1
|
Evolution of the NET (NocA, Nlz, Elbow, TLP-1) protein family in metazoans: insights from expression data and phylogenetic analysis. Sci Rep 2016; 6:38383. [PMID: 27929068 PMCID: PMC5144077 DOI: 10.1038/srep38383] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/24/2016] [Indexed: 02/03/2023] Open
Abstract
The NET (for NocA, Nlz, Elbow, TLP-1) protein family is a group of conserved zinc finger proteins linked to embryonic development and recently associated with breast cancer. The members of this family act as transcriptional repressors interacting with both class I histone deacetylases and Groucho/TLE co-repressors. In Drosophila, the NET family members Elbow and NocA are vital for the development of tracheae, eyes, wings and legs, whereas in vertebrates ZNF703 and ZNF503 are important for the development of the nervous system, eyes and limbs. Despite the relevance of this protein family in embryogenesis and cancer, many aspects of its origin and evolution remain unknown. Here, we show that NET family members are present and expressed in multiple metazoan lineages, from cnidarians to vertebrates. We identified several protein domains conserved in all metazoan species or in specific taxonomic groups. Our phylogenetic analysis suggests that the NET family emerged in the last common ancestor of cnidarians and bilaterians and that several rounds of independent events of gene duplication occurred throughout evolution. Overall, we provide novel data on the expression and evolutionary history of the NET family that can be relevant to understanding its biological role in both normal conditions and disease.
Collapse
|
2
|
Jin H, Kanthasamy A, Harischandra DS, Kondru N, Ghosh A, Panicker N, Anantharam V, Rana A, Kanthasamy AG. Histone hyperacetylation up-regulates protein kinase Cδ in dopaminergic neurons to induce cell death: relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease. J Biol Chem 2014; 289:34743-67. [PMID: 25342743 DOI: 10.1074/jbc.m114.576702] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease.
Collapse
Affiliation(s)
- Huajun Jin
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Arthi Kanthasamy
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Dilshan S Harischandra
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Naveen Kondru
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Anamitra Ghosh
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Nikhil Panicker
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Vellareddy Anantharam
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Ajay Rana
- the Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, and the Hines Veterans Affairs Medical Center, Hines, Illinois 60141
| | - Anumantha G Kanthasamy
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011,
| |
Collapse
|
3
|
Genetic dissection of photoreceptor subtype specification by the Drosophila melanogaster zinc finger proteins elbow and no ocelli. PLoS Genet 2014; 10:e1004210. [PMID: 24625735 PMCID: PMC3953069 DOI: 10.1371/journal.pgen.1004210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/15/2014] [Indexed: 12/28/2022] Open
Abstract
The elbow/no ocelli (elb/noc) complex of Drosophila melanogaster encodes two paralogs of the evolutionarily conserved NET family of zinc finger proteins. These transcriptional repressors share a conserved domain structure, including a single atypical C2H2 zinc finger. In flies, Elb and Noc are important for the development of legs, eyes and tracheae. Vertebrate NET proteins play an important role in the developing nervous system, and mutations in the homolog ZNF703 human promote luminal breast cancer. However, their interaction with transcriptional regulators is incompletely understood. Here we show that loss of both Elb and Noc causes mis-specification of polarization-sensitive photoreceptors in the 'dorsal rim area' (DRA) of the fly retina. This phenotype is identical to the loss of the homeodomain transcription factor Homothorax (Hth)/dMeis. Development of DRA ommatidia and expression of Hth are induced by the Wingless/Wnt pathway. Our data suggest that Elb/Noc genetically interact with Hth, and we identify two conserved domains crucial for this function. Furthermore, we show that Elb/Noc specifically interact with the transcription factor Orthodenticle (Otd)/Otx, a crucial regulator of rhodopsin gene transcription. Interestingly, different Elb/Noc domains are required to antagonize Otd functions in transcriptional activation, versus transcriptional repression. We propose that similar interactions between vertebrate NET proteins and Meis and Otx factors might play a role in development and disease.
Collapse
|
4
|
Di YP, Zhao J, Harper R. Cigarette smoke induces MUC5AC protein expression through the activation of Sp1. J Biol Chem 2012; 287:27948-58. [PMID: 22700966 DOI: 10.1074/jbc.m111.334375] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cigarette smoke (CS) exposure is associated with increased mucus production and chronic obstructive pulmonary disease (COPD). MUC5AC is the major inducible mucus gene in the airway. The purpose of this investigation was to elucidate the mechanisms of CS-induced activation of MUC5AC gene transcription. We observed that the region -3724/-3224 of the MUC5AC promoter is critical for CS-induced gene transcriptional activity and that this region contains two Sp1 binding sites. Using a lung-relevant model, we observed that CS increased nuclear Sp1 protein expression. Consequently, CS exposure resulted in enhanced Sp1-DNA binding activity and Sp1 trans-activation. Co-transfection of the MUC5AC-luc reporter with Sp1 expression plasmids resulted in significantly increased MUC5AC-luc activity, whereas co-treatment with mithramycin A, a Sp1 inhibitor, abolished CS-induced MUC5AC promoter activity. Using mobility shift assay and chromatin immunoprecipitation, we demonstrated that two Sp1 binding sites in the MUC5AC promoter are functional and responsive to CS exposure. A mutation of either Sp1 binding site in the MUC5AC promoter significantly decreased CS-induced promoter activity. Together, these data indicate that CS induces MUC5AC gene transcription predominantly through increased Sp1 nuclear protein levels and increased Sp1 binding to its promoter region.
Collapse
Affiliation(s)
- Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA.
| | | | | |
Collapse
|
5
|
Liu PY, Hsieh TY, Liu ST, Chang YL, Lin WS, Wang WM, Huang SM. Zac1, an Sp1-like protein, regulates human p21WAF1/Cip1 gene expression in HeLa cells. Exp Cell Res 2011; 317:2925-37. [DOI: 10.1016/j.yexcr.2011.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 11/26/2022]
|
6
|
Subramaniam S, Kwon B, Beura LK, Kuszynski CA, Pattnaik AK, Osorio FA. Porcine reproductive and respiratory syndrome virus non-structural protein 1 suppresses tumor necrosis factor-alpha promoter activation by inhibiting NF-κB and Sp1. Virology 2010; 406:270-9. [PMID: 20701940 DOI: 10.1016/j.virol.2010.07.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 07/10/2010] [Indexed: 02/07/2023]
Abstract
The objective of this study was to identify porcine reproductive and respiratory syndrome virus (PRRSV)-encoded proteins that are responsible for the inhibition of TNF-α expression and the mechanism(s) involved in this phenomenon. Using a TNF-α promoter reporter system, the non-structural protein 1 (Nsp1) was found to strongly suppress the TNF-α promoter activity. Such inhibition takes place especially at the promoter's proximal region. Both Nsp1α and Nsp1β, the two proteolytic fragments of Nsp1, were shown to be involved in TNF-α promoter suppression. Furthermore, using reporter plasmids specific for transcription factors (TFs) that bind to TNF-α promoter, Nsp1α and Nsp1β were demonstrated to inhibit the activity of the TFs that bind CRE-κB(3) and Sp1 elements respectively. Subsequent analyses showed that Nsp1α moderately inhibits NF-κB activation and that Nsp1β completely abrogates the Sp1 transactivation. These findings reveal one of the important mechanisms underlying the innate immune evasion by PRRSV during infection.
Collapse
Affiliation(s)
- Sakthivel Subramaniam
- School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, NE 68583, USA
| | | | | | | | | | | |
Collapse
|
7
|
Nakamura M, Choe SK, Runko AP, Gardner PD, Sagerström CG. Nlz1/Znf703 acts as a repressor of transcription. BMC DEVELOPMENTAL BIOLOGY 2008; 8:108. [PMID: 19014486 PMCID: PMC2588584 DOI: 10.1186/1471-213x-8-108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 11/12/2008] [Indexed: 11/13/2022]
Abstract
Background Members of the NET subfamily of zinc-finger proteins are related to the Sp-family of transcription factors and are required during embryogenesis. In particular, Nlz1/Znf703 and Nlz2/Znf503 are required for formation of rhombomere 4 of the vertebrate hindbrain. While NET family proteins have been hypothesized to regulate transcription, it remains unclear if they function as activators or repressors of transcription. Results Here we demonstrate that Nlz proteins repress transcription both in cell lines and in developing zebrafish embryos. We first use standard cell culture-based reporter assays to demonstrate that Nlz1/Znf703 represses transcription of a luciferase reporter in four different cell lines. Structure-function analyses and pharmacological inhibition further reveal that Nlz1-mediated repression requires histone deacetylase activity. We next generate a stable transgenic zebrafish reporter line to demonstrate that Nlz1 promotes histone deacetylation at the transgenic promoter and repression of transgene expression during embryogenesis. Lastly, taking a genetic approach we find that endogenous Nlz proteins are required for formation of hindbrain rhombomere 4 during zebrafish embryogenesis by repressing expression of non-rhombomere 4 genes. Conclusion We conclude that Nlz1/Znf703 acts as a repressor of transcription and hypothesize that other NET family members function in a similar manner.
Collapse
Affiliation(s)
- Mako Nakamura
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, USA.
| | | | | | | | | |
Collapse
|
8
|
Fantauzzo KA, Tadin-Strapps M, You Y, Mentzer SE, Baumeister FAM, Cianfarani S, Van Maldergem L, Warburton D, Sundberg JP, Christiano AM. A position effect on TRPS1 is associated with Ambras syndrome in humans and the Koala phenotype in mice. Hum Mol Genet 2008; 17:3539-51. [PMID: 18713754 DOI: 10.1093/hmg/ddn247] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ambras syndrome (AS) is a rare form of congenital hypertrichosis with excessive hair on the shoulders, face and ears. Cytogenetic studies have previously implicated an association with rearrangements of chromosome 8. Here we define an 11.5 Mb candidate interval for AS on chromosome 8q based on cytogenetic breakpoints in three patients. TRPS1, a gene within this interval, was deleted in a patient with an 8q23 chromosomal rearrangement, while its expression was significantly downregulated in another patient with an inversion breakpoint 7.3 Mb downstream of TRPS1. Here, we describe the first potential long-range position effect on the expression of TRPS1. To gain insight into the mechanisms by which Trps1 affects the hair follicle, we performed a detailed analysis of the hair abnormalities in Koa mice, a mouse model of hypertrichosis. We found that the proximal breakpoint of the Koa inversion is located 791 kb upstream of Trps1. Quantitative real-time polymerase chain reaction, in situ hybridization and immunofluorescence analysis revealed that Trps1 expression levels are reduced in Koa mutant mice at the sites of pathology for the phenotype. We determined that the Koa inversion creates a new Sp1 binding site and translocates additional Sp1 binding sites within a highly conserved stretch spanning the proximal breakpoint, providing a potential mechanism for the position effect. Collectively, these results describe a position effect that downregulates TRPS1 expression as the probable cause of hypertrichosis in AS in humans and the Koa phenotype in mice.
Collapse
Affiliation(s)
- Katherine A Fantauzzo
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wierstra I. Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 2008; 372:1-13. [PMID: 18364237 DOI: 10.1016/j.bbrc.2008.03.074] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 03/17/2008] [Indexed: 01/21/2023]
|
10
|
Brayer KJ, Segal DJ. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 2008; 50:111-31. [PMID: 18253864 DOI: 10.1007/s12013-008-9008-5] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/28/2007] [Indexed: 11/28/2022]
Abstract
Cys2-His2 (C2H2) zinc finger domains (ZFs) were originally identified as DNA-binding domains, and uncharacterized domains are typically assumed to function in DNA binding. However, a growing body of evidence suggests an important and widespread role for these domains in protein binding. There are even examples of zinc fingers that support both DNA and protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, Zif268, and Ying Yang 1 (YY1). C2H2 protein-protein interactions (PPIs) are proving to be more abundant than previously appreciated, more plastic than their DNA-binding counterparts, and more variable and complex in their interactions surfaces. Here we review the current knowledge of over 100 C2H2 zinc finger-mediated PPIs, focusing on what is known about the binding surface, contributions of individual fingers to the interaction, and function. An accurate understanding of zinc finger biology will likely require greater insights into the potential protein interaction capabilities of C2H2 ZFs.
Collapse
Affiliation(s)
- Kathryn J Brayer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
11
|
Pagès G. Sp3-mediated VEGF regulation is dependent on phosphorylation by extra-cellular signals regulated kinases (Erk). J Cell Physiol 2008; 213:454-63. [PMID: 17685427 DOI: 10.1002/jcp.21104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously demonstrated that phosphorylation by Erk of Sp1 was essential for its full activity in the context of the VEGF promoter. Here, we show that Sp3, which, as Sp1, belongs to the GC-rich binding transcription factor family, is also phosphorylated by Erk in vitro on serine 73. We have established cell lines in which expression of wild-type Sp3 or a serine 73 to alanine (S73A) mutant is controlled by tetracycline. One of these cells lines also express the Raf:ER chimera which permits stimulation of Erk by tamoxifen. Difference in electrophoretic mobility and antibody directed against the phosphorylated serine 73 demonstrate that it is phosphorylated in vivo. Wild-type Sp3 half-life is increased upon Erk activation but the S73 is poorly implicated in this mechanism suggesting that Erk-dependent Sp3 stability depends on other(s) domain(s) of the protein. Electro-mobility shift assays and utilization of Gal4/Sp3 chimeric proteins show that Erk does not alter Sp3 DNA binding capacity but enhances its transcriptional activity. The S73A mutant Sp3 posses a reduced activity in Erk-stimulated cells. In the inducible cell lines, expression of wild-type form of Sp3 increases VEGF production whereas the S73A form has a reduced potential reflecting its lower transcriptional activity. Altogether our results described a new link between constitutive Erk activity and the regulation of VEGF expression two common denominators implicated in tumor angiogenesis.
Collapse
Affiliation(s)
- Gilles Pagès
- Institute of Signalling, Developmental Biology and Cancer Research UMR CNRS 6543, University of Nice-Sophia Antipolis Equipe labellisée Ligue Nationale contre le Cancer, France.
| |
Collapse
|
12
|
RIP1 links inflammatory and growth factor signaling pathways by regulating expression of the EGFR. Cell Death Differ 2007; 15:344-53. [PMID: 18007664 DOI: 10.1038/sj.cdd.4402268] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
There is considerable interest in understanding how inflammatory responses influence cell proliferation and cancer. In this study, we show that the receptor-interacting protein (RIP1), a critical mediator of inflammation and stress-induced NF-kappaB activation, regulates the expression of the epidermal growth factor receptor (EGFR). Mouse embryo fibroblasts (MEFs) derived from RIP1 knockout mice express very high levels of the EGFR. Reconstitution of RIP1(-/-) MEFs with RIP1 results in a lowering of EGFR levels. RIP1 influences EGFR at the mRNA level by regulating the EGFR promoter. Expression of RIP1 inhibits the EGFR promoter. RIP1 downregulates EGFR expression by interfering with the function of Sp1, which is a key activator of EGFR transcription. RIP1 suppresses Sp1 activity and overexpression of Sp1 reverses RIP1-mediated repression of the EGFR promoter. RIP1 is present both in the cytoplasm and in the nucleus. RIP1 coimmunoprecipitates with Sp1 in vivo and binds directly to Sp1 in vitro. A RIP1 mutant lacking the death domain fails to suppress Sp1 activity and the EGFR promoter, suggesting a critical role for the RIP1 death domain in EGFR regulation. Thus, our study identifies a new link between inflammatory and growth factor signaling pathways mediated by RIP1 and provides insight into the mechanism used by RIP1 to regulate EGFR levels.
Collapse
|
13
|
Steagall WK, Lin JP, Moss J. The C/A(-18) polymorphism in the surfactant protein B gene influences transcription and protein levels of surfactant protein B. Am J Physiol Lung Cell Mol Physiol 2006; 292:L448-53. [PMID: 17071721 DOI: 10.1152/ajplung.00307.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein B (SP-B) is an essential component of surfactant that promotes adsorption and spreading of surfactant phospholipids and stabilizes the phospholipid monolayer. SP-B is essential for respiratory function in newborn humans and mice; adult mice with levels of SP-B below 25% of wild-type develop fatal respiratory distress syndrome. A potential regulatory function of the C/A(-18) single nucleotide polymorphism (SNP) in the promoter of the SP-B gene was examined. Transcriptional analysis and ELISA on bronchoalveolar lavage fluid revealed that the presence of the C allele correlated with more SP-B promoter activity and protein. There was approximately threefold difference in amounts of SP-B in bronchoalveolar lavage fluid from CA(-18) and AA(-18) individuals. By EMSA, Sp1 bound more tightly to the C allele sequence than to the A allele sequence, perhaps accounting for the differences in transcription. Genotyping of a normal volunteer population showed approximately 31% of the population were AA homozygotes, suggesting that these individuals produce less SP-B. Differences in amounts of SP-B resulting from the promoter SNP could affect the clinical presentation of pulmonary disease.
Collapse
Affiliation(s)
- Wendy K Steagall
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10, Rm. 6D03, MSC 1590, Bethesda, MD 20892-1590, USA
| | | | | |
Collapse
|
14
|
Ye X, Liu SF. Lipopolysaccharide causes Sp1 protein degradation by inducing a unique trypsin-like serine protease in rat lungs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:243-53. [PMID: 17092579 DOI: 10.1016/j.bbamcr.2006.09.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/19/2006] [Accepted: 09/05/2006] [Indexed: 12/20/2022]
Abstract
We have previously demonstrated that challenge of rat or mice with lipopolysaccharide (LPS) in vivo promotes Sp1 protein degradation. The protease responsible for the LPS-induced Sp1 degradation has not been identified. In this study, we have identified, characterized and partially purified an LPS-inducible Sp1-degrading enzyme (LISPDE) activity from rat lungs. LISPDE activity selectively degraded Sp1, but not nuclear protein, C-fos, p65, I-kappaBalpha and protein actin. Nuclear extract contains approximately 14-fold of the LISPDE activity as that detected in cytoplasmic extract, suggesting that LISPDE is predominantly a nuclear protease. Using biochemical reagents, protease inhibitors and peptide substrates, we have characterized the LISPDE activity. Based on biochemical characteristics, inhibitor profile, and substrate specificity, we have shown that LISPDE activity is not 26S proteasome, caspase or cathepsin-like activity, but is a trypsin-like serine protease activity. Using soybean trypsin inhibitor (SBTI)-sepharose affinity column, we have partially purified the LISPDE protein, which has an estimated molecular mass of 33 kDa and selectively degrades native Sp1 protein. We mapped the initial site for proteolytic cleavage of Sp1 by LISPDE to be located within the region between amino acids 181-328. We conclude that LPS causes Sp1 degradation by inducing a unique trypsin-like serine protease, LISPDE.
Collapse
Affiliation(s)
- Xiaobing Ye
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Long Island Jewish Medical Center, The Long Island Campus for the Albert Einstein College of Medicine, Research Building, RM B371, 270-05 76th Avenue, New Hyde Park, NY 11040, USA
| | | |
Collapse
|
15
|
Dhar SK, Xu Y, Chen Y, St Clair DK. Specificity protein 1-dependent p53-mediated suppression of human manganese superoxide dismutase gene expression. J Biol Chem 2006; 281:21698-21709. [PMID: 16740634 PMCID: PMC2640468 DOI: 10.1074/jbc.m601083200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD) is a primary antioxidant enzyme necessary for the survival of aerobic life. Previously, we demonstrated that specificity protein 1 (Sp1) is essential for the basal transcription of the MnSOD gene. We also identified nucleophosmin (NPM), an RNA-binding protein, as an important co-activator of NF-kappaB in the induction of MnSOD by cytokine and tumor promoter. Here, using chromatin immunoprecipitation (ChIP) analysis, we demonstrate that Sp1 and NPM interact in vivo to enhance NF-kappaB-mediated MnSOD induction. Interaction between NPM and Sp1 or NF-kappaB at the promoter and enhancer of the MnSOD gene in vivo were verified by the presence of the PCR products from the promoter and enhancer elements in the ChIP assay. Unexpectedly, we also found p53, another transcription factor, to be a component of the complex detected by ChIP assay. The presence of p53 in this transcription complex was verified by immunoprecipitation of p53 proteins with antibody to Sp1 in nuclear extracts. Using a vector expressing full-length p53 cDNA, we demonstrated that p53 overexpression suppresses MnSOD mRNA and protein levels. Consistent with the negative role of p53 in the expression of the MnSOD gene, expression of small interfering RNA for p53 leads to an increase of MnSOD mRNA and protein levels. Using ChIP assays and immunoprecipitation, we further demonstrated that p53 interacts with Sp1 to suppress both the constitutive and 12-O-tetradecanoylphorbol-13-acetate-stimulated expression of the MnSOD gene. Inhibition of the MnSOD gene by p53 was abolished when Sp1 sites on the MnSOD promoter were mutated or when the Sp1 protein was reduced by siRNA approaches. Because expression of MnSOD protects against cell death, our findings reveal a previously unrecognized mechanism of p53-mediated cell death and demonstrate an intricate relationship between the positive and negative control of MnSOD expression.
Collapse
Affiliation(s)
- Sanjit Kumar Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536
| | - Yong Xu
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536
| | - Yumin Chen
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536
| | - Daret K St Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536.
| |
Collapse
|
16
|
D'Addario M, Arora PD, McCulloch CA. Role of p38 in stress activation of Sp1. Gene 2006; 379:51-61. [PMID: 16797880 DOI: 10.1016/j.gene.2006.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 04/17/2006] [Accepted: 04/18/2006] [Indexed: 11/26/2022]
Abstract
Cell stressors such as physical forces can activate Sp1-dependent genes but the regulatory mechanisms are not defined. We determined if the stress-induced MAP kinase, p38, can phosphorylate Sp1 and thereby regulate the Sp1 target gene FLNA. We used Rat-2 cells and human gingival fibroblasts to examine stress-induced activation of an Sp1-dependent gene and SL2 cells, an Sp1-deficient model system, to facilitate interaction studies of transfected Sp1 with regulatory factors. Mechanical stress applied to Rat-2 cells increased promoter activity of the Sp1 target gene filamin A by >5-fold; activation was blocked by mutations to Sp1 binding sites in the filamin A promoter. Transfection experiments in SL2 cells with Sp1 expression vectors showed that when co-transfected with constitutively active p38, wild-type Sp1 but not an Sp1 binding mutant, increased promoter activity of the Sp1 target gene, filamin A, and enhanced binding of nuclear extracts to a filamin A promoter oligonucleotide. Filamin A promoter activity was blocked by dominant negative p38. Sp1 that was phosphorylated at Thr453 and Thr739 by constitutively active p38 bound to the filamin A promoter more effectively than un-phosphorylated Sp1. Recombinant active p38 phosphorylated wild-type Sp1 in vitro while the Sp1 Thr453Thr739 double mutant protein showed >3-fold reduction of phosphorylation. We conclude that stress activation of p38 phosphorylates Sp1 at specific threonine residues, modifications which in turn enhance the expression of Sp1-dependent genes.
Collapse
Affiliation(s)
- Mario D'Addario
- CIHR Group in Matrix Dynamics, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
17
|
Simmons S, Horowitz J. Nkx3.1 binds and negatively regulates the transcriptional activity of Sp-family members in prostate-derived cells. Biochem J 2006; 393:397-409. [PMID: 16201967 PMCID: PMC1383699 DOI: 10.1042/bj20051030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nkx3.1 is a homeodomain-containing transcription factor that is expressed early in the development of the prostate gland and is believed to play an important role in the differentiation of prostatic epithelia. Loss of Nkx3.1 protein expression is often an early event in prostate tumorigenesis, and the abundance of Nkx3.1-negative epithelial cells increases with disease progression. In a number of systems, homeodomain proteins collaborate with zinc-finger-containing transcription factors to bind and regulate target genes. In the present paper, we report that Nkx3.1 collaborates with Sp-family members in the regulation of PSA (prostate-specific antigen) in prostate-derived cells. Nkx3.1 forms protein complexes with Sp proteins that are dependent on their respective DNA-binding domains and an N-terminal segment of Nkx3.1, and Nkx3.1 negatively regulates Sp-mediated transcription via Trichostatin A-sensitive and -insensitive mechanisms. A distal 1000 bp portion of the PSA promoter is required for transrepression by Nkx3.1, although Nkx3.1 DNA-binding activity is itself not required. We conclude that Nkx3.1 negatively regulates Sp-mediated transcription via the tethering of histone deacetylases and/or by inhibiting the association of Sp proteins with co-activators.
Collapse
Affiliation(s)
- Steven O. Simmons
- Graduate Program in Toxicology and Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, U.S.A
| | - Jonathan M. Horowitz
- Graduate Program in Toxicology and Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Beitzinger M, Oswald C, Beinoraviciute-Kellner R, Stiewe T. Regulation of telomerase activity by the p53 family member p73. Oncogene 2006; 25:813-26. [PMID: 16205639 DOI: 10.1038/sj.onc.1209125] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The terminal ends of eukaryotic chromosomes, termed telomeres, progressively shorten during each round of cell division eventually leading cells into senescence. Tumor cells typically overcome this barrier to unlimited proliferation by activation of the human telomerase reverse transcriptase (hTERT) gene. In contrast, in most human somatic cells hTERT expression is tightly repressed by multiple tumor suppressors. Here, we studied the regulation of hTERT by the p53 family member p73. We show that forced expression of p73 or activation of endogenous p73 by E2F1 results in the downregulation of telomerase activity. Vice versa, siRNA-mediated knockdown of p73 induces hTERT expression. Responsiveness to p73 is conferred by Sp1 binding sites within the hTERT core promoter. In tumor cells, p73 isoforms lacking the transactivation domain (DeltaNp73) are frequently overexpressed and believed to function as oncogenes. We show that DeltaNp73 antagonizes the repressive effect of the proapoptotic p53 family members on hTERT expression and, in addition, induces hTERT expression in telomerase-negative cells by interfering with E2F-RB-mediated repression of the hTERT core promoter. These data provide evidence that the p73 gene functions as an important regulator of telomerase activity with implications for embryonic development, cellular differentiation and tumorigenesis.
Collapse
Affiliation(s)
- M Beitzinger
- Molecular Tumor Biology Group, Rudolf-Virchow-Center (DFG Research Center for Experimental Biomedicine), University of Würzburg, Versbacher Strasse 9, Würzburg 97078, Germany
| | | | | | | |
Collapse
|
19
|
Spengler ML, Brattain MG. Sumoylation inhibits cleavage of Sp1 N-terminal negative regulatory domain and inhibits Sp1-dependent transcription. J Biol Chem 2006; 281:5567-74. [PMID: 16407261 DOI: 10.1074/jbc.m600035200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sp1 is a ubiquitously expressed transcription factor that binds GC-rich cis elements. Many posttranslational modifications have been implicated in the regulation of Sp1 activity. We now provide evidence for a novel mechanism of Sp1 regulation involving the small ubiquitin-like modifier (SUMO-1). Western blot analysis revealed a high molecular mass Sp1 of 125 kDa that is stabilized by a selective SUMO hydrolase inhibitor and destabilized by a specific SUMO-1 hydrolase. The covalent modification of Sp1 by endogenous SUMO-1 and SUMO-1 that has been fused to green fluorescent protein was demonstrated using transient transfection assays. A high probability sumoylation consensus motif, VK(16)IE(18), is located within the N-terminal negative regulatory domain of Sp1. Either arginine substitution for lysine 16 (Sp1(K16R)) or alanine substitution for glutamic acid 18 (Sp1(E18A)), abrogated Sp1 sumoylation. In vitro SUMO-1 covalently bound affinity-purified GST-Sp1, but not GST-Sp1(K16R). In vivo Sp1 was determined to be N-terminally cleaved, while Sp1(K16R) could not be cleaved indicating that sumoylation and cleavage are coupled through the key regulatory lysine 16. This coupling was evident by the demonstration of an inverse relationship between cellular SUMO-modified Sp1 and N-terminally cleaved Sp1. Compared with Sp1, sumoylation-deficient Sp1(E18A) exhibited enhanced cleavage and was a better transcriptional activator, while constitutively SUMO-1-modified Sp1 was deficient in proteolytic processing and repressed Sp1 transcriptional activity. The repressive effect of sumoylation on Sp1 activity is emphasized through the use of a GAL4 based transactivation assay. A model is proposed defining a mechanism by which sumoylation preserves the integrity of a negative regulatory domain thereby allowing for the inhibition of Sp-dependent transcription.
Collapse
Affiliation(s)
- Mary L Spengler
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | |
Collapse
|
20
|
Kang JE, Kim MH, Lee JA, Park H, Min-Nyung L, Auh CK, Hur MW. Histone deacetylase-1 represses transcription by interacting with zinc-fingers and interfering with the DNA binding activity of Sp1. Cell Physiol Biochem 2005; 16:23-30. [PMID: 16121030 DOI: 10.1159/000087728] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2005] [Indexed: 11/19/2022] Open
Abstract
Sp1 activates the transcription of many cellular and viral genes, and histone deacetylase 1 (HDAC1) removes the acetyl group of nucleosomal core histones. Treatment of cells with the histone deacetylase 1 inhibitor, TSA, robustly activates the transcription of the Sp1-dependent promoters, suggesting the inhibition of Sp1 activity which is critical in the activation of transcription, by HDAC1. We assessed the protein-protein interactions occurring between Sp1 and HDAC1, and the transcriptional regulatory mechanism controlled by this interaction. In vitro GST fusion pull down assays, co-immunoprecipitation, and mammalian two-hybrid assays revealed that the HDAC1 noncatalytic domain (a.a. 237-482) interacts directly with the zinc-finger DNA binding domain of Sp1. DNase I footprinting revealed that this interaction prevents the binding of Sp1 zinc-fingers to the target GC-box. Gal4-HDAC1 fusion, targeted proximally to the GC-boxes, potently repressed the transcription of pG5-5x(GC)-Luc, in which Sp1 potently activates transcription. This repression of transcription does not involve the deacetylase activity of HDAC1, and is accomplished by the direct protein-protein interactions which occur between the Sp1 zinc-finger DNA binding domain and HDAC1, which interferes with the promoter GC-box binding of Sp1.
Collapse
Affiliation(s)
- Jae-Eun Kang
- Department of Biochemistry and Molecular Biology, BK21 Projects for Medical Sciences, Institute of Genetic Sciences, Yonsei University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Kanda N, Koike S, Watanabe S. Prostaglandin E2 enhances neurotrophin-4 production via EP3 receptor in human keratinocytes. J Pharmacol Exp Ther 2005; 315:796-804. [PMID: 16081678 DOI: 10.1124/jpet.105.091645] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Atopic dermatitis is characterized by increased skin innervation. The expression of neurotrophin-4 is enhanced in the epidermal keratinocytes of lesions with atopic dermatitis and may be related to hyperinnervation in these lesions. Prostaglandin E(2) (PGE(2)) levels are increased in lesions with atopic dermatitis; thus, PGE(2) may be involved in the development of this disease. We examined the in vitro effects of PGE(2) on neurotrophin-4 production in human keratinocytes. PGE(2) and EP1/EP3 agonist sulprostone increased neurotrophin-4 secretion and mRNA levels without altering its mRNA stability. Antisense Sp1 oligodeoxynucleotide and Sp1 inhibitor mithramycin A suppressed PGE(2) and sulprostone-induced neurotrophin-4 expression, indicating the requirement for Sp1 for expression. PGE(2) or sulprostone markedly enhanced the phosphorylation, DNA binding, and transcriptional activity of Sp1 and modestly increased Sp1 mRNA and protein levels. PGE(2) or sulprostone induced the membrane translocation of protein kinase Calpha and the phosphorylation of extracellular signal-regulated kinase (ERK). PGE(2)-induced increases in neurotrophin-4 expression, Sp1 transcriptional and DNA-binding activity, Sp1 mRNA and protein levels, and ERK phosphorylation were suppressed by antisense EP3 oligodeoxynucleotide, inhibitors of phosphatidylinositol-specific phospholipase C, conventional protein kinase C, and mitogen-activated protein kinase/ERK kinase 1 (MEK1). These results suggest that PGE(2) enhances neurotrophin-4 production by activating Sp1 via the EP3/phosphatidylinositol-specific phospholipase C/protein kinase Calpha/MEK1/ERK pathway. PGE(2) may promote innervation in skin lesions with atopic dermatitis via the induction of neurotrophin-4.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University, School of Medicine, Tokyo, Japan.
| | | | | |
Collapse
|
22
|
Nakamura M, Runko AP, Sagerström CG. A novel subfamily of zinc finger genes involved in embryonic development. J Cell Biochem 2005; 93:887-95. [PMID: 15449319 DOI: 10.1002/jcb.20255] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
C2H2 zinc finger proteins make up one of the largest protein families in eukaryotic organisms. Recent study in several different systems has identified a set of novel zinc finger proteins that appear to form a distinct subfamily that we have named the NET family. Members of the NET family (Noc, Nlz, Elbow, and Tlp-1) share two protein motifs--a buttonhead box and an Sp motif--with zinc finger proteins from the Sp family. However, the NET family is uniquely characterized by a single atypical C2H2 zinc finger, in contrast to the Sp family that contains three tandem C2H2 fingers. Here, we review current information about the biochemical function and in vivo role for members of this subfamily. In general, NET family proteins are required during embryonic development. They appear to act by regulating transcription, most likely as repressors, although they are unlikely to bind DNA directly. In the future, it will be important to directly test if NET family proteins control transcription of specific target genes, perhaps via interactions with DNA-binding transcription factors, as well as to further explore their function in vivo.
Collapse
Affiliation(s)
- Mako Nakamura
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605-2324, USA
| | | | | |
Collapse
|
23
|
Lee JA, Suh DC, Kang JE, Kim MH, Park H, Lee MN, Kim JM, Jeon BN, Roh HE, Yu MY, Choi KY, Kim KY, Hur MW. Transcriptional Activity of Sp1 Is Regulated by Molecular Interactions between the Zinc Finger DNA Binding Domain and the Inhibitory Domain with Corepressors, and This Interaction Is Modulated by MEK. J Biol Chem 2005; 280:28061-71. [PMID: 15878880 DOI: 10.1074/jbc.m414134200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sp1 activates the transcription of many cellular and viral genes with the GC-box in either the proximal promoter or the enhancer. Sp1 is composed of several functional domains, such as the inhibitory domain (ID), two serine/threonine-rich domains, two glutamine-rich domains, three C2H2-type zinc finger DNA binding domains (ZFDBD), and a C-terminal D domain. The ZDDBD is the most highly conserved domain among the Sp-family transcription factors and plays a critical role in GC-box recognition. In this study, we investigated the protein-protein interactions occurring at the Sp1ZFDBD and the Sp1ID, and the molecular mechanisms controlling the interaction. Our results found that Sp1ZFDBD and Sp1ID repressed transcription once they were targeted to the proximal promoter of the pGal4 UAS reporter fusion gene system, suggesting molecular interaction with the repressor molecules. Indeed, mammalian two-hybrid assays, GST fusion protein pull-down assays, and co-immunoprecipitation assays showed that Sp1ZFDBD and Sp1ID are able to interact with corepressor proteins such as SMRT, NcoR, and BCoR. The molecular interactions appear to be regulated by MAP kinase/Erk kinase kinase (MEK). The molecular interactions between Sp1ID and the corepressor might explain the role of Sp1 as a repressor under certain circumstances. The siRNA-induced degradation of the corepressors resulted in an up-regulation of Sp1-dependent transcription. The cellular context of the corepressors and the regulation of molecular interaction between corepressors and Sp1ZFDBD or Sp1ID might be important in controlling Sp1 activity.
Collapse
Affiliation(s)
- Jung-Ahn Lee
- Department of Biochemistry and Molecular Biology, BK21 Project for Medical Science, Institute of Genetic Science, Yonsei University School of Medicine, 134, ShinChon-Dong, SeoDaeMoon-Ku, Seoul, 120-752
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kanda N, Watanabe S. 17beta-estradiol enhances heparin-binding epidermal growth factor-like growth factor production in human keratinocytes. Am J Physiol Cell Physiol 2005; 288:C813-23. [PMID: 15761212 DOI: 10.1152/ajpcell.00483.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) enhances reepithelialization in wounds. Estrogen is known to promote cutaneous wound repair. We examined the in vitro effects of 17beta-estradiol (E2) on HB-EGF production by human keratinocytes. E2 or membrane-impermeable BSA-conjugated E2 (E2-BSA) increased HB-EGF secretion, mRNA level, and promoter activity in keratinocytes. E2 or E2-BSA enhanced in vitro wound closure in keratinocytes, and the closure was suppressed by anti-HB-EGF antibody. Activator protein-1 (AP-1) and specificity protein 1 (Sp1) sites on HB-EGF promoter were responsible for the E2- or E2-BSA-induced transactivation. Antisense oligonucleotides against c-Fos, c-Jun, and Sp1 blocked E2- or E2-BSA-induced HB-EGF transactivation. E2 or E2-BSA enhanced DNA binding and transcriptional activity of AP-1 and generated c-Fos/c-Jun heterodimers by inducing c-Fos expression. E2 or E2-BSA enhanced DNA binding and transcriptional activity of Sp1 in parallel with the enhancement of Sp1 phosphorylation. These effects of E2 or E2-BSA were not blocked by the nuclear estrogen receptor antagonist ICI-182,780 or anti-estrogen receptor-alpha or -beta antibodies but were blocked by inhibitors of G protein, phosphatidylinositol-specific PLC, PKC-alpha, and MEK1. These results suggest that E2 or E2-BSA may enhance HB-EGF production via activation of AP-1 and Sp1. These effects of E2 or E2-BSA may be dependent on membrane G protein-coupled receptors different from nuclear estrogen receptors and on the receptor-mediated activities of phosphatidylinositol-specific PLC, PKC-alpha, and MEK1. E2 may enhance wound reepithelialization by promoting HB-EGF production in keratinocytes.
Collapse
Affiliation(s)
- Naoko Kanda
- Dept. of Dermatology, Teikyo Univ., School of Medicine, 11-1, Kaga-2, Itabashi-Ku, Tokyo 173-8605, Japan
| | | |
Collapse
|
25
|
Balmelle N, Zamarreño N, Krangel MS, Hernández-Munain C. Developmental Activation of the TCR α Enhancer Requires Functional Collaboration among Proteins Bound Inside and Outside the Core Enhancer. THE JOURNAL OF IMMUNOLOGY 2004; 173:5054-63. [PMID: 15470049 DOI: 10.4049/jimmunol.173.8.5054] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TCR delta enhancer (Edelta) and TCR alpha enhancer (Ealpha) play critical roles in the temporal and lineage-specific control of V(D)J recombination and transcription at the TCR alphadelta locus, working as a developmental switch controlling a transition from TCR delta to TCR alpha activity during thymocyte development. Previous experiments using a transgenic reporter substrate revealed that substitution of the 116-bp minimal Ealpha, denoted Talpha1-Talpha2, for the entire 1.4-kb Ealpha led to a premature activation of V(D)J recombination. This suggested that binding sites outside of Talpha1-Talpha2 are critical for the strict developmental regulation of TCR alpha rearrangement. We have further analyzed Ealpha to better understand the mechanisms responsible for appropriate developmental regulation in vivo. We found that a 275-bp Ealpha fragment, denoted Talpha1-Talpha4, contains all binding sites required for proper developmental regulation in vivo. This suggests that developmentally appropriate enhancer activation results from a functional interaction between factors bound to Talpha1-Talpha2 and Talpha3-Talpha4. In support of this, EMSAs reveal the formation of a large enhanceosome complex that reflects the cooperative assembly of proteins bound to both Talpha1-Talpha2 and Talpha3-Talpha4. Our data suggest that enhanceosome assembly is critical for developmentally appropriate activation of Ealpha in vivo, and that transcription factors, Sp1 and pCREB, may play unique roles in this process.
Collapse
Affiliation(s)
- Nadège Balmelle
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
26
|
Haga K, Fujita H, Nomoto M, Sazawa A, Nakagawa K, Harabayashi T, Shinohara N, Takimoto M, Nonomura K, Kuzumaki N. Gelsolin gene silencing involving unusual hypersensitivities to dimethylsulfate and KMnO4 in vivo footprinting on its promoter region. Int J Cancer 2004; 111:873-80. [PMID: 15300799 DOI: 10.1002/ijc.20348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We previously reported that gelsolin gene expression is reduced in various tumors. In an effort to gain further insights into the mechanism of gelsolin downregulation in tumors, we examined the in vivo properties of the gelsolin promoter in urinary bladder cancer cell lines. Neither mutation nor hypermethylation was responsible for gene silencing at the promoter. After exposure to trichostatin A (TSA), a histone deacetylase inhibitor, gelsolin promoter activity was markedly enhanced in the cancer cells, not in cells derived from normal tissue. Chromatin immunoprecipitation assays revealed that both histones H3 and H4 were hypoacetylated in the promoter region of the cancer cells, and the accumulation of acetylated histones was detected by TSA treatment. In vivo footprinting analysis revealed the presence of dimethylsulfate (DMS) hypersensitive site in the untranslated region around nucleotide--35 only in the cancer cells but not in cells derived from normal tissue, and analysis of KMnO4 reactive nucleotides showed that the stem loop structure could be formed in vivo of the cancer cells. This novel stem loop structure may play a part in regulating the transcription of the gelsolin gene in the cancer cells. These results suggest that nucleosome accessibility through histone deacetylation and structural changes (DMS hypersensitivity and stem loop structure) in the promoter region form the basis of the mechanism leading to the silencing of gelsolin gene in human bladder cancer.
Collapse
Affiliation(s)
- Kazunori Haga
- Division of Cancer Gene Regulation, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Griffin JB, Rodriguez-Melendez R, Zempleni J. The nuclear abundance of transcription factors Sp1 and Sp3 depends on biotin in Jurkat cells. J Nutr 2004; 133:3409-15. [PMID: 14608051 DOI: 10.1093/jn/133.11.3409] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biotin affects gene expression in mammals; however, the signaling pathways leading to biotin-dependent transcriptional activation and inactivation of genes are largely unknown. Members of the Sp/Krüppel-like factor family of transcription factors (e.g., the ubiquitous Sp1 and Sp3) play important roles in the expression of numerous mammalian genes. We tested the hypothesis that the nuclear abundance of Sp1 and Sp3 depends on biotin in human T cells (Jurkat cells) mediating biotin-dependent gene expression. Jurkat cells were cultured in biotin-deficient (0.025 nmol/L) and biotin-supplemented (10 nmol/L) media for 5 wk prior to transcription factor analysis. The association of Sp1 and Sp3 with DNA-binding sites (GC box and CACCC box) was 76-149% greater in nuclear extracts from biotin-supplemented cells compared with biotin-deficient cells, as determined by electrophoretic mobility shift assays. The increased DNA-binding activity observed in biotin-supplemented cells was caused by increased transcription of genes encoding Sp1 and Sp3, as shown by mRNA levels and reporter-gene activities; increased transcription of Sp1 and Sp3 genes was associated with the increased abundance of Sp1 and Sp3 protein in nuclei. Notwithstanding the important role for phosphorylation of Sp1 and Sp3 in regulating DNA-binding activity, the present study suggests that the effects of biotin on phosphorylation of Sp1 and Sp3 are minor. The increased nuclear abundance of Sp1 and Sp3 in biotin-supplemented cells was associated with increased transcriptional activity of 5'-flanking regions in Sp1/Sp3-dependent genes in reporter-gene assays. This study provides evidence that some effects of biotin on gene expression might be mediated by the nuclear abundance of Sp1 and Sp3.
Collapse
Affiliation(s)
- Jacob B Griffin
- Department of Nutritional Science and Dietetics, University of Nebraska at Lincoln, Lincoln, NE, USA
| | | | | |
Collapse
|
28
|
Moorefield KS, Fry SJ, Horowitz JM. Sp2 DNA Binding Activity and trans-Activation Are Negatively Regulated in Mammalian Cells. J Biol Chem 2004; 279:13911-24. [PMID: 14726517 DOI: 10.1074/jbc.m313589200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have indicated that Sp2 binds poorly to GC-rich sequences bound by Sp1 and Sp3, and further functional analyses of Sp2 have been limited. To study Sp2-mediated transcription, we employed a PCR-based protocol to determine the Sp2 consensus DNA-binding sequence (5'-GGGCGGGAC-3') and performed kinetic experiments to show that Sp2 binds this consensus sequence with high affinity (225 pm) in vitro. To determine the functional consequence of Sp2 interaction with this sequence in vivo, we transformed well characterized Sp-binding sites within the dihydrofolate reductase (DHFR) promoter to consensus Sp2-binding sites. Incorporation of Sp2-binding sites within the DHFR promoter increased Sp2-mediated trans-activation in transient co-transfection experiments but also revealed Sp2 to be a relatively weak trans-activator with little or no capacity for additive or synergistic trans-activation. Using chimeric molecules prepared with portions of Sp1 and Sp2 and the human prostate-specific antigen promoter, we show that Sp2 DNA binding activity and trans-activation are negatively regulated in mammalian cells. Taken together, our data indicate that Sp2 is functionally distinct relative to other Sp family members and suggest that Sp2 may play a unique role in cell physiology.
Collapse
Affiliation(s)
- K Scott Moorefield
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | |
Collapse
|
29
|
Runko AP, Sagerström CG. Isolation of nlz2 and characterization of essential domains in Nlz family proteins. J Biol Chem 2004; 279:11917-25. [PMID: 14709556 DOI: 10.1074/jbc.m310076200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we first cloned nlz2, a second zebrafish member of the nlz-related zinc-finger gene family. nlz2 was expressed together with nlz1 in a broad posterior domain during gastrula stages as well as at the midbrain-hindbrain boundary and in the hindbrain caudal to rhombomere 4 during segmentation. nlz2 was also expressed in regions distinct from nlz1, notably in the forebrain, midbrain, and trunk. Misexpression of nlz2 in zebrafish embryos disrupted gene expression in the rostral hindbrain, similar to the effect of misexpressing nlz1. We next compared the nlz1 and nlz2 sequences to identify and characterize domains conserved within this family. We found a C-terminal domain required for nuclear localization and two conserved domains (the Sp motif and a putative C(2)H(2) zinc finger) required for nlz1 function. We also demonstrate that Nlz1 self-associated via its C terminus, interacted with Nlz2, and bound to histone deacetylases. Last, we found two forms of Nlz1 generated from alternative translation initiation sites in vivo. These forms have distinct activities, apparently depending on the function of the N-terminal Sp motif. Our data demonstrate that nlz2 functions similarly to nlz1 and define conserved domains essential for nuclear localization, self-association, and corepressor binding in this novel family of zinc-finger genes.
Collapse
Affiliation(s)
- Alexander P Runko
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
30
|
Higuchi H, Grambihler A, Canbay A, Bronk SF, Gores GJ. Bile acids up-regulate death receptor 5/TRAIL-receptor 2 expression via a c-Jun N-terminal kinase-dependent pathway involving Sp1. J Biol Chem 2003; 279:51-60. [PMID: 14561739 DOI: 10.1074/jbc.m309476200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bile acids up-regulate death receptor 5 (DR5)/TRAIL-receptor 2 (TRAIL-R2) expression thereby sensitizing hepatocytes to TRAIL-mediated apoptosis. However, the precise mechanism by which bile acids enhance DR5/TRAIL-R2 expression is unknown. Although several bile acids enhanced DR5/TRAIL-R2 expression, deoxycholic acid (DCA) was the most potent. DCA stimulated JNK activation and the JNK inhibitor SP600125 blocked DCA-induced DR5/TRAIL-R2 mRNA and protein expression. Reporter gene analysis identified a 5'-flanking region containing two Sp1 binding sites within the DR5/TRAIL-R2 promoter as bile acid responsive. Sp1 binding to one of the two sites was enhanced by DCA treatment as evaluated by electrophoretic mobility shift assays and chromatin immunoprecipitation studies. JNK inhibition with SP600125 also blocked binding of Sp1 to the DR5/TRAIL-R2 promoter. Finally, point mutations of the Sp1 binding site attenuated promoter activity. In conclusion, Sp1 is a bile acid-responsive transcription factor that mediates DR5/TRAIL-R2 gene expression downstream of JNK.
Collapse
Affiliation(s)
- Hajime Higuchi
- Division of Gastroenterology and Hepatology, Mayo Medical School, Clinic, and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
31
|
Peng H, He H, Hay J, Ruyechan WT. Interaction between the varicella zoster virus IE62 major transactivator and cellular transcription factor Sp1. J Biol Chem 2003; 278:38068-75. [PMID: 12855699 DOI: 10.1074/jbc.m302259200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The varicella zoster virus (VZV) IE62 protein is involved in the activation of expression of all three kinetic classes of VZV proteins. Analysis of the viral promoter for VZV glycoprotein I has shown that the cellular factor Sp1 is involved in or required for the observed IE62 mediated activation. Co-immunoprecipitation experiments show that the two proteins are present in a complex in VZV-infected cells. Protein affinity pull-down assays using recombinant proteins showed that IE62 and Sp1 interact in the absence of any other viral and cellular proteins. Mapping studies using GST-fusion proteins containing truncations of IE62 and Sp1 have delimited the interacting regions to amino acids 612-778 in Sp1 and amino acids 226-299 in IE62. The region identified in Sp1 is involved in DNA-binding, synergistic Sp1 activation, and Sp1 interaction with cellular transcription factors. The interacting region identified in IE62 overlaps with or borders on sites involved in interactions with the VZV IE4 protein and the cellular factors TBP and TFIIB. Assays using wild-type and mutant promoter elements indicate that Sp1 is involved in recruitment of IE62 to the gI promoter and IE62 enhances Sp1 and TBP binding.
Collapse
Affiliation(s)
- Hua Peng
- Department of Microbiology, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
32
|
Beck Z, Bácsi A, Liu X, Ebbesen P, Andirkó I, Csoma E, Kónya J, Nagy E, Tóth FD. Differential patterns of human cytomegalovirus gene expression in various T-cell lines carrying human T-cell leukemia-lymphoma virus type I: role of Tax-activated cellular transcription factors. J Med Virol 2003; 71:94-104. [PMID: 12858414 DOI: 10.1002/jmv.10447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Replication of human cytomegalovirus (HCMV) was investigated in various T-cell lines expressing the tax gene product of human T-cell leukemia-lymphoma virus type I (HTLV-I). Differential patterns of HCMV replication were found in HTLV-I-carrying cell lines. HCMV gene expression was restricted to the immediate-early genes in MT-2 and MT-4 cells, whereas full replication cycle of the virus was observed in C8166-45 cells. Productive HCMV infection induced a cytopathic effect resulting in the lysis of infected cells. The results of electrophoretic mobility shift assay (EMSA) showed high levels of NF-kappaB-, CREB/ATF-1-, and SRF-specific DNA binding activity in all Tax-positive cell lines. In contrast, SP1 activity could be detected only in C8166-45 cells. Using an inducible system (Jurkat cell line JPX-9), a dramatic increase in NF-kappaB, CREB/ATF-1, SRF, and SP1 binding activity, as well as productive HCMV infection, were observed upon Tax expression. Overexpression of SP1 in MT-2 and MT-4 cells converted HCMV infection from an abortive to a productive one. These data suggest that the stimulatory effect of Tax protein on HCMV in T cells is accomplished through at least five host-related transcription factor pathways. The results of this study provide possible mechanisms whereby HCMV infections might imply suppression of adult T-cell leukemia.
Collapse
Affiliation(s)
- Zoltán Beck
- Institute of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sasahara RM, Brochado SM, Takahashi C, Oh J, Maria-Engler SS, Granjeiro JM, Noda M, Sogayar MC. Transcriptional control of the RECK metastasis/angiogenesis suppressor gene. CANCER DETECTION AND PREVENTION 2003; 26:435-43. [PMID: 12507228 DOI: 10.1016/s0361-090x(02)00123-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RECK gene is widely expressed in normal human tissues but is downregulated in tumor cell lines and oncogenically transformed fibroblasts. RECK encodes a membrane-anchored glycoprotein that suppresses tumor invasion and angiogenesis by regulating matrix-metalloproteinases (MMP-2, MMP-9 and MT1-MMP). Understanding of the transcriptional regulation of tumor/metastasis suppressor genes constitutes a potent approach to the molecular basis of malignant transformation. In order to uncover the mechanisms of control of RECK gene expression, the RECK promoter has been cloned and characterized. One of the elements responsible for the Ras-mediated downregulation of mouse RECK gene is the Sp1 site, to which Sp1 and Sp3 factors bind. Other regulatory events, such as DNA methylation of the RECK promoter and histone acetylation/deacetylation have been studied to understand the underlying mechanisms of RECK expression. Understanding of the mechanisms which control RECK gene transcription may lead to the development of new strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Regina Maki Sasahara
- Instituto de Química, Universidade de São Paulo, CP 26077, São Paulo 05513-970, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Walgren JLE, Vincent TS, Schey KL, Buse MG. High glucose and insulin promote O-GlcNAc modification of proteins, including alpha-tubulin. Am J Physiol Endocrinol Metab 2003; 284:E424-34. [PMID: 12397027 DOI: 10.1152/ajpendo.00382.2002] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased flux through the hexosamine biosynthesis pathway has been implicated in the development of glucose-induced insulin resistance and may promote the modification of certain proteins with O-linked N-acetylglucosamine (O-GlcNAc). L6 myotubes (a model of skeletal muscle) were incubated for 18 h in 5 or 25 mM glucose with or without 10 nM insulin. As assessed by immunoblotting with an O-GlcNAc-specific antibody, high glucose and/or insulin enhanced O-GlcNAcylation of numerous proteins, including the transcription factor Sp1, a known substrate for this modification. To identify novel proteins that may be O-GlcNAc modified in a glucose concentration/insulin-responsive manner, total cell membranes were separated by one- or two-dimensional gel electrophoresis. Selected O-GlcNAcylated proteins were identified by mass spectrometry (MS) analysis. MS sequencing of tryptic peptides identified member(s) of the heat shock protein 70 (HSP70) family and rat alpha-tubulin. Immunoprecipitation/immunoblot studies demonstrated several HSP70 isoforms and/or posttranslational modifications, some with selectively enhanced O-GlcNAcylation following exposure to high glucose plus insulin. In conclusion, in L6 myotubes, Sp1, membrane-associated HSP70, and alpha-tubulin are O-GlcNAcylated; the modification is markedly enhanced by sustained increased glucose flux.
Collapse
Affiliation(s)
- Jennie L E Walgren
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | |
Collapse
|
35
|
|
36
|
Abstract
The initiation of transcription is accomplished via interactions of many different proteins with common and gene-specific regulatory motifs. Clearly, sequence-specific transcription factors play a crucial role in the specificity of transcription initiation. A group of sequence-specific DNA-binding proteins, related to the transcription factor Sp1, has been implicated in the regulation of many different genes, since binding sites for these transcription factors (GC/GT boxes) are a recurrent motif in regulatory sequences such as promoters, enhancers and CpG islands of these genes. The simultaneous occurrence of several homologous GC/GT box-binding factors precludes a straightforward deduction of their role in transcriptional regulation. In this review, we focus on the connection between functional specificity and biochemical properties including glycosylation, phosphorylation and acetylation of Sp1-related factors.
Collapse
Affiliation(s)
- Peter Bouwman
- Hubrecht Laboratory/NIOB, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | | |
Collapse
|
37
|
Lee DK, Suh D, Edenberg HJ, Hur MW. POZ domain transcription factor, FBI-1, represses transcription of ADH5/FDH by interacting with the zinc finger and interfering with DNA binding activity of Sp1. J Biol Chem 2002; 277:26761-8. [PMID: 12004059 DOI: 10.1074/jbc.m202078200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The POZ domain is a protein-protein interaction motif that is found in many transcription factors, which are important for development, oncogenesis, apoptosis, and transcription repression. We cloned the POZ domain transcription factor, FBI-1, that recognizes the cis-element (bp -38 to -22) located just upstream of the core Sp1 binding sites (bp -22 to +22) of the ADH5/FDH minimal promoter (bp -38 to +61) in vitro and in vivo, as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. The ADH5/FDH minimal promoter is potently repressed by the FBI-1. Glutathione S-transferase fusion protein pull-down showed that the POZ domains of FBI-1, Plzf, and Bcl-6 directly interact with the zinc finger DNA binding domain of Sp1. DNase I footprinting assays showed that the interaction prevents binding of Sp1 to the GC boxes of the ADH5/FDH promoter. Gal4-POZ domain fusions targeted proximal to the GC boxes repress transcription of the Gal4 upstream activator sequence-Sp1-adenovirus major late promoter. Our data suggest that POZ domain represses transcription by interacting with Sp1 zinc fingers and by interfering with the DNA binding activity of Sp1.
Collapse
Affiliation(s)
- Dong-Kee Lee
- Department of Biochemistry and Molecular Biology, BK21 Project for Medical Sciences, Institute of Genetic Sciences, Yonsei University School of Medicine, 134 ShinChon-Dong, SeoDaeMoon-Ku, Seoul 120-752, Korea
| | | | | | | |
Collapse
|
38
|
Kim DB, DeLuca NA. Phosphorylation of transcription factor Sp1 during herpes simplex virus type 1 infection. J Virol 2002; 76:6473-9. [PMID: 12050359 PMCID: PMC136260 DOI: 10.1128/jvi.76.13.6473-6479.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Accepted: 04/08/2002] [Indexed: 11/20/2022] Open
Abstract
The expression of most herpes simplex virus type 1 (HSV-1) immediate-early (IE) and early (E) genes decreases late in productive infection. IE and E promoters contain various binding sites for cellular activators, including sites for Sp1, upstream of the TATA box, while late gene promoters generally lack such sites. To address the possibility that Sp1 function may be altered during the course of infection, the modification state and activity of Sp1 were investigated as a function of infection. Sp1 was quantitatively phosphorylated in HSV-1-infected cells without a significant change in abundance. The kinetics of accumulation of phosphorylated Sp1 immediately preceded the decline in E gene (thymidine kinase gene [tk]) mRNA abundance. Phosphorylation of Sp1 required ICP4; however, the proportion of phosphorylated Sp1 was reduced during infection in the presence of phosphonoacetic acid or in the absence of ICP27. While the DNA binding activity of Sp1 was not greatly affected by phosphorylation, the ability of phosphorylated Sp1 isolated from HSV-infected cells to activate transcription in vitro was decreased. These studies suggest that modification of Sp1 may contribute to the decrease of IE and E gene expression late in infection.
Collapse
Affiliation(s)
- Dool-Bboon Kim
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
39
|
Milanini-Mongiat J, Pouysségur J, Pagès G. Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem 2002; 277:20631-9. [PMID: 11904305 DOI: 10.1074/jbc.m201753200] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sp1 regulates activation of many genes implicated in tumor growth and cell cycle progression. We have previously demonstrated its implication in the up-regulation of vascular endothelial growth factor (VEGF) gene transcription following growth factor stimulation of quiescent cells, a situation where p42/p44 mitogen-activate protein kinase (MAPK) activity is dramatically increased. Here we show that p42/p44 MAPK directly phosphorylates Sp1 on threonines 453 and 739 both in vitro and in vivo. Mutation of these sites to alanines decreases by half the MAPK-dependent transcriptional activity of Sp1, in the context of the VEGF promoter, in SL2 Drosophila cells devoid of the endogenous Sp1 protein. Moreover, inducible overexpression of the (T453A,T739A) Sp1 double mutant compromises MAPK-driven VEGF mRNA transcription in fibroblasts. These results highlight Sp1 as a key molecular link between elevated activation of the Ras >> p42/p44MAPK signaling pathway and increased VEGF expression, two major steps deregulated in tumor cells.
Collapse
Affiliation(s)
- Julie Milanini-Mongiat
- Institute of Signalling, Developmental Biology and Cancer Research, Centre Antoine Lacassagne, 33 avenue de Valombrose, 06189 Nice cedex 2, France
| | | | | |
Collapse
|
40
|
Nawrocki AR, Goldring CE, Kostadinova RM, Frey FJ, Frey BM. In vivo footprinting of the human 11beta-hydroxysteroid dehydrogenase type 2 promoter: evidence for cell-specific regulation by Sp1 and Sp3. J Biol Chem 2002; 277:14647-56. [PMID: 11850421 DOI: 10.1074/jbc.m111549200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
11beta-Hydroxysteroid dehydrogenase type 2 is selectively expressed in aldosterone target tissues, where it confers aldosterone selectivity for the mineralocorticoid receptor by inactivating 11beta-hydroxyglucocorticoids with a high affinity for the mineralocorticoid receptor. The present investigation aimed to elucidate the mechanisms accounting for the rigorous control of the HSD11B2 gene in humans. Using dimethyl sulfate in vivo footprinting via ligation-mediated PCR, we identified potentially important regions for HSD11B2 regulation in human cell lines: two GC-rich regions in the first exon (I and II) and two upstream elements (III and IV). The footprints suggest a correlation between the extent of in vivo protein occupancy at three of these regions (I, II, and III) and the rate of HSD11B2 transcription in cells with high (SW620), intermediate (HCD, MCF-7, and HK-2), or low HSD11B2 mRNA levels (SUT). Moreover, gel shift assays with nuclear extracts from these cell lines revealed that decreased HSD11B2 expression is related to a decreased binding activity with oligonucleotides containing the putative regulatory elements. Antibody supershifts identified the majority of the components of the binding complexes as the transcription factors Sp1 and Sp3. Finally, transient transfections with various deletion mutant reporters define positive regulatory elements that might account for basal and selective expression of 11beta-hydroxysteroid dehydrogenase type 2.
Collapse
Affiliation(s)
- Andrea R Nawrocki
- Division of Nephrology and Hypertension, Department of Internal Medicine, University Hospital of Berne, CH-3010 Berne, Switzerland.
| | | | | | | | | |
Collapse
|
41
|
Wang L, Liu X, Lenox RH. Transcriptional regulation of mouse MARCKS promoter in immortalized hippocampal cells. Biochem Biophys Res Commun 2002; 292:969-79. [PMID: 11944910 DOI: 10.1006/bbrc.2002.6655] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mouse MARCKS is a prominent myristoylated alanine-rich C kinase substrate implicated in brain development, calcium/calmodulin signaling, and membrane cytoskeletal restructuring, and is developmentally regulated in a cell- and tissue-specific fashion. In this study, transcriptional regulation of mouse MARCKS promoter in the neuronally derived immortalized hippocampal cells (HN33) was examined for a portion of 5'-flanking genomic sequence from -993 to +1 relative to the translation start site. Transfection experiments carried out in this neural cell line identified, for the first time, that the distal promoter segment from -993 to -713 plays a crucial role as an enhancer/activator element in the up-regulation of the basal transcription activity driven by MARCKS core promoter sequence. Motif analyses revealed at least 12 overlapping potential transcription factor binding sites in this region, among which a prominent GA-rich sequence centered at -765 has been shown to be functionally important in the binding of Sp1 protein-like complex. Deletion of the GA-rich segment significantly reduced the MARCKS promoter activity. Further, competitive EMSA indicated two additional sites within the -993/-713 that may also interact with Sp1 protein, demonstrating that the activator function of -993/-713 is under control of multiple Sp1 transcription factors. Unlike the distal promoter sequence, the proximal core promoter sequence (-649/-438) contains a GC-rich box and a Z-DNA-forming segment and is critical to basal transcription. The deletion of -649/-438 segment has been shown to drastically impair the promoter activity even in the presence of -993/-713, suggesting that its presence is also important to the function of -993/-713. These data emphasize that the synergistic interaction between distal and proximal promoter sequences is indispensable for the optimal MARCKS promoter function in the immortalized hippocampal cells. The discovery of the activator function of the MARCKS distal promoter region, and its potential interaction with multiple Sp proteins may provide a new clue to the understanding of Macs transcriptional regulation in brain.
Collapse
Affiliation(s)
- Le Wang
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsyvlania 19104, USA
| | | | | |
Collapse
|
42
|
Kennett SB, Moorefield KS, Horowitz JM. Sp3 represses gene expression via the titration of promoter-specific transcription factors. J Biol Chem 2002; 277:9780-9. [PMID: 11773047 DOI: 10.1074/jbc.m108661200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined previously that Sp3 encodes three distinct gene products as follows: a full-length protein (Sp3) that is an activator of transcription and two isoforms (M1 and M2) derived via internal translational initiation that function as transcriptional repressors. To identify amino acids and functions required for transcriptional repression, we employed PCR-directed mutagenesis to create a panel of mutated M2 proteins. Biochemical and functional analyses of these mutated proteins indicate that functions encoded by the M2 carboxyl terminus, such as DNA binding activity and the capacity to form multimeric complexes, are not required or sufficient for transcriptional repression. Instead, a 93-amino acid portion of the trans-activation domain was shown to be the minimal portion of M2 required to block Sp-dependent gene expression. Transcriptional analysis of three Sp-dependent promoters showed that mutations sustained by many M2 proteins result in promoter-specific effects. Regions of M2 required for physical interactions with five TATA box-associated factors (TAF(II)s) were mapped, and mutations that disrupt the interaction of M2 with two of these proteins, TAF(II)70 and TAF(II)40, were identified. We conclude that Sp3- mediated transcriptional repression is due, at least in part, to competition for promoter-specific transcription factors.
Collapse
Affiliation(s)
- Sarah B Kennett
- Department of Anatomy, Physiological Sciences, and Radiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | |
Collapse
|
43
|
Zaid A, Hodny Z, Li R, Nelson BD. Sp1 acts as a repressor of the human adenine nucleotide translocase-2 (ANT2) promoter. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5497-503. [PMID: 11683873 DOI: 10.1046/j.1432-1033.2001.02453.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human adenine nucleotide translocator-2 promoter is activated by adjacent Sp1 activation elements centered at nucleotides -79 and -68 (Abox and Bbox, respectively), and is repressed by Sp1 bound to a GC element (Cbox) that lies adjacent to transcription start. Here, we address the mechanism of this unique Sp1-mediated repression using transfected Drosophila SL2 and mammalian cell lines. We show that repression is not due to steric interference with assembly of the transcription machinery, as Sp1 bound to the Cbox can, under certain conditions, activate the promoter. Furthermore, ectopic expression of Sp1 deletion mutants in SL2 cells demonstrates that both the Sp1-mediated repression and activation require the D transactivation domain of Sp1 bound to the Cbox. In addition, repression of ABbox-mediated activation is eliminated by separating the Abox and Bbox. Thus, for Cbox-bound Sp1 to repress, Sp1 must be precisely positioned at the region of the ABboxes. Together, these data suggest that the D transactivation domain mediates interactions by Sp1 complexes on separate GC elements that results in repression of the activating Sp1 species.
Collapse
Affiliation(s)
- A Zaid
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Sweden
| | | | | | | |
Collapse
|
44
|
Baek SJ, Horowitz JM, Eling TE. Molecular cloning and characterization of human nonsteroidal anti-inflammatory drug-activated gene promoter. Basal transcription is mediated by Sp1 and Sp3. J Biol Chem 2001; 276:33384-92. [PMID: 11445565 DOI: 10.1074/jbc.m101814200] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) is known to be associated with anti-tumorigenic activity and belongs to the transforming growth factor-beta superfamily. In the present study, we cloned the promoter region (-3500 to +41) and investigated the transcriptional regulatory mechanisms of the basal expression of the human NAG-1 gene. Several potential transcription factor-binding sites in this region were identified. Based on the results from clones of nested deletions, the construct between -133 and +41 base pairs contains three Sp1-binding sites (Sp1-A, Sp1-B, and Sp1-C), which confer basal transcription specific activity of NAG-1 expression. When the Sp1-C site was mutated (GG to TT), a 60-80% decrease in promoter activity was observed in HCT-116 cells. Gel shift, co-transfection, and chromatin immunoprecipitation assays showed that the Sp transcription factors bind to the Sp1-binding sites and transactivate NAG-1 expression. In addition, chicken ovalbumin upstream promoter-transcription factor 1 can interact with the C-terminal region of Sp1 and Sp3 proteins and induce NAG-1 promoter activity through Sp1 and Sp3 transcription factors. These results identify the critical regulatory regions for the human NAG-1 basal promoter. Furthermore, the results suggest that the level of expression of the NAG-1 gene will depend on the availability of Sp proteins and on co-factors such as chicken ovalbumin upstream promoter-transcription factor 1.
Collapse
Affiliation(s)
- S J Baek
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
45
|
Porntadavity S, Xu Y, Kiningham K, Rangnekar VM, Prachayasittikul V, Prachayasitikul V, St Clair DK. TPA-activated transcription of the human MnSOD gene: role of transcription factors Sp-1 and Egr-1. DNA Cell Biol 2001; 20:473-81. [PMID: 11560779 DOI: 10.1089/104454901316976109] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Induction of manganese superoxide dismutase (MnSOD) in response to oxidative stress has been well established in animals, tissues, and cell culture. However, the role of the human MnSOD (hMnSOD) promoter in stimulus-dependent activation of transcription is unknown. The hMnSOD promoter lacks both a TATA and a CAAT box but possesses several GC motifs. In a previous study, we showed that the basal promoter contains multiple Sp1 and AP-2 binding sites and that Sp1 is essential for the constitutive expression of the hMnSOD gene. In this study, we identified an Egr-1 binding site in the basal promoter of hMnSOD. We also found that the basal promoter is responsive to 12-O-tetradecanoylphorbol-13-acetate (TPA)-activated hMnSOD transcription in the human hepatocarcinoma cell line HepG2. The contributions of these binding sites and the roles of the transcription factors Egr-1, AP-2, and Sp1 in the activation of hMnSOD transcription by TPA were investigated by site-directed mutation analysis, Western blotting, and overexpression of transcription factors. The results showed that Sp1 plays a positive role for both basal and TPA-activated hMnSOD transcription, whereas overexpression of Egr-1 has a negative role in the basal promoter activity without any effect on TPA-mediated activation of hMnSOD transcription.
Collapse
Affiliation(s)
- S Porntadavity
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Nicolás M, Noé V, Jensen KB, Ciudad CJ. Cloning and characterization of the 5'-flanking region of the human transcription factor Sp1 gene. J Biol Chem 2001; 276:22126-32. [PMID: 11294852 DOI: 10.1074/jbc.m010740200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5'-flanking region of the human Sp1 gene was cloned and characterized. Sequence analysis of this region showed the absence of both CAAT and TATA boxes and an initiator element. The proximal promoter of the Sp1 gene is a GC-rich region that contains multiple GC boxes and Ap2 binding sites. The major transcription start site is located 63 base pairs upstream of the translation start site. Transfection experiments demonstrate that all the elements necessary to achieve significant basal transcription activity are located between positions -443 and -20 relative to the translational start. Sp1 and Sp3 proteins bind to the downstream GC box located in the proximal promoter of Sp1. Furthermore, we demonstrate that the Sp1 protein activates Sp1 transcription activity; thus the Sp1 gene is autoregulated.
Collapse
Affiliation(s)
- M Nicolás
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
47
|
Inagaki Y, Nemoto T, Nakao A, Kobayashi K, Takehara K, Greenwel P. Interaction between GC box binding factors and Smad proteins modulates cell lineage-specific alpha 2(I) collagen gene transcription. J Biol Chem 2001; 276:16573-9. [PMID: 11278686 DOI: 10.1074/jbc.m010485200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I collagen is produced predominantly in mesenchymal cells, but molecular mechanisms responsible for cell type-specific expression are virtually unknown. During fibrogenic process in the liver, activated hepatic stellate cells (HSC) are the main producers of type I collagen, whereas parenchymal hepatocytes produce little, if any, of this protein. We have previously reported that Sp1 and an interacting unknown factor(s) bind to the -313 to -255 sequence of the alpha2(I) collagen gene (COL1A2) and play essential roles for basal and TGF-beta-stimulated transcription in skin fibroblasts and HSC. Recently, Smad3 has been shown to bind to this region, and its interaction with Sp1 has been implicated in TGF-beta-elicited COL1A2 stimulation. The present study demonstrates predominant binding of Sp3 rather than Sp1 to this regulatory element in parenchymal hepatocytes. In these cells, this region did not exhibit strong enhancer activity or mediate the effect of TGF-beta. Transfection of HSC with an Sp3 expression plasmid abolished the COL1A2 response to TGF-beta, whereas overexpression of Sp1 in hepatocytes increased basal COL1A2 transcription and conferred TGF-beta responsiveness. Functional and physical interactions between Sp1 and Smad3, but not between Sp3 and Smad3, were demonstrated using the bacterial GAL4 system and immunoprecipitation-Western blot analyses. These results indicate that cell lineage-specific interactions between GC box binding factors and Smad protein(s) may account, at least in part, for differential COL1A2 transcription and TGF-beta responsiveness in HSC and parenchymal hepatocytes.
Collapse
Affiliation(s)
- Y Inagaki
- Department of Internal Medicine and Division of Clinical Research, National Kanazawa Hospital, Kanazawa 920-8650, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Ogra Y, Suzuki K, Gong P, Otsuka F, Koizumi S. Negative regulatory role of Sp1 in metal responsive element-mediated transcriptional activation. J Biol Chem 2001; 276:16534-9. [PMID: 11279094 DOI: 10.1074/jbc.m100570200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription of mammalian metallothionein (MT) genes is activated by heavy metals via multiple copies of a cis-acting DNA element, the metal-responsive element (MRE). Our previous studies have shown that certain MREs of the human MT-IIA gene (MREb, MREc, MREd, and MREf) are less active than the others (MREa, MREe, and MREg). Gel shift analysis of HeLa cell nuclear proteins revealed that whereas the active MREs strongly bind the transcription factor MTF-1 essential for metal regulation, the less active MREs bind another distinct protein, MREb-BF. This protein recognizes the GC-rich region of MREb rather than the MRE core required for MTF-1 binding. All the MREs recognized by MREb-BF contain the CGCCC and/or CACCC motif, suggesting that the MREb-BF.MRE complex contains Sp1 or related proteins. Supershift analysis using antibodies against Sp1 family proteins as well as gel shift analysis using the recombinant Sp1 demonstrated that Sp1 represents the majority of MREb-BF activity. An MREb mutant with reduced affinity to Sp1 mediated zinc-inducible transcription much more actively than the wild-type MREb. Furthermore, when placed in the native promoter, this mutant MREb raised the overall promoter activity. These results strongly suggest that Sp1 acts as a negative regulator of transcription mediated by specific MREs.
Collapse
Affiliation(s)
- Y Ogra
- Divisions of Hazard Assessment and Health Effects Research, National Institute of Industrial Health, 6-21-1, Nagao, Tama-ku, Kawasaki 214-8585, Japan
| | | | | | | | | |
Collapse
|
49
|
Morris JR, Taylor-Papadimitriou J. The Sp1 transcription factor regulates cell type-specific transcription of MUC1. DNA Cell Biol 2001; 20:133-9. [PMID: 11313016 DOI: 10.1089/104454901300068942] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because the MUC1 mucin is highly expressed in breast and other carcinomas, interest is focused on the MUC1 promoter, particularly in the context of the delivery of genes to carcinomas. Earlier in vitro studies showed that the region between -152 and -66 of the MUC1 promoter is required for transcriptional activity in MUC1-expressing cells. Experiments reported here showed that sequences -119/-62 within this region are able to modulate transcription of the heterologous constitutively active herpes simplex virus thymidine kinase promoter in a pattern consistent with MUC1 expression. Band-shift experiments showed that although several factors (including Sp1 and Sp3) bind to these sequences, the element important in directing this MUC1 pattern of expression was an Sp1 GC box at -97. The data also show that the positioning or phase of the GC box was crucial for directing expression. The importance of the Sp1 transcription factor was confirmed by demonstrating that overexpression of Sp1 in MUC1-nonexpressing cells increased, not only the expression of a reporter gene driven by the 1.4-kb MUC1 promoter, but also the expression of MUC1 from the endogenous gene. Together, these data define an important role for Sp1 in the cell type-specific transcription of MUC1.
Collapse
Affiliation(s)
- J R Morris
- Imperial Cancer Research Fund, London, UK
| | | |
Collapse
|
50
|
Johnson-Pais T, Degnin C, Thayer MJ. pRB induces Sp1 activity by relieving inhibition mediated by MDM2. Proc Natl Acad Sci U S A 2001; 98:2211-6. [PMID: 11226218 PMCID: PMC30117 DOI: 10.1073/pnas.051415898] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
pRB activates transcription by a poorly understood mechanism that involves relieving negative regulation of the promoter specificity factor Sp1. We show here that MDM2 inhibits Sp1-mediated transcription, that MDM2 binds directly to Sp1 in vitro as well as in vivo, and that MDM2 inhibits the DNA-binding activity of Sp1. Forced expression of pRB relieves MDM2-mediated repression, and interaction of pRB with the MDM2-Sp1 complex releases Sp1 and restores DNA binding. These results suggest a model in which the opposing activities of MDM2 and pRB regulate Sp1 DNA-binding and transcriptional activity.
Collapse
Affiliation(s)
- T Johnson-Pais
- Vollum Institute and Department of Molecular and Medical Genetics, Oregon Health Sciences University, 3181 S.W. Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | |
Collapse
|