1
|
Chmielewski R, Lebiedowska A, Barańska-Rybak W. Assessment of the Curative Anti-Glycation Properties of a Novel Injectable Formulation Combining Dual-Weight Hyaluronic Acid (Low- and Mid/High-Molecular Weight) with Trehalose on Human Skin Ex Vivo. Int J Mol Sci 2025; 26:4747. [PMID: 40429894 PMCID: PMC12111894 DOI: 10.3390/ijms26104747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Glycation influences skin aging through non-enzymatic reactions between reducing sugars and proteins, forming advanced glycation end-products (AGEs) that accelerate skin deterioration. This study evaluates the curative anti-glycation effects of an injectable formulation combining dual-molecular-weight hyaluronic acid (low and mid/high) with trehalose in methylglyoxal-induced glycation in human skin explants. Thirty-six human skin explants were allocated across five experimental groups in a 12-day study. Glycation was induced using methylglyoxal (500 μM) on days 1 and 4, followed by curative product administration on day 5. CML (Nε-(carboxymethyl)lysine) immunohistochemistry was performed to assess glycation levels in the reticular dermis at days 6, 8, and 12, with quantitative analysis conducted through standardized image analysis. The formulation significantly reduced CML formation by 60% on day 6 compared to untreated controls (p < 0.001). Under methylglyoxal-induced glycation stress the product showed sustained curative effects, with CML reductions of 69% on day 6 (p = 0.008), 68% on day 8 (p = 0.012), and 61% on day 12 (p = 0.033) compared to methylglyoxal treatment alone. Cell viability remained unaffected throughout the study period across all experimental conditions. The tested injectable formulation exhibits significant and sustained curative anti-glycation properties in human skin explants for 12 days, effectively counteracting methylglyoxal-induced glycation damage without affecting cell viability. These findings advance anti-aging skin interventions, offering a novel approach to address glycation-induced skin damage with potential applications in clinical dermatology and aesthetic medicine.
Collapse
Affiliation(s)
- Robert Chmielewski
- Prime Clinic, Topiel 12, 00-342 Warsaw, Poland;
- Positive Pro-Aging Foundation, Topiel 12, 00-342 Warsaw, Poland
- URGO Aesthetics Department, URGO Sp. z o.o., Aleje Jerozolimskie 142 B, 02-305 Warsaw, Poland
| | - Agata Lebiedowska
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Jednosci 8B, 41-208 Sosnowiec, Poland
| | - Wioletta Barańska-Rybak
- Department of Dermatology, Venereology, and Allergology, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdansk, Poland;
| |
Collapse
|
2
|
Al-Ashram MM, Nader MA, El-Sheakh AR. Role of sacubitril/valsartan in modulating diabetes mediated cognitive and neuronal impairment. Int Immunopharmacol 2025; 154:114431. [PMID: 40157081 DOI: 10.1016/j.intimp.2025.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Earlier investigations had established that Diabetes mellitus (DM) caused significant damage in the central nervous system, bringing about diabetic encephalopathy and increasing the risk of cognitive-related problems. Nonetheless, the inherent pathophysiology of cognitive dysfunctions in DM is not well understood. The current study aimed to examine the possible influences of sacubitril/valsartan (SAC/VAL), an angiotensin receptor blocker/neprilysin inhibitor (ARNI), on cognitive dysfunction associated with streptozotocin (STZ)-induced diabetic rats. SAC/VAL and VAL treatments were initiated three days after the diabetic condition was established and continued daily for eight weeks. Normal, non-diabetic rats were reserved as a control group. Both SAC/VAL and VAL treatment in diabetic rats ameliorated diabetes induced oxidative stress as indicated by reduced malondialdehyde (MDA), increased total antioxidant capacity (TAO) in hippocampal tissue and decreased serum advanced glycation end products (AGEs), also inflammatory and apoptotic changes were observed and proved by the reduction of tumor necrosis factor alpha (TNF-α) and caspase -3 in rat hippocampus. SAC/VAL administration to diabetic rats also improved neuronal damages as reflected by restored cAMP response element-binding protein (CREB), brain derived neurotrophic factor (BDNF) and pre-synaptic phosphoproteins, synapsin I and growth associated protein-43 (GAP-43) in the hippocampus of diabetic rats. Additionally, SAC/VAL treated diabetic rats markedly reduced signs of cognitive deterioration during the Morris water maze test. Collectively, these findings suggested that SAC/VAL might play a vital role in improvement of the cognitive impairment observed in diabetic rats through antioxidant, anti-inflammatory and anti-apoptotic actions.
Collapse
Affiliation(s)
- Mai M Al-Ashram
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansura University, Mansura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansura National University, Gamasa, Egypt.
| | - Manar A Nader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansura University, Mansura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansura National University, Gamasa, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansura University, Mansura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansura National University, Gamasa, Egypt; Future studies and Risks management, National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| |
Collapse
|
3
|
Takagi Y, Kage M. Hyaluronan Tetrasaccharides Penetrate into the Skin by Passive Diffusion and Contribute to Skin Health. Chem Pharm Bull (Tokyo) 2025; 73:284-290. [PMID: 40175107 DOI: 10.1248/cpb.c23-00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Hyaluronan (HA) is a commonly used material in cosmetics and pharmaceuticals because of its various pharmacological activities. However, because of its large molecular weight, HA penetrates the skin very poorly and most of it remains on the skin surface. Thus, topically applied HA could not be expected to function biologically in the skin. However, we have confirmed that HA tetrasaccharides (HA4), which is the smallest unit of HA, penetrate into the skin by passive diffusion and affect epidermal metabolism. Topical treatment of HA4 rescues the epidermal damage caused by long-term UVA irradiation. Furthermore, various biological functions of HA4 to maintain healthy skin was observed in cell culture studies. This review describes the skin permeability of HA4 and how it contributes to healthy skin.
Collapse
Affiliation(s)
- Yutaka Takagi
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Madoka Kage
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
4
|
Barrett-Catton E, Arrigali EM, Serban BA, Sandau KC, Serban MA. Stability Studies of a Tetraethyl Orthosilicate-Based Thixotropic Drug Delivery System. Pharmaceutics 2024; 16:1392. [PMID: 39598516 PMCID: PMC11597098 DOI: 10.3390/pharmaceutics16111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: This study assessed the effects of formulation components on the long-term stability of a previously described tetraethyl orthosilicate-based drug delivery system. Early stability studies of a product concept are crucial not only to provide information on the overall system stability and individual components' contributions to it, but also to identify opportunities for dosage form optimization and to define its use case. Methods: We assessed the time-dependent thixogel properties-specifically, mechanical strength, thixotropy, release of model drug, and dry substance-in both real-time and accelerated shelf-life determination set-ups. Results: Our findings indicate that the concentration and molecular weight of hyaluronic acid, one of the main constituents of the investigated thixotropic systems, are key determinants of formulation stability. We further showed that changes in both of these parameters reflect on the drug release properties and stiffness of the formulation and could inform subsequent product development based on several use cases. Conclusions: Overall, this study provides an understanding of some key factors that would need to be considered prior to and in the final product development process of thixogels in preparation for commercialization.
Collapse
Affiliation(s)
- Emma Barrett-Catton
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Elizabeth M. Arrigali
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Bogdan A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
| | - Kolton C. Sandau
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Monica A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
- Montana Biotechnology Center (BIOTECH), University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
5
|
Wilson-Verdugo M, Bustos-García B, Adame-Guerrero O, Hersch-González J, Cano-Domínguez N, Soto-Nava M, Acosta CA, Tusie-Luna T, Avila-Rios S, Noriega LG, Valdes VJ. Reversal of high-glucose-induced transcriptional and epigenetic memories through NRF2 pathway activation. Life Sci Alliance 2024; 7:e202302382. [PMID: 38755006 PMCID: PMC11099870 DOI: 10.26508/lsa.202302382] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Diabetes complications such as nephropathy, retinopathy, or cardiovascular disease arise from vascular dysfunction. In this context, it has been observed that past hyperglycemic events can induce long-lasting alterations, a phenomenon termed "metabolic memory." In this study, we evaluated the genome-wide gene expression and chromatin accessibility alterations caused by transient high-glucose exposure in human endothelial cells (ECs) in vitro. We found that cells exposed to high glucose exhibited substantial gene expression changes in pathways known to be impaired in diabetes, many of which persist after glucose normalization. Chromatin accessibility analysis also revealed that transient hyperglycemia induces persistent alterations, mainly in non-promoter regions identified as enhancers with neighboring genes showing lasting alterations. Notably, activation of the NRF2 pathway through NRF2 overexpression or supplementation with the plant-derived compound sulforaphane, effectively reverses the glucose-induced transcriptional and chromatin accessibility memories in ECs. These findings underscore the enduring impact of transient hyperglycemia on ECs' transcriptomic and chromatin accessibility profiles, emphasizing the potential utility of pharmacological NRF2 pathway activation in mitigating and reversing the high-glucose-induced transcriptional and epigenetic alterations.
Collapse
Affiliation(s)
- Martí Wilson-Verdugo
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Brandon Bustos-García
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Olga Adame-Guerrero
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Jaqueline Hersch-González
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Nallely Cano-Domínguez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Maribel Soto-Nava
- Centre for Research in Infectious Diseases of the National Institute of Respiratory Diseases (CIENI/INER), Mexico City, Mexico
| | | | - Teresa Tusie-Luna
- Unidad de Biología Molecular y Medicina Genómica Instituto de Investigaciones Biomédicas UNAM/Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Ciudad de México, Mexico
| | - Santiago Avila-Rios
- Centre for Research in Infectious Diseases of the National Institute of Respiratory Diseases (CIENI/INER), Mexico City, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Victor J Valdes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
6
|
Wang H, Li X, Xuan M, Yang R, Zhang J, Chang J. Marine biomaterials for sustainable bone regeneration. GIANT 2024; 19:100298. [DOI: 10.1016/j.giant.2024.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Verma S, Moreno IY, Sun M, Gesteira TF, Coulson-Thomas VJ. Age related changes in hyaluronan expression leads to Meibomian gland dysfunction. Matrix Biol 2023; 124:23-38. [PMID: 37949327 PMCID: PMC11095397 DOI: 10.1016/j.matbio.2023.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The prevalence of dry eye disease (DED) ranges from ∼5 to 50 % and its associated symptoms decrease productivity and reduce the quality of life. Approximately 85 % of all DED cases are caused by Meibomian gland dysfunction (MGD). As humans and mice age, their Meibomian glands (MGs) undergo age-related changes resulting in age related-MGD (ARMGD). The precise cause of ARMGD remains elusive, which makes developing therapies extremely challenging. We previously demonstrated that a hyaluronan (HA)-rich matrix exists surrounding the MG, regulating MG morphogenesis and homeostasis. Herein, we investigated whether changes to the HA matrix in the MG throughout life contributes towards ARMGD, and whether altering this HA matrix can prevent ARMGD. For such, HA synthase (Has) knockout mice were aged and compared to age matched wild type (wt) mice. MG morphology, lipid production, PPARγ expression, basal cell proliferation, stem cells, presence of atrophic glands and MG dropout were analyzed at 8 weeks, 6 months, 1 year and 2 years of age and correlated with the composition of the HA matrix. We found that as mice age, there is a loss of HA expression in and surrounding the MGs of wt mice, while, in contrast, Has1-/-Has3-/- mice present a significant increase in HA expression through Has2 upregulation. At 1 year, Has1-/-Has3-/- mice present significantly enlarged MGs, compared to age-matched wt mice and compared to all adult mice. Thus, Has1-/-Has3-/- mice continue to develop new glandular tissue as they age, instead of suffering MG atrophy. At 2 years, Has1-/-Has3-/- mice continue to present significantly larger MGs compared to age-matched wt mice. Has1-/-Has3-/- mice present increased lipid production, increased PPARγ expression and an increase in the number of proliferating cells when compared to wt mice at all-time points analyzed. Taken together, our data shows that a loss of the HA matrix surrounding the MG as mice age contributes towards ARMGD, and increasing Has2 expression, and consequently HA levels, prevents ARMGD in mice.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA; Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Isabel Y Moreno
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Mingxia Sun
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Tarsis Ferreira Gesteira
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA
| | - Vivien J Coulson-Thomas
- College of Optometry, University of Houston, 4401 Martin Luther King Boulevard, Houston, TX 77204-2020, USA.
| |
Collapse
|
8
|
Ahmed MS, Hasan NH, Saeed MG. Chemical analysis of mineral trioxide agregate mixed with hyaluronic acids as an accelerant. Braz Dent J 2023; 34:50-66. [PMID: 38133092 PMCID: PMC10742354 DOI: 10.1590/0103-6440202305549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/21/2023] [Indexed: 12/23/2023] Open
Abstract
MATERIALS AND METHOD Mineral trioxide aggregate (MTA) has many clinical applications in dentistry; the main drawback is the long setting. The main objective is to investigate and compare the chemical effect of using two commercially available hyaluronic acid hydrogels (HA) instead of distilled water for mixing MTA as an accelerant of setting time. Test materials were divided into three groups; Group 1: (control) mixing MTA with distilled water supplied by the manufacturer; Group 2: mixing MTA with a hybrid cooperative complex of high and low molecular weight HA (Profhilo®); Group 3: mixing MTA with High molecular weight / non-cross-linked HA (Jalupro®). Mixing time, and setting time (initial and final) were determined, Fourier-transform infrared spectroscopy, Energy-dispersive X-ray spectroscopy, Field emission Scanning Electron Microscopy, and X-ray diffraction were performed. RESULTS mixing time, initial, and final setting time for (MTA + HA) groups were significantly different and lower in comparison to the control group (p < 0.05). This study revealed higher expression of calcium silicate hydrate and calcium hydroxide expression with higher Ca release in the MTA + HA group than the control group. CONCLUSION commercially available HA demonstrated better chemical properties when used as a mixing medium for MTA. The Mixing and setting time for MTA + HA group were significantly shorter than those of the control group were. Thus, commercially available HA can be used as a mixing medium for MTA.
Collapse
Affiliation(s)
| | - Nadia H. Hasan
- Department of Conservative Dentistry, College of Dentistry,
University of Mosul, Mosul, Iraq
| | | |
Collapse
|
9
|
Costa FR, Costa Marques MR, Costa VC, Santos GS, Martins RA, Santos MDS, Santana MHA, Nallakumarasamy A, Jeyaraman M, Lana JVB, Lana JFSD. Intra-Articular Hyaluronic Acid in Osteoarthritis and Tendinopathies: Molecular and Clinical Approaches. Biomedicines 2023; 11:biomedicines11041061. [PMID: 37189679 DOI: 10.3390/biomedicines11041061] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Musculoskeletal diseases continue to rise on a global scale, causing significant socioeconomic impact and decreased quality of life. The most common disorders affecting musculoskeletal structures are osteoarthritis and tendinopathies, complicated orthopedic conditions responsible for major pain and debilitation. Intra-articular hyaluronic acid (HA) has been a safe, effective, and minimally invasive therapeutic tool for treating these diseases. Several studies from bedside to clinical practice reveal the multiple benefits of HA such as lubrication, anti-inflammation, and stimulation of cellular activity associated with proliferation, differentiation, migration, and secretion of additional molecules. Collectively, these effects have demonstrated positive outcomes that assist in the regeneration of chondral and tendinous tissues which are otherwise destroyed by the predominant catabolic and inflammatory conditions seen in tissue injury. The literature describes the physicochemical, mechanical, and biological properties of HA, their commercial product types, and clinical applications individually, while their interfaces are seldom reported. Our review addresses the frontiers of basic sciences, products, and clinical approaches. It provides physicians with a better understanding of the boundaries between the processes that lead to diseases, the molecular mechanisms that contribute to tissue repair, and the benefits of the HA types for a conscientious choice. In addition, it points out the current needs for the treatments.
Collapse
|
10
|
Lim J, Machin DR, Donato AJ. The role of hyaluronan in endothelial glycocalyx and potential preventative lifestyle strategy with advancing age. CURRENT TOPICS IN MEMBRANES 2023; 91:139-156. [PMID: 37080678 PMCID: PMC10464581 DOI: 10.1016/bs.ctm.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The endothelial glycocalyx (EG) is a gel-like structure that forms a layer in between the surface of the endothelium and lumen. EG was once thought to be merely a structural support for the endothelium. However, in recent years, the importance of EG as a first line of defense and a key regulator to endothelial integrity has been illuminated. With advanced age, EG deterioration becomes more noticeable and at least partially associated with endothelial dysfunction. Hyaluronan (HA), one of the critical components of the EG, has distinct properties and roles to the maintenance of EG and endothelial function. Therefore, given the intimate relationship between the EG and endothelium during the aging process, HA may serve as a promising therapeutic target to prevent endothelial dysfunction.
Collapse
Affiliation(s)
- Jisok Lim
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Daniel Robert Machin
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, FL, United States
| | - Anthony John Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States; Geriatric Research, Education, and Clinical Center, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, UT, United States; Department of Nutrition and Integrative Physiology, Salt Lake City, UT, United States; Department of Biochemistry, University of Utah, Salt Lake City, UT, United States; Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
11
|
Spadea A, Pingrajai P, Tirella A. Hyaluronic Acid-Based Nanotechnologies for Delivery and Treatment. BIOMEDICAL APPLICATIONS AND TOXICITY OF NANOMATERIALS 2023:103-128. [DOI: 10.1007/978-981-19-7834-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Kim JH. Hyaluronic acid suppresses the effect of di-(2-ethylhexyl) phthalate in HaCaT keratinocytes. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Fang XX, Wang H, Song HL, Wang J, Zhang ZJ. Neuroinflammation Involved in Diabetes-Related Pain and Itch. Front Pharmacol 2022; 13:921612. [PMID: 35795572 PMCID: PMC9251344 DOI: 10.3389/fphar.2022.921612] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) is a global epidemic with increasing incidence, which results in diverse complications, seriously affects the patient quality of life, and brings huge economic burdens to society. Diabetic neuropathy is the most common chronic complication of DM, resulting in neuropathic pain and chronic itch. The precise mechanisms of diabetic neuropathy have not been fully clarified, hindering the exploration of novel therapies for diabetic neuropathy and its terrible symptoms such as diabetic pain and itch. Accumulating evidence suggests that neuroinflammation plays a critical role in the pathophysiologic process of neuropathic pain and chronic itch. Indeed, researchers have currently made significant progress in knowing the role of glial cells and the pro-inflammatory mediators produced from glial cells in the modulation of chronic pain and itch signal processing. Here, we provide an overview of the current understanding of neuroinflammation in contributing to the sensitization of the peripheral nervous system (PNS) and central nervous system (CNS). In addition, we also summarize the inflammation mechanisms that contribute to the pathogenesis of diabetic itch, including activation of glial cells, oxidative stress, and pro-inflammatory factors. Targeting excessive neuroinflammation may provide potential and effective therapies for the treatment of chronic neuropathic pain and itch in DM.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
- Department of Medical Functional Laboratory, School of Medicine, Nantong University, Nantong, China
| | - Heng Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Hao-Lin Song
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Juan Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
14
|
Zakusilo FT, Kerry O'Banion M, Gelbard HA, Seluanov A, Gorbunova V. Matters of size: Roles of hyaluronan in CNS aging and disease. Ageing Res Rev 2021; 72:101485. [PMID: 34634492 PMCID: PMC8903057 DOI: 10.1016/j.arr.2021.101485] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
Involvement of extracellular matrix (ECM) components in aging and age-related neurodegeneration is not well understood. The role of hyaluronan (HA), a major extracellular matrix glycosaminoglycan, in malignancy and inflammation is gaining new understanding. In particular, the differential biological effects of high molecular weight (HMW-HA) and low molecular weight hyaluronan (LMW-HA), and the mechanism behind such differences are being uncovered. Tightly regulated in the brain, HA can have diverse effects on cellular development, growth and degeneration. In this review, we summarize the homeostasis and signaling of HA in healthy tissue, discuss its distribution and ontogeny in the central nervous system (CNS), summarize evidence for its involvement in age-related neurodegeneration and Alzheimer Disease (AD), and assess the potential of HA as a therapeutic target in the CNS.
Collapse
Affiliation(s)
- Frances Tolibzoda Zakusilo
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Harris A Gelbard
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA; Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
15
|
The Impact of Hyaluronic Acid on Tendon Physiology and Its Clinical Application in Tendinopathies. Cells 2021; 10:cells10113081. [PMID: 34831304 PMCID: PMC8625461 DOI: 10.3390/cells10113081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 01/17/2023] Open
Abstract
The physical-chemical, structural, hydrodynamic, and biological properties of hyaluronic acid within tendons are still poorly investigated. Medical history and clinical applications of hyaluronic acid for tendinopathies are still debated. In general, the properties of hyaluronic acid depend on several factors including molecular weight. Several preclinical and clinical experiences show a good efficacy and safety profile of hyaluronic acid, despite the absence of consensus in the literature regarding the classification according to molecular weight. In in vitro and preclinical studies, hyaluronic acid has shown physical-chemical properties, such as biocompatibility, mucoadhesivity, hygroscopicity, and viscoelasticity, useful to contribute to tendon healing. Additionally, in clinical studies, hyaluronic acid has been used with promising results in different tendinopathies. In this narrative review, findings encourage the clinical application of HA in tendinopathies such as rotator cuff, epicondylitis, Achilles, and patellar tendinopathy.
Collapse
|
16
|
Hansen L, Joseph G, Valdivia A, Taylor WR. Satellite Cell Expression of RAGE (Receptor for Advanced Glycation end Products) Is Important for Collateral Vessel Formation. J Am Heart Assoc 2021; 10:e022127. [PMID: 34689598 PMCID: PMC8751830 DOI: 10.1161/jaha.120.022127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The growth and remodeling of vascular networks is an important component of the prognosis for patients with peripheral artery disease. One protein that has been previously implicated to play a role in this process is RAGE (receptor for advanced glycation end products). This study sought to determine the cellular source of RAGE in the ischemic hind limb and the role of RAGE signaling in this cell type. Methods and Results Using a hind limb ischemia model of vascular growth, this study found skeletal muscle satellite cells to be a novel major cellular source of RAGE in ischemic tissue by both staining and cellular sorting. Although wild-type satellite cells increased tumor necrosis factor-α and monocyte chemoattractant protein-1 production in response to ischemia in vivo and a RAGE ligand in vitro, satellite cells from RAGE knockout mice lacked the increase in cytokine production both in vivo in response to ischemia and in vitro after stimuli with the RAGE ligand high-mobility group box 1. Furthermore, encapsulated wild-type satellite cells improved perfusion after hind limb ischemia surgery by both perfusion staining and vessel quantification, but RAGE knockout satellite cells provided no improvement over empty capsules. Conclusions Thus, RAGE expression and signaling in satellite cells is crucial for their response to stimuli and angiogenic and arteriogenic functions.
Collapse
Affiliation(s)
- Laura Hansen
- Division of Cardiology Department of Medicine Emory University Atlanta GA.,Division of Cardiology Atlanta Veterans Affairs Medical Center Decatur GA
| | - Giji Joseph
- Division of Cardiology Department of Medicine Emory University Atlanta GA
| | - Alejandra Valdivia
- Division of Cardiology Department of Medicine Emory University Atlanta GA
| | - W Robert Taylor
- Division of Cardiology Department of Medicine Emory University Atlanta GA.,Division of Cardiology Atlanta Veterans Affairs Medical Center Decatur GA.,The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA
| |
Collapse
|
17
|
Abdel-Razik A, Shabana W, El Nakib AM, Abdelsalam M, Abdelwahab A, Hasan AS, Elzehery R, Elhelaly R, Fathy AA, Mostafa SA, El-Wakeel N, Moemen D, Eldars W, Yassen AH. De Novo Hepatocellular Carcinoma in Hepatitis C-Related Cirrhosis: Are Advanced Glycation End Products a Key Driver? Front Cell Infect Microbiol 2021; 11:662431. [PMID: 34660332 PMCID: PMC8517490 DOI: 10.3389/fcimb.2021.662431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background and Purpose The advanced glycation end products (AGEs) have been implicated in different diseases’ pathogenesis, but their role in hepatocellular carcinoma (HCC) is still a matter of debate. This study aims to investigate the association of AGEs with HCC development in patients with hepatitis C-related cirrhosis. Methods Only 153 of the 181 non-diabetic patients with cirrhosis were consecutively involved in this pilot cohort prospective study, along with 34 healthy control participants. Demographic characteristics, biochemical parameters, clinical data, and AGEs levels in all subjects at the starting point and every year after that for two years were assessed. Multivariable Cox regression analysis was used to settle variables that could predict HCC development within this period. Results HCC developed in 13 (8.5%) patients. Univariate Cox regression analysis reported that body mass index (P=0.013), homeostatic model assessment-insulin resistance (P=0.006), alpha-fetoprotein (P <0.001), and AGEs levels (P <0.001) were related to HCC development. After adjusting multiple confounders, the multivariable Cox regression model has revealed that AFP and AGEs were the powerful parameters related to the HCC occurrence (all P<0.05). AGEs at a cutoff value of more than 79.6 ng/ml had 100% sensitivity, 96.4% specificity, and 0.999 area under the curve (all P<0.001), using the receiver operating characteristic curve, for prediction of HCC development. Conclusion This work suggests that AGEs are associated with an increased incidence of HCC, particularly in cirrhosis, which is encouraging in decreasing the risk of HCC in these patients.
Collapse
Affiliation(s)
- Ahmed Abdel-Razik
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Walaa Shabana
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Ahmed Mohamed El Nakib
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Mostafa Abdelsalam
- Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Ahmed Abdelwahab
- Nephrology and Dialysis Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Ahmad S Hasan
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Rasha Elzehery
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Rania Elhelaly
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Aya Ahmed Fathy
- Public Health and Community Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Sally Abdallah Mostafa
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Niveen El-Wakeel
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Dalia Moemen
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Waleed Eldars
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Ahmed H Yassen
- Tropical Medicine Department, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| |
Collapse
|
18
|
Crimaldi S, Liguori S, Tamburrino P, Moretti A, Paoletta M, Toro G, Iolascon G. The Role of Hyaluronic Acid in Sport-Related Tendinopathies: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1088. [PMID: 34684125 PMCID: PMC8537182 DOI: 10.3390/medicina57101088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023]
Abstract
Tendinopathy is a complex clinical condition with a rising incidence and prevalence, particularly during sports practice. For the return to play in affected patients, adequate functional and structural recovery of the tendon is the ultimate goal, avoiding the high risk of recurrence. In this perspective, local therapies alongside exercise are showing promising results. Despite evidence suggesting hyaluronic acid (HA) injections as effective in the treatment of tendinopathy, current recommendations about the management of this condition do not include this intervention. HA seems to be an effective therapeutic option for the management of sport-related tendinopathies, but further studies with a larger sample size are needed to confirm available findings. In this narrative review, we analyzed available literature about the rationale of the use of HA in the management of tendon injury and, particularly, in sport-related tendinopathies.
Collapse
Affiliation(s)
- Sergio Crimaldi
- Humanitas Clinical and Research Center—IRCCS, 20900 Milan, Italy;
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (A.M.); (M.P.); (G.T.); (G.I.)
| | - Pasquale Tamburrino
- Azienda USL Frosinone—UOC Ortopedia e Traumatologia, 03100 Frosinone, Italy;
| | - Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (A.M.); (M.P.); (G.T.); (G.I.)
| | - Marco Paoletta
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (A.M.); (M.P.); (G.T.); (G.I.)
| | - Giuseppe Toro
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (A.M.); (M.P.); (G.T.); (G.I.)
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, 80100 Naples, Italy; (A.M.); (M.P.); (G.T.); (G.I.)
| |
Collapse
|
19
|
He K, Luo X, Wen M, Wang C, Qin C, Shao J, Gan L, Dong R, Jiang H. Effect of acute ammonia toxicity on inflammation, oxidative stress and apoptosis in head kidney macrophage of Pelteobagrus fulvidraco and the alleviation of curcumin. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109098. [PMID: 34139380 DOI: 10.1016/j.cbpc.2021.109098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 12/18/2022]
Abstract
Ammonia is one of the most major pollutant and stress factors of aquaculture systems, and has seriously endangered fish health. However, few studies have been performed on mechanisms of the detrimental impact of ammonia stress and mitigation in fish. A study was carried out to investigate the response of genes involved in inflammation, antioxidation, polarization and apoptosis in head kidney macrophages to acute ammonia toxicity, and the alleviation effect of curcumin. The cells were divided into six groups, as follows: The control group composed of untreated macrophages (CON), the experimental groups, consisting of macrophages treated with 0.23 mg L-1 ammonia (AM), 45 μmol L-1 curcumin (CUR), 0.23 mg L-1 ammonia and 5 μmol L-1 curcumin (5A), 0.23 mg L-1 ammonia and 25 μmol L-1 curcumin (25A), 0.23 mg L-1 ammonia and 45 μmol L-1 curcumin (45A). The cells were pretreated with different concentrations of curcumin for 1 h and then incubated with ammonia for 24 h. The results showed that ammonia poisoning could increase ROS levels, up-regulate the expression of antioxidant enzymes (SOD and GPx), inflammatory cytokines (IL-1, IL-6 and TNF-α) and inflammatory mediators (NF-κB p65 and COX-2), decrease cell viability, down-regulate the expression of M2 marker (Arg-1) and anti-apoptosis (Bcl-2), but curcumin could alleviate the adverse effect of ammonia toxicity. Overall, these results have important implications for understanding of the mechanism of ammonia toxicity and the mitigating effect of curcumin in fish.
Collapse
Affiliation(s)
- Kewei He
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Xueping Luo
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Ming Wen
- College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory for Animal Diseases and Veterinary Public Health of Guizhou Province, Guiyang 550025, China.
| | - Changan Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China.
| | - Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of theYangtze River, Neijiang Normal University, Neijiang 641100, China.
| | - Jian Shao
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Lei Gan
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Ranran Dong
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China.
| | - Haibo Jiang
- Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory for Animal Diseases and Veterinary Public Health of Guizhou Province, Guiyang 550025, China.
| |
Collapse
|
20
|
Jhundoo HD, Siefen T, Liang A, Schmidt C, Lokhnauth J, Moulari B, Béduneau A, Pellequer Y, Larsen CC, Lamprecht A. Hyaluronic Acid Increases Anti-Inflammatory Efficacy of Rectal 5-Amino Salicylic Acid Administration in a Murine Colitis Model. Biomol Ther (Seoul) 2021; 29:536-544. [PMID: 34059563 PMCID: PMC8411025 DOI: 10.4062/biomolther.2020.227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 11/05/2022] Open
Abstract
5-amino salicylic acid (5-ASA) is a standard therapy for the treatment of mild to moderate forms of inflammatory bowel diseases (IBD) whereas more severe forms involve the use of steroids and immunosuppressive drugs. Hyaluronic acid (HA) is a naturally occurring non-sulfated glycosaminoglycan that has shown epithelium protective effects in experimental colitis recently. In this study, both 5-ASA (30 mg/kg) and HA (15 mg/kg or 30 mg/kg) were administered rectally and investigated for their potential complementary therapeutic effects in moderate or severe murine colitis models. Intrarectal treatment of moderate and severe colitis with 5-ASA alone or HA alone at a dose of 30 mg/kg led to a significant decrease in clinical activity and histology scores, myeloperoxidase activity (MPO), TNF-α, IL-6 and IL-1β in colitis mice compared to untreated animals. The combination of HA (30 mg/kg) and 5-ASA in severe colitis led to a significant improvement of colitis compared to 5-ASA alone. Combined rectal therapy with HA and 5-ASA could be a treatment alternative for severe cases of IBD as it was the only treatment tested that was not significantly different from the healthy control group. This study further underlines the benefit of searching for yet unexplored drug combinations that show therapeutic potential in IBD without the need of designing completely new drug entities.
Collapse
Affiliation(s)
- Henusha D Jhundoo
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn 53121, Germany
| | - Tobias Siefen
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn 53121, Germany
| | | | | | | | - Brice Moulari
- PEPITE (EA4267) University of Burgundy / Franche-Comté, Besançon 25000, France
| | - Arnaud Béduneau
- PEPITE (EA4267) University of Burgundy / Franche-Comté, Besançon 25000, France
| | - Yann Pellequer
- PEPITE (EA4267) University of Burgundy / Franche-Comté, Besançon 25000, France
| | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn 53121, Germany.,PEPITE (EA4267) University of Burgundy / Franche-Comté, Besançon 25000, France
| |
Collapse
|
21
|
Nwadiugwu MC. Inflammatory Activities in Type 2 Diabetes Patients With Co-morbid Angiopathies and Exploring Beneficial Interventions: A Systematic Review. Front Public Health 2021; 8:600427. [PMID: 33569370 PMCID: PMC7868423 DOI: 10.3389/fpubh.2020.600427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Diabetes is a long-term condition that can be treated and controlled but do not yet have a cure; it could be induced by inflammation and the goal of managing it is to prevent additional co-morbidities and reduce glycemic fluctuations. There is a need to examine inflammatory activities in diabetes-related angiopathies and explore interventions that could reduce the risk for future outcome or ameliorate its effects to provide insights for improved care and management strategies. Method: The study was conducted in Embase (1946–2020), Ovid Medline (1950–2020), and PubMed databases (1960–2020) using the PICO framework. Primary studies (randomized controlled trials) on type 2 diabetes mellitus and inflammatory activities in diabetes-related angiopathies were included. Terms for the review were retrieved from the Cochrane library and from PROSPERO using its MeSH thesaurus qualifiers. Nine articles out of 454 total hits met the eligibility criteria. The quality assessment for the selected study was done using the Center for Evidence-Based Medicine Critical Appraisal Sheet. Results: Data analysis showed that elevated CRP, TNF-α, and IL-6 were the most commonly found inflammatory indicator in diabetes-related angiopathies, while increased IL-10 and soluble RAGE was an indicator for better outcome. Use of drugs such as salsalate, pioglitazone, simvastatin, and fenofibrate but not glimepiride or benfotiamine reported a significant decrease in inflammatory events. Regular exercise and consumption of dietary supplements such as ginger, hesperidin which have anti-inflammatory properties, and those containing prebiotic fibers (e.g., raspberries) revealed a consistent significant (p < 0.05) reduction in inflammatory activities. Conclusion: Inflammatory activities are implicated in diabetes-related angiopathies; regular exercise, the intake of healthy dietary supplements, and medications with anti-inflammatory properties could result in improved protective risk outcome for diabetes patients by suppressing inflammatory activities and elevating anti-inflammatory events.
Collapse
Affiliation(s)
- Martin C Nwadiugwu
- Faculty of Health and Sports, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
22
|
Beeraka NM, Bovilla VR, Doreswamy SH, Puttalingaiah S, Srinivasan A, Madhunapantula SV. The Taming of Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) Deglycation by Fructosamine-3-Kinase (FN3K)-Inhibitors-A Novel Strategy to Combat Cancers. Cancers (Basel) 2021; 13:cancers13020281. [PMID: 33466626 PMCID: PMC7828646 DOI: 10.3390/cancers13020281] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Aim of this review is to provide an overview on (a) Fructosamine-3-Kinase (FN3K) and its role in regulating Nuclear Factor Erythorid-2-Related Factor-2 (Nrf2); (b) the role of glycation and deglycation mechanisms in modulating the functional properties of proteins, in particular, the Nrf2; (c) the dual role of Nrf2 in the prevention and treatment of cancers. Since controlling the glycation of Nrf2 is one of the key mechanisms determining the fate of a cell; whether to get transformed into a cancerous one or to stay as a normal one, it is important to regulate Nrf2 and deglycating FN3K using pharmacological agents. Inhibitors of FN3K are being explored currently to modulate Nrf2 activity thereby control the cancers. Abstract Glycated stress is mediated by the advanced glycation end products (AGE) and the binding of AGEs to the receptors for advanced glycation end products (RAGEs) in cancer cells. RAGEs are involved in mediating tumorigenesis of multiple cancers through the modulation of several downstream signaling cascades. Glycated stress modulates various signaling pathways that include p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa–B (NF-κB), tumor necrosis factor (TNF)-α, etc., which further foster the uncontrolled proliferation, growth, metastasis, angiogenesis, drug resistance, and evasion of apoptosis in several cancers. In this review, a balanced overview on the role of glycation and deglycation in modulating several signaling cascades that are involved in the progression of cancers was discussed. Further, we have highlighted the functional role of deglycating enzyme fructosamine-3-kinase (FN3K) on Nrf2-driven cancers. The activity of FN3K is attributed to its ability to deglycate Nrf2, a master regulator of oxidative stress in cells. FN3K is a unique protein that mediates deglycation by phosphorylating basic amino acids lysine and arginine in various proteins such as Nrf2. Deglycated Nrf2 is stable and binds to small musculoaponeurotic fibrosarcoma (sMAF) proteins, thereby activating cellular antioxidant mechanisms to protect cells from oxidative stress. This cellular protection offered by Nrf2 activation, in one way, prevents the transformation of a normal cell into a cancer cell; however, in the other way, it helps a cancer cell not only to survive under hypoxic conditions but also, to stay protected from various chemo- and radio-therapeutic treatments. Therefore, the activation of Nrf2 is similar to a double-edged sword and, if not controlled properly, can lead to the development of many solid tumors. Hence, there is a need to develop novel small molecule modulators/phytochemicals that can regulate FN3K activity, thereby maintaining Nrf2 in a controlled activation state.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Venugopal R. Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Public Health Research Institute of India (PHRII), Mysuru, Karnataka 570020, India
| | - Shalini H. Doreswamy
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Sujatha Puttalingaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
| | - Asha Srinivasan
- Division of Nanoscience and Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India;
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India; (N.M.B.); (V.R.B.); (S.H.D.); (S.P.)
- Special Interest Group in Cancer Biology and Cancer Stem Cells, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka 570015, India
- Correspondence: ; Tel.: +91-810-527-8621
| |
Collapse
|
23
|
Effects of the age/rage axis in the platelet activation. Int J Biol Macromol 2020; 166:1149-1161. [PMID: 33161078 DOI: 10.1016/j.ijbiomac.2020.10.270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/28/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
Platelet activity is essential in cardiovascular diseases. Therefore our objective was to evaluate the main effects of activating RAGE in platelets which are still unknown. A search for RAGE expression in different databases showed poor or a nonexistent presence in platelets. We confirmed the expression in platelets and secreted variable of RAGE (sRAGE). Platelets from elderly adults expressed in resting showed 3.2 fold more RAGE from young individuals (p < 0.01) and 3.3 fold with TRAP-6 (p < 0.001). These results could indicate that the expression of RAGE is more inducible in older adults. Then we found that activating RAGE with AGE-BSA-derived from methylglyoxal and subthreshold TRAP-6, showed a considerable increase with respect to the control in platelet aggregation and expression of P-selectin (respectively, p < 0.01). This effect was almost completely blocked by using a specific RAGE inhibitor (FSP-ZM1), confirming that RAGE is important for the function and activation platelet. Finally, we predict the region stimulated by AGE-BSA is located in region V of RAGE and 13 amino acids are critical for its binding. In conclusion, the activation of RAGE affects platelet activation and 13 amino acids are critical for its stimulation, this information is crucial for future possible treatments for CVD.
Collapse
|
24
|
Rooney PR, Kannala VK, Kotla NG, Benito A, Dupin D, Loinaz I, Quinlan LR, Rochev Y, Pandit A. A high molecular weight hyaluronic acid biphasic dispersion as potential therapeutics for interstitial cystitis. J Biomed Mater Res B Appl Biomater 2020; 109:864-876. [PMID: 33103826 PMCID: PMC8246519 DOI: 10.1002/jbm.b.34751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/12/2020] [Accepted: 10/17/2020] [Indexed: 01/13/2023]
Abstract
Interstitial cystitis (IC) is a progressive bladder disease characterized by increased urothelial permeability, inflammation of the bladder with abdominal pain. While there is no consensus on the etiology of the disease, it was believed that restoring the barrier between urinary solutes and (GAG) urothelium would interrupt the progression of this disease. Currently, several treatment options include intravesical delivery of hyaluronic acid (HA) and/or chondroitin sulfate solutions, through a catheter to restore the urothelial barrier, but have shown limited success in preclinical, clinical trials. Herein we report for the first time successful engineering and characterization of biphasic system developed by combining cross‐linked hyaluronic acid and naïve HA solution to decrease inflammation and permeability in an in vitro model of interstitial cystitis. The cross‐linking of HA was performed by 4‐arm‐polyethyeleneamine chemistry. The HA formulations were tested for their viscoelastic properties and the effects on cell metabolism, inflammatory markers, and permeability. Our study demonstrates the therapeutic effects of different ratios of the biphasic system and reports their ability to increase the barrier effect by decreasing the permeability and alteration of cell metabolism with respect to relative controls. Restoring the barrier by using biphasic system of HA therapy may be a promising approach to IC.
Collapse
Affiliation(s)
- Peadar R Rooney
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Vijaya Krishna Kannala
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Ana Benito
- CIDETEC, Parque Científicoy Tecnológico de Gipuzkoa, San Sebastián, Spain
| | - Damien Dupin
- CIDETEC, Parque Científicoy Tecnológico de Gipuzkoa, San Sebastián, Spain
| | - Iraida Loinaz
- CIDETEC, Parque Científicoy Tecnológico de Gipuzkoa, San Sebastián, Spain
| | - Leo R Quinlan
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.,Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.,Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russian Federation
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
25
|
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res Rev 2020; 62:101097. [PMID: 32540391 DOI: 10.1016/j.arr.2020.101097] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Damage accumulation in long-living macromolecules (especially extracellular matrix (ECM) proteins, nuclear pore complex (NPC) proteins, and histones) is a missing hallmark of aging. Stochastic non-enzymatic modifications of ECM trigger cellular senescence as well as many other hallmarks of aging affect organ barriers integrity and drive tissue fibrosis. The importance of it for aging makes it a key target for interventions. The most promising of them can be AGE inhibitors (chelators, O-acetyl group or transglycating activity compounds, amadorins and amadoriases), glucosepane breakers, stimulators of elastogenesis, and RAGE antagonists.
Collapse
Affiliation(s)
- Alexander Fedintsev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| |
Collapse
|
26
|
Singampalli KL, Balaji S, Wang X, Parikh UM, Kaul A, Gilley J, Birla RK, Bollyky PL, Keswani SG. The Role of an IL-10/Hyaluronan Axis in Dermal Wound Healing. Front Cell Dev Biol 2020; 8:636. [PMID: 32850791 PMCID: PMC7396613 DOI: 10.3389/fcell.2020.00636] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Scar formation is the typical endpoint of postnatal dermal wound healing, which affects more than 100 million individuals annually. Not only do scars cause a functional burden by reducing the biomechanical strength of skin at the site of injury, but they also significantly increase healthcare costs and impose psychosocial challenges. Though the mechanisms that dictate how dermal wounds heal are still not completely understood, they are regulated by extracellular matrix (ECM) remodeling, neovascularization, and inflammatory responses. The cytokine interleukin (IL)-10 has emerged as a key mediator of the pro- to anti-inflammatory transition that counters collagen deposition in scarring. In parallel, the high molecular weight (HMW) glycosaminoglycan hyaluronan (HA) is present in the ECM and acts in concert with IL-10 to block pro-inflammatory signals and attenuate fibrotic responses. Notably, high concentrations of both IL-10 and HMW HA are produced in early gestational fetal skin, which heals scarlessly. Since fibroblasts are responsible for collagen deposition, it is critical to determine how the concerted actions of IL-10 and HA drive their function to potentially control fibrogenesis. Beyond their independent actions, an auto-regulatory IL-10/HA axis may exist to modulate the magnitude of CD4+ effector T lymphocyte activation and enhance T regulatory cell function in order to reduce scarring. This review underscores the pathophysiological impact of the IL-10/HA axis as a multifaceted molecular mechanism to direct primary cell responders and regulators toward either regenerative dermal tissue repair or scarring.
Collapse
Affiliation(s)
- Kavya L Singampalli
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States.,Department of Bioengineering, Rice University, Houston, TX, United States.,Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Swathi Balaji
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Xinyi Wang
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Umang M Parikh
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Aditya Kaul
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Jamie Gilley
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States.,Division of Neonatology, Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States
| | | | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Sundeep G Keswani
- Laboratory for Regenerative Tissue Repair, Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
27
|
Zińczuk J, Maciejczyk M, Zaręba K, Pryczynicz A, Dymicka-Piekarska V, Kamińska J, Koper-Lenkiewicz O, Matowicka-Karna J, Kędra B, Zalewska A, Guzińska-Ustymowicz K. Pro-Oxidant Enzymes, Redox Balance and Oxidative Damage to Proteins, Lipids and DNA in Colorectal Cancer Tissue. Is Oxidative Stress Dependent on Tumour Budding and Inflammatory Infiltration? Cancers (Basel) 2020; 12:E1636. [PMID: 32575703 PMCID: PMC7352177 DOI: 10.3390/cancers12061636] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
This study is the first to assess redox homeostasis in patients with colorectal cancer (CRC) in respect to histopathological parameters associated with the tumour microenvironment such as tumour budding and inflammatory infiltration. Pro-oxidant enzymes (NADPH oxidase (NOX), xanthine oxidase (XO)), antioxidant barrier (Cu,Zn-superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced glutathione (GSH)), redox status (total antioxidant (TAC)/oxidant status (TOS)) and oxidative damage products (advanced glycation end products (AGE), advanced oxidation protein products (AOPP), malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG)) were determined in both the normal and cancerous tissue of 29 CRC patients. The activity of NOX (p < 0.01) and XO (p = 0.01), as well as SOD (p < 0.0001), CAT (p < 0.0001) and TAC level (p < 0.01) were significantly higher in tumour tissue than in normal colon mucosa. Oxidative damage products (AGE-p < 0.01, AOPP-p < 0.001, MDA-p < 0.001, 8-OHdG-p < 0.0001) were also higher in cancerous colon tissue. Furthermore, we observed that CAT (p < 0.05) and XO (p < 0.05) activity depends on the intensity of inflammatory infiltration. Oxidative stress index (OSI) (p < 0.05) and MDA (p < 0.01) values were significantly higher in patients with tumour budding (TB) > 5 versus cases with TB < 5. However, OSI level did not differ significantly between cancer and normal tissue. Our results confirm that CRC is associated with enzymatic/non-enzymatic redox imbalance and increased oxidative damage to proteins, lipids and DNA. The determination of these biomarkers could be useful for the evaluation of the tumour progression.
Collapse
Affiliation(s)
- Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Białystok, Poland; (V.D.-P.); (J.K.); (O.K.-L.); (J.M.-K.)
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Białystok, Poland
| | - Konrad Zaręba
- 2nd Clinical Department of General and Gastroenterological Surgery, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (K.Z.); (B.K.)
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Białystok, Poland; (A.P.); (K.G.-U.)
| | - Violetta Dymicka-Piekarska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Białystok, Poland; (V.D.-P.); (J.K.); (O.K.-L.); (J.M.-K.)
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Białystok, Poland; (V.D.-P.); (J.K.); (O.K.-L.); (J.M.-K.)
| | - Olga Koper-Lenkiewicz
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Białystok, Poland; (V.D.-P.); (J.K.); (O.K.-L.); (J.M.-K.)
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Waszyngtona 15a, 15-269 Białystok, Poland; (V.D.-P.); (J.K.); (O.K.-L.); (J.M.-K.)
| | - Bogusław Kędra
- 2nd Clinical Department of General and Gastroenterological Surgery, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276 Białystok, Poland; (K.Z.); (B.K.)
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Białystok, Poland;
| | - Katarzyna Guzińska-Ustymowicz
- Department of General Pathomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Białystok, Poland; (A.P.); (K.G.-U.)
| |
Collapse
|
28
|
Li M, Meng N, Guo X, Niu X, Zhao Z, Wang W, Xie X, Lv P. Dl-3-n-Butylphthalide Promotes Remyelination and Suppresses Inflammation by Regulating AMPK/SIRT1 and STAT3/NF-κB Signaling in Chronic Cerebral Hypoperfusion. Front Aging Neurosci 2020; 12:137. [PMID: 32581761 PMCID: PMC7296049 DOI: 10.3389/fnagi.2020.00137] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Demyelination in vascular dementia (VD) is partly attributable to inflammation induced by chronic cerebral hypoperfusion (CCH). Remyelination contributes to the recovery of cognitive impairment by inducing the proliferation and differentiation of oligodendrocyte progenitor cells. It was previously reported that Dl-3-n-butylphthalide (NBP) promotes cognitive improvement. However, whether NBP can stimulate remyelination and suppress inflammation after CCH remains unclear. To answer this question, the present study investigated the effects of NBP on remyelination in a rat model of CCH established by bilateral carotid artery occlusion. Functional recovery was evaluated with the Morris water maze (MWM) test, and myelin integrity, regeneration of mature oligodendrocytes, and inhibition of astrocyte proliferation were assessed by immunohistochemistry and histologic analysis. Additionally, activation of 5′ AMP-activated protein kinase (AMPK)/Sirtuin (SIRT)1 and Signal transducer and activator of transcription (STAT)3/nuclear factor (NF)-κB signaling pathways was evaluated by western blotting. The results showed that NBP treatment improved memory and learning performance in CCH rats, which was accompanied by increased myelin integrity and oligodendrocyte regeneration, and reduced astrocyte proliferation and inflammation. Additionally, NBP induced the activation of AMPK/SIRT1 signaling while inhibiting the STAT3/NF-κB pathway. These results indicate that NBP alleviates cognitive impairment following CCH by promoting remyelination and suppressing inflammation via modulation of AMPK/SIRT1 and STAT3/NF-κB signaling.
Collapse
Affiliation(s)
- Meixi Li
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Nan Meng
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Xin Guo
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
| | - Xiaoli Niu
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Zhongmin Zhao
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
| | - Wei Wang
- Department of Neurology, Hebei Medical University, Shijiazhuang, China
| | - Xiaohua Xie
- Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
29
|
Studies on the Mechanisms of Anti-Inflammatory Activity of Heparin- and Hyaluronan-Containing Multilayer Coatings-Targeting NF-κB Signalling Pathway. Int J Mol Sci 2020; 21:ijms21103724. [PMID: 32466274 PMCID: PMC7279165 DOI: 10.3390/ijms21103724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
The use of implants can be hampered by chronic inflammatory reactions, which may result in failure of the implanted device. To prevent such an outcome, the present study examines the anti-inflammatory properties of surface coatings made of either hyaluronic acid (HA) or heparin (Hep) in combination with chitosan (Chi) prepared as multilayers through the layer-by-layer (LbL) technique. The properties of glycosaminoglycan (GAG)-modified surfaces were characterized in terms of surface topography, thickness and wettability. Results showed a higher thickness and hydrophilicity after multilayer formation compared to poly (ethylene imine) control samples. Moreover, multilayers containing either HA or Hep dampened the inflammatory response visible by reduced adhesion, formation of multinucleated giant cells (MNGCs) and IL-1β release, which was studied using THP-1 derived macrophages. Furthermore, investigations regarding the mechanism of anti-inflammatory activity of GAG were focused on nuclear transcription factor-кB (NF-κB)-related signal transduction. Immunofluorescence staining of the p65 subunit of NF-κB and immunoblotting were performed that showed a significant decrease in NF-κB level in macrophages on GAG-based multilayers. Additionally, the association of FITC-labelled GAG was evaluated by confocal laser scanning microscopy and flow cytometry showing that macrophages were able to associate with and take up HA and Hep. Overall, the Hep-based multilayers demonstrated the most suppressive effect making this system most promising to control macrophage activation after implantation of medical devices. The results provide an insight on the anti-inflammatory effects of GAG not only based on their physicochemical properties, but also related to their mechanism of action toward NF-κB signal transduction.
Collapse
|
30
|
Lengers I, Herrmann F, Le Borgne M, Jose J. Improved Surface Display of Human Hyal1 and Identification of Testosterone Propionate and Chicoric Acid as New Inhibitors. Pharmaceuticals (Basel) 2020; 13:E54. [PMID: 32224932 PMCID: PMC7243119 DOI: 10.3390/ph13040054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 02/03/2023] Open
Abstract
Degradation of high molecular weight hyaluronic acid (HA) in humans is mainly catalyzed by hyaluronidase Hyal1. This enzyme is involved in many pathophysiological processes and therefore appears an interesting target for drug discovery. Until now, only a few inhibitors of human Hyal1 are known due to obstacles in obtaining active enzymes for inhibitor screening. The aim of the present work was to provide a convenient enzyme activity assay and show its feasibility by the identification of new inhibitors. By autodisplay, Escherichia coli F470 can present active Hyal1 on its surface. In this study, the inducible expression of Hyal1 on the cell surface of E. coli under the control of a rhamnose-dependent promoter (Prha) was performed and optimized. Enzyme activity per single cell was increased by a factor of 100 compared to the constitutive Hyal1 surface display, as described before. An activity of 6.8 × 10-4 mU per single cell was obtained under optimal reaction conditions. By this modified activity assay, two new inhibitors of human Hyal1 were identified. Chicoric acid, a natural compound belonging to the phenylpropanoids, showed an IC50 value of 171 µM. The steroid derivative testosterone propionate showed and IC50 value of 124 ± 1.1 µM. Both values were in the same order of magnitude as the IC50 value of glycyrrhizic acid (177 µM), one of the best known inhibitors of human Hyal1 known so far. In conclusion, we established a new enzyme activity assay for human Hyal1 and identified new inhibitors with this new assay method.
Collapse
Affiliation(s)
- Isabelle Lengers
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westfälische Wilhelms-Universtität Münster, 48149 Münster, Germany;
| | - Fabian Herrmann
- Institute of Pharmaceutical Biology and Phytochemistry, PharmaCampus, Westfälische Wilhelms-Universtität Münster, 48149 Münster, Germany;
| | - Marc Le Borgne
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie—ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453—INSERM US7, 8 Avenue Rockefeller, F-69373 Lyon CEDEX 8, France;
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westfälische Wilhelms-Universtität Münster, 48149 Münster, Germany;
| |
Collapse
|
31
|
Kayhan Kuştepe E, Bahar L, Zayman E, Sucu N, Gül S, Gül M. A light microscopic investigation of the renoprotective effects of α-lipoic acid and α-tocopherol in an experimental diabetic rat model. Biotech Histochem 2020; 95:305-316. [PMID: 32013590 DOI: 10.1080/10520295.2019.1695942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We investigated the effects of α-lipoic acid (AL) and α-tocopherol (AT) on renal histopathology in a streptozotocin (STZ) induced diabetic rat model. Adult male rats were divided into six groups: group 1, saline only; group 2, AL only; group 3, AT only; group 4, STZ only; group 5, STZ + AL; group 6 STZ + AT. Experimental diabetes was induced by STZ. AL and AT were administered for 15 days. Kidney sections were examined using a light microscope after hematoxylin and eosin (H & E), periodic acid-Schiff (PAS) and caspase-3 staining. Histological damage to glomeruli, tubule epithelial cells and basement membrane was observed in group 4. Administration of AT and AL reduced renal injury in the diabetic rats. Group 5 exhibited a greater curative effect on diabetic rats than group 6. AT and AL may be useful for preventing diabetic renal damage.
Collapse
Affiliation(s)
- Elif Kayhan Kuştepe
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Leyla Bahar
- Department of Medical Services and Techniques, Vocational School of Health Services, Mersin University, Mersin, Turkey
| | - Emrah Zayman
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nehir Sucu
- Department of Cardiovascular Surgery, Medical Faculty, Mersin University, Mersin, Turkey
| | - Semir Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
32
|
Lee SR, An EJ, Kim J, Bae YS. Function of NADPH Oxidases in Diabetic Nephropathy and Development of Nox Inhibitors. Biomol Ther (Seoul) 2020; 28:25-33. [PMID: 31875663 PMCID: PMC6939690 DOI: 10.4062/biomolther.2019.188] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Several recent studies have reported that reactive oxygen species (ROS), superoxide anion and hydrogen peroxide (H2O2), play important roles in various cellular signaling networks. NADPH oxidase (Nox) isozymes have been shown to mediate receptor-mediated ROS generation for physiological signaling processes involved in cell growth, differentiation, apoptosis, and fibrosis. Detectable intracellular levels of ROS can be induced by the electron leakage from mitochondrial respiratory chain as well as by activation of cytochrome p450, glucose oxidase and xanthine oxidase, leading to oxidative stress. The up-regulation and the hyper-activation of NADPH oxidases (Nox) also likely contribute to oxidative stress in pathophysiologic stages. Elevation of the renal ROS level through hyperglycemia-mediated Nox activation results in the oxidative stress which induces a damage to kidney tissues, causing to diabetic nephropathy (DN). Nox inhibitors are currently being developed as the therapeutics of DN. In this review, we summarize Nox-mediated ROS generation and development of Nox inhibitors for therapeutics of DN treatment.
Collapse
Affiliation(s)
- Sae Rom Lee
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Eun Jung An
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yun Soo Bae
- Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
33
|
Atherosclerosis and the Capillary Network; Pathophysiology and Potential Therapeutic Strategies. Cells 2019; 9:cells9010050. [PMID: 31878229 PMCID: PMC7016600 DOI: 10.3390/cells9010050] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis and associated ischemic organ dysfunction represent the number one cause of mortality worldwide. While the key drivers of atherosclerosis, arterial hypertension, hypercholesterolemia and diabetes mellitus, are well known disease entities and their contribution to the formation of atherosclerotic plaques are intensively studied and well understood, less effort is put on the effect of these disease states on microvascular structure an integrity. In this review we summarize the pathological changes occurring in the vascular system in response to prolonged exposure to these major risk factors, with a particular focus on the differences between these pathological alterations of the vessel wall in larger arteries as compared to the microcirculation. Furthermore, we intend to highlight potential therapeutic strategies to improve microvascular function during atherosclerotic vessel disease.
Collapse
|
34
|
Krishnasamy S, Rajaraman B, Ravi V, Rajagopal R, Ganeshprasad A, Kuppuswamy AA, Pathak A, Dhevasena CS, Swaminathan K, Sundaresan M, Ramadas N, Vedantham S. Association of advanced glycation end products (AGEs) with endothelial dysfunction, oxidative stress in gestational diabetes mellitus (GDM). Int J Diabetes Dev Ctries 2019. [DOI: 10.1007/s13410-019-00766-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
Zhang SY, Ji SX, Bai XM, Yuan F, Zhang LH, Li J. L-3-n-butylphthalide attenuates cognitive deficits in db/db diabetic mice. Metab Brain Dis 2019; 34:309-318. [PMID: 30506335 DOI: 10.1007/s11011-018-0356-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 11/25/2018] [Indexed: 12/30/2022]
Abstract
Numerous epidemiological studies have shown that diabetes mellitus (DM) is associated with dementia and cognition decline. However, there is currently no effective treatment for diabetes-induced cognitive dysfunction. The neuroprotective effect of L-3-n-butylphthalide (L-NBP) has been demonstrated in vascular dementia animal models. The purpose of this study was to determine whether L-NBP can ameliorate cognitive deficits in db/db mice, a model of obesity and type 2 diabetes. The mice were administered with vehicle or L-NBP (120 mg/kg) by gavage daily for 6 weeks. Then, Morris water maze tasks were performed, and hippocampal LTP was recorded in vivo. Next, the synaptic structure of the CA1 hippocampus region was investigated via electron microscopy. Finally, the expression levels of MDA, SOD, 8-OHdG, and NADPH oxidase subunits gp91 and p67, as well as the expression of NF-κB p65, TNF-α, IL-1β and caspase-3 were measured by Western blot, RT-PCR and ELISA. Treatment with L-NBP significantly attenuated the learning and memory deficits in db/db mice. Concomitantly, L-NBP also increased hippocampus synaptic plasticity, characterized by an enhanced in vivo LTP, and suppressed oxidative stress, as indicated by increased SOD activity and decreased MDA, 8-OHdG, and NADPH oxidase subunits p67 and gp91. L-NBP also significantly decreased NF-κB p65, TNF-α, IL-1βand caspase-3 levels in the hippocampus. L-NBP significantly ameliorated cognitive decline in type 2 diabetic mice, and this effect was accompanied by an improvement in hippocampal plasticity and an amelioration of oxidative stress, inflammation and apoptosis cascades. Thus, L-NBP may be a promising therapeutic agent against DM-mediated cognitive dysfunction.
Collapse
Affiliation(s)
- Song-Yun Zhang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road Xinhua District, Shijiazhuang, 050000, People's Republic of China.
| | - Su-Xiao Ji
- Department of Endocrinology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road Xinhua District, Shijiazhuang, 050000, People's Republic of China
- Department of Endocrinology, Handan First Hospital, Handan, China
| | - Xiao-Mei Bai
- Department of Endocrinology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road Xinhua District, Shijiazhuang, 050000, People's Republic of China
| | - Fang Yuan
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Hui Zhang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road Xinhua District, Shijiazhuang, 050000, People's Republic of China
| | - Jie Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, No. 215 Heping West Road Xinhua District, Shijiazhuang, 050000, People's Republic of China
| |
Collapse
|
36
|
Saidian M, Lakey JR, Ponticorvo A, Rowland R, Baldado M, Williams J, Pronda M, Alexander M, Flores A, Shiri L, Zhang S, Choi B, Kohen R, Tromberg BJ, Durkin AJ. Characterisation of impaired wound healing in a preclinical model of induced diabetes using wide-field imaging and conventional immunohistochemistry assays. Int Wound J 2019; 16:144-152. [PMID: 30273979 PMCID: PMC6329645 DOI: 10.1111/iwj.13005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022] Open
Abstract
Major complications of diabetes lead to inflammation and oxidative stress, delayed wound healing, and persistent ulcers. The high morbidity, mortality rate, and associated costs of management suggest a need for non-invasive methods that will enable the early detection of at-risk tissue. We have compared the wound-healing process that occurs in streptozotocin (STZ)-treated diabetic rats with non-diabetic controls using contrast changes in colour photography (ie, Weber Contrast) and the non-invasive optical method Spatial Frequency Domain Imaging (SFDI). This technology can be used to quantify the structural and metabolic properties of in-vivo tissue by measuring oxyhaemoglobin concentration (HbO2 ), deoxyhaemoglobin concentration (Hb), and oxygen saturation (StO2 ) within the visible boundaries of each wound. We also evaluated the changes in inducible nitric oxide synthase (iNOS) in the dermis using immunohistochemistry. Contrast changes in colour photographs showed that diabetic rats healed at a slower rate in comparison with non-diabetic control, with the most significant change occurring at 7 days after the punch biopsy. We observed lower HbO2 , StO2 , and elevated Hb concentrations in the diabetic wounds. The iNOS level was higher in the dermis of the diabetic rats compared with the non-diabetic rats. Our results showed that, in diabetes, there is higher level of iNOS that can lead to an observed reduction in HbO2 levels. iNOS is linked to increased inflammation, leading to prolonged wound healing. Our results suggest that SFDI has potential as a non-invasive assessment of markers of wound-healing impairment.
Collapse
Affiliation(s)
- Mayer Saidian
- The Institute for Drug Research, School of PharmacyThe Hebrew University of JerusalemJerusalemIsrael
- Beckman Laser Institute and Medical ClinicUniversity of California IrvineIrvineCalifornia
| | | | - Adrien Ponticorvo
- Beckman Laser Institute and Medical ClinicUniversity of California IrvineIrvineCalifornia
| | - Rebecca Rowland
- Beckman Laser Institute and Medical ClinicUniversity of California IrvineIrvineCalifornia
| | - Melissa Baldado
- Beckman Laser Institute and Medical ClinicUniversity of California IrvineIrvineCalifornia
| | - Joshua Williams
- Beckman Laser Institute and Medical ClinicUniversity of California IrvineIrvineCalifornia
| | - Maaikee Pronda
- Beckman Laser Institute and Medical ClinicUniversity of California IrvineIrvineCalifornia
| | - Michael Alexander
- Department of SurgeryUniversity of California IrvineOrangeCalifornia
| | - Antonio Flores
- Department of SurgeryUniversity of California IrvineOrangeCalifornia
| | - Li Shiri
- Department of SurgeryUniversity of California IrvineOrangeCalifornia
| | - Stellar Zhang
- Department of SurgeryUniversity of California IrvineOrangeCalifornia
| | - Bernard Choi
- Beckman Laser Institute and Medical ClinicUniversity of California IrvineIrvineCalifornia
- Department of Biomedical EngineeringUniversity of California IrvineIrvineCalifornia
- Edwards Life Sciences Center for Advanced Cardiovascular TechnologyUniversity of California IrvineIrvineCalifornia
| | - Roni Kohen
- The Institute for Drug Research, School of PharmacyThe Hebrew University of JerusalemJerusalemIsrael
| | - Bruce J. Tromberg
- Beckman Laser Institute and Medical ClinicUniversity of California IrvineIrvineCalifornia
- Department of Biomedical EngineeringUniversity of California IrvineIrvineCalifornia
| | - Anthony J. Durkin
- Beckman Laser Institute and Medical ClinicUniversity of California IrvineIrvineCalifornia
- Department of Biomedical EngineeringUniversity of California IrvineIrvineCalifornia
| |
Collapse
|
37
|
Paderi J, Prestwich GD, Panitch A, Boone T, Stuart K. Glycan Therapeutics: Resurrecting an Almost Pharma‐Forgotten Drug Class. ADVANCED THERAPEUTICS 2018; 1. [DOI: 10.1002/adtp.201800082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Indexed: 01/04/2025]
Abstract
AbstractDespite their enormous potential, glycans as therapeutics yet remain a widely untapped drug class. This overview shares the viewpoint that glycans have been aptly termed the “dark matter” of biology and have thus been largely ignored for decades. Provided herein is a background on the multiple structures and functions of glycan therapeutics, and focuses on examples and case studies of the glycan therapeutics in clinical use or in a clinical development. Perspectives on various hurdles are also provided, such as regulatory or scientific messaging and how these can influence the clinical development of this drug category. Finally some of the necessary changes in perception, education, and research infrastructure for continued support and advancement of this promising category of therapeutics are described.
Collapse
Affiliation(s)
- John Paderi
- Symic Bio, Inc. 5980 Horton St. 94608 Emeryville CA USA
| | - Glenn D. Prestwich
- Symic Bio, Inc. 5980 Horton St. 94608 Emeryville CA USA
- Department of Medicinal Chemistry University of Utah 84112 Salt Lake City UT USA
- Washington State University Health Sciences Spokane 99210 Spokane WA USA
| | - Alyssa Panitch
- Symic Bio, Inc. 5980 Horton St. 94608 Emeryville CA USA
- University of California 95616 Davis CA USA
| | - Tom Boone
- Symic Bio, Inc. 5980 Horton St. 94608 Emeryville CA USA
| | - Kate Stuart
- Symic Bio, Inc. 5980 Horton St. 94608 Emeryville CA USA
| |
Collapse
|
38
|
Teng MC, Wu PC, Lin SP, Wu CY, Wang PH, Chen CT, Chen BY. Danshensu Decreases UVB-Induced Corneal Inflammation in an Experimental Mouse Model via Oral Administration. Curr Eye Res 2017; 43:27-34. [DOI: 10.1080/02713683.2017.1379543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mei-Ching Teng
- Department of Ophthalmology, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan
| | - Pei Chang Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan
| | - Si-Ping Lin
- Department of Optometry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Optometry, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Yun Wu
- Department of Pathology, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan
| | - Ping-Hsun Wang
- Department of Optometry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Optometry, Chung Shan Medical University, Taichung, Taiwan
| | - Chueh-Tan Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan
| | - Bo-Yie Chen
- Department of Optometry, Chung Shan Medical University, Taichung, Taiwan
- Institute of Optometry, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
39
|
Activation of NLRP3 Inflammasome by Advanced Glycation End Products Promotes Pancreatic Islet Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9692546. [PMID: 29230270 PMCID: PMC5694574 DOI: 10.1155/2017/9692546] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/05/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022]
Abstract
Accumulation of advanced glycation end products (AGEs) contributes to ageing and age-related diseases, especially type 2 diabetes. The NLRP3 inflammasome, as a vital component of the innate immune system, is implicated in the pathogenesis of type 2 diabetes. However, the role of the NLRP3 inflammasome in AGE-induced pancreatic islet damage remains largely unclear. Results showed that administration of AGEs (120 mg/kg for 6 weeks) in C57BL/6J mice induced an abnormal response to glucose (as measured by glucose tolerance and insulin release), pancreatic β-cell ultrastructural lesion, and cell death. These effects were associated with an excessive superoxide anion level, significant increased protein expression levels for NADPH oxidase 2 (NOX2), thioredoxin-interacting protein (TXNIP), NLRP3, and cleaved IL-1β, enhanced caspase-1 activity, and a significant increase in the levels of TXNIP–NLRP3 protein interaction. Ablation of the NLRP3 inflammasome or treatment with antioxidant N-acetyl-cysteine (NAC) clearly ameliorated these effects. In conclusion, our results reveal a possible mechanism for AGE-induced pancreatic islet damage upon NLRP3 inflammasome activation.
Collapse
|
40
|
Molecular Mechanisms Responsible for Increased Vulnerability of the Ageing Oocyte to Oxidative Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4015874. [PMID: 29312475 PMCID: PMC5664291 DOI: 10.1155/2017/4015874] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
In their midthirties, women experience a decline in fertility, coupled to a pronounced increase in the risk of aneuploidy, miscarriage, and birth defects. Although the aetiology of such pathologies are complex, a causative relationship between the age-related decline in oocyte quality and oxidative stress (OS) is now well established. What remains less certain are the molecular mechanisms governing the increased vulnerability of the aged oocyte to oxidative damage. In this review, we explore the reduced capacity of the ageing oocyte to mitigate macromolecular damage arising from oxidative insults and highlight the dramatic consequences for oocyte quality and female fertility. Indeed, while oocytes are typically endowed with a comprehensive suite of molecular mechanisms to moderate oxidative damage and thus ensure the fidelity of the germline, there is increasing recognition that the efficacy of such protective mechanisms undergoes an age-related decline. For instance, impaired reactive oxygen species metabolism, decreased DNA repair, reduced sensitivity of the spindle assembly checkpoint, and decreased capacity for protein repair and degradation collectively render the aged oocyte acutely vulnerable to OS and limits their capacity to recover from exposure to such insults. We also highlight the inadequacies of our current armoury of assisted reproductive technologies to combat age-related female infertility, emphasising the need for further research into mechanisms underpinning the functional deterioration of the ageing oocyte.
Collapse
|
41
|
Jimbo R, Singer J, Tovar N, Marin C, Neiva R, Bonfante EA, Janal MN, Contamin H, Coelho PG. Regeneration of the cementum and periodontal ligament using local BDNF delivery in class II furcation defects. J Biomed Mater Res B Appl Biomater 2017; 106:1611-1617. [DOI: 10.1002/jbm.b.33977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/13/2017] [Accepted: 07/29/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Ryo Jimbo
- Department of Oral and Maxillofacial Surgery, Faculty of Odontology; Malmö University; Sweden
| | - Jessica Singer
- Department of Biomaterials and Biomimetics; New York University College of Dentistry; New York New York
| | - Nick Tovar
- Department of Biomaterials and Biomimetics; New York University College of Dentistry; New York New York
| | - Charles Marin
- Postgraduate Program in Dentistry; UNIGRANRIO; Duque de Caxias Rio de Janeiro Brazil
| | - Rodrigo Neiva
- Department of Periodontology; University of Florida; Gainesville Florida
| | - Estevam A. Bonfante
- Department of Prosthodontics and Periodontology; University of Sao Paulo-Bauru School of Dentistry; Bauru SP Brazil
| | - Malvin N. Janal
- Department of Public Health and Epidemiology; New York University College of Dentistry; New York New York
| | | | - Paulo G. Coelho
- Department of Biomaterials and Biomimetics; New York University College of Dentistry; New York New York
| |
Collapse
|
42
|
Suthahar N, Meijers WC, Silljé HHW, de Boer RA. From Inflammation to Fibrosis-Molecular and Cellular Mechanisms of Myocardial Tissue Remodelling and Perspectives on Differential Treatment Opportunities. Curr Heart Fail Rep 2017; 14:235-250. [PMID: 28707261 PMCID: PMC5527069 DOI: 10.1007/s11897-017-0343-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW In this review, we highlight the most important cellular and molecular mechanisms that contribute to cardiac inflammation and fibrosis. We also discuss the interplay between inflammation and fibrosis in various precursors of heart failure (HF) and how such mechanisms can contribute to myocardial tissue remodelling and development of HF. RECENT FINDINGS Recently, many research articles attempt to elucidate different aspects of the interplay between inflammation and fibrosis. Cardiac inflammation and fibrosis are major pathophysiological mechanisms operating in the failing heart, regardless of HF aetiology. Currently, novel therapeutic options are available or are being developed to treat HF and these are discussed in this review. A progressive disease needs an aggressive management; however, existing therapies against HF are insufficient. There is a dynamic interplay between inflammation and fibrosis in various precursors of HF such as myocardial infarction (MI), myocarditis and hypertension, and also in HF itself. There is an urgent need to identify novel therapeutic targets and develop advanced therapeutic strategies to combat the syndrome of HF. Understanding and describing the elements of the inflammatory and fibrotic pathways are essential, and specific drugs that target these pathways need to be evaluated.
Collapse
Affiliation(s)
- Navin Suthahar
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Wouter C Meijers
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
43
|
Luévano-Contreras C, Gómez-Ojeda A, Macías-Cervantes MH, Garay-Sevilla ME. Dietary Advanced Glycation End Products and Cardiometabolic Risk. Curr Diab Rep 2017; 17:63. [PMID: 28695383 DOI: 10.1007/s11892-017-0891-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This report analyzes emerging evidence about the role of dietary advanced glycation end products (AGEs) as a cardiometabolic risk factor. Two important aspects are discussed: First, the modulation of AGE load by dietary AGEs; second, if the evidence of clinical and observational studies is enough to make dietary recommendations towards lowering AGE intake. RECENT FINDINGS Clinical studies in subjects with diabetes mellitus have shown that high intake of dietary AGEs increases inflammation markers, oxidative stress, and could impair endothelial function. In subjects at risk for cardiometabolic diseases (with overweight, obesity, or prediabetes), dietary AGE restriction decreases some inflammatory molecules and improves insulin sensitivity. However, studies in healthy subjects are limited, and not all of the studies have shown a decrease in circulating AGEs. Therefore, it is still unclear if dietary AGEs represent a health concern for people potentially at risk for cardiometabolic diseases. The evidence shows that dietary AGEs are bioavailable and absorbed, and the rate of excretion depends on dietary intake. The metabolic fate of most dietary AGEs remains unknown. Regardless, most studies have shown that by diminishing AGE intake, circulating levels will also decrease. Thus, dietary AGEs can modulate the AGE load at least in patients with DM, overweight, or obesity. Studies with specific clinical outcomes and large-scale observational studies are needed for a better risk assessment of dietary AGEs and to establish dietary recommendations accordingly.
Collapse
Affiliation(s)
- Claudia Luévano-Contreras
- Department of Medical Sciences, University of Guanajuato, 20 de Enero 929, León, Guanajuato, Mexico.
| | - Armando Gómez-Ojeda
- Department of Medical Sciences, University of Guanajuato, 20 de Enero 929, León, Guanajuato, Mexico
| | | | - Ma Eugenia Garay-Sevilla
- Department of Medical Sciences, University of Guanajuato, 20 de Enero 929, León, Guanajuato, Mexico
| |
Collapse
|
44
|
Gebe JA, Yadava K, Ruppert SM, Marshall P, Hill P, Falk BA, Sweere JM, Han H, Kaber G, Harten IA, Medina C, Mikecz K, Ziegler SF, Balaji S, Keswani SG, Perez VADJ, Butte MJ, Nadeau K, Altemeier WA, Fanger N, Bollyky PL. Modified High-Molecular-Weight Hyaluronan Promotes Allergen-Specific Immune Tolerance. Am J Respir Cell Mol Biol 2017; 56:109-120. [PMID: 27598620 DOI: 10.1165/rcmb.2016-0111oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The extracellular matrix in asthmatic lungs contains abundant low-molecular-weight hyaluronan, and this is known to promote antigen presentation and allergic responses. Conversely, high-molecular-weight hyaluronan (HMW-HA), typical of uninflamed tissues, is known to suppress inflammation. We investigated whether HMW-HA can be adapted to promote tolerance to airway allergens. HMW-HA was thiolated to prevent its catabolism and was tethered to allergens via thiol linkages. This platform, which we call "XHA," delivers antigenic payloads in the context of antiinflammatory costimulation. Allergen/XHA was administered intranasally to mice that had been sensitized previously to these allergens. XHA prevents allergic airway inflammation in mice sensitized previously to either ovalbumin or cockroach proteins. Allergen/XHA treatment reduced inflammatory cell counts, airway hyperresponsiveness, allergen-specific IgE, and T helper type 2 cell cytokine production in comparison with allergen alone. These effects were allergen specific and IL-10 dependent. They were durable for weeks after the last challenge, providing a substantial advantage over the current desensitization protocols. Mechanistically, XHA promoted CD44-dependent inhibition of nuclear factor-κB signaling, diminished dendritic cell maturation, and reduced the induction of allergen-specific CD4 T-helper responses. XHA and other potential strategies that target CD44 are promising alternatives for the treatment of asthma and allergic sinusitis.
Collapse
Affiliation(s)
- John A Gebe
- 1 Benaroya Research Institute, Seattle, Washington
| | - Koshika Yadava
- 2 Division of Infectious Diseases and Geographic Medicine, Department of Medicine.,3 Stanford Immunology, and
| | - Shannon M Ruppert
- 2 Division of Infectious Diseases and Geographic Medicine, Department of Medicine.,3 Stanford Immunology, and
| | | | | | | | - Johanna M Sweere
- 2 Division of Infectious Diseases and Geographic Medicine, Department of Medicine.,3 Stanford Immunology, and
| | - Hongwei Han
- 1 Benaroya Research Institute, Seattle, Washington
| | - Gernot Kaber
- 2 Division of Infectious Diseases and Geographic Medicine, Department of Medicine
| | | | - Carlos Medina
- 2 Division of Infectious Diseases and Geographic Medicine, Department of Medicine.,3 Stanford Immunology, and
| | - Katalin Mikecz
- 5 Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | | | - Swathi Balaji
- 6 Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas; and
| | - Sundeep G Keswani
- 6 Division of Pediatric Surgery, Baylor College of Medicine, Houston, Texas; and
| | - Vinicio A de Jesus Perez
- 7 Division of Pulmonary and Critical Care, Stanford University Medical Center, Stanford University School of Medicine, Stanford, California
| | | | - Kari Nadeau
- 7 Division of Pulmonary and Critical Care, Stanford University Medical Center, Stanford University School of Medicine, Stanford, California
| | - William A Altemeier
- 8 Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington
| | | | - Paul L Bollyky
- 1 Benaroya Research Institute, Seattle, Washington.,2 Division of Infectious Diseases and Geographic Medicine, Department of Medicine.,3 Stanford Immunology, and
| |
Collapse
|
45
|
Abstract
Hepato-cellular carcinoma (HCC) is one of the frequent cause of cancer-related death worldwide and dominant form of primary liver cancer. However, the reason behind a steady increase in the incidence of this form of cancer remains elusive. Glycation has been reported to play a significant role in the induction of several chronic diseases including cancer. Several risk factors that could induce HCC have been reported in the literature. Deciphering the complex patho-physiology associated with HCC is expected to provide new targets for the early detection, prevention, progression and recurrence. Even-though, some of the causative aspects of HCC is known, the advanced glycation end products (AGEs) related mechanism still needs further research. In the current manuscript, we have tried to uncover the possible role of glycation in the induction of HCC. In the light of the available scientific literature, we advocate in-depth comprehensive studies which will shed light towards mechanistic association of glycation with HCC.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saheem Ahmad
- Department of Bio-Sciences, Integral University, Lucknow, 226021, India
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
46
|
Zelber-Sagi S, Salomone F, Kolodkin-Gal I, Erez N, Buch A, Yeshua H, Webb M, Halpern Z, Shibolet O. Protective role of soluble receptor for advanced glycation end-products in patients with non-alcoholic fatty liver disease. Dig Liver Dis 2017; 49:523-529. [PMID: 28179090 DOI: 10.1016/j.dld.2017.01.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Soluble receptor for advanced glycation end-products (sRAGE) exerts protective metabolic effects. AIMS To identify if sRAGE plays a protective role in NAFLD. METHODS sRAGE (n=55) and Nε-(Carboxymethyl) lysine (CML) (n=36) serum levels were measured in NAFLD patients. Liver steatosis and fibrosis were non-invasively quantified by the hepatorenal index and the NAFLD fibrosis score (NFS). RESULTS sRAGE levels were lower in NAFLD patients compared to controls (1207±439 vs. 1596±562ng/l, P<0.001) and were lower among subjects with moderate-severe steatosis compared with mild (1043±287 vs. 1378±506, P=0.005). Higher sRAGE was associated with lower steatosis with adjustment for age, gender, BMI and fasting insulin (OR=0.998, 0.996-0.999 95%CI, P=0.018). CML was not correlated with liver steatosis (r=0.07, P=0.683), but was positively correlated with AST (r=0.34, P=0.04), GGT (r=0.38, P=0.023) and HbA1C (r=0.37, P=0.027). sRAGE tended to be higher in subjects with NFS<-1.455 compared with NFS>-1.455 (1287±450 n=36 vs. 1051±364 n=13, P=0.08). While sRAGE was positively correlated with vegetables consumption (r=0.268, P=0.05), CML levels were not associated with sRAGE or dietary intake. sRAGE increased following a 3 month-lifestyle intervention (1194±446 vs. 1367±440 n=31, P<0.001) and change in sRAGE levels was negatively correlated with change in ALT levels (r=-0.37, P=0.041). CONCLUSION sRAGE plays a protective role in NAFLD and it is influenced by lifestyle.
Collapse
Affiliation(s)
- Shira Zelber-Sagi
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel; School of Public Health, University of Haifa, Haifa, Israel
| | - Federico Salomone
- Division of Gastroenterology, Acireale Hospital, Azienda Sanitaria Provinciale di Catania, Catania, Italy.
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Erez
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Assaf Buch
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Hanny Yeshua
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Muriel Webb
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Zamir Halpern
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Oren Shibolet
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center, Tel-Aviv, Israel; The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
47
|
Hydrolysis of Hyaluronic Acid in Lymphedematous Tissue Alleviates Fibrogenesis via T H1 Cell-Mediated Cytokine Expression. Sci Rep 2017; 7:35. [PMID: 28232732 PMCID: PMC5428353 DOI: 10.1038/s41598-017-00085-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/31/2017] [Indexed: 11/22/2022] Open
Abstract
Although surgery and radiation are beneficial for treating cancer, they can also lead to malfunctions of the lymphatic system such as secondary lymphedema. This abnormality of the lymphatic system is characterized by severe swelling, adipogenesis, inflammation, and fibrosis in the lymphedematous region. Moreover, the proliferation of fibrotic tissue in the lymphedematous region generates edema that is no longer spontaneously reversible. No treatment for fibrosis has been validated in patients with lymphedema. In our efforts to develop a therapeutic agent for lymphedema fibrosis, we used a newly established mouse hind limb model. Previous studies have demonstrated that hyaluronic acid accumulates in the lymphedematous region. Thus, we challenged mice with of hyaluronidase (HYAL), with the aim of reducing fibrogenesis. After subcutaneous injections in the lymphedematous mouse leg every two days, the volume of lymphedema had reduced significantly by 7 days post-operation. Histochemical analysis indicated that collagen accumulation and myofibroblast differentiation were decreased in epidermal tissues after HYAL injection. Moreover, it was associated with upregulation of interferon-gamma, increased numbers of Th1 cells, and downregulation of interleukin-4 and interleukin-6 in the lymphedematous region and spleen. These results indicate that hydrolysis of hyaluronic acid can boost an anti-fibrotic immune response in the mouse lymphedema model.
Collapse
|
48
|
Systemic activation of NF-κB driven luciferase activity in transgenic mice fed advanced glycation end products modified albumin. Glycoconj J 2017; 34:157-161. [DOI: 10.1007/s10719-017-9762-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/14/2016] [Accepted: 01/31/2017] [Indexed: 01/10/2023]
|
49
|
Yang CT, Meng FH, Chen L, Li X, Cen LJ, Wen YH, Li CC, Zhang H. Inhibition of Methylglyoxal-Induced AGEs/RAGE Expression Contributes to Dermal Protection by N-Acetyl-L-Cysteine. Cell Physiol Biochem 2017; 41:742-754. [PMID: 28214842 DOI: 10.1159/000458734] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIM Accumulation of advanced glycation end products (AGEs) is a major cause of diabetes mellitus (DM) skin complications. Methylglyoxal (MGO), a reactive dicarbonyl compound, is a crucial intermediate of AGEs generation. N-acetyl-L-cysteine (NAC), an active ingredient of some medicines, can induce endogenous GSH and hydrogen sulfide generation, and set off a condensation reaction with MGO. However, there is rare evidence to show NAC can alleviate DM-induced skin injury through inhibition of AGEs generation or toxicity. The present study aimed to observe the effects of NAC on MGO-induced inflammatory injury and investigate the roles of AGEs and its receptor (RAGE) in NAC's dermal protection in human HaCaT keratinocytes. METHODS The cells were exposed to MGO to simulate a high MGO status in diabetic blood or tissues. The content of AGEs in serum or cell medium was measured with ELISA. The protective effects of NAC against MGO-induce injury were evaluated by administration before MGO one hour, in virtue of cell viability, mitochondrial membrane potential, inflammation reaction, nuclear factor (NF)-κB activation, matrix metalloproteinase (MMP)-9 expression, as well as cellular behavioral function. RESULTS We found the AGEs levels of patients with DM were elevated comparing with healthy volunteers. The in vitro AGEs generation was also able to be enhanced by the exposure of HaCaT cells to MGO, which reduced dose-dependently cellular viability, damaged mitochondrial function, triggered secretion of interleukin (IL)-6 and IL-8, activated NF-κB and upregulated MMP-9 expression. Furthermore, the exposure caused cellular adhesion and migration dysfunction, as well as collagen type I inhibition. Importantly, before the exposure to MGO, the preconditioning with NAC significantly attenuated MGO-induced AGEs generation, improved cellular viability and mitochondrial function, partially reversed the overexpression of proinflammatory factors and MMP-9, as well as the activation of NF-κB. Lastly, NAC blocked MGO-induced RAGE upregulation, and inhibition of RAGE with its neutralizing antibody significantly alleviated MGO-induced NF-κB activation, MMP-9 upregulation and inflammatory injury in HaCaT cells. CONCLUSION The present work indicates the administration of NAC can prevent MGO-induced dermal inflammatory injury through inhibition of AGEs/RAGE signal, which may provide a basal support for the treatment of diabetic skin complications with NAC-containing medicines in the future.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China,Affiliated Cancer Hospital & Institute, Guangzhou, China
| | - Fu-Hui Meng
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China
| | - Li Chen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China
| | - Xiang Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China
| | - Lai-Jian Cen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China
| | - Yu-Hua Wen
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China
| | - Cai-Chen Li
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China
| | - Hui Zhang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou, China,Affiliated Cancer Hospital & Institute, Guangzhou, China,Quality Control Section of Academic Affairs, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Tian X, Liu Y, Ren G, Yin L, Liang X, Geng T, Dang H, An R. Resveratrol limits diabetes-associated cognitive decline in rats by preventing oxidative stress and inflammation and modulating hippocampal structural synaptic plasticity. Brain Res 2016; 1650:1-9. [DOI: 10.1016/j.brainres.2016.08.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/15/2022]
|