kushwaha
- Synthetic Biology and Biofuels Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Praveen Soni
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Himanshu Gupta
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Molecular Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru UniversityNew Delhi, India
| |
Collapse
|
24
|
Takano S, Matsuda S, Funabiki A, Furukawa JI, Yamauchi T, Tokuji Y, Nakazono M, Shinohara Y, Takamure I, Kato K. The rice RCN11 gene encodes β1,2-xylosyltransferase and is required for plant responses to abiotic stresses and phytohormones. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:75-88. [PMID: 26025522 DOI: 10.1016/j.plantsci.2015.03.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 05/23/2023]
Abstract
Seed germination rates and plant development and growth under abiotic stress are important aspects of crop productivity. Here, our characterization of the rice (Oryza sativa L.) mutant reduced culm number11 (rcn11) showed that RCN11 controls growth of plants exposed to abnormal temperature, salinity and drought conditions. RCN11 also mediates root aerenchyma formation under oxygen-deficient conditions and ABA sensitivity during seed germination. Molecular studies showed that the rcn11 mutation resulted from a 966-bp deletion that caused loss of function of β1,2-xylosyltransferase (OsXylT). This enzyme is located in the Golgi apparatus where it catalyzes the transfer of xylose from UDP-xylose to the core β-linked mannose of N-glycans. RCN11/OsXylT promoter activity was observed in the basal part of the shoot containing the shoot and axillary meristems and in the base of crown roots. The level of RCN11/OsXylT expression was regulated by multiple phytohormones and various abiotic stresses suggesting that plant specific N-glycosylation is regulated by multiple signals in rice plants. The present study is the first to demonstrate that rice β1,2-linked xylose residues on N-glycans are critical for seed germination and plant development and growth under conditions of abiotic stress.
Collapse
Affiliation(s)
- Sho Takano
- Department of Agro-environmental Science, Obihiro University of Agricultural and Veterinary Medicine, 2-11 Nishi, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Shuichi Matsuda
- Department of Agro-environmental Science, Obihiro University of Agricultural and Veterinary Medicine, 2-11 Nishi, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Atsushi Funabiki
- Department of Agro-environmental Science, Obihiro University of Agricultural and Veterinary Medicine, 2-11 Nishi, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Jun-ichi Furukawa
- Graduate School of Advanced Life Science, Laboratory of Advanced Chemical Biology, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Takaki Yamauchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Yoshihiko Tokuji
- Department of Food Science, Obihiro University of Agricultural and Veterinary Medicine, 2-11 Nishi, Inada, Obihiro, Hokkaido 080-8555, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Yasuro Shinohara
- Graduate School of Advanced Life Science, Laboratory of Advanced Chemical Biology, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Itsuro Takamure
- Graduate School of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Kiyoaki Kato
- Department of Agro-environmental Science, Obihiro University of Agricultural and Veterinary Medicine, 2-11 Nishi, Inada, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
25
|
Abstract
Cytokinins are N (6) substituted adenine derivatives that affect many aspects of plant growth and development, including cell division, shoot initiation and growth, leaf senescence, apical dominance, sink/source relationships, nutrient uptake, phyllotaxis, and vascular, gametophyte, and embryonic development, as well as the response to biotic and abiotic factors. Molecular genetic studies in Arabidopsis have helped elucidate the mechanisms underlying the function of this phytohormone in plants. Here, we review our current understanding of cytokinin biosynthesis and signaling in Arabidopsis, the latter of which is similar to bacterial two-component phosphorelays. We discuss the perception of cytokinin by the ER-localized histidine kinase receptors, the role of the AHPs in mediating the transfer of the phosphoryl group from the receptors to the response regulators (ARRs), and finally the role of the large ARR family in cytokinin function. The identification and genetic manipulation of the genes involved in cytokinin metabolism and signaling have helped illuminate the roles of cytokinins in Arabidopsis. We discuss these diverse roles, and how other signaling pathways influence cytokinin levels and sensitivity though modulation of the expression of cytokinin signaling and metabolic genes.
Collapse
Affiliation(s)
- Joseph J Kieber
- University of North Carolina, Biology Department, Chapel Hill, NC 27599-3280
| | - G Eric Schaller
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755
| |
Collapse
|
26
|
Li Y, Kurepa J, Smalle J. AXR1 promotes the Arabidopsis cytokinin response by facilitating ARR5 proteolysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:13-24. [PMID: 23279608 DOI: 10.1111/tpj.12098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 05/26/2023]
Abstract
The plant hormone cytokinin plays essential roles in many aspects of growth and development. The cytokinin signal is transmitted by a multi-step phosphorelay to the members of two functionally antagonistic classes of Arabidopsis response regulators (ARRs): type B ARRs (response activators) and type A ARRs (negative-feedback regulators). Previous studies have shown that mutations in AXR1, encoding a subunit of the E1 enzyme in the RUB (related to ubiquitin) modification pathway, lead to decreased cytokinin sensitivity. Here we show that the cytokinin resistance of axr1 seedlings is suppressed by loss of function of the type A ARR family member ARR5. Based on the established role of the RUB pathway in ubiquitin-dependent proteolysis, these data suggest that AXR1 promotes the cytokinin response by facilitating type A ARR degradation. Indeed, both genetic (axr1 mutants) and chemical (MLN4924) suppression of RUB E1 increased ARR5 stability, suggesting that the ubiquitin ligase that promotes ARR5 proteolysis requires RUB modification for optimal activity.
Collapse
Affiliation(s)
- Yan Li
- Plant Physiology, Biochemistry and Molecular Biology Program, Department of Plant and Soil Science, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
27
|
Brenner WG, Ramireddy E, Heyl A, Schmülling T. Gene regulation by cytokinin in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2012; 3:8. [PMID: 22639635 PMCID: PMC3355611 DOI: 10.3389/fpls.2012.00008] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/06/2012] [Indexed: 05/18/2023]
Abstract
The plant hormone cytokinin realizes at least part of its signaling output through the regulation of gene expression. A great part of the early transcriptional regulation is mediated by type-B response regulators, which are transcription factors of the MYB family. Other transcription factors, such as the cytokinin response factors of the AP2/ERF family, have also been shown to be involved in this process. Additional transcription factors mediate distinct parts of the cytokinin response through tissue- and cell-specific downstream transcriptional cascades. In Arabidopsis, only a single cytokinin response element, to which type-B response regulators bind, has been clearly proven so far, which has 5'-GAT(T/C)-3' as a core sequence. This motif has served to construct a synthetic cytokinin-sensitive two-component system response element, which is useful for monitoring the cellular cytokinin status. Insight into the extent of transcriptional regulation has been gained by genome-wide gene expression analyses following cytokinin treatment and from plants having an altered cytokinin content or signaling. This review presents a meta analysis of such microarray data resulting in a core list of cytokinin response genes. Genes encoding type-A response regulators displayed the most stable response to cytokinin, but a number of cytokinin metabolism genes (CKX4, CKX5, CYP735A2, UGT76C2) also belong to them, indicating homeostatic mechanisms operating at the transcriptional level. The cytokinin core response genes are also the target of other hormones as well as biotic and abiotic stresses, documenting crosstalk of the cytokinin system with other hormonal and environmental signaling pathways. The multiple links of cytokinin to diverse functions, ranging from control of meristem activity, hormonal crosstalk, nutrient acquisition, and various stress responses, are also corroborated by a compilation of genes that have been repeatedly found by independent gene expression profiling studies. Such functions are, at least in part, supported by genetic studies.
Collapse
Affiliation(s)
- Wolfram G. Brenner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Eswar Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| |
Collapse
|
28
|
Hadiarto T, Tran LSP. Progress studies of drought-responsive genes in rice. PLANT CELL REPORTS 2011; 30:297-310. [PMID: 21132431 DOI: 10.1007/s00299-010-0956-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/22/2010] [Accepted: 11/22/2010] [Indexed: 05/04/2023]
Abstract
Rice (Oryza sativa L.), one of the most agronomically important crops, supplies staple food for more than half of the world's population, especially those living in developing countries. The intensively increasing world population has put a great burden on rice production. Drought as one of the major limiting factors for rice productivity has challenged researchers to improve both the water management system and rice characteristics. Biotechnology has assisted researchers to identify genes that are responsive toward drought. This review consolidates the recent studies that expose a number of drought-responsive genes in rice, which are potential candidates for development of improved drought-tolerant transgenic rice cultivars. In addition, examples are provided of how various drought-responsive genes, such as transcription factor and protein kinase encoding genes, were explored to engineer rice plants for enhanced drought tolerance using transgenic approach. Furthermore, the involvement of various phytohormones in regulation of drought response as well as the complexity of drought-responsive networks, which is indicated by the crosstalks with other stress-responsive networks such as cold and salt stresses, will be discussed. It is hoped that by understanding how rice responds to drought, crop performance can be stabilized and protected under water deficit conditions.
Collapse
Affiliation(s)
- Toto Hadiarto
- Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl Tentara Pelajar 3a, Bogor, Indonesia
| | | |
Collapse
|
29
|
Mason MG, Jha D, Salt DE, Tester M, Hill K, Kieber JJ, Schaller GE. Type-B response regulators ARR1 and ARR12 regulate expression of AtHKT1;1 and accumulation of sodium in Arabidopsis shoots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:753-63. [PMID: 21105923 DOI: 10.1111/j.1365-313x.2010.04366.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Soil salinity affects a large proportion of the land worldwide, forcing plants to evolve a number of mechanisms to cope with salt stress. Cytokinin plays a role in the plant response to salt stress, but little is known about the mechanism by which cytokinin controls this process. We used a molecular genetics approach to examine the influence of cytokinin on sodium accumulation and salt sensitivity in Arabidopsis thaliana. Cytokinin application was found to increase sodium accumulation in the shoots of Arabidopsis, but had no significant affect on the sodium content in the roots. Consistent with this, altered sodium accumulation phenotypes were observed in mutants of each gene class of the cytokinin signal transduction pathway, including receptors, phospho-transfer proteins, and type-A and type-B response regulators. Expression of the gene encoding Arabidopsis high-affinity K(+) transporter 1;1 (AtHKT1;1), a gene responsible for removing sodium ions from the root xylem, was repressed by cytokinin treatment, but showed significantly elevated expression in the cytokinin response double mutant arr1-3 arr12-1. Our data suggest that cytokinin, acting through the transcription factors ARR1 and ARR12, regulates sodium accumulation in the shoots by controlling the expression of AtHKT1;1 in the roots.
Collapse
Affiliation(s)
- Michael G Mason
- School of Biological Sciences, University of Queensland, St Lucia, Queensland 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
30
|
Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. DNA Res 2010; 17:303-24. [PMID: 20817745 PMCID: PMC2955714 DOI: 10.1093/dnares/dsq021] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 08/01/2010] [Indexed: 01/22/2023] Open
Abstract
In plants, the two-component systems (TCSs) play important roles in regulating diverse biological processes, including responses to environmental stress stimuli. Within the soybean genome, the TCSs consist of at least 21 histidine kinases, 13 authentic and pseudo-phosphotransfers and 18 type-A, 15 type-B, 3 type-C and 11 pseudo-response regulator proteins. Structural and phylogenetic analyses of soybean TCS members with their Arabidopsis and rice counterparts revealed similar architecture of their TCSs. We identified a large number of closely homologous soybean TCS genes, which likely resulted from genome duplication. Additionally, we analysed tissue-specific expression profiles of those TCS genes, whose data are available from public resources. To predict the putative regulatory functions of soybean TCS members, with special emphasis on stress-responsive functions, we performed comparative analyses from all the TCS members of soybean, Arabidopsis and rice and coupled these data with annotations of known abiotic stress-responsive cis-elements in the promoter region of each soybean TCS gene. Our study provides insights into the architecture and a solid foundation for further functional characterization of soybean TCS elements. In addition, we provide a new resource for studying the conservation and divergence among the TCSs within plant species and/or between plants and other organisms.
Collapse
Affiliation(s)
- Keiichi Mochida
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
- RIKEN Biomass Engineering Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama230-0045, Japan
| | - Takuhiro Yoshida
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| | - Tetsuya Sakurai
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| | | | - Kazuo Shinozaki
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| | - Lam-Son Phan Tran
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa230-0045, Japan
| |
Collapse
|
31
|
Cheng X, Jiang H, Zhang J, Qian Y, Zhu S, Cheng B. Overexpression of type-A rice response regulators, OsRR3 and OsRR5, results in lower sensitivity to cytokinins. GENETICS AND MOLECULAR RESEARCH 2010; 9:348-59. [PMID: 20309821 DOI: 10.4238/vol9-1gmr739] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Response regulators are part of a two-component regulatory system. The type-A Arabidopsis response regulators act as negative regulators. To understand the function of type-A response regulators in the model monocot plant, rice (Japonica cultivar-group: Zhonghua11), we overexpressed two type-A OsRR genes, OsRR3 and OsRR5 (pACT1:OsRR3 and pACT1:OsRR5). We hoped to gain insight into their molecular function in cytokinin-signaling pathways. Both OsRR3 and OsRR5 overexpressors had longer roots and more lateral roots compared with Zhonghua11, when treated with exogenous cytokinin. Using callus formation and chlorophyll content assays, we found that Zhonghua11 was more sensitive to cytokinin compared with other cultivars of rice, expressing high transcript levels of OsRR3 and OsRR5. The expression of most type-A OsRR genes was repressed by OsRR3 and OsRR5 overexpression. However, semi-quantitative RT-PCR showed that three type-A OsRR genes showed increased expression. Our results suggest that both OsRR3 and OsRR5 mainly act as negative regulators of cytokinin signaling, as indicated by the reduced sensitivity of OsRR3 and OsRR5 overexpressors to exogenous cytokinins.
Collapse
Affiliation(s)
- X Cheng
- School of Life Science, Anhui Agricultural University, Anhui, China
| | | | | | | | | | | |
Collapse
|
32
|
Schaller GE, Kieber JJ, Shiu SH. Two-component signaling elements and histidyl-aspartyl phosphorelays. THE ARABIDOPSIS BOOK 2008; 6:e0112. [PMID: 22303237 PMCID: PMC3243373 DOI: 10.1199/tab.0112] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Two-component systems are an evolutionarily ancient means for signal transduction. These systems are comprised of a number of distinct elements, namely histidine kinases, response regulators, and in the case of multi-step phosphorelays, histidine-containing phosphotransfer proteins (HPts). Arabidopsis makes use of a two-component signaling system to mediate the response to the plant hormone cytokinin. Two-component signaling elements have also been implicated in plant responses to ethylene, abiotic stresses, and red light, and in regulating various aspects of plant growth and development. Here we present an overview of the two-component signaling elements found in Arabidopsis, including functional and phylogenetic information on both bona-fide and divergent elements.
Collapse
Affiliation(s)
- G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Joseph J. Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
33
|
Wohlbach DJ, Quirino BF, Sussman MR. Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. THE PLANT CELL 2008; 20:1101-17. [PMID: 18441212 PMCID: PMC2390728 DOI: 10.1105/tpc.107.055871] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 03/03/2008] [Accepted: 04/06/2008] [Indexed: 05/18/2023]
Abstract
To cope with water stress, plants must be able to effectively sense, respond to, and adapt to changes in water availability. The Arabidopsis thaliana plasma membrane His kinase ATHK1 has been suggested to act as an osmosensor that detects water stress and initiates downstream responses. Here, we provide direct genetic evidence that ATHK1 not only is involved in the water stress response during early vegetative stages of plant growth but also plays a unique role in the regulation of desiccation processes during seed formation. To more comprehensively identify genes involved in the downstream pathways affected by the ATHK1-mediated response to water stress, we created a large-scale summary of expression data, termed the AtMegaCluster. In the AtMegaCluster, hierarchical clustering techniques were used to compare whole-genome expression levels in athk1 mutants with the expression levels reported in publicly available data sets of Arabidopsis tissues grown under a wide variety of conditions. These experiments revealed that ATHK1 is cotranscriptionally regulated with several Arabidopsis response regulators, together with two proteins containing novel sequences. Since overexpression of ATHK1 results in increased water stress tolerance, our observations suggest a new top-down route to increasing drought resistance via receptor-mediated increases in sensing water status, rather than through genetically engineered changes in downstream transcription factors or specific osmolytes.
Collapse
Affiliation(s)
- Dana J Wohlbach
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
34
|
Camacho Y, Martínez-Castilla L, Fragoso S, Vázquez S, Martínez-Barajas E, Coello P. Characterization of a type A response regulator in the common bean (Phaseolus vulgaris) in response to phosphate starvation. PHYSIOLOGIA PLANTARUM 2008; 132:272-282. [PMID: 18275459 DOI: 10.1111/j.1399-3054.2007.01005.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Type A response regulators are a family of genes in Arabidopsis thaliana involved primarily in cytokinin signal transduction. A member of this family was isolated from a cDNA library constructed from bean plants (Phaseolus vulgaris) grown under conditions of phosphate starvation. The complete cDNA sequence showed the presence of the DDK domain, which is the hallmark of the response regulator family. Expression of the P. vulgaris response regulator 1 (PvRR1) showed clear regulation based on phosphate availability because transcript levels increased during phosphate starvation and returned to basal levels after resupplementation with phosphorus. Nitrogen and potassium starvation also upregulated PvRR1, indicating that cross talk with other nutrient signaling pathways might occur. Addition of cytokinins to plants growing under phosphate-sufficient conditions stimulated PvRR1 transcript levels both in detached leaves and in roots. However, cytokinins strongly inhibited PvRR1 expression in phosphate-starved plants after 24 h of incubation. At the protein level, subcellular localization of PvRR1 indicated that it is a nuclear protein and that phosphate starvation modified protein levels but not the localization.
Collapse
Affiliation(s)
- Yolanda Camacho
- Departamento de Bioquímica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico 04510 D.F., Mexico
| | | | | | | | | | | |
Collapse
|
35
|
Metabolism of plant hormones cytokinins and their function in signaling, cell differentiation and plant development. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1572-5995(08)80028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Ramírez-Carvajal GA, Morse AM, Davis JM. Transcript profiles of the cytokinin response regulator gene family in Populus imply diverse roles in plant development. THE NEW PHYTOLOGIST 2008; 177:77-89. [PMID: 17944821 DOI: 10.1111/j.1469-8137.2007.02240.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cytokinins are plant hormones that influence diverse processes of growth and development. In this study the cytokinin response regulators (RRs) were identified, annotated and characterized at the transcript level in Populus balsamifera ssp. trichocarpa genotype Nisqually 1. The Populus genome was searched for genes that exhibit high sequence identity across their receiver domains. Gene structure was determined by prediction software and, where possible, corroborated by publicly available expressed sequence tags (ESTs). Thirty-three genes belonging to the cytokinin RR gene family were identified in Populus: 11 type As, 11 type Bs and 11 pseudo-RRs. Developmental and cytokinin-responsive expression of the Populus RRs was assessed by whole-genome microarrays and semiquantitative reverse transcription polymerase chain reaction (RT-PCR). Populus RR type As and type Bs appear to be preferentially expressed in nodes, while pseudo-RRs are preferentially expressed in mature leaves. Seven type As and three type Bs were rapidly induced by exogenous cytokinin. Organ-preferred expression patterns suggest possible roles for type As and Bs in development and for pseudo-RRs in integration of environmental signals with plant function.
Collapse
Affiliation(s)
- Gustavo A Ramírez-Carvajal
- Plant Molecular and Cellular Biology Program, University of Florida, PO Box 110690, Gainesville, FL 32611, USA
| | - Alison M Morse
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL 32611, USA
| | - John M Davis
- Plant Molecular and Cellular Biology Program, University of Florida, PO Box 110690, Gainesville, FL 32611, USA
- School of Forest Resources and Conservation, University of Florida, PO Box 110410, Gainesville, FL 32611, USA
| |
Collapse
|
37
|
Jain M, Tyagi AK, Khurana JP. Differential gene expression of rice two-component signaling elements during reproductive development and regulation by abiotic stress. Funct Integr Genomics 2007; 8:175-80. [PMID: 17990013 DOI: 10.1007/s10142-007-0063-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/20/2007] [Accepted: 10/06/2007] [Indexed: 10/22/2022]
Abstract
The two-component signaling elements have been implicated in diverse cellular processes in plants. Earlier, we reported the identification, characterization and expression analysis of type-A response regulators in rice. In this study, we have comprehensively analyzed the expression profile of all the two-component signaling elements identified in rice at various stages of vegetative and reproductive development by employing microarray analysis. Most of the components are expressed in all the developmental stages analyzed. A few of these were found to be specifically expressed during certain stages of seed development, suggesting their role in embryo and endosperm development. In addition, some of these components express differentially under various abiotic stress conditions, indicating their involvement at various levels of hierarchy in abiotic stress signaling.
Collapse
Affiliation(s)
- Mukesh Jain
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | |
Collapse
|
38
|
Merchan F, de Lorenzo L, Rizzo SG, Niebel A, Manyani H, Frugier F, Sousa C, Crespi M. Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:1-17. [PMID: 17488237 DOI: 10.1111/j.1365-313x.2007.03117.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Root growth and function are determined by the action of environmental stresses through specific genes that adapt root development to these restrictive conditions. We have defined in vitro conditions affecting the growth and recovery of Medicago truncatula roots after a salt stress. A dedicated macroarray containing 384 genes, based on a large-scale subtractive hybridization approach, was constructed and used to analyze gene expression during salt stress and recovery of root growth from this stress. Several potential regulatory genes were identified as being linked to this recovery process: a novel RNA-binding protein, a small G-protein homologous to ROP9, a receptor-like kinase, two TF IIIA-like and an AP2-like transcription factors (TF), MtZpt2-1, MtZpt2-2 and MtAp2, and a histidine kinase associated with cytokinin transduction pathways. The two ZPT2-type TFs were also rapidly induced by cold stress in roots. By analyzing transgenic M. truncatula plants showing reduced expression levels of both TFs and affected in their capacity to recover root growth after a salt stress, we identified potential target genes that were either activated or repressed in these plants. Overexpression of MtZpt2-1 in roots conferred salt tolerance and affected the expression of three putative targets in the predicted manner: a cold-regulated A (CORA) homolog, a flower-promoting factor (FPF1) homolog and an auxin-induced proline-rich protein (PRP) gene. Hence, regulatory networks depending on TFIIIA-like transcription factors are involved in the control of root adaptation to salt stress.
Collapse
Affiliation(s)
- Francisco Merchan
- Departamento de Microbiología y Parasitología, Universidad de Sevilla, 41012 Sevilla, España
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Du L, Jiao F, Chu J, Jin G, Chen M, Wu P. The two-component signal system in rice (Oryza sativa L.): A genome-wide study of cytokinin signal perception and transduction. Genomics 2007; 89:697-707. [PMID: 17408920 DOI: 10.1016/j.ygeno.2007.02.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 02/11/2007] [Accepted: 02/22/2007] [Indexed: 02/03/2023]
Abstract
In this report we define the genes of two-component regulatory systems in rice through a comprehensive computational analysis of rice (Oryza sativa L.) genome sequence databases. Thirty-seven genes were identified, including 5 HKs (cytokinin-response histidine protein kinase) (OsHK1-4, OsHKL1), 5 HPs (histidine phosphotransfer proteins) (OsHP1-5), 15 type-A RRs (response regulators) (OsRR1-15), 7 type B RR genes (OsRR16-22), and 5 predicted pseudo-response regulators (OsPRR1-5). Protein motif organization, gene structure, phylogenetic analysis, chromosomal location, and comparative analysis between rice, maize, and Arabidopsis are described. Full-length cDNA clones of each gene were isolated from rice. Heterologous expression of each of the OsHKs in yeast mutants conferred histidine kinase function in a cytokinin-dependent manner. Nonconserved regions of individual cDNAs were used as probes in expression profiling experiments. This work provides a foundation for future functional dissection of the rice cytokinin two-component signaling pathway.
Collapse
Affiliation(s)
- Liming Du
- The Key State Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Hirose N, Makita N, Kojima M, Kamada-Nobusada T, Sakakibara H. Overexpression of a type-A response regulator alters rice morphology and cytokinin metabolism. PLANT & CELL PHYSIOLOGY 2007; 48:523-39. [PMID: 17293362 DOI: 10.1093/pcp/pcm022] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Genome-wide analyses of rice (Oryza sativa L.) cytokinin (CK)-responsive genes using the Affymetrix GeneChip(R) rice genome array were conducted to define the spectrum of genes subject to regulation by CK in monocotyledonous plants. Application of trans-zeatin modulated the expression of a wide variety of genes including those involved in hormone signaling and metabolism, transcriptional regulation, macronutrient transport and protein synthesis. To understand further the function of CK in rice plants, we examined the effects of in planta manipulation of a putative CK signaling factor on morphology, CK metabolism and expression of CK-responsive genes. Overexpression of the CK-inducible type-A response regulator OsRR6 abolished shoot regeneration, suggesting that OsRR6 acts as a negative regulator of CK signaling. Transgenic lines overexpressing OsRR6 (OsRR6-ox) had dwarf phenotypes with poorly developed root systems and panicles. Increased content of trans-zeatin-type CKs in OsRR6-ox lines indicates that homeostatic control of CK levels is regulated by OsRR6 signaling. Expression of genes encoding CK oxidase/dehydrogenase decreased in OsRR6-ox plants, possibly accounting for elevated CK levels in transgenic lines. Expression of a number of stress response genes was also altered in OsRR6-ox plants.
Collapse
Affiliation(s)
- Naoya Hirose
- RIKEN Plant Science Center, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | | | | | | | | |
Collapse
|
41
|
HALL MA, MOSHKOV IE, NOVIKOVA GV, MUR LAJ, SMITH AR. Ethylene signal perception and transduction: multiple paradigms? Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.2000.tb00060.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Pareek A, Singh A, Kumar M, Kushwaha HR, Lynn AM, Singla-Pareek SL. Whole-genome analysis of Oryza sativa reveals similar architecture of two-component signaling machinery with Arabidopsis. PLANT PHYSIOLOGY 2006; 142:380-97. [PMID: 16891544 PMCID: PMC1586034 DOI: 10.1104/pp.106.086371] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The two-component system (TCS), which works on the principle of histidine-aspartate phosphorelay signaling, is known to play an important role in diverse physiological processes in lower organisms and has recently emerged as an important signaling system in plants. Employing the tools of bioinformatics, we have characterized TCS signaling candidate genes in the genome of Oryza sativa L. subsp. japonica. We present a complete overview of TCS gene families in O. sativa, including gene structures, conserved motifs, chromosome locations, and phylogeny. Our analysis indicates a total of 51 genes encoding 73 putative TCS proteins. Fourteen genes encode 22 putative histidine kinases with a conserved histidine and other typical histidine kinase signature sequences, five phosphotransfer genes encoding seven phosphotransfer proteins, and 32 response regulator genes encoding 44 proteins. The variations seen between gene and protein numbers are assumed to result from alternative splicing. These putative proteins have high homology with TCS members that have been shown experimentally to participate in several important physiological phenomena in plants, such as ethylene and cytokinin signaling and phytochrome-mediated responses to light. We conclude that the overall architecture of the TCS machinery in O. sativa and Arabidopsis thaliana is similar, and our analysis provides insights into the conservation and divergence of this important signaling machinery in higher plants.
Collapse
Affiliation(s)
- Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | | | | | | | |
Collapse
|
43
|
Dortay H, Mehnert N, Bürkle L, Schmülling T, Heyl A. Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana. FEBS J 2006; 273:4631-44. [PMID: 16965536 DOI: 10.1111/j.1742-4658.2006.05467.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The signal of the plant hormone cytokinin is perceived by membrane-located sensor histidine kinases and transduced by other members of the plant two-component system. In Arabidopsis thaliana, 28 two-component system proteins (phosphotransmitters and response regulators) act downstream of three receptors, transmitting the signal from the membrane to the nucleus and modulating the cellular response. Although the principal signaling mechanism has been elucidated, redundancy in the system has made it difficult to understand which of the many components interact to control the downstream biological processes. Here, we present a large-scale interaction study comprising most members of the Arabidopsis cytokinin signaling pathway. Using the yeast two-hybrid system, we detected 42 new interactions, of which more than 90% were confirmed by in vitro coaffinity purification. There are distinct patterns of interaction between protein families, but only a few interactions between proteins of the same family. An interaction map of this signaling pathway shows the Arabidopsis histidine phosphotransfer proteins as hubs, which interact with members from all other protein families, mostly in a redundant fashion. Domain-mapping experiments revealed the interaction domains of the proteins of this pathway. Analyses of Arabidopsis histidine phosphotransfer protein 5 mutant proteins showed that the presence of the canonical phospho-accepting histidine residue is not required for the interactions. Interaction of A-type response regulators with Arabidopsis histidine phosphotransfer proteins but not with B-type response regulators suggests that their known activity in feedback regulation may be realized by interfering at the level of Arabidopsis histidine phosphotransfer protein-mediated signaling. This study contributes to our understanding of the protein interactions of the cytokinin-signaling system and provides a framework for further functional studies in planta.
Collapse
Affiliation(s)
- Hakan Dortay
- Institute of Biology/Applied Genetics, Free University of Berlin, Germany
| | | | | | | | | |
Collapse
|
44
|
Jain M, Tyagi AK, Khurana JP. Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC PLANT BIOLOGY 2006; 6:1. [PMID: 16472405 PMCID: PMC1382228 DOI: 10.1186/1471-2229-6-1] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 02/13/2006] [Indexed: 05/06/2023]
Abstract
BACKGROUND The response regulators represent the elements of bacterial two-component system and have been characterized from dicot plants like Arabidopsis but little information is available on the monocots, including the cereal crops. The aim of this study was to characterize type-A response regulator genes from rice, and to investigate their expression in various organs as well as in response to different hormones, including cytokinin, and environmental stimuli. RESULTS By analysis of the whole genome sequence of rice, we have identified ten genes encoding type-A response regulators based upon their high sequence identity within the receiver domain. The exon-intron organization, intron-phasing as well as chromosomal location of all the RT-PCR amplified rice (Oryza sativa) response regulator (OsRR) genes have been analyzed. The transcripts of OsRR genes could be detected by real-time PCR in all organs of the light- and dark-grown rice seedlings/plants, although there were quantitative differences. The steady-state transcript levels of most of the OsRR genes increased rapidly (within 15 min) on exogenous cytokinin application even in the presence of cycloheximide. Moreover, the expression of the OsRR6 gene was enhanced in rice seedlings exposed to salinity, dehydration and low temperature stress. CONCLUSION Ten type-A response regulator genes identified in rice, the model monocot plant, show overlapping/differential expression patterns in various organs and in response to light. The induction of OsRR genes by cytokinin even in the absence of de novo protein synthesis qualifies them to be primary cytokinin response genes. The induction of OsRR6 in response to different environmental stimuli indicates its role in cross-talk between abiotic stress and cytokinin signaling. These results provide a foundation for further investigations on specific as well as overlapping cellular functions of type-A response regulators in rice.
Collapse
Affiliation(s)
- Mukesh Jain
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
| | - Akhilesh K Tyagi
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
| | - Jitendra P Khurana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021, India
| |
Collapse
|
45
|
Weber P, Fulgosi H, Piven I, Müller L, Krupinska K, Duong VH, Herrmann RG, Sokolenko A. TCP34, a nuclear-encoded response regulator-like TPR protein of higher plant chloroplasts. J Mol Biol 2006; 357:535-49. [PMID: 16438983 DOI: 10.1016/j.jmb.2005.12.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 12/16/2005] [Accepted: 12/21/2005] [Indexed: 11/29/2022]
Abstract
We describe the identification of a novel chloroplast protein, designated TCP34 (tetratricopeptide-containing chloroplast protein of 34 kDa) due to the presence of three tandemly arranged tetratricopeptide repeat (TPR) arrays. The presence of the genes encoding this protein only in the genomes of higher plants but not in photosynthetic cyanobacterial prokaryotes suggests that TCP34 evolved after the separation of the higher plant lineage. The in vitro translated precursor could be imported into intact spinach chloroplasts and the processed products showed stable association with thylakoid membranes. Using a specific polyclonal antiserum raised against TCP34, three protein variants were detected. Two forms, T(1) and T(2), were associated with the thylakoid membranes and one, S(1), was found released in the stroma. TCP34 protein was not present in etioplasts and appeared only in developing chloroplasts. The ratio of membrane-bound and soluble forms was maximal at the onset of photosynthesis. The high molecular mass thylakoid TCP34 variant was found in association with a transcriptionally active protein/DNA complex (TAC) from chloroplasts and recombinant TCP34 showed specific binding to Spinacia oleracea chloroplast DNA. Two TCP34 forms, T(1) and S(1), were found to be phosphorylated. An as yet unidentified phosphorelay signal may modulate its capability for plastid DNA binding through the phosphorylation state of the putative response regulator-like domain. Based on the structural properties and biochemical analyses, we discuss the putative regulatory function of TCP34 in plastid gene expression.
Collapse
Affiliation(s)
- P Weber
- Department für Biologie I, Bereich Botanik, Ludwig-Maximilians-Universität, Menzingerstr. 67, 80638 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Mizuno T. Plant response regulators implicated in signal transduction and circadian rhythm. CURRENT OPINION IN PLANT BIOLOGY 2004; 7:499-505. [PMID: 15337091 DOI: 10.1016/j.pbi.2004.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The so-called 'response regulators' were originally discovered as common components of the widespread histidine (His)-->aspartate (Asp) phosphorelay signal transduction system in prokaryotes. Through the course of evolution, higher plants have also come to employ such prokaryotic response regulators (RRs) for their own signal transduction, such as the elicitation of plant hormone (e.g. cytokinin) responses. Furthermore, plants have evolved their own atypical variants of response regulators, pseudo response regulators (PRRs), which are used to modulate sophisticated biological processes, including circadian rhythms and other light-signal responses. Recent studies using the model plant Arabidopsis thaliana have begun to shed light on the interesting functions of these plant response regulators.
Collapse
Affiliation(s)
- Takeshi Mizuno
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
47
|
Abstract
In the past few years, enormous progress has been made in understanding cytokinin perception and signalling. Three cytokinin receptor proteins, which are hybrid histidine kinases, have been identified in Arabidopsis. These receptors may transduce signals in a quantitative rheostat-like fashion, thus permitting long-lasting and continuously variable signalling that is directly dependent on the hormone concentration. Evidence has been provided that downstream signalling is transmitted through a His-to-Asp phospho-relay involving phosphotransmitter and response regulator proteins, typical of two-component systems. On the basis of mutant analysis, protein-protein interaction studies and target gene identification, a cellular network is emerging that links cytokinin activity to both developmental and physiological processes.
Collapse
Affiliation(s)
- Alexander Heyl
- Freie Universität Berlin, Institut für Biologie, Angewandte Genetik, Albrecht-Thaer-Weg, 6 14195, Berlin, Germany
| | | |
Collapse
|
48
|
Watanabe M, Kikawada T, Okuda T. Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of Polypedilum vanderplanki. J Exp Biol 2003; 206:2281-6. [PMID: 12771176 DOI: 10.1242/jeb.00418] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Larvae of an African chironomid, Polypedilum vanderplanki, which live in temporal rock pools, are completely dehydrated when the pools dry up and undergo anhydrobiosis until the next rain comes. During the dehydration process, larvae accumulate large amounts of trehalose, which provides effective protection against desiccation because of its high capacity for water replacement and vitrification. As the occurrence of rapid trehalose synthesis coincides with loss of body water, changes of osmolarity in the body are thought to be a cue for trehalose synthesis. Indeed, exposure to high salinity triggers rapid and efficient accumulation of trehalose even without desiccation treatment. As this rapid production occurs mainly in high concentrations of salt solutions, we conclude that an increase in internal ion concentration triggers trehalose synthesis associated with cryptobiosis in this species.
Collapse
Affiliation(s)
- Masahiko Watanabe
- National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | | | | |
Collapse
|
49
|
Abstract
Cytokinins are plant hormones implicated in diverse and essential processes in plant growth and development, and key genes for the metabolism and actions of cytokinins have recently been identified. Cytokinins are perceived by three histidine kinases--CRE1/WOL/AHK4, AHK2, and AHK3--which initiate intracellular phosphotransfer. The final destination of the transferred phosphoryl groups is response regulators. The type-B Arabidopsis response regulators (ARRs) are DNA-binding transcriptional activators that are required for cytokinin responses. On the other hand, the type-A ARRs act as repressors of cytokinin-activated transcription. How phosphorelay regulate response regulators and how response regulators control downstream events are open questions and discussed in this review.
Collapse
Affiliation(s)
- Tatsuo Kakimoto
- Department of Biology, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
50
|
Menges M, Hennig L, Gruissem W, Murray JAH. Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 2002; 277:41987-2002. [PMID: 12169696 DOI: 10.1074/jbc.m207570200] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated gene expression is an important mechanism for controlling cell cycle progression in yeast and mammals, and genes involved in cell division-related processes often show transcriptional regulation dependent on cell cycle position. Analysis of cell cycle processes in plants has been hampered by the lack of synchronizable cell suspensions for Arabidopsis, and few cell cycle-regulated genes are known. Using a recently described synchrony system, we have analyzed RNA from sequential samples of Arabidopsis cells progressing through the cell cycle using Affymetrix Genearrays. We identify nearly 500 genes that robustly display significant fluctuation in expression, representing the first genomic analysis of cell cycle-regulated gene expression in any plant. In addition to the limited number of genes previously identified as cell cycle-regulated in plants, we also find specific patterns of regulation for genes known or suspected to be involved in signal transduction, transcriptional regulation, and hormonal regulation, including key genes of cytokinin response. Genes identified represent pathways that are cell cycle-regulated in other organisms and those involved in plant-specific processes. The range and number of cell cycle-regulated genes show the close integration of the plant cell cycle into a variety of cellular control and response pathways.
Collapse
Affiliation(s)
- Margit Menges
- Institute of Biotechnology, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|