1
|
He S, Joseph N, Mirzamani M, Pye SJ, Al-anataki AHM, Whitten AE, Chen Y, Kumari H, Raston CL. Vortex fluidic mediated encapsulation of functional fish oil featuring in situ probed small angle neutron scattering. NPJ Sci Food 2020; 4:12. [PMID: 32964127 PMCID: PMC7481235 DOI: 10.1038/s41538-020-00072-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Major challenges for optimizing the benefits of fish oil on human health are improved bioavailability while overcoming the strong odor and avoiding significant oxidation of the omega-3 polyunsaturated fatty acids (PUFAs). The scalable continuous flow thin film vortex fluidic device (VFD) improves the Tween 20 encapsulation of fish oil relative to conventional homogenization processing, with the fish oil particles significantly smaller and the content of the valuable omega-3 fatty acids higher. In addition, after 14 days storage the remaining omega-3 fatty acids content was higher, from ca 31.0% for raw fish oil to ca 62.0% of freeze-dried encapsulated fish oil. The VFD mediated encapsulated fish oil was used to enrich the omega-3 fatty acid content of apple juice, as a model water-based food product, without changing its sensory values. The versatility of the VFD was further demonstrated in forming homogenous suspensions of fish oil containing water-insoluble bioactive molecules, curcumin and quercetin. We have also captured, for the first time, real-time structural changes in nanoencapsulation by installing a VFD with in in situ small angle neutron scattering. Real-time measurements afford valuable insights about self-assembly in solution.
Collapse
|
2
|
Iminosugar antivirals: the therapeutic sweet spot. Biochem Soc Trans 2017; 45:571-582. [PMID: 28408497 PMCID: PMC5390498 DOI: 10.1042/bst20160182] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 01/03/2023]
Abstract
Many viruses require the host endoplasmic reticulum protein-folding machinery in order to correctly fold one or more of their glycoproteins. Iminosugars with glucose stereochemistry target the glucosidases which are key for entry into the glycoprotein folding cycle. Viral glycoproteins are thus prevented from interacting with the protein-folding machinery leading to misfolding and an antiviral effect against a wide range of different viral families. As iminosugars target host enzymes, they should be refractory to mutations in the virus. Iminosugars therefore have great potential for development as broad-spectrum antiviral therapeutics. We outline the mechanism giving rise to the antiviral activity of iminosugars, the current progress in the development of iminosugar antivirals and future prospects for this field.
Collapse
|
3
|
Tasegian A, Paciotti S, Ceccarini MR, Codini M, Moors T, Chiasserini D, Albi E, Winchester B, van de Berg WDJ, Parnetti L, Beccari T. Origin of α-mannosidase activity in CSF. Int J Biochem Cell Biol 2017; 87:34-37. [PMID: 28359775 DOI: 10.1016/j.biocel.2017.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 12/27/2022]
Abstract
The α-mannosidase activity in human frontal gyrus, cerebrospinal fluid and plasma has been analyzed by DEAE-cellulose chromatography to investigate the origin of the α-mannosidase activity in cerebrospinal fluid (CSF). The profile of α-mannosidase isoenzymes obtained in CSF was similar to that in the frontal gyrus but different from that in human plasma. In particular the two characteristic peaks of lysosomal α-mannosidase, A and B, which have a pH-optimum of 4.5 and are found in human tissues, were present in both the frontal gyrus and CSF. In contrast the majority of α-mannosidase activity in human plasma was due to the so called intermediate form, which has a pH-optimum of 5.5. The results suggest that the intermediate form of α-mannosidase in plasma does not cross the blood-brain barrier and that the α-mannosidase activity present in the cerebrospinal fluid is of lysosomal type and of brain origin. Thus the α-mannosidase activity in cerebrospinal fluid might mirror the brain pathological changes linked to neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Anna Tasegian
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Silvia Paciotti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tim Moors
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Davide Chiasserini
- Department of Medicine, Section of Neurology, University of Perugia, Perugia, Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Bryan Winchester
- Biochemistry Research Group, UCL Institute of Child Health, University College London, UK
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Lucilla Parnetti
- Department of Medicine, Section of Neurology, University of Perugia, Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| |
Collapse
|
4
|
Catabolism of N-glycoproteins in mammalian cells: Molecular mechanisms and genetic disorders related to the processes. Mol Aspects Med 2016; 51:89-103. [DOI: 10.1016/j.mam.2016.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 11/17/2022]
|
5
|
Harada Y, Hirayama H, Suzuki T. Generation and degradation of free asparagine-linked glycans. Cell Mol Life Sci 2015; 72:2509-33. [PMID: 25772500 PMCID: PMC11113800 DOI: 10.1007/s00018-015-1881-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Asparagine (N)-linked protein glycosylation, which takes place in the eukaryotic endoplasmic reticulum (ER), is important for protein folding, quality control and the intracellular trafficking of secretory and membrane proteins. It is known that, during N-glycosylation, considerable amounts of lipid-linked oligosaccharides (LLOs), the glycan donor substrates for N-glycosylation, are hydrolyzed to form free N-glycans (FNGs) by unidentified mechanisms. FNGs are also generated in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins during ER-associated degradation. FNGs derived from LLOs and misfolded glycoproteins are eventually merged into one pool in the cytosol and the various glycan structures are processed to a near homogenous glycoform. This article summarizes the current state of our knowledge concerning the formation and catabolism of FNGs.
Collapse
Affiliation(s)
- Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| |
Collapse
|
6
|
Paciotti S, Persichetti E, Klein K, Tasegian A, Duvet S, Hartmann D, Gieselmann V, Beccari T. Accumulation of free oligosaccharides and tissue damage in cytosolic α-mannosidase (Man2c1)-deficient mice. J Biol Chem 2014; 289:9611-22. [PMID: 24550399 DOI: 10.1074/jbc.m114.550509] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Free Man(7-9)GlcNAc2 is released during the biosynthesis pathway of N-linked glycans or from misfolded glycoproteins during the endoplasmic reticulum-associated degradation process and are reduced to Man5GlcNAc in the cytosol. In this form, free oligosaccharides can be transferred into the lysosomes to be degraded completely. α-Mannosidase (MAN2C1) is the enzyme responsible for the partial demannosylation occurring in the cytosol. It has been demonstrated that the inhibition of MAN2C1 expression induces accumulation of Man(8-9)GlcNAc oligosaccharides and apoptosis in vitro. We investigated the consequences caused by the lack of cytosolic α-mannosidase activity in vivo by the generation of Man2c1-deficient mice. Increased amounts of Man(8-9)GlcNAc oligosaccharides were recognized in all analyzed KO tissues. Histological analysis of the CNS revealed neuronal and glial degeneration with formation of multiple vacuoles in deep neocortical layers and major telencephalic white matter tracts. Enterocytes of the small intestine accumulate mannose-containing saccharides and glycogen particles in their apical cytoplasm as well as large clear vacuoles in retronuclear position. Liver tissue is characterized by groups of hepatocytes with increased content of mannosyl compounds and glycogen, some of them undergoing degeneration by hydropic swelling. In addition, lectin screening showed the presence of mannose-containing saccharides in the epithelium of proximal kidney tubules, whereas scattered glomeruli appeared collapsed or featured signs of fibrosis along Bowman's capsule. Except for a moderate enrichment of mannosyl compounds and glycogen, heterozygous mice were normal, arguing against possible toxic effects of truncated Man2c1. These findings confirm the key role played by Man2c1 in the catabolism of free oligosaccharides.
Collapse
Affiliation(s)
- Silvia Paciotti
- From the Dipartimento di Scienze Farmaceutiche, University of Perugia, Perugia 06126, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Nemčovičová I, Nemčovič M, Šesták S, Plšková M, Wilson IBH, Mucha J. Expression, purification and preliminary crystallographic analysis of Drosophila melanogaster lysosomal α-mannosidase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:965-70. [PMID: 22869134 PMCID: PMC3412785 DOI: 10.1107/s1744309112029375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/28/2012] [Indexed: 11/10/2022]
Abstract
The lysosomal α-mannosidases are class II mannosidases that belong to glycoside hydrolase family 38 and play an important role in the degradation of asparagine-linked carbohydrates of glycoproteins. Based on peptide similarity to human and bovine lysosomal mannosidase (LM), recombinant α-mannosidase from Drosophila melanogaster (dLM408) was cloned and heterologously expressed in Pichia pastoris. The recombinant form of dLM408 designed for structural analysis lacks the transmembrane domain and was crystallized using standard vapour-diffusion and counter-diffusion techniques. The crystals grew as flat plates and as tetragonal bipyramids, respectively. The plate-shaped crystals exhibited the symmetry of space group P2(1)2(1)2(1) and diffracted to a minimum d-spacing of 3.5 Å.
Collapse
Affiliation(s)
- I. Nemčovičová
- Department of Cellular Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - M. Nemčovič
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - S. Šesták
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - M. Plšková
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - I. B. H. Wilson
- Department für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Wien, Austria
| | - J. Mucha
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| |
Collapse
|
8
|
Chantret I, Fasseu M, Zaoui K, Le Bizec C, Sadou Yayé H, Dupré T, Moore SEH. Identification of roles for peptide: N-glycanase and endo-beta-N-acetylglucosaminidase (Engase1p) during protein N-glycosylation in human HepG2 cells. PLoS One 2010; 5:e11734. [PMID: 20668520 PMCID: PMC2909182 DOI: 10.1371/journal.pone.0011734] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 06/04/2010] [Indexed: 11/29/2022] Open
Abstract
Background During mammalian protein N-glycosylation, 20% of all dolichol-linked oligosaccharides (LLO) appear as free oligosaccharides (fOS) bearing the di-N-acetylchitobiose (fOSGN2), or a single N-acetylglucosamine (fOSGN), moiety at their reducing termini. After sequential trimming by cytosolic endo β-N-acetylglucosaminidase (ENGase) and Man2c1 mannosidase, cytosolic fOS are transported into lysosomes. Why mammalian cells generate such large quantities of fOS remains unexplored, but fOSGN2 could be liberated from LLO by oligosaccharyltransferase, or from glycoproteins by NGLY1-encoded Peptide-N-Glycanase (PNGase). Also, in addition to converting fOSGN2 to fOSGN, the ENGASE-encoded cytosolic ENGase of poorly defined function could potentially deglycosylate glycoproteins. Here, the roles of Ngly1p and Engase1p during fOS metabolism were investigated in HepG2 cells. Methods/Principal Findings During metabolic radiolabeling and chase incubations, RNAi-mediated Engase1p down regulation delays fOSGN2-to-fOSGN conversion, and it is shown that Engase1p and Man2c1p are necessary for efficient clearance of cytosolic fOS into lysosomes. Saccharomyces cerevisiae does not possess ENGase activity and expression of human Engase1p in the png1Δ deletion mutant, in which fOS are reduced by over 98%, partially restored fOS generation. In metabolically radiolabeled HepG2 cells evidence was obtained for a small but significant Engase1p-mediated generation of fOS in 1 h chase but not 30 min pulse incubations. Ngly1p down regulation revealed an Ngly1p-independent fOSGN2 pool comprising mainly Man8GlcNAc2, corresponding to ∼70% of total fOS, and an Ngly1p-dependent fOSGN2 pool enriched in Glc1Man9GlcNAc2 and Man9GlcNAc2 that corresponds to ∼30% of total fOS. Conclusions/Significance As the generation of the bulk of fOS is unaffected by co-down regulation of Ngly1p and Engase1p, alternative quantitatively important mechanisms must underlie the liberation of these fOS from either LLO or glycoproteins during protein N-glycosylation. The fully mannosylated structures that occur in the Ngly1p-dependent fOSGN2 pool indicate an ERAD process that does not require N-glycan trimming.
Collapse
Affiliation(s)
- Isabelle Chantret
- INSERM, U773, Centre de Recherche Bichat Beaujon, Paris, France; Université Paris 7 Denis Diderot, site Bichat, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
9
|
Hase S. Pyridylamination as a means of analyzing complex sugar chains. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:378-90. [PMID: 20431262 PMCID: PMC3417801 DOI: 10.2183/pjab.86.378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 02/09/2010] [Indexed: 05/23/2023]
Abstract
Herein, I describe pyridylamination for versatile analysis of sugar chains. The reducing ends of the sugar chains are tagged with 2-aminopyridine and the resultant chemically stable fluorescent derivatives are used for structural/functional analysis. Pyridylamination is an effective "operating system" for increasing sensitivity and simplifying the analytical procedures including mass spectrometry and NMR. Excellent separation of isomers is achieved by reversed-phase HPLC. However, separation is further improved by two-dimensional HPLC, which involves a combination of reversed-phase HPLC and size-fractionation HPLC. Moreover, a two-dimensional HPLC map is also useful for structural analysis. I describe a simple procedure for preparing homogeneous pyridylamino sugar chains that is less laborious than existing techniques and can be used for functional analysis (e.g., sugar-protein interaction). This novel approach was applied and some of the results are described: i) a glucosyl-serine type sugar chain found in blood coagulation factors; ii) discovery of endo-beta-mannosidase (EC 3.2.1.152) and a new type plant alpha1,2-L-fucosidase; and iii) novel substrate specificity of a cytosolic alpha-mannosidase. Moreover, using homogeneous sugar chains of a size similar to in vivo substrates we were able to analyze interactions between sugar chains and proteins such as enzymes and lectins in detail. Interestingly, our studies reveal that some enzymes recognize a wider region of the substrate than anticipated.
Collapse
Affiliation(s)
- Sumihiro Hase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, Japan
| |
Collapse
|
10
|
Katoh T, Ashida H, Yamamoto K. Generation and Metabolism of Cytosolic Free Oligosaccharides in Caenorhabditis elegans. TRENDS GLYCOSCI GLYC 2009. [DOI: 10.4052/tigg.21.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Prediction of N-linked glycan branching patterns using artificial neural networks. Math Biosci 2008; 211:89-104. [DOI: 10.1016/j.mbs.2007.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 10/11/2007] [Accepted: 10/11/2007] [Indexed: 11/21/2022]
|
12
|
Chantret I, Moore SEH. Free oligosaccharide regulation during mammalian protein N-glycosylation. Glycobiology 2007; 18:210-24. [DOI: 10.1093/glycob/cwn003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Alonzi DS, Neville DCA, Lachmann RH, Dwek RA, Butters TD. Glucosylated free oligosaccharides are biomarkers of endoplasmic- reticulum α-glucosidase inhibition. Biochem J 2007; 409:571-80. [PMID: 17868040 DOI: 10.1042/bj20070748] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The inhibition of ER (endoplasmic reticulum) α-glucosidases I and II by imino sugars, including NB-DNJ (N-butyl-deoxynojirimycin), causes the retention of glucose residues on N-linked oligosaccharides. Therefore, normal glycoprotein trafficking and processing through the glycosylation pathway is abrogated and glycoproteins are directed to undergo ERAD (ER-associated degradation), a consequence of which is the production of cytosolic FOS (free oligosaccharides). Following treatment with NB-DNJ, FOS were extracted from cells, murine tissues and human plasma and urine. Improved protocols for analysis were developed using ion-exchange chromatography followed by fluorescent labelling with 2-AA (2-aminobenzoic acid) and purification by lectin-affinity chromatography. Separation of 2-AA-labelled FOS by HPLC provided a rapid and sensitive method that enabled the detection of all FOS species resulting from the degradation of glycoproteins exported from the ER. The generation of oligosaccharides derived from glucosylated protein degradation was rapid, reversible, and time- and inhibitor concentration-dependent in cultured cells and in vivo. Long-term inhibition in cultured cells and in vivo indicated a slow rate of clearance of glucosylated FOS. In mouse and human urine, glucosylated FOS were detected as a result of transrenal excretion and provide unique and quantifiable biomarkers of ER-glucosidase inhibition.
Collapse
Affiliation(s)
- Dominic S Alonzi
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | |
Collapse
|
14
|
Suzuki T, Funakoshi Y. Free N-linked oligosaccharide chains: formation and degradation. Glycoconj J 2007; 23:291-302. [PMID: 16897173 DOI: 10.1007/s10719-006-6975-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/21/2005] [Accepted: 12/27/2005] [Indexed: 01/09/2023]
Abstract
There is growing evidence that N-linked glycans play pivotal roles in protein folding and intra- and/or intercellular trafficking of N-glycosylated proteins. It has been shown that during the N-glycosylation of proteins, significant amounts of free oligosaccharides (free OSs) are generated in the lumen of the endoplasmic reticulum (ER) by a mechanism which remains to be clarified. Free OSs are also formed in the cytosol by enzymatic deglycosylation of misfolded glycoproteins, which are subjected to destruction by a cellular system called "ER-associated degradation (ERAD)." While the precise functions of free OSs remain obscure, biochemical studies have revealed that a novel cellular process enables them to be catabolized in a specialized manner, that involves pumping free OSs in the lumen of the ER into the cytosol where further processing occurs. This process is followed by entry into the lysosomes. In this review we summarize current knowledge about the formation, processing and degradation of free OSs in eukaryotes and also discuss the potential biological significance of this pathway. Other evidence for the occurrence of free OSs in various cellular processes is also presented.
Collapse
Affiliation(s)
- Tadashi Suzuki
- 21st COE (Center of Excellence) Program and Department of Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
15
|
Kuokkanen E, Smith W, Mäkinen M, Tuominen H, Puhka M, Jokitalo E, Duvet S, Berg T, Heikinheimo P. Characterization and subcellular localization of human neutral class IIα-mannosidase cytosolic enzymes/free oligosaccharides/glycosidehydrolase family 38/M2C1/N-glycosylation. Glycobiology 2007; 17:1084-93. [PMID: 17681998 DOI: 10.1093/glycob/cwm083] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A glycosyl hydrolase family 38 enzyme, neutral alpha-mannosidase, has been proposed to be involved in hydrolysis of cytosolic free oligosaccharides originating either from ER-misfolded glycoproteins or the N-glycosylation process. Although this enzyme has been isolated from the cytosol, it has also been linked to the ER by subcellular fractionations. We have studied the subcellular localization of neutral alpha-mannosidase by immunofluorescence microscopy and characterized the human recombinant enzyme with natural substrates to elucidate the biological function of this enzyme. Immunofluorescence microscopy showed neutral alpha-mannosidase to be absent from the ER, lysosomes, and autophagosomes, and being granularly distributed in the cytosol. In experiments with fluorescent recovery after photo bleaching, neutral alpha-mannosidase had slower than expected two-phased diffusion in the cytosol. This result together with the granular appearance in immunostaining suggests that portion of the neutral alpha-mannosidase pool is somehow complexed. The purified recombinant enzyme is a tetramer and has a neutral pH optimum for activity. It hydrolyzed Man(9)GlcNAc to Man(5)GlcNAc in the presence of Fe(2+), Co(2+), and Mn(2+), and uniquely to neutral alpha-mannosidases from other organisms, the human enzyme was more activated by Fe(2+) than Co(2+). Without activating cations the main reaction product was Man(8)GlcNAc, and Cu(2+) completely inhibited neutral alpha-mannosidase. Our findings from enzyme-substrate characterizations and subcellular localization studies support the suggested role for neutral alpha-mannosidase in hydrolysis of soluble cytosolic oligomannosides.
Collapse
Affiliation(s)
- Elina Kuokkanen
- Institute of Biotechnology, University of Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Strawser LD, Touster O. The cellular processing of lysosomal enzymes and related proteins. Rev Physiol Biochem Pharmacol 2005; 87:169-210. [PMID: 6999583 DOI: 10.1007/bfb0030898] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Moremen KW. Golgi alpha-mannosidase II deficiency in vertebrate systems: implications for asparagine-linked oligosaccharide processing in mammals. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1573:225-35. [PMID: 12417404 DOI: 10.1016/s0304-4165(02)00388-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The maturation of N-glycans to complex type structures on cellular and secreted proteins is essential for the roles that these structures play in cell adhesion and recognition events in metazoan organisms. Critical steps in the biosynthetic pathway leading from high mannose to complex structures include the trimming of mannose residues by processing mannosidases in the endoplasmic reticulum (ER) and Golgi complex. These exo-mannosidases comprise two separate families of enzymes that are distinguished by enzymatic characteristics and sequence similarity. Members of the Class 2 mannosidase family (glycosylhydrolase family 38) include enzymes involved in trimming reactions in N-glycan maturation in the Golgi complex (Golgi mannosidase II) as well as catabolic enzymes in lysosomes and cytosol. Studies on the biological roles of complex type N-glycans have employed a variety of strategies including the treatment of cells with glycosidase inhibitors, characterization of human patients with enzymatic defects in processing enzymes, and generation of mouse models for the enzyme deficiency by selective gene disruption approaches. Corresponding studies on Golgi mannosidase II have employed swainsonine, an alkaloid natural plant product that causes "locoism", a phenocopy of the lysosomal storage disease, alpha-mannosidosis, as a result of the additional targeting of the broad-specificity lysosomal mannosidase by this compound. The human deficiency in Golgi mannosidase II is characterized by congenital dyserythropoietic anemia with splenomegaly and various additional abnormalities and complications. Mouse models for Golgi mannosidase II deficiency recapitulate many of the pathological features of the human disease and confirm that the unexpectedly mild effects of the enzyme deficiency result from a tissue-specific and glycoprotein substrate-specific alternate pathway for synthesis of complex N-glycans. In addition, the mutant mice develop symptoms of a systemic autoimmune disorder as a consequence of the altered glycosylation. This review will discuss the biochemical features of Golgi mannosidase II and the consequences of its deficiency in mammalian systems as a model for the effects of alterations in vertebrate N-glycan maturation during development.
Collapse
Affiliation(s)
- Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Abstract
N-glycans play important roles during the folding and secretion of glycoproteins. Surprisingly, during the N-glycosylation of glycoproteins, considerable amounts of unconjugated polymannose-type oligosaccharides ('free OS') are generated. Although free oligosaccharides have no known function in mammalian cells, a sophisticated cellular machinery enables them to be cleared from the endoplasmic reticulum (ER) into the cytosol and then re-enter the endomembrane system at the level of the lysosome. One possible function of this pathway is to stop free OS from interfering with the carbohydrate-dependent aspects of glycoprotein folding and transport along the secretory pathway.
Collapse
Affiliation(s)
- S E Moore
- INSERM U504, Bâtiment INSERM, 16 Avenue Paul Vaillant-Couturier, 94807 Villejuif, France.
| |
Collapse
|
19
|
Michalski JC, Klein A. Glycoprotein lysosomal storage disorders: alpha- and beta-mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1455:69-84. [PMID: 10571005 DOI: 10.1016/s0925-4439(99)00077-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycoproteinoses belong to the lysosomal storage disorders group. The common feature of these diseases is the deficiency of a lysosomal protein that is part of glycan catabolism. Most of the lysosomal enzymes involved in the hydrolysis of glycoprotein carbohydrate chains are exo-glycosidases, which stepwise remove terminal monosaccharides. Thus, the deficiency of a single enzyme causes the blockage of the entire pathway and induces a storage of incompletely degraded substances inside the lysosome. Different mutations may be observed in a single disease and in all cases account for the nonexpression of lysosomal glycosidase activity. Different clinical phenotypes generally characterize a specific disorder, which rather must be described as a continuum in severity, suggesting that other biochemical or environmental factors influence the course of the disease. This review provides details on clinical features, genotype-phenotype correlations, enzymology and biochemical storage of four human glycoprotein lysosomal storage disorders, respectively alpha- and beta-mannosidosis, fucosidosis and alpha-N-acetylgalactosaminidase deficiency. Moreover, several animal disorders of glycoprotein metabolism have been found and constitute valuable models for the understanding of their human counterparts.
Collapse
Affiliation(s)
- J C Michalski
- Laboratoire de Chimie Biologique, UMR 8576 CNRS (UMR 111 CNRS), Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France.
| | | |
Collapse
|
20
|
Gonzalez DS, Karaveg K, Vandersall-Nairn AS, Lal A, Moremen KW. Identification, expression, and characterization of a cDNA encoding human endoplasmic reticulum mannosidase I, the enzyme that catalyzes the first mannose trimming step in mammalian Asn-linked oligosaccharide biosynthesis. J Biol Chem 1999; 274:21375-86. [PMID: 10409699 DOI: 10.1074/jbc.274.30.21375] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have isolated a full-length cDNA clone encoding a human alpha1, 2-mannosidase that catalyzes the first mannose trimming step in the processing of mammalian Asn-linked oligosaccharides. This enzyme has been proposed to regulate the timing of quality control glycoprotein degradation in the endoplasmic reticulum (ER) of eukaryotic cells. Human expressed sequence tag clones were identified by sequence similarity to mammalian and yeast oligosaccharide-processing mannosidases, and the full-length coding region of the putative mannosidase homolog was isolated by a combination of 5'-rapid amplification of cDNA ends and direct polymerase chain reaction from human placental cDNA. The open reading frame predicted a 663-amino acid type II transmembrane polypeptide with a short cytoplasmic tail (47 amino acids), a single transmembrane domain (22 amino acids), and a large COOH-terminal catalytic domain (594 amino acids). Northern blots detected a transcript of approximately 2.8 kilobase pairs that was ubiquitously expressed in human tissues. Expression of an epitope-tagged full-length form of the human mannosidase homolog in normal rat kidney cells resulted in an ER pattern of localization. When a recombinant protein, consisting of protein A fused to the COOH-terminal luminal domain of the human mannosidase homolog, was expressed in COS cells, the fusion protein was found to cleave only a single alpha1,2-mannose residue from Man(9)GlcNAc(2) to produce a unique Man(8)GlcNAc(2) isomer (Man8B). The mannose cleavage reaction required divalent cations as indicated by inhibition with EDTA or EGTA and reversal of the inhibition by the addition of Ca(2+). The enzyme was also sensitive to inhibition by deoxymannojirimycin and kifunensine, but not swainsonine. The results on the localization, substrate specificity, and inhibitor profiles indicate that the cDNA reported here encodes an enzyme previously designated ER mannosidase I. Enzyme reactions using a combination of human ER mannosidase I and recombinant Golgi mannosidase IA indicated that that these two enzymes are complementary in their cleavage of Man(9)GlcNAc(2) oligosaccharides to Man(5)GlcNAc(2).
Collapse
Affiliation(s)
- D S Gonzalez
- Complex Carbohydrate Research Center and the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
21
|
Saint-Pol A, Codogno P, Moore SE. Cytosol-to-lysosome transport of free polymannose-type oligosaccharides. Kinetic and specificity studies using rat liver lysosomes. J Biol Chem 1999; 274:13547-55. [PMID: 10224124 DOI: 10.1074/jbc.274.19.13547] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In hepatocellular carcinoma HepG2 cells, free polymannose-type oligosaccharides appearing in the cytosol during the biosynthesis and quality control of glycoproteins are rapidly translocated into lysosomes by an as yet poorly defined process (Saint-Pol, A., Bauvy, C., Codogno, P., and Moore, S. E. H. (1997) J. Cell Biol. 136, 45-59). Here, we demonstrate an ATP-dependent association of [2-3H]mannose-labeled Man5GlcNAc with isolated rat liver lysosomes. This association was only observed in the presence of swainsonine, a mannosidase inhibitor, which was required for the protection of sedimentable, but not nonsedimentable, Man5GlcNAc from degradation, indicating that oligosaccharides were transported into lysosomes. Saturable high affinity transport (Kuptake, 22.3 microM, Vmax, 7.1 fmol/min/unit of beta-hexosaminidase) was dependent upon the hydrolysis of ATP but independent of vacuolar H+/ATPase activity. Transport was inhibited strongly by NEM and weakly by vanadate but not by sodium azide, and, in addition, the sugar transport inhibitors phloretin, phloridzin, and cytochalasin B were without effect on transport. Oligosaccharide import did not show absolute specificity but was selective toward partially demannosylated and dephosphorylated oligosaccharides, and, furthermore, inhibition studies revealed that the free reducing GlcNAc residue of the oligosaccharide was of critical importance for its interaction with the transporter. These results demonstrate the presence of a novel lysosomal free oligosaccharide transporter that must work in concert with cytosolic hydrolases in order to clear the cytosol of endoplasmic reticulum-generated free oligosaccharides.
Collapse
Affiliation(s)
- A Saint-Pol
- Unité de Neuroendocrinologie et Biologie Cellulaire Digestives, Institut National de la Santé et de la Recherche Médicale, U410, Faculté de Médecine Xavier Bichat, 16 Rue Henri Huchard, 75018 Paris, France
| | | | | |
Collapse
|
22
|
Hirata K, Aso Y, Ishiguro M. Properties of alpha-mannosidase partially purified from the apple snail, Pomacea canaliculata. Biosci Biotechnol Biochem 1998; 62:2242-5. [PMID: 9972247 DOI: 10.1271/bbb.62.2242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pomacea canaliculata alpha-mannosidase (260 kDa), composed of at least two isoforms with different pI, was partially purified. The activity was maximum at pH 4 and unaltered after incubation at 60 degrees C for 60 min. ZnCl2, CaCl2, NaCl, and SH-reagents increased the activity, while MnCl2 and EDTA inhibited it. The enzyme catalyzed the hydrolysis of alpha 1-2, alpha 1-3, and alpha 1-6 mannosidic linkages.
Collapse
Affiliation(s)
- K Hirata
- Laboratory of Protein Chemistry and Engineering, Graduate School of Genetic Resources Technology, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
23
|
Saint-Pol A, Bauvy C, Codogno P, Moore SE. Transfer of free polymannose-type oligosaccharides from the cytosol to lysosomes in cultured human hepatocellular carcinoma HepG2 cells. J Cell Biol 1997; 136:45-59. [PMID: 9008702 PMCID: PMC2132453 DOI: 10.1083/jcb.136.1.45] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H-like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[alpha 1-2]Man[alpha 1-2]Man[alpha 1-3][Man alpha 1-6]Man[beta 1-4] GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse-chase incubations with D-[2-3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse-chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3-4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 microM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes.
Collapse
Affiliation(s)
- A Saint-Pol
- Unité de Neuroendocrinologie et Biologie Cellulaire Digestives, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Xavier Bichat, Paris, France
| | | | | | | |
Collapse
|
24
|
Chapter 1a Normal and pathological catabolism of glycoproteins. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-7306(08)60278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Affiliation(s)
- B G Winchester
- Division of Biochemistry and Genetics, Institute of Child Health, London, United Kingdom
| |
Collapse
|
26
|
Chapter 1b Normal and pathological catabolism of glycoproteins. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-7306(08)60279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Grard T, Saint-Pol A, Haeuw JF, Alonso C, Wieruszeski JM, Strecker G, Michalski JC. Soluble forms of alpha-D-mannosidases from rat liver. Separation and characterization of two enzymic forms with different substrate specificities. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:99-106. [PMID: 8033914 DOI: 10.1111/j.1432-1033.1994.tb18970.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously reported the substrate specificity of the rat liver cytosolic alpha-D-mannosidase [Haeuw, J. F., Strecker, G., Wieruszeski, J. M., Montreuil, J. & Michalski, J.-C. (1991) Eur. J. Biochem. 202, 1257-1268]. Here, we report the characterization and the purification of this alpha-D-mannosidase and the presence of two soluble forms of alpha-D-mannosidases from rat liver. The cytosolic alpha-D-mannosidase was purified nearly 660-fold with 2.66% recovery to a state approaching homogeneity using: (a) (NH4)2SO4 precipitation; (b) concanavalin-A-Sepharose chromatography; (c) affinity chromatography on a cobalt-chelating Sepharose column; (d) ion-exchange (DEAE-trisacryl M) column chromatography; (e) molecular-size chromatography (Sephacryl S 200). The enzyme was eluted from the final column at an apparent molecular mass of 113 kDa. SDS/PAGE analysis yielded a major protein band at 108 kDa. Moreover, the purification allowed to distinguish two mannosidase activities with different kinetic properties. The first cytosolic activity retained on the cobalt-chelating column was optimally active at neutral pH, was activated by Co2+, was strongly inhibited by swainsonine (Ki = 3.7 microM) but not by deoxymannojirimycin and was active with p-nitrophenyl alpha-D-mannoside (Km = 0.072 mM). Man9GlcNAc was hydrolysed by the purified enzyme down to a Man5GlcNAc structure, i.e. Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4) GlcNA c, which represents the Man5 oligosaccharide chain of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. The second activity not retained on the cobalt-chelating column was optimally active at neutral pH, was inhibited by swainsonine (Ki = 28.4 microM) but not by deoxymannojirimycin and was active with p-nitrophenyl alpha-D-mannoside (Km = 0.633 mM). Man9GlcNAc was broken by this enzymic activity down to Man8GlcNAc and Man7GlcNAc structures. Similitaries with endoplasmic reticulum alpha-D-mannosidase exist and this enzyme could be the cytosolic form of the endoplasmic reticulum alpha-D-mannosidase.
Collapse
Affiliation(s)
- T Grard
- Laboratoire de Chimie Biologique, (Unité mixte de Recherche du Centre National de la Recherche Scientifique no. 111), Université des Sciences et Technologies de Lille, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Isolation of a mouse Golgi mannosidase cDNA, a member of a gene family conserved from yeast to mammals. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36963-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Bonay P, Roth J, Hughes RC. Subcellular distribution in rat liver of a novel broad-specificity (alpha 1----2, alpha 1----3 and alpha 1----6) mannosidase active on oligomannose glycans. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:399-407. [PMID: 1555600 DOI: 10.1111/j.1432-1033.1992.tb16793.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, the purification to homogeneity was reported of a novel broad-specificity alpha-mannosidase from rat liver microsomal membranes [P. Bonay and R. C. Hughes (1991) Eur. J. Biochem. 197, 229-238]. The enzyme catalyzed the ordered removal of alpha 1----2-, alpha 1----3- and alpha 1----6-linked mannose residues from MannGlcNAc oligosaccharide substrates where n = 4-9. We now show by subcellular fractionation and immunocytochemistry that the novel mannosidase is present in the endoplasmic reticulum, Golgi apparatus and endosomes. Enzyme activity is enriched in a heavy Golgi membrane fraction and to lesser extent in an intermediate density Golgi membrane fraction containing GlcNAc transferase I activity and in a 'late' endosomal fraction. Low levels of enzyme activity were detectable in endoplasmic reticulum membranes and in 'early' endosomes but not in receptor-enriched and ligand-free endosomes. Assays of enzymic activity using Golgi membrane fractions in the absence and presence of Triton X-100 showed that the active site of the enzyme faces the lumen of the membrane vesicles. Antibodies directed against the purified mannosidase showed no immunological cross-reaction to known endoplasmic reticulum and Golgi mannosidases. Conversely, the purified mannosidase was not recognized by antibodies directed against endoplasmic reticulum mannosidase nor Golgi mannosidase IA.
Collapse
Affiliation(s)
- P Bonay
- National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
30
|
Haeuw JF, Strecker G, Wieruszeski JM, Montreuil J, Michalski JC. Substrate specificity of rat liver cytosolic alpha-D-mannosidase. Novel degradative pathway for oligomannosidic type glycans. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:1257-68. [PMID: 1837268 DOI: 10.1111/j.1432-1033.1991.tb16498.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The substrate specificity of rat liver cytosolic neutral alpha-D-mannosidase was investigated by in vitro incubation with a crude cytosolic fraction of oligomannosyl oligosaccharides Man9GlcNAc, Man7GlcNAc, Man5GlcNAc I and II isomers and Man4GlcNAc having the following structures: Man9GlcNAc, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-2)Man(alpha 1-6)]Man(alpha 1-6) [Man(alpha 1-2)Man(alpha 1-3)]Man(beta 1-4)GlcNAc; Man5GlcNAc I, Man(alpha 1-3)[Man(alpha 1-6)]-Man(alpha 1-6)Man(alpha 1-3)] Man(beta 1-4)GlcNAc; Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3) [Man(alpha 1-6)]Man(beta 1-4)GlcNAc; Man4GlcNAc, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc. The different oligosaccharide isomers resulting from alpha-D-mannosidase hydrolysis were analyzed by 1H-NMR spectroscopy after HPLC separation. The cytosolic alpha-D-mannosidase activity is able to hydrolyse all types of alpha-mannosidic linkages found in the glycans of the oligomannosidic type, i.e. alpha-1,2, alpha-1,3 and alpha-1,6. Nevertheless the enzyme is highly active on branched Man9GlcNAc or Man5GlcNAc I oligosaccharides and rather inactive towards the linear Man4GlcNAc oligosaccharide. Structural analysis of the reaction products of the soluble alpha-D-mannosidase acting on Man5-GlcNAc I and Man9GlcNAc gives Man3GlcNAc, Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc, and Man5GlcNAc II oligosaccharides, respectively. This Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, represents the 'construction' Man5 oligosaccharide chain of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. The cytosolic alpha-D-mannosidase is activated by Co2+, insensitive to 1-deoxymannojirimycin but strongly inhibited by swainsonine in the presence of Co2+ ions. The enzyme shows a highly specific action different from that previously described for the lysosomal alpha-D-mannosidases [Michalski, J.C., Haeuw, J.F., Wieruszeski, J.M., Montreuil, J. and Strecker, G. (1990) Eur. J. Biochem. 189, 369-379]. A possible complementarity between cytosolic and lysosomal alpha-D-mannosidase activities in the catabolism of N-glycosylprotein is proposed.
Collapse
Affiliation(s)
- J F Haeuw
- Laboratoire de Chimie Biologique, UMR du CNRSn. 111, Université des Sciences et Techniques de Lille Flandres-Artois, Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
31
|
Panneerselvam K, Balasubramanian AS. Loss of Co2+ sensitivity of monkey brain cytosolic neutral alpha-D-mannosidase by cyclic AMP dependent phosphorylation. Neurosci Lett 1991; 132:26-8. [PMID: 1664919 DOI: 10.1016/0304-3940(91)90424-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
alpha-D-Mannosidase that exhibits a pH optimum close to neutrality (neutral mannosidase) purified from monkey brain cytosol is known to be stimulated by Co2+ and this stimulation is suggested to be mediated through a Co2+ activated aminopeptidase that is inseparable from the neutral mannosidase and that cleaves amino acids from the neutral mannosidase. In the present studies, the phosphorylation on serine residues of the neutral mannosidase by cyclic AMP dependent protein kinase is demonstrated. After phosphorylation the mannosidase activity remained unchanged, but it was not stimulated by Co2+. The aminopeptidase activity, although it retained its response to stimulation by Co2+, showed a drastic reduction in its activity after phosphorylation. It is suggested that the loss of Co2+ sensitivity of the neutral mannosidase after phosphorylation is mediated through the aminopeptidase.
Collapse
Affiliation(s)
- K Panneerselvam
- Neurochemistry Laboratory, Christian Medical College Hospital, Vellore, India
| | | |
Collapse
|
32
|
Sharkey D, Kornfeld R. Developmental regulation of asparagine-linked oligosaccharide synthesis in Dictyostelium discoideum. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55087-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Developmental regulation of processing alpha-mannosidases and “intersecting” N-acetylglucosaminyltransferase in Dictyostelium discoideum. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55086-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
DeGasperi R, al Daher S, Daniel P, Winchester B, Jeanloz R, Warren C. The substrate specificity of bovine and feline lysosomal alpha-D-mannosidases in relation to alpha-mannosidosis. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55337-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Bonay P, Hughes RC. Purification and characterization of a novel broad-specificity (alpha 1----2, alpha 1----3 and alpha 1----6) mannosidase from rat liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:229-38. [PMID: 1849817 DOI: 10.1111/j.1432-1033.1991.tb15903.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have identified a mannosidase in rat liver that releases alpha 1----2, alpha 1----3 and alpha 1----6 linked manose residues from oligosaccharide substrates, MannGlcNAc where n = 4-9. The end product of the reaction is Man alpha 1----3[Man alpha 1----6]Man beta 1----4GlcNAc. The mannosidase has been purified to homogeneity from a rat liver microsomal fraction, after solubilization into the aqueous phase of Triton X-114, by anion-exchange, hydrophobic and hydroxyapatite chromatography followed by chromatofocusing. The purified enzyme is a dimer of a 110-kDa subunit, has a pH optimum between 6.1 and 6.5 and a Km of 65 microM and 110 microM for the Man5GlcNAc-oligosaccharide or Man9GlcNAc-oligosaccharide substrates, respectively. Enzyme activity is inhibited by EDTA, by Zn2+ and Cu2+, and to lesser extent by Fe2+ and is stabilized by Co2+. The pattern of release of mannose residues from a Man6GlcNAc substrate shows an ordered hydrolysis of the alpha 1----2 linked residue followed by hydrolysis of alpha 1----3 and alpha 1----6 linked residues. The purified enzyme shows no activity against p-nitrophenyl-alpha-mannoside nor the hybrid GlcNAc Man5GlcNAc oligosaccharide. The enzyme activity is inhibited by swainsonine and 1-deoxymannojirimycin at concentrations 50-500-fold higher than required for complete inhibition of Golgi-mannosidase II and mannosidase I, respectively. The data indicate strongly that the enzyme has novel activity and is distinct from previously described mannosidases.
Collapse
Affiliation(s)
- P Bonay
- National Institute for Medical Research, London, England
| | | |
Collapse
|
36
|
Bischoff J, Moremen K, Lodish HF. Isolation, characterization, and expression of cDNA encoding a rat liver endoplasmic reticulum alpha-mannosidase. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44876-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Michalski JC, Haeuw JF, Wieruszeski JM, Montreuil J, Strecker G. In vitro hydrolysis of oligomannosyl oligosaccharides by the lysosomal alpha-D-mannosidases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 189:369-79. [PMID: 2338081 DOI: 10.1111/j.1432-1033.1990.tb15498.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In vitro incubation of the oligomannosyl oligosaccharides Man9GlcNAc and Man5GlcNAc with isolated disrupted lysosomes yields different oligosaccharide isomers resulting from mannosidase hydrolysis. These isomers were isolated by HPLC and characterized by 1H-NMR spectroscopy. The first steps of the degradation involve an (alpha 1-2)mannosidase activity and lead to the formation of one Man8GlcNAc, one Man7GlcNAc, two Man6GlcNAc and two Man5GlcNAc isomers. These reactions do not require Zn2+ as activator. On the other hand, the following steps, which lead to the formation of Man3GlcNAc and Man2GlcNAc, are Zn2(+)-dependent. This process is characterized by the preferential action of an (alpha 1-3)mannosidase activity, and the formation of Man(alpha 1-6)Man(alpha 1-6)Man(beta 1-4)GlcNAc and Man(alpha 1-6)Man(beta 1-4)GlcNAc. Therefore, the digestion of Man9GlcNAc inside the lysosome appears to follow a very specific pathway, since only nine intermediate compounds can be identified instead of the 38 possible isomers. Our results are consistent both with the existence of several specific enzymes for alpha 1-2, alpha 1-3 and alpha 1-6 linkages, and with the presence of a unique enzyme whose specificity would be dependent either on Zn2+ or on the spatial conformation of the glycan. Nevertheless, previous work on the structural analysis of oligosaccharides excreted in the urine of patients suffering from mannosidosis, demonstrates the absence of the core alpha 1-6-linked mannosyl residue in the major storage product derived from oligomannosyl oligosaccharides. This observation indicates the presence of a specific (alpha 1-6)mannosidase form, unaffected in mannosidosis.
Collapse
Affiliation(s)
- J C Michalski
- Laboratoire de Chimie Biologique, Université des Sciences et Techniques de Lille Flandres-Artois, France
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Forsee WT, Palmer CF, Schutzbach JS. Purification and characterization of an α-1,2-mannosidase involved in processing asparagine-linked oligosaccharides. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)84932-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Daniel PF, Newburg DS, O'Neil NE, Smith PW, Fleet GW. Effects of the alpha-mannosidase inhibitors, 1,4-dideoxy-1,4-imino-D-mannitol and swainsonine, on glycoprotein catabolism in cultured macrophages. Glycoconj J 1989; 6:229-40. [PMID: 2535594 DOI: 10.1007/bf01050651] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Thioglycollate-stimulated murine peritoneal macrophages were cultured for eight days in the presence of swainsonine, or 1,4-dideoxy-1,4-imino-D-mannitol (DIM), or both of these competitive alpha-mannosidase inhibitors together. Analysis of accumulated high-mannose oligosaccharides by reversed phase HPLC after perbenzoylation revealed that DIM- and DIM-plus swainsonine-treated macrophages contained larger amounts of Man7GlcNAc, Man8GlcNAc and Man9GlcNAc, while swainsonine-treated macrophages contained relatively more Man3GlcNAc and Man5GlcNAc. These results are consistent with the known inhibitory effects of DIM and swainsonine on Golgi mannosidases I and II, respectively, and on lysosomal alpha-mannosidase. Depletion of stored oligosaccharides to control values was complete within seven days of terminating swainsonine treatment.
Collapse
Affiliation(s)
- P F Daniel
- Department of Biochemistry, E.K. Shriver Center, Waltham, MA 02254
| | | | | | | | | |
Collapse
|
41
|
Shiono T. Acid hydrolases in the bovine lens epithelium. Graefes Arch Clin Exp Ophthalmol 1988; 226:583-6. [PMID: 3209085 DOI: 10.1007/bf02169208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Acid hydrolases (acid phophatase, N-acetyl-beta-D-glucosaminidase, alpha-D-mannosidase, alpha-L-fucosidase, and beta-D-glucuronidase) in the bovine lens epithelium were studied biochemically. p-Nitrophenyl derivatives were used as substrate. All enzymatic activity was found to be much higher in the epithelium than in the cortex and nucleus. The properties of acid phosphatase, N-acetyl-beta-D-glucosaminidase, and alpha-D-mannosidase were also studied, yielding Km values of 0.28, 0.95, and 0.53 mM, respectively. The optimal pH of these enzymes was acidic. Among the subcellular fractions, both acid phosphatase and N-acetyl-beta-D-glucosaminidase had the highest enzymatic activities in the 20,000 g precipitate fraction, while alpha-D-mannosidase showed no difference in activity among the subcellular fractions, suggesting that alpha-D-mannosidase in the bovine lens epithelium is nonlysosomal.
Collapse
Affiliation(s)
- T Shiono
- Department of Ophthalmology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
42
|
Lauro P, Lechner PS, Okolo A, Eagon PK, Glew RH. Effect of chronic ethanol ingestion on alpha-mannosidase isoenzymes in rat liver. Clin Chim Acta 1988; 174:291-8. [PMID: 3390956 DOI: 10.1016/0009-8981(88)90055-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Identification of biochemical changes induced by ethanol ingestion would aid in the diagnosis and management of many alcohol-related problems in man. In this paper we identify a pH 5.5 alpha-mannosidase activity in the rat which is affected by chronic ethanol consumption. Chronic (16 wk) ingestion of alcohol (36% of calories) causes the activity of this alpha-mannosidase (thought to be the cytosolic alpha-mannosidase) in liver to decrease by 50%. We hypothesize that this deficiency of (pH 5.5) alpha-mannosidase activity may account for the reduced rate of secretion of glycoproteins by livers of alcohol-fed rats reported by other investigators (Volentine et al, Hepatology 1987;7:490-495).
Collapse
Affiliation(s)
- P Lauro
- Department of Microbiology, Biochemistry, and Molecular Biology, School of Medicine, University of Pittsburgh, PA 15261
| | | | | | | | | |
Collapse
|
43
|
Raghavan S, Stuer G, Riviere L, Alroy J, Kolodny EH. Characterization of alpha-mannosidase in feline mannosidosis. J Inherit Metab Dis 1988; 11:3-16. [PMID: 3128686 DOI: 10.1007/bf01800052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Acidic alpha-mannosidase deficiency has been identified in a family of Blue Persian cats. Characterization of the residual activity revealed that the Km for the substrate, 4-methylumbelliferyl-alpha-D-mannoside, increased approximately three-fold with a severe deficiency in Vmax (1-2%) in homogenates of liver and brain of affected cats compared with controls. The residual activity at pH 4.0 in liver homogenates from affected cats is very thermolabile at 51 degrees C while the control activity is stable at this temperature for 1 h. Subcellular fractionation of liver was performed from a control and diseased cat in order to compare the properties of the different alpha-mannosidases localized in these fractions. The residual activity present in the lysosomal fraction from diseased cat liver showed altered pH optimum, two-fold increase in Km with a severely reduced Vmax and increased thermolability compared with the activity in the lysosomal fraction from control liver. The thermal inactivation pattern and Km of the residual activity in the lysosomal fraction is different from the non-lysosomal alpha-mannosidase in the liver of the affected cat. This suggests that the residual activity in the lysosomal fraction of the liver from the affected cat is not due to contamination of non-lysosomal alpha-mannosidase in this fraction. Whether this residual activity represents the properties of the mutant enzyme or yet another minor normal component of lysosomes different from the major inactive mutant or absent lysosomal enzyme remains to be elucidated.
Collapse
Affiliation(s)
- S Raghavan
- Department of Biochemistry, Eunice Kennedy Shriver Center for Mental Retardation, Inc., Waltham, MA 02254
| | | | | | | | | |
Collapse
|
44
|
Schutzbach JS. A fluorescence assay for alpha-1,2-mannosidases involved in glycoprotein processing reactions. Anal Biochem 1987; 167:279-83. [PMID: 3442323 DOI: 10.1016/0003-2697(87)90164-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A highly specific, sensitive, and convenient fluorescence assay for alpha-1,2-mannosidases involved in glycoprotein processing reactions is described. The assay utilizes a coupled enzyme system to determine the amount of free mannose liberated from the disaccharide O-methyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside by the alpha-1,2-mannosidase. The assay was used to determine the substrate specificity of a calcium ion-activated alpha-1,2-mannosidase purified from rabbit liver microsomes. The microsomal mannosidase was specific for hydrolysis of the alpha-1,2 linkage. The mannosyl linkages in alpha-1,3- and alpha-1,6-linked methyl-disaccharides, in methyl-alpha-D-mannopyranoside, and in yeast mannan were hydrolyzed at rates of 2% or less than that noted with the alpha-1,2-linked disaccharide. Mannosidase activity was linear with time and was proportional to enzyme concentration. The Km for the alpha-1,2-linked methyl-disaccharide is 0.5 mM.
Collapse
Affiliation(s)
- J S Schutzbach
- Department of Microbiology, University of Alabama, Birmingham 35294
| |
Collapse
|
45
|
Roth J. Subcellular organization of glycosylation in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 906:405-36. [PMID: 3307920 DOI: 10.1016/0304-4157(87)90018-9] [Citation(s) in RCA: 221] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- J Roth
- Interdepartmental Electron Microscopy, University of Basel, Switzerland
| |
Collapse
|
46
|
Cacan R, Cecchelli R, Verbert A. Catabolic pathway of oligosaccharide-diphospho-dolichol. Study of the fate of the oligosaccharidic moiety in mouse splenocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 166:469-74. [PMID: 2956096 DOI: 10.1111/j.1432-1033.1987.tb13539.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Metabolic labelling of mouse splenocytes with radioactive mannose indicates that the glycosylation process is accompanied by the release of soluble oligomannoside material. Chase experiments with an excess of unlabelled mannose indicate that the radioactivity is mainly chased from oligosaccharide-PP-Dol (PP-Dol = diphosphodolichol): 10% is recovered as (Man)9(GlcNAc)2-P, (Man)9(GlcNAc)2, (Man)9GlcNAc and (Man)5 GlcNAc, and 90% is rapidly degraded further. Tunicamycin inhibits both oligosaccharide-PP-Dol synthesis and the formation of the oligosaccharide material to the same extent. The results thus indicate that these soluble oligomannoside structures represent the main steps of the oligosaccharide-PP-Dol catabolic pathway, starting with the cleavage of the diphosphate bond. However, it cannot be excluded that part of this material is released from newly formed glycoproteins. The soluble oligomannoside material does not contain glucose residues despite the fact that part of the oligosaccharide-PP-Dol is glucosylated and it was shown, by the use of glucosidase I inhibitors (castanospermine, deoxynojirimycin) that, after cleavage, the glycan moiety of glucosylated oligosaccharide-PP-Dol is first rapidly deglucosylated. These experiments provide a physiological basis to our previous results obtained in vitro and allow the definition of further steps in the catabolic pathway of oligosaccharide-PP-Dol.
Collapse
|
47
|
Substrate specificities of rat kidney lysosomal and cytosolic alpha-D-mannosidases and effects of swainsonine suggest a role of the cytosolic enzyme in glycoprotein catabolism. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)48271-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Jauhiainen A, Vanha-Perttula T. Characterization of acid and neutral alpha-mannosidases in bull semen and reproductive organs. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1987; 19:267-74. [PMID: 3595978 DOI: 10.1016/0020-711x(87)90030-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acid and neutral alpha-mannosidase activities were studied in the bull reproductive tissues, isolated spermatozoa, epididymal and seminal vesicle secretion and seminal plasma. The acid enzyme in the seminal plasma mainly derived from the epididymal secretion, while the neutral one was enriched in the sperm cells. The latter activity in the seminal plasma appears to be due to an enzyme released from the cytoplasmic droplets in the epididymis. The acid enzyme had a molecular weight of 220,000-320,000, pI 7.3-6.0 and an optimum at pH 4.0. It was sensitive to swainsonine but was stimulated by Zn2+. The neutral enzyme had a molecular weight of 360,000-460,000, pI 5.4-4.7 and showed double optima at pH 5.5 and 6.0-7.0. It was resistant to swainsonine but was markedly activated by Co2+ or Fe2+. The neutral enzyme was also more sensitive to thermal inactivation than the acid one.
Collapse
|
49
|
Elleder M, Borovanský J, Mazánek J, Vosmík F. Enzyme histochemistry of human melanomas and pigmented naevi with special reference to alpha-D-mannosidase activity. THE HISTOCHEMICAL JOURNAL 1986; 18:472-80. [PMID: 3096914 DOI: 10.1007/bf01675614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A histochemical study of alpha-D-mannosidase revealed that normal human melanocytes (resting state, activated, lentigo simplex) exhibit either no or just detectable activity, as do melanocytes in the initial phase of lentigo maligna. Junctional, or occasionally zone A naevocytes displayed a very low enzyme activity. On the other hand, melanocytes in the initial stage of neoplastic transformation (dysplastic naevi, advanced stage of lentigo maligna) and also melanoma cells in disorders of low malignant potential (initial naevogenic melanoma, superficial spreading melanoma) displayed a high activity uniformly throughout the cell population. In the malignant forms (nodular melanoma, recurrences, metastases), the enzyme activity was remarkably heterogeneous, suggesting a breakdown of uniformity during malignant transformation. The significance of alpha-mannosidase activity induction in the course of melanocyte neoplastic transformation is not clear at present. The results of biochemical assays suggest that the lysosomal isoenzyme is mainly responsible. Other lysosomal enzymes, and dehydrogenases studied concomitantly, did not display any comparable phenomena of induction or similar behaviour. However, the results of a comparison of alpha-mannosidase with the melanocyte reference enzyme tyrosinase suggested activity patterns in the enzyme pair which may provide a better insight into the biochemical differentiation of human melanocytes in neoplastic disorders. The possible relationship of alpha-mannosidase to melanogenesis is also discussed.
Collapse
|
50
|
Bischoff J, Kornfeld R. The soluble form of rat liver alpha-mannosidase is immunologically related to the endoplasmic reticulum membrane alpha-mannosidase. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38566-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|