1
|
Cross K, Vetter SW, Alam Y, Hasan MZ, Nath AD, Leclerc E. Role of the Receptor for Advanced Glycation End Products (RAGE) and Its Ligands in Inflammatory Responses. Biomolecules 2024; 14:1550. [PMID: 39766257 PMCID: PMC11673996 DOI: 10.3390/biom14121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
Since its discovery in 1992, the receptor for advanced glycation end products (RAGE) has emerged as a key receptor in many pathological conditions, especially in inflammatory conditions. RAGE is expressed by most, if not all, immune cells and can be activated by many ligands. One characteristic of RAGE is that its ligands are structurally very diverse and belong to different classes of molecules, making RAGE a promiscuous receptor. Many of RAGE ligands are damaged associated molecular patterns (DAMPs) that are released by cells under inflammatory conditions. Although RAGE has been at the center of a lot of research in the past three decades, a clear understanding of the mechanisms of RAGE activation by its ligands is still missing. In this review, we summarize the current knowledge of the role of RAGE and its ligands in inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Estelle Leclerc
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (K.C.); (S.W.V.); (Y.A.); (M.Z.H.); (A.D.N.)
| |
Collapse
|
2
|
Shah FH, Lee HW. Endothelial and macrophage interactions in the angiogenic niche. Cytokine Growth Factor Rev 2024; 78:64-76. [PMID: 39019663 DOI: 10.1016/j.cytogfr.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
The interactions between vascular cells, especially endothelial cells, and macrophages play a pivotal role in maintaining the subtle balance of vascular biology, which is crucial for angiogenesis in both healthy and diseased states. These cells are central to ensuring a harmonious balance between tissue repair and preventing excessive angiogenic activity, which could lead to pathological conditions. Recent advances in sophisticated genetic engineering vivo models and novel sequencing approaches, such as single-cell RNA-sequencing, in immunobiology have significantly enhanced our understanding of the gene expression and behavior of macrophages. These insights offer new perspectives on the role macrophages play not only in development but also across various health conditions. In this review, we explore the complex interactions between multiple types of macrophages and endothelium, focusing on their impact on new blood vessel formation. By understanding these intricate interactions, we aim to provide insights into new methods for managing angiogenesis in various diseases, thereby offering hope for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Heon-Woo Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea.
| |
Collapse
|
3
|
Gudgeon J, Marín-Rubio JL, Trost M. The role of macrophage scavenger receptor 1 (MSR1) in inflammatory disorders and cancer. Front Immunol 2022; 13:1012002. [PMID: 36325338 PMCID: PMC9618966 DOI: 10.3389/fimmu.2022.1012002] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Macrophage scavenger receptor 1 (MSR1), also named CD204, holds key inflammatory roles in multiple pathophysiologic processes. Present primarily on the surface of various types of macrophage, this receptor variably affects processes such as atherosclerosis, innate and adaptive immunity, lung and liver disease, and more recently, cancer. As highlighted throughout this review, the role of MSR1 is often dichotomous, being either host protective or detrimental to the pathogenesis of disease. We will discuss the role of MSR1 in health and disease with a focus on the molecular mechanisms influencing MSR1 expression, how altered expression affects disease process and macrophage function, the limited cell signalling pathways discovered thus far, the emerging role of MSR1 in tumour associated macrophages as well as the therapeutic potential of targeting MSR1.
Collapse
Affiliation(s)
| | - José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
4
|
Linares-Alcántara E, Mendlovic F. Scavenger Receptor A1 Signaling Pathways Affecting Macrophage Functions in Innate and Adaptive Immunity. Immunol Invest 2022; 51:1725-1755. [PMID: 34986758 DOI: 10.1080/08820139.2021.2020812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
First discovered on macrophages by Goldstein and Brown in 1979, Scavenger Receptors have since been shown to participate in a diverse number of cell functions; equally diverse are their structures and the ligands they bind. Macrophage activation is crucial in the outcome of an immune response. SR-A1 is highly abundant on macrophages and recognizes both host- and microorganism-derived molecules that impact processes that are initiated, perpetuated, or modified. This review summarizes the involvement of SR-A1 in both inflammatory and anti-inflammatory responses, the multiple-ligand internalization mechanisms and the diversity of signaling pathways that impact macrophage function and activation. Engagement of SR-A1 results in the stimulation of differential signaling pathways and patterns of cytokine expression, kinetics, magnitude of response and activation status. SR-A1 plays essential roles in phagocytosis and efferocytosis, interacting with other receptors and promoting tolerance in response to apoptotic cell uptake. In cell adhesion, tissue remodeling, and cell migration, SR-A1 signals through different pathways engaging different cytoplasmic motifs. We describe the role of SR-A1 during innate and adaptive immune responses, such as participation in macrophage polarization and interaction with other innate receptors, as well as in antigen uptake, processing, and presentation, regulating T and B cell activation. The dichotomous contribution of SR-A1 on macrophage functions is discussed. A better understanding of the role SR-A1 plays through molecular mechanisms and crosstalk with other receptors may provide insights into developing novel therapeutic strategies to modulate immune responses and immunopathologies.
Collapse
Affiliation(s)
- Elizabeth Linares-Alcántara
- Facultad de Ciencias, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico.,Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, UNAM, Av. Universidad 3000, Col. Copilco-Universidad, Ciudad de Mexico, Mexico.,Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, Mexico
| |
Collapse
|
5
|
Lopera Higuita M, Lopera Giraldo JF, Sarrafian TL, Griffiths LG. Tissue engineered bovine saphenous vein extracellular matrix scaffolds produced via antigen removal achieve high in vivo patency rates. Acta Biomater 2021; 134:144-159. [PMID: 34192567 DOI: 10.1016/j.actbio.2021.06.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Diseases of small diameter blood vessels encompass the largest portion of cardiovascular diseases, with over 4.2 million people undergoing autologous vascular grafting every year. However, approximately one third of patients are ineligible for autologous vascular grafting due to lack of suitable donor vasculature. Acellular extracellular matrix (ECM) scaffolds derived from xenogeneic vascular tissue have potential to serve as ideal biomaterials for production of off-the-shelf vascular grafts capable of eliminating the need for autologous vessel harvest. A modified antigen removal (AR) tissue process, employing aminosulfabetaine-16 (ASB-16) was used to create off-the-shelf small diameter (< 3 mm) vascular graft from bovine saphenous vein ECM scaffolds with significantly reduced antigenic content, while retaining native vascular ECM protein structure and function. Elimination of native tissue antigen content conferred graft-specific adaptive immune avoidance, while retention of native ECM protein macromolecular structure resulted in pro-regenerative cellular infiltration, ECM turnover and innate immune self-recognition in a rabbit subpannicular model. Finally, retention of the delicate vascular basement membrane protein integrity conferred endothelial cell repopulation and 100% patency rate in a rabbit jugular interposition model, comparable only to Autograft implants. Alternatively, the lack of these important basement membrane proteins in otherwise identical scaffolds yielded a patency rate of only 20%. We conclude that acellular antigen removed bovine saphenous vein ECM scaffolds have potential to serve as ideal off-the-shelf small diameter vascular scaffolds with high in vivo patency rates due to their low antigen content, retained native tissue basement membrane integrity and preserved native ECM structure, composition and functional properties. STATEMENT OF SIGNIFICANCE: The use of autologous vessels for the treatment of small diameter vascular diseases is common practice. However, the use of autologous tissue poses significant complications due to tissue harvest and limited availability. Developing an alternative vessel for use for the treatment of small diameter vessel diseases can potentially increase the success rate of autologous vascular grafting by eliminating complications related to the use of autologous vessel and increased availability. This manuscript demonstrates the potential of non-antigenic extracellular matrix (ECM) scaffolds derived from xenogeneic vascular tissue as off-the-shelf vascular grafts for the treatment of small diameter vascular diseases.
Collapse
Affiliation(s)
| | - Juan F Lopera Giraldo
- Department of Plastic Surgery, Clínica Las Américas, Antioquia, Dg. 75B ##2A-80/140, Medellín, Colombia
| | - Tiffany L Sarrafian
- Department of Thoracic Surgery, Mayo Clinic, 200 1st St SW, Rochester MN, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Diseases, Mayo Clinic, 200 1st St SW, Rochester, MN 55905, USA.
| |
Collapse
|
6
|
Sharma R, Liaw K, Sharma A, Jimenez A, Chang M, Salazar S, Amlani I, Kannan S, Kannan RM. Glycosylation of PAMAM dendrimers significantly improves tumor macrophage targeting and specificity in glioblastoma. J Control Release 2021; 337:179-192. [PMID: 34274384 PMCID: PMC8600682 DOI: 10.1016/j.jconrel.2021.07.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/14/2021] [Accepted: 07/13/2021] [Indexed: 12/22/2022]
Abstract
Glioblastoma is among the most aggressive forms of cancers, with a median survival of just 15-20 months for patients despite maximum clinical intervention. The majority of conventional anti-cancer therapies fail due to associated off-site toxicities which can be addressed by developing target-specific drug delivery systems. Advances in nanotechnology have provided targeted systems to overcome drug delivery barriers associated with brain and other types of cancers. Dendrimers have emerged as promising vehicles for targeted drug and gene delivery. Dendrimer-mediated targeting strategies can be further enhanced through the addition of targeting ligands to enable receptor-specific interactions. Here, we explore the sugar moieties as ligands conjugated to hydroxyl-terminated polyamidoamine dendrimers to leverage altered metabolism in cancer and immune targeting. Using a highly facile click chemistry approach, we modified the surface of dendrimers with glucose, mannose, or galactose moieties in a well-defined manner, to target upregulated sugar transporters in the context of glioblastoma. We show that glucose modification significantly enhanced targeting of tumor-associated macrophages (TAMs) and microglia by increasing brain penetration and cellular internalization, while galactose modification shifts targeting away from TAMs towards galectins on glioblastoma tumor cells. Mannose modification did not alter TAMs and microglia targeting of these dendrimers, but did alter their kinetics of accumulation within the GBM tumor. The whole body biodistribution was largely similar between the systems. These results demonstrate that dendrimers are versatile delivery vehicles that can be modified to tailor their targeting for the treatment of glioblastoma and other cancers.
Collapse
Affiliation(s)
- Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kevin Liaw
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ambar Jimenez
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michelle Chang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sebastian Salazar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Imaan Amlani
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Sahoo JK, Hasturk O, Choi J, Montero MM, Descoteaux ML, Laubach IA, Kaplan DL. Sugar Functionalization of Silks with Pathway-Controlled Substitution and Properties. Adv Biol (Weinh) 2021; 5:e2100388. [PMID: 33929098 PMCID: PMC8266746 DOI: 10.1002/adbi.202100388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Indexed: 12/20/2022]
Abstract
Silk biomaterials are important for applications in biomedical fields due to their outstanding mechanical properties, biocompatibility, and tunable biodegradation. Chemical functionalization of silk by various chemistries can be leveraged to enhance and tune these features and enable the expansion of silk-based biomaterials into additional fields. Sugars are particularly relevant for intracellular communication, signal transduction events, as well as in hydrated extracellular matrices such as in cartilage, vitreous, and brain tissues. Multiple reaction pathways are demonstrated (carboxylation of serines followed by carbodiimide coupling with glucosamine, carboxylation of tyrosines followed by carbodiimide coupling with glucosamine; direct carbodiimide coupling of the inherent carboxylic acids of silk (aspartic and glutamic acid) with glucosamine) for the covalent conjugation of glucosamine onto silk with characterization by proton nuclear magnetic resonance (1 H-NMR), liquid chromatography tandem mass spectroscopy (LC-MS), water contact angle (WCA), and Fourier transform infrared (FTIR) spectroscopy. The results indicate that different pathways substitute different amounts of glucosamine onto silk chains, with control over resulting material properties, including hydrophobicity/hydrophilicity and biological responses. The aqueous processability of these conjugates into functional material formats (films, sponges) is assessed. These new classes of bio-inspired materials can lead to multifunctional biomaterials for potential applications in different fields of biomedical engineering.
Collapse
Affiliation(s)
- Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Jaewon Choi
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Maria M Montero
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Marc L Descoteaux
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - Isabel A Laubach
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA, 02155, USA
| |
Collapse
|
8
|
Yeasts as Complementary Model Systems for the Study of the Pathological Repercussions of Enhanced Synphilin-1 Glycation and Oxidation. Int J Mol Sci 2021; 22:ijms22041677. [PMID: 33562355 PMCID: PMC7915245 DOI: 10.3390/ijms22041677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/22/2023] Open
Abstract
Synphilin-1 has previously been identified as an interaction partner of α-Synuclein (αSyn), a primary constituent of neurodegenerative disease-linked Lewy bodies. In this study, the repercussions of a disrupted glyoxalase system and aldose reductase function on Synphilin-1 inclusion formation characteristics and cell growth were investigated. To this end, either fluorescent dsRed-tagged or non-tagged human SNCAIP, which encodes the Synphilin-1 protein, was expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe yeast strains devoid of enzymes Glo1, Glo2, and Gre3. Presented data shows that lack of Glo2 and Gre3 activity in S. cerevisiae increases the formation of large Synphilin-1 inclusions. This correlates with enhanced oxidative stress levels and an inhibitory effect on exponential growth, which is most likely caused by deregulation of autophagic degradation capacity, due to excessive Synphilin-1 aggresome build-up. These findings illustrate the detrimental impact of increased oxidation and glycation on Synphilin-1 inclusion formation. Similarly, polar-localised inclusions were observed in wild-type S. pombe cells and strains deleted for either glo1+ or glo2+. Contrary to S. cerevisiae, however, no growth defects were observed upon expression of SNCAIP. Altogether, our findings show the relevance of yeasts, especially S. cerevisiae, as complementary models to unravel mechanisms contributing to Synphilin-1 pathology in the context of neurodegenerative diseases.
Collapse
|
9
|
Arriagada-Petersen C, Fernandez P, Gomez M, Ravello N, Palomo I, Fuentes E, Ávila F. Effect of advanced glycation end products on platelet activation and aggregation: a comparative study of the role of glyoxal and methylglyoxal. Platelets 2020; 32:507-515. [PMID: 32449466 DOI: 10.1080/09537104.2020.1767770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advanced glycation end products (AGEs) arising from dietary intake have been associated with numerous chronic diseases including cardiovascular diseases. The interaction between platelets and AGEs has been proposed to play a role in the etiology of cardiovascular diseases. However, the effects of the interaction between platelets and Maillard reaction products generated from glyoxal (Gly) or methylglyoxal (MG) are poorly understood. In this work, the effects of AGEs generated by the reaction between Gly or MG with Lys or bovine serum albumin (BSA) on platelet activation and aggregation were assessed. AGEs were generated incubating Gly or MG with Lys or BSA during 5 hours or 14 days, respectively. AGEs generation were characterized by kinetic studies and by amino acid analysis. Human platelet-rich plasma (PRP) was incubated with different concentrations of AGEs from Lys-MG or Lys-Gly and BSA-MG or BSA-Gly. Platelet activation was determined quantifying the expression of CD62 (P-selectin) in PRP exposed to different AGEs concentrations. It was found that Lys-MG and Lys-Gly induced an increase in P-selectin expression (p < .05), being 33.9% higher for Lys-MG when compared to Lys-Gly. Platelets incubated in the presence of BSA-MG and BSA-Gly did not show an increase in the P-selectin expression. Platelet aggregation was significantly higher for the mixture Lys-MG (in all the range of concentrations evaluated), whereas for Lys-Gly it was only significant the highest concentration (Lys 168 µM/Gly 168 µM). It was observed a significant increase in platelet aggregation induced by ADP for samples BSA-Gly. AGEs formed with MG-Lys induce a higher activation and aggregation of platelets when compared to those formed from Gly-Lys.
Collapse
Affiliation(s)
| | - Paula Fernandez
- Escuela De Nutrición Y Dietética, Facultad De Ciencias De La Salud, Universidad De Talca, Talca, Chile
| | - Maira Gomez
- Escuela De Nutrición Y Dietética, Facultad De Ciencias De La Salud, Universidad De Talca, Talca, Chile
| | - Natalia Ravello
- Escuela De Nutrición Y Dietética, Facultad De Ciencias De La Salud, Universidad De Talca, Talca, Chile
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad De Talca, Talca, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Universidad De Talca, Talca, Chile
| | - Felipe Ávila
- Escuela De Nutrición Y Dietética, Facultad De Ciencias De La Salud, Universidad De Talca, Talca, Chile
| |
Collapse
|
10
|
Spartalis M, Spartalis E, Athanasiou A, Paschou SA, Kontogiannis C, Georgiopoulos G, Iliopoulos DC, Voudris V. The Role of the Endothelium in Premature Atherosclerosis: Molecular Mechanisms. Curr Med Chem 2020; 27:1041-1051. [PMID: 31544711 DOI: 10.2174/0929867326666190911141951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/29/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
Abstract
Atherosclerotic disease is still one of the leading causes of mortality. Atherosclerosis is a complex progressive and systematic artery disease that involves the intima of the large and middle artery vessels. The inflammation has a key role in the pathophysiological process of the disease and the infiltration of the intima from monocytes, macrophages and T-lymphocytes combined with endothelial dysfunction and accumulated oxidized low-density lipoprotein (LDL) are the main findings of atherogenesis. The development of atherosclerosis involves multiple genetic and environmental factors. Although a large number of genes, genetic polymorphisms, and susceptible loci have been identified in chromosomal regions associated with atherosclerosis, it is the epigenetic process that regulates the chromosomal organization and genetic expression that plays a critical role in the pathogenesis of atherosclerosis. Despite the positive progress made in understanding the pathogenesis of atherosclerosis, the knowledge about the disease remains scarce.
Collapse
Affiliation(s)
- Michael Spartalis
- Division of Cardiology, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Eleftherios Spartalis
- Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Antonios Athanasiou
- Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Stavroula A Paschou
- Division of Endocrinology and Diabetes, "Aghia Sophia" Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Kontogiannis
- Department of Clinical Therapeutics, "Alexandra" Hospital, University of Athens, 11528 Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, "Alexandra" Hospital, University of Athens, 11528 Athens, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery and Surgical Research, University of Athens, Medical School, Athens, Greece
| | - Vassilis Voudris
- Division of Cardiology, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| |
Collapse
|
11
|
Post GR, Yuan Y, Holthoff ER, Quick CM, Post SR. Identification of a novel monocytic phenotype in Classic Hodgkin Lymphoma tumor microenvironment. PLoS One 2019; 14:e0224621. [PMID: 31714922 PMCID: PMC6850552 DOI: 10.1371/journal.pone.0224621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/17/2019] [Indexed: 01/07/2023] Open
Abstract
Classic Hodgkin lymphoma (CHL) characteristically shows few malignant cells in a microenvironment comprised of mixed inflammatory cells. Although CHL is associated with a high cure rate, recent studies have associated poor prognosis with absolute monocyte count in peripheral blood and increased monocyte/macrophages in involved lymph nodes. Thus, the role of monocytic infiltration and macrophage differentiation in the tumor microenvironment of CHL may be more relevant than absolute macrophage numbers to defining prognosis in CHL patients and potentially have therapeutic implications. Most studies identify tumor-associated macrophages (TAMs) using markers (e.g., CD68) expressed by macrophages and other mononuclear phagocytes, such as monocytes. In contrast, Class A Scavenger Receptor (SR-A/CD204) is expressed by tissue macrophages but not monocytic precursors. In this study, we examined SR-A expression in CHL (n = 43), and compared its expression with that of other macrophage markers. We confirmed a high prevalence of mononuclear cells that stained with CD68, CD163, and CD14 in CHL lymph nodes. However, SR-A protein expression determined by immunohistochemistry was limited to macrophages localized in sclerotic bands characteristic of nodular sclerosis CHL. In contrast, SR-A protein was readily detectable in lymph nodes with metastatic tumor, extra-nodal CHL, T cell/histiocyte-rich large B cell lymphoma, and resident macrophages in non-malignant tissues, including spleen, lymph node, liver and lung. The results of SR-A protein expression paralleled the expression of SR-A mRNA determined by quantitative RT-PCR. These data provide evidence that tumor-infiltrating monocyte/macrophages in CHL have a unique phenotype that likely depends on the microenvironment of nodal CHL.
Collapse
Affiliation(s)
- Ginell R. Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Youzhong Yuan
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Emily R. Holthoff
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Charles M. Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Steven R. Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Bala SV, Appukuttan D, Subramaniam S, Prakash PSG, Cholan PK, Victor DJ. Association of Receptor for advanced glycation end products G82S polymorphism with chronic periodontitis in type II diabetic and non-diabetic South Indians. Gene 2019; 708:30-37. [PMID: 31078654 DOI: 10.1016/j.gene.2019.04.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
Abstract
AIM The current study investigated the association of RAGE G82S polymorphism with chronic periodontitis in South Indians with and without type II Diabetes mellitus. MATERIALS AND METHODS 405 individuals were enrolled into 3 groups-systemically and periodontally healthy with no attachment loss (n = 135), generalized chronic periodontitis (n = 135)and generalized chronic periodontitis with type II diabetes mellitus(n = 135). Periodontal clinical parameters were recorded. RFLP-PCR was utilized for genotyping. RESULTS Frequencies of genotype GG, GA and AA were 133, 2, 0 in group I respectively, 131, 4, 0 in group II respectively and 118, 13, 4 in group III respectively. Pearson's Chi squared test demonstrated a significant difference in the genotype distribution between the three groups (χ2 = 19.88,P < 0.001). Fischer exact-test showed that the variant GA/AA genotype was associated with a significantly increased risk for generalized chronic periodontitis in type II diabetics when compared with the GG genotype of systemically and periodontally healthy subjects (OR-9.58, 95% CI 2.168-42.339, P < 0.001) and non-diabetic chronic periodontitis subjects (OR- 4.71, 95% CI: 1.54-14.42, P < 0.05). No association and increased susceptibility to chronic periodontitis was observed in subjects with GA/AA genotype when compared with systemically and periodontally healthy subjects (OR- 2.031, 95% CI: 0.366-11.277 P > 0.05). Furthermore, comparison of clinical parameters based on genotype distribution revealed statistically significant higher mean plaque (P < 0.05) and sulcus bleeding score (P < 0.001) in group-III subjects. CONCLUSION RAGE G82S gene polymorphism confers susceptibility to generalized chronic periodontitis in type II diabetic subjects of South Indian Tamilian ethnicity.
Collapse
|
13
|
Patten DA, Shetty S. More Than Just a Removal Service: Scavenger Receptors in Leukocyte Trafficking. Front Immunol 2018; 9:2904. [PMID: 30631321 PMCID: PMC6315190 DOI: 10.3389/fimmu.2018.02904] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Scavenger receptors are a highly diverse superfamily of proteins which are grouped by their inherent ability to bind and internalize a wide array of structurally diverse ligands which can be either endogenous or exogenous in nature. Consequently, scavenger receptors are known to play important roles in host homeostasis, with common endogenous ligands including apoptotic cells, and modified low density lipoproteins (LDLs); additionally, scavenger receptors are key regulators of inflammatory diseases, such as atherosclerosis. Also, as a consequence of their affinity for a wide range of microbial products, their role in innate immunity is also being increasingly studied. However, in this review, a secondary function of a number of endothelial-expressed scavenger receptors is discussed. There is increasing evidence that some endothelial-expressed scavenger receptors are able to directly bind leukocyte-expressed ligands and subsequently act as adhesion molecules in the trafficking of leukocytes in lymphatic and vascular tissues. Here, we cover the current literature on this alternative role for endothelial-expressed scavenger receptors and also speculate on their therapeutic potential.
Collapse
Affiliation(s)
- Daniel A Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
14
|
Abstract
Over the past decade, studies have repeatedly found single-nucleotide polymorphisms located in the collagen ( COL) 4A1 and COL4A2 genes to be associated with cardiovascular disease (CVD), and the 13q34 locus harboring these genes is one of ~160 genome-wide significant risk loci for coronary artery disease. COL4A1 and COL4A2 encode the α1- and α2-chains of collagen type IV, a major component of basement membranes in various tissues including arteries. Despite the growing body of evidence indicating a role for collagen type IV in CVD, remarkably few studies have aimed to directly investigate such a role. The purpose of this review is to summarize the clinical reports linking 13q34 to coronary artery disease, atherosclerosis, and artery stiffening and to assemble the scattered pieces of evidence from experimental studies based on vascular cells and tissue collectively supporting a role for collagen type IV in atherosclerosis and other macrovascular disease conditions.
Collapse
Affiliation(s)
- L B Steffensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense , Denmark.,Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital , Odense , Denmark.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - L M Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense , Denmark.,Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital , Odense , Denmark
| |
Collapse
|
15
|
Fuentes E, Palomo I, Rojas A. Cross-talk between platelet and tumor microenvironment: Role of multiligand/RAGE axis in platelet activation. Blood Rev 2016; 30:213-221. [PMID: 26723842 DOI: 10.1016/j.blre.2015.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 10/02/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023]
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Talca, Chile.
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule R09I2001, Talca, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| |
Collapse
|
16
|
Mazur A, Holthoff E, Vadali S, Kelly T, Post SR. Cleavage of Type I Collagen by Fibroblast Activation Protein-α Enhances Class A Scavenger Receptor Mediated Macrophage Adhesion. PLoS One 2016; 11:e0150287. [PMID: 26934296 PMCID: PMC4774960 DOI: 10.1371/journal.pone.0150287] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
Pathophysiological conditions such as fibrosis, inflammation, and tumor progression are associated with modification of the extracellular matrix (ECM). These modifications create ligands that differentially interact with cells to promote responses that drive pathological processes. Within the tumor stroma, fibroblasts are activated and increase the expression of type I collagen. In addition, activated fibroblasts specifically express fibroblast activation protein-α (FAP), a post-prolyl peptidase. Although FAP reportedly cleaves type I collagen and contributes to tumor progression, the specific pathophysiologic role of FAP is not clear. In this study, the possibility that FAP-mediated cleavage of type I collagen modulates macrophage interaction with collagen was examined using macrophage adhesion assays. Our results demonstrate that FAP selectively cleaves type I collagen resulting in increased macrophage adhesion. Increased macrophage adhesion to FAP-cleaved collagen was not affected by inhibiting integrin-mediated interactions, but was abolished in macrophages lacking the class A scavenger receptor (SR-A/CD204). Further, SR-A expressing macrophages localize with activated fibroblasts in breast tumors of MMTV-PyMT mice. Together, these results demonstrate that FAP-cleaved collagen is a substrate for SR-A-dependent macrophage adhesion, and suggest that by modifying the ECM, FAP plays a novel role in mediating communication between activated fibroblasts and macrophages.
Collapse
Affiliation(s)
- Anna Mazur
- Interdisciplinary Biomedical Sciences Program, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Emily Holthoff
- Interdisciplinary Biomedical Sciences Program, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Shanthi Vadali
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Thomas Kelly
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Steven R. Post
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
17
|
McWhorter FY, Davis CT, Liu WF. Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci 2015; 72:1303-16. [PMID: 25504084 PMCID: PMC4795453 DOI: 10.1007/s00018-014-1796-8] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
Macrophages are tissue-resident immune cells that play a critical role in maintaining homeostasis and fighting infection. In addition, these cells are involved in the progression of many pathologies including cancer and atherosclerosis. In response to a variety of microenvironmental stimuli, macrophages can be polarized to achieve a spectrum of functional phenotypes. This review will discuss some emerging evidence in support of macrophage phenotypic regulation by physical and mechanical cues. As alterations in the physical microenvironment often underlie pathophysiological states, an understanding of their effects on macrophage phenotype and function may help provide mechanistic insights into disease pathogenesis.
Collapse
Affiliation(s)
- Frances Y. McWhorter
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2400 Engineering Hall, Irvine, CA 92697 USA
| | - Chase T. Davis
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2400 Engineering Hall, Irvine, CA 92697 USA
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California Irvine, 3120 Natural Sciences II, Irvine, CA 92697 USA
- Department of Chemical Engineering and Materials Science, University of California Irvine, 916 Engineering Tower, Irvine, CA 92697 USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2400 Engineering Hall, Irvine, CA 92697 USA
| |
Collapse
|
18
|
Nikolic DM, Vadali S, He B, Ware J, Kelly T, Post SR. Prostaglandins produced during class A scavenger receptor-mediated macrophage adhesion differentially regulate cytokine production. J Leukoc Biol 2015; 97:901-908. [PMID: 25717147 DOI: 10.1189/jlb.2a1014-471rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/28/2015] [Accepted: 02/02/2015] [Indexed: 01/04/2023] Open
Abstract
Inflammation is associated with modification of the extracellular environment, changes in cytokine expression, and the accumulation of immune cells. Such modifications create ligands that support SR-A-mediated macrophage adhesion and retention. This may be particularly important in settings, such as atherosclerosis and diabetes, as modified lipoproteins and gluc-collagen are ligands for SR-A. SR-A-mediated adhesion requires the PLA2-dependent generation of AA and its metabolism by 12/15 LOX. In contrast, the inhibition of the COX-dependent conversion of AA to PG had no effect on SR-A-mediated adhesion. In this study, macrophages were isolated from SR-A+/+ and SR-A-/- mice and plated on gluc-collagen to test the hypothesis that COX-derived PGs are produced during SR-A-mediated adhesion and regulate macrophage function. SR-A-mediated binding to gluc-collagen induced a rapid but transient increase in PG production, which required the activation of PLA2 and Src kinase but not PI3K. SR-A+/+ macrophages cultured on gluc-collagen for 24 h secreted a similar amount of TNF-α and 2.5-fold more IL-10 than SR-A-/- macrophages. The inhibition of COX substantially increased TNF-α production but reduced IL-10 levels in SR-A+/+ macrophages. These effects of COX inhibition were reversed by exogenous PGE2 and mimicked by specific antagonism of the EP4 receptor. Thus, in addition to the enhancement of macrophage adhesion, SR-A binding to gluc-collagen stimulates PG production, which in turn, differentially regulates the expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Dejan M Nikolic
- Departments of *Pathology, Pharmacology and Toxicology, and Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Shanthi Vadali
- Departments of *Pathology, Pharmacology and Toxicology, and Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Beixiang He
- Departments of *Pathology, Pharmacology and Toxicology, and Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jerry Ware
- Departments of *Pathology, Pharmacology and Toxicology, and Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Thomas Kelly
- Departments of *Pathology, Pharmacology and Toxicology, and Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Steven R Post
- Departments of *Pathology, Pharmacology and Toxicology, and Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
19
|
Hu H, Jiang H, Ren H, Hu X, Wang X, Han C. AGEs and chronic subclinical inflammation in diabetes: disorders of immune system. Diabetes Metab Res Rev 2015; 31:127-37. [PMID: 24846076 DOI: 10.1002/dmrr.2560] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/18/2012] [Accepted: 07/16/2012] [Indexed: 01/12/2023]
Abstract
Chronic subclinical inflammation represents a risk factor of type 2 diabetes and several diabetes complications, including neuropathy and atherosclerosis including macro-vasculopathy and micro-vasculopathy. However, the inflammatory response in the diabetic wound was shown to be remarkably hypocellular, unregulated and ineffective. Advanced glycation end products (AGEs) and one of its receptors, RAGE, were involved in inducing chronic immune imbalance in diabetic patients. Such interactions attracts immune cell into diffused glycated tissue and activates these cells to induce inflammatory damage, but disturbs the normal immune rhythm in diabetic wound. Traditional measurements of AGEs are high-performance liquid chromatography and immunohistochemistry staining, but their application faces the limitations including complexity, cost and lack of reproducibility. A new noninvasive method emerged in 2004, using skin autofluorescence as indicator for AGEs accumulation. It had been reported to be informative in evaluating the chronic risk of diabetic patients. Studies have indicated therapeutic potentials of anti-AGE recipes. These recipes can reduce AGE absorption/de novo formation, block AGE-RAGE interaction and arrest downstream signaling after RAGE activation.
Collapse
Affiliation(s)
- Hang Hu
- Department of Burns and Wound Center, Second Affiliated Hospital College of Medicine, Zhejiang University, PR China
| | | | | | | | | | | |
Collapse
|
20
|
Riek AE, Oh J, Darwech I, Moynihan CE, Bruchas RR, Bernal-Mizrachi C. 25(OH) vitamin D suppresses macrophage adhesion and migration by downregulation of ER stress and scavenger receptor A1 in type 2 diabetes. J Steroid Biochem Mol Biol 2014; 144 Pt A:172-9. [PMID: 24184871 PMCID: PMC4026336 DOI: 10.1016/j.jsbmb.2013.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/03/2013] [Accepted: 10/17/2013] [Indexed: 01/08/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality in patients with type 2 diabetes mellitus (T2DM). Vitamin D deficiency is not only more prevalent in diabetics but also doubles the risk of developing CVD. However, it is unknown whether 25-hydroxy vitamin D [25(OH)D3] replacement slows monocyte adhesion and migration, critical mechanisms involved in atherosclerosis progression. In this study, monocytes from vitamin D-deficient diabetic patients were cultured either in the patient's serum or in vitamin D-deficient media with or without 25(OH)D3 treatment. Adding 25(OH)D3 to monocytes cultured in vitamin D-deficient serum or media decreased monocyte adhesion to fibronectin and migration stimulated by monocyte chemotactic protein 1 (MCP-1). Accordingly, 25(OH)D3 decreased adhesion marker β1- and β2-integrin expression and migration receptor chemokine (C-C motif) receptor 2 (CCR2) expression. 25(OH)D3 treatment downregulated monocyte endoplasmic reticulum (ER) stress and scavenger receptor class A, type 1 (SR-A1) expression. The absence of SR-A1 prevented the increased macrophage adhesion and migration induced by vitamin D deficiency. Moreover, the absence of SR-A1 prevented the induction of adhesion and migration and expression of their associated membrane receptors by Thapsigargin, an ER stress inducer. These results identify cellular activation of monocyte/macrophage vitamin D signaling through 25(OH)D3 as a potential mechanism that could modulate adhesion and migration in diabetic subjects. This article is part of a Special Issue entitled '16th Vitamin D Workshop'.
Collapse
Affiliation(s)
- Amy E Riek
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Avenue, Campus Box 8127, St. Louis, MO 63110, USA.
| | - Jisu Oh
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Avenue, Campus Box 8127, St. Louis, MO 63110, USA.
| | - Isra Darwech
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Avenue, Campus Box 8127, St. Louis, MO 63110, USA.
| | - Clare E Moynihan
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Avenue, Campus Box 8127, St. Louis, MO 63110, USA
| | - Robin R Bruchas
- Division of Endocrinology, Metabolism, and Lipid Research, Washington University, 660 South Euclid Avenue, Campus Box 8127, St. Louis, MO 63110, USA
| | - Carlos Bernal-Mizrachi
- Division of Endocrinology, Metabolism, and Lipid Research and Department of Cell Biology and Physiology, Washington University, 660 South Euclid Avenue, Campus Box 8127, St. Louis, MO 63110, USA.
| |
Collapse
|
21
|
Abstract
Diabetic complications are the major causes of morbidity and mortality in patients with diabetes. Microvascular complications include retinopathy, nephropathy and neuropathy, which are leading causes of blindness, end‐stage renal disease and various painful neuropathies; whereas macrovascular complications involve atherosclerosis related diseases, such as coronary artery disease, peripheral vascular disease and stroke. Diabetic complications are the result of interactions among systemic metabolic changes, such as hyperglycemia, local tissue responses to toxic metabolites from glucose metabolism, and genetic and epigenetic modulators. Chronic hyperglycemia is recognized as a major initiator of diabetic complications. Multiple molecular mechanisms have been proposed to mediate hyperglycemia’s adverse effects on vascular tissues. These include increased polyol pathway, activation of the diacylglycerol/protein kinase C pathway, increased oxidative stress, overproduction and action of advanced glycation end products, and increased hexosamine pathway. In addition, the alterations of signal transduction pathways induced by hyperglycemia or toxic metabolites can also lead to cellular dysfunctions and damage vascular tissues by altering gene expression and protein function. Less studied than the toxic mechanisms, hyperglycemia might also inhibit the endogenous vascular protective factors such as insulin, vascular endothelial growth factor, platelet‐derived growth factor and activated protein C, which play important roles in maintaining vascular homeostasis. Thus, effective therapies for diabetic complications need to inhibit mechanisms induced by hyperglycemia’s toxic effects and also enhance the endogenous protective factors. The present review summarizes these multiple biochemical pathways activated by hyperglycemia and the potential therapeutic interventions that might prevent diabetic complications. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00018.x, 2010)
Collapse
Affiliation(s)
- Munehiro Kitada
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA, USA
| | - Zhaoyun Zhang
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA, USA
| | - Akira Mima
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA, USA
| | - George L King
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA, USA
| |
Collapse
|
22
|
Fuentes E, Rojas A, Palomo I. Role of multiligand/RAGE axis in platelet activation. Thromb Res 2014; 133:308-314. [PMID: 24296115 DOI: 10.1016/j.thromres.2013.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 02/07/2023]
Abstract
In the context of plaque progression, platelet hyperactivity associated with hyperlipidemia contributes to the development of a pro-thrombotic state. In this context, it has been demonstrated that advanced glycation end products (AGEs) significantly increases platelet activation and receptor for AGEs (RAGE) expression at the platelet surface membrane. In addition to AGEs, other ligands (S100, HMGB1 and amyloid β, among others) of RAGE have raised particular attention in platelet activation. Therefore, in this article we describe platelet hyperactivity by AGEs via RAGE-independent and RAGE-dependent pathways.
Collapse
Affiliation(s)
- Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Talca, Chile
| | - Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca, Chile.
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001, Talca, Chile.
| |
Collapse
|
23
|
Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer's-like disease progression. Nat Commun 2013; 4:2030. [PMID: 23799536 PMCID: PMC3702268 DOI: 10.1038/ncomms3030] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 05/17/2013] [Indexed: 12/31/2022] Open
Abstract
In Alzheimer's disease, soluble amyloid-β causes synaptic dysfunction and neuronal loss. Receptors involved in clearance of soluble amyloid-β are not known. Here we use short hairpin RNA screening and identify the scavenger receptor Scara1 as a receptor for soluble amyloid-β expressed on myeloid cells. To determine the role of Scara1 in clearance of soluble amyloid-β in vivo, we cross Scara1 null mice with PS1-APP mice, a mouse model of Alzheimer's disease, and generate PS1-APP-Scara1-deficient mice. Scara1 deficiency markedly accelerates Aβ accumulation, leading to increased mortality. In contrast, pharmacological upregulation of Scara1 expression on mononuclear phagocytes increases Aβ clearance. This approach is a potential treatment strategy for Alzheimer's disease.
Collapse
|
24
|
Cornejo F, von Bernhardi R. Role of scavenger receptors in glia-mediated neuroinflammatory response associated with Alzheimer's disease. Mediators Inflamm 2013; 2013:895651. [PMID: 23737655 PMCID: PMC3662199 DOI: 10.1155/2013/895651] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022] Open
Abstract
It is widely accepted that cells serving immune functions in the brain, namely, microglia and astrocytes, are important mediators of pathological phenomena observed in Alzheimer's disease. However, it is unknown how these cells initiate the response that results in cognitive impairment and neuronal degeneration. Here, we review the participation of the immune response mediated by glial cells in Alzheimer's disease and the role played by scavenger receptors in the development of this pathology, focusing on the relevance of class A scavenger receptor (SR-A) for A β clearance and inflammatory activation of glial cell, and as a potential target for Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Francisca Cornejo
- Laboratorio de Neurociencias, Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta, 391 Santiago, Chile
| | - Rommy von Bernhardi
- Laboratorio de Neurociencias, Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta, 391 Santiago, Chile
| |
Collapse
|
25
|
Bianchetti L, Barczyk M, Cardoso J, Schmidt M, Bellini A, Mattoli S. Extracellular matrix remodelling properties of human fibrocytes. J Cell Mol Med 2012; 16:483-95. [PMID: 21595824 PMCID: PMC3822925 DOI: 10.1111/j.1582-4934.2011.01344.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The fibrocytes are thought to serve as a source of newly deposited collagens I and III during reparative processes and in certain fibrotic disorders, but their matrix remodelling properties are incompletely understood. We evaluated their ability to produce several extracellular matrix (ECM) components, in comparison with fibroblasts, and to participate in collagen turnover. The collagen gene expression profile of fibrocytes differed from that of fibroblasts because fibrocytes constitutively expressed relatively high levels of the mRNA encoding collagen VI and significantly lower levels of the mRNA encoding collagens I, III and V. The proteoglycan (PG) gene expression profile was also different in fibrocytes and fibroblasts because fibrocytes constitutively expressed the mRNA encoding perlecan and versican at relatively high levels and the mRNA encoding biglycan and decorin at low and very low levels, respectively. Moreover, fibrocytes expressed the mRNA for hyaluronan synthase 2 at higher level than fibroblasts. Significant differences between the two cell populations were also demonstrated by metabolic labelling and analysis of the secreted collagenous proteins, PGs and hyaluronan. Fibrocytes constitutively expressed the scavenger receptors CD163 and CD204 as well as the mannose receptors CD206 and Endo180, and internalized and degraded collagen fragments through an Endo180-mediated mechanism. The results of this study demonstrate that human fibrocytes exhibit ECM remodelling properties previously unexplored, including the ability to participate in collagen turnover. The observed differences in collagen and PG expression profile between fibrocytes and fibroblasts suggest that fibrocytes may predominantly have a matrix-stabilizing function.
Collapse
|
26
|
Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer's disease. Int J Alzheimers Dis 2012; 2012:489456. [PMID: 22666621 PMCID: PMC3362056 DOI: 10.1155/2012/489456] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/19/2012] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is increasing in prevalence with the aging population. Deposition of amyloid-β (Aβ) in the brain of AD patients is a hallmark of the disease and is associated with increased microglial numbers and activation state. The interaction of microglia with Aβ appears to play a dichotomous role in AD pathogenesis. On one hand, microglia can phagocytose and clear Aβ, but binding of microglia to Aβ also increases their ability to produce inflammatory cytokines, chemokines, and neurotoxic reactive oxygen species (ROS). Scavenger receptors, a group of evolutionally conserved proteins expressed on the surface of microglia act as receptors for Aβ. Of particular interest are SCARA-1 (scavenger receptor A-1), CD36, and RAGE (receptor for advanced glycation end products). SCARA-1 appears to be involved in the clearance of Aβ, while CD36 and RAGE are involved in activation of microglia by Aβ. In this review, we discuss the roles of various scavenger receptors in the interaction of microglia with Aβ and propose that these receptors play complementary, nonredundant functions in the development of AD pathology. We also discuss potential therapeutic applications for these receptors in AD.
Collapse
|
27
|
Kzhyshkowska J, Neyen C, Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 2012; 217:492-502. [PMID: 22437077 DOI: 10.1016/j.imbio.2012.02.015] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 02/19/2012] [Indexed: 12/22/2022]
Abstract
Accumulating evidence indicates that atherosclerosis is a chronic inflammatory disease. The key innate immune cells that are involved in the pathogenesis of atherosclerosis are circulating monocytes and plaque macrophages. Complex interplay between immune and metabolic processes results in pathological activity of these cells. The best understood pathological process mediated by macrophages is their inability to process modified lipoproteins properly resulting in the formation of foamy cells, which are a dangerous component of atherosclerotic plaques. Key molecules involved in the recognition and processing of modified lipoproteins are scavenger receptors (SR). This is a large family of surface expressed structurally heterogeneous receptors with a broad spectrum of endogenous and exogenous ligands. The common functional feature of SR is internalisation of extracellular components and targeting them for lysosomal degradation. However, these relatively simple functions can have complex consequences, since they are linked to diverse specific signalling pathways and to other membrane transport pathways. Moreover, scavenger receptors can co-operate with other types of receptors increasing the variability of the macrophage response to multiple extracellular ligands. At least some SRs respond to modified lipoproteins by amplification of inflammation and accumulation of macrophages in the plaque, while some SRs may support tolerogenic reactions. Outcome of different SR activities will be the decision of monocytes and macrophage to guard homeostatic balance, support atherosclerosis progression and plaque instability by inflammatory reactions, or support rapid fibrotic processes in the plaque that stabilise it. Despite the accumulating knowledge about the molecular mechanisms of scavenger receptor action, their role in the progression of atherosclerosis remains controversial. The activities of scavenger receptors that can contribute to each of these processes are a subject of current review.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Dermatology, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Germany.
| | | | | |
Collapse
|
28
|
Characterization of the glycated human cerebrospinal fluid proteome. J Proteomics 2012; 75:4766-82. [PMID: 22300578 DOI: 10.1016/j.jprot.2012.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 12/28/2011] [Accepted: 01/12/2012] [Indexed: 12/12/2022]
Abstract
Protein glycation is a nonenzymatic modification that involves pathological functions in neurological diseases. Despite the high number of studies showing accumulation of advanced end glycation products (AGEs) at clinical stage, there is a lack of knowledge about which proteins are modified, where those modifications occur, and to what extent. The goal of this study was to achieve a comprehensive characterization of proteins modified by early glycation in human cerebrospinal fluid (CSF). Approaches based on glucose diferential labeling and mass spectrometry have been applied to evaluate the glycated CSF proteome at two physiological conditions: native glucose level and in vitro high glucose content. For both purposes, detection of glycated proteins was carried out by HCD-MS2 and CID-MS3 modes after endoproteinase Glu-C digestion and boronate affinity chromatography. The abundance of glycation was assessed by protein labeling with (13)C(6)-glucose incubation. The analysis of native glycated CSF identified 111 glycation sites corresponding to 48 glycated proteins. Additionally, the in vitro high glucose level approach detected 265 glycation sites and 101 glycated proteins. The comparison of glycation levels under native and 15 mM glucose conditions showed relative concentration increases up to ten folds for some glycated proteins. This report revealed for the first time a number of key glycated CSF proteins known to be involved in neuroinflammation and neurodegenerative disorders. Altogether, the present study contains valuable and unique information, which should further help to clarify the pathological role of glycation in central nervous system pathologies. This article is part of a Special Issue entitled: Translational Proteomics.
Collapse
|
29
|
Martínez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev 2011; 63:967-1000. [PMID: 21880988 DOI: 10.1124/pr.111.004523] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The scavenger receptor cysteine-rich (SRCR) superfamily of soluble or membrane-bound protein receptors is characterized by the presence of one or several repeats of an ancient and highly conserved protein module, the SRCR domain. This superfamily (SRCR-SF) has been in constant and progressive expansion, now up to more than 30 members. The study of these members is attracting growing interest, which parallels that in innate immunity. No unifying function has been described to date for the SRCR domains, this being the result of the limited knowledge still available on the physiology of most members of the SRCR-SF, but also of the sequence versatility of the SRCR domains. Indeed, involvement of SRCR-SF members in quite different functions, such as pathogen recognition, modulation of the immune response, epithelial homeostasis, stem cell biology, and tumor development, have all been described. This has brought to us new information, unveiling the possibility that targeting or supplementing SRCR-SF proteins could result in diagnostic and/or therapeutic benefit for a number of physiologic and pathologic states. Recent research has provided structural and functional insight into these proteins, facilitating the development of means to modulate the activity of SRCR-SF members. Indeed, some of these approaches are already in use, paving the way for a more comprehensive use of SRCR-SF members in the clinic. The present review will illustrate some available evidence on the potential of well known and new members of the SRCR-SF in this regard.
Collapse
Affiliation(s)
- Vanesa Gabriela Martínez
- Center Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | |
Collapse
|
30
|
Strle K, Jones KL, Drouin EE, Li X, Steere AC. Borrelia burgdorferi RST1 (OspC type A) genotype is associated with greater inflammation and more severe Lyme disease. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2726-39. [PMID: 21641395 DOI: 10.1016/j.ajpath.2011.02.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/10/2011] [Accepted: 02/03/2011] [Indexed: 11/28/2022]
Abstract
Evidence is emerging for differential pathogenicity among Borrelia burgdorferi genotypes in the United States. By using two linked genotyping systems, ribosomal RNA intergenic spacer type (RST) and outer surface protein C (OspC), we studied the inflammatory potential of B. burgdorferi genotypes in cells and patients with erythema migrans or Lyme arthritis. When macrophages were stimulated with 10 isolates of each RST1, RST2, or RST3 strain, RST1 (OspC type A)-stimulated cells expressed significantly higher levels of IL-6, IL-8, chemokine ligand (CCL) 3, CCL4, tumor necrosis factor, and IL-1β, factors associated with innate immune responses. In peripheral blood mononuclear cells, RST1 strains again stimulated significantly higher levels of these mediators. Moreover, compared with RST2, RST1 isolates induced significantly more interferon (IFN)-α, IFN-γ, and CXCL10, which are needed for adaptive immune responses; however, OspC type I (RST3) approached RST1 (OspC type A) in stimulating these adaptive immune mediators. Similarly, serum samples from patients with erythema migrans who were infected with the RST1 genotype had significantly higher levels of almost all of these mediators, including exceptionally high levels of IFN-γ-inducible chemokines, CCL2, CXCL9, and CXCL10; and this pronounced inflammatory response was associated with more symptomatic infection. Differences among genotypes were not as great in patients with Lyme arthritis, but those infected with RST1 strains more often had antibiotic-refractory arthritis. Thus, the B. burgdorferi RST1 (OspC type A) genotype, followed by the RST3 (OspC type I) genotype, causes greater inflammation and more severe disease, establishing a link between spirochetal virulence and host inflammation.
Collapse
Affiliation(s)
- Klemen Strle
- Division of Rheumatology, Allergy and Immunology, the Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
31
|
Sick E, Brehin S, André P, Coupin G, Landry Y, Takeda K, Gies JP. Advanced glycation end products (AGEs) activate mast cells. Br J Pharmacol 2010; 161:442-55. [PMID: 20735427 PMCID: PMC2989594 DOI: 10.1111/j.1476-5381.2010.00905.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/19/2010] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Advanced glycation endproducts (AGEs) represent one of the many types of chemical modifications that occur with age in long-lived proteins. AGEs also accumulate in pathologies such as diabetes, cardiovascular diseases, neurodegeneration and cancer. Mast cells are major effectors of acute inflammatory responses that also contribute to the progression of chronic diseases. Here we investigated interactions between AGEs and mast cells. EXPERIMENTAL APPROACHES Histamine secretion from AGEs-stimulated mast cells was measured. Involvement of a receptor for AGEs, RAGE, was assessed by PCR, immunostaining and use of inhibitors of RAGE. Production of reactive oxygen species (ROS) and cytokines was measured. KEY RESULTS Advanced glycation endproducts dose-dependently induced mast cell exocytosis with maximal effects being obtained within 20 s. RAGE mRNA was detected and intact cells were immunostained by a specific anti-RAGE monoclonal antibody. AGEs-induced exocytosis was inhibited by an anti-RAGE antibody and by low molecular weight heparin, a known RAGE antagonist. RAGE expression levels were unaltered after 3 h treatment with AGEs. AGE-RAGE signalling in mast cells involves Pertussis toxin-sensitive G(i)-proteins and intracellular Ca(2+) increases as pretreatment with Pertussis toxin, caffeine, 2-APB and BAPTA-AM inhibited AGE-induced exocytosis. AGEs also rapidly stimulated ROS production. After 6 h treatment with AGEs, the pattern of cytokine secretion was unaltered compared with controls. CONCLUSIONS AND IMPLICATIONS Advanced glycation endproducts activated mast cells and may contribute to a vicious cycle involving generation of ROS, increased formation of AGEs, activation of RAGE and to the increased low-grade inflammation typical of chronic diseases.
Collapse
Affiliation(s)
- E Sick
- Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
BACKGROUND Advanced glycation end-products (AGEs) are increased in situations with hyperglycemia and oxidative stress such as diabetes mellitus. They are products of nonenzymatic glycation and oxidation of proteins and lipids. The kidney plays an important role in clearance and metabolism of AGEs. METHODS Medline and other relevant databases were searched. In addition, key review articles were scanned for relevant original publication. Finally, original data from our research group were also included. RESULTS Kidney podocytes and endothelial cells express specific receptors for AGEs. Their activation leads to multiple pathophysiological effects including hypertrophy with cell cycle arrest and apoptosis, altered migration, and generation of proinflammatory cytokines. AGEs have been primarily implicated in the pathophysiology of diabetic nephropathy and diabetic microvascular complications. AGEs are also involved in other primary renal diseases as well as in the development and progression of atherosclerosis. However, serum or plasma concentrations of AGEs do not correlate well with cardiovascular events in patients with chronic kidney disease (CKD). This is likely due to the fact that serum concentrations failed to correlate with AGEs deposited in target tissues. Several inhibitors of the AGE-RAGE axis are currently tested for various indications. CONCLUSION AGEs and their receptors are involved in the pathogenesis of vascular and kidney disease. The role of circulating AGEs as biomarkers for cardiovascular risk estimation is questionable. Whether putative inhibitors of AGEs will get the maturity for its therapeutic use in the future remains open.
Collapse
Affiliation(s)
- Martin Busch
- Department of Internal Medicine III, Jena University Hospital - Friedrich Schiller University, Jena, Germany
| | | | | | | |
Collapse
|
33
|
Involvement of TAGE-RAGE System in the Pathogenesis of Diabetic Retinopathy. J Ophthalmol 2010; 2010:170393. [PMID: 20652047 PMCID: PMC2905918 DOI: 10.1155/2010/170393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/29/2010] [Indexed: 02/07/2023] Open
Abstract
Diabetic complications are a leading cause of acquired blindness, end-stage renal failure, and accelerated atherosclerosis, which are associated with the disabilities and high mortality rates seen in diabetic patients. Continuous hyperglycemia is involved in the pathogenesis of diabetic micro- and macrovascular complications via various metabolic pathways, and numerous hyperglycemia-induced metabolic and hemodynamic conditions exist, including increased generation of various types of advanced glycation end-products (AGEs). Recently, we demonstrated that glyceraldehyde-derived AGEs, the predominant structure of toxic AGEs (TAGE), play an important role in the pathogenesis of angiopathy in diabetic patients. Moreover, recent evidence suggests that the interaction of TAGE with the receptor for AGEs (RAGE) elicits oxidative stress generation in numerous types of cells, all of which may contribute to the pathological changes observed in diabetic complications. In this paper, we discuss the pathophysiological role of the TAGE-RAGE system in the development and progression of diabetic retinopathy.
Collapse
|
34
|
Neyen C, Plüddemann A, Roversi P, Thomas B, Cai L, van der Westhuyzen DR, Sim RB, Gordon S. Macrophage scavenger receptor A mediates adhesion to apolipoproteins A-I and E. Biochemistry 2010; 48:11858-71. [PMID: 19911804 PMCID: PMC2793687 DOI: 10.1021/bi9013769] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrophage scavenger receptor A (SR-A) is a multifunctional, multiligand pattern recognition receptor with roles in innate immunity, apoptotic cell clearance, and age-related degenerative pathologies, such as atherosclerosis and Alzheimer's disease. Known endogenous SR-A ligands are polyanionic and include modified lipoproteins, advanced glycation end products, and extracellular matrix proteins. No native plasma ligands have been identified, but it is known that SR-A recognition of unidentified serum components mediates integrin-independent macrophage adhesion, which may drive chronic local inflammation. In this study, we used a high-throughput fractionation and screening method to identify novel endogenous SR-A ligands that may mediate macrophage adhesion. SR-A was found to recognize the exchangeable apolipoproteins A-I and E (apo A-I and apo E, respectively) in both lipid-free and lipid-associated form, suggesting the shared amphipathic alpha-helix as a potential recognition motif. Adhesion of RAW 264.7 macrophages to surfaces coated with apo A-I and apo E4 proved to be integrin-independent and could be blocked by anti-SR-A antibodies. The presence of apo A-I and apo E in pathological deposits, such as atherosclerotic lesions and neurotoxic Alzheimer's plaques, suggests a possible contribution of SR-A-dependent adhesion of macrophages to an inflammatory microenvironment.
Collapse
Affiliation(s)
- Claudine Neyen
- Sir William Dunn School of Pathology, Department of Biochemistry, University of Oxford,South Parks Road, Oxford OX13RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Matsushita N, Komine H, Grolleau-Julius A, Pilon-Thomas S, Mulé JJ. Targeting MARCO can lead to enhanced dendritic cell motility and anti-melanoma activity. Cancer Immunol Immunother 2010; 59:875-84. [PMID: 20054688 DOI: 10.1007/s00262-009-0813-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/21/2009] [Indexed: 11/30/2022]
Abstract
We reported that murine tumor lysate-pulsed dendritic cells (TP-DC) could elicit tumor-specific CD4(+) and CD8(+) T cells in vitro and in vivo. In some limited cases, TP-DC treatments in vivo could also result in regression of established subcutaneous tumors and lung metastases. By gene array analysis, we reported a high level of expression of a novel member of the cell surface class A scavenger receptor family, MARCO, by murine TP-DC compared to unpulsed DC. MARCO is thought to play an important role in the immune response by mediating binding and phagocytosis, but also in the formation of lamellipodia-like structures and dendritic processes. We have now examined the biologic and therapeutic implications of MARCO expressed by TP-DC. In vitro exposure of TP-DC to a monoclonal anti-MARCO antibody resulted in a morphologic change of rounding with disappearance of dendritic-like processes. TP-DC remained viable after anti-MARCO antibody treatment; had little, if any, change in production of IL-10, IL-12p70 and TNF-alpha; but demonstrated enhanced migratory capacity in a microchemotaxis assay. The use of a selective inhibitor showed MARCO expression to be linked to the p38 mitogen-activated protein kinase (MAPK) pathway. In vivo, anti-MARCO antibody treated TP-DC showed better trafficking from the skin injection site to lymph node, enhanced generation of tumor-reactive IFN-gamma producing T cells, and improved therapeutic efficacy against B16 melanoma. These results, coupled with our finding that human monocyte-derived DC also express MARCO, could have important implications to human clinical DC vaccine trials.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, Neoplasm/metabolism
- Cancer Vaccines
- Cell Movement/drug effects
- Cell Movement/immunology
- Cell Shape/drug effects
- Cell Shape/immunology
- Cells, Cultured
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/pathology
- Female
- Humans
- Interferon-gamma/biosynthesis
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/immunology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred C57BL
- Protein Kinase Inhibitors/pharmacology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Norimasa Matsushita
- Moffitt Comprehensive Cancer Center, SRB-3, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
36
|
Miranda HV, Outeiro TF. The sour side of neurodegenerative disorders: the effects of protein glycation. J Pathol 2009; 221:13-25. [DOI: 10.1002/path.2682] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Tabas I, Seimon T, Timmins J, Li G, Lim W. Macrophage apoptosis in advanced atherosclerosis. Ann N Y Acad Sci 2009; 1173 Suppl 1:E40-5. [PMID: 19751413 DOI: 10.1111/j.1749-6632.2009.04957.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plaque necrosis in advanced atheromata, which triggers acute atherothrombotic vascular events, is caused by the apoptosis of lesional macrophages coupled with defective phagocytic clearance of the dead cells. The central enabling event in macrophage apoptosis relevant to advanced atherosclerosis is the unfolded protein response (UPR), an endoplasmic reticulum (ER) stress pathway. The UPR effector CHOP (GADD153) amplifies release of ER Ca(2+) stores, which activates a central integrator of apoptosis signaling, calcium/calmodulin-dependent protein kinase II (CaMKII). CaMKII, in turn, leads to activation of pro-apoptotic STAT1, induction of the death receptor Fas, and stimulation of the mitochondria-cytochrome c pathway of apoptosis. While these pathways are necessary for apoptosis, apoptosis occurs only when the cells are also exposed to one or more additional "hits." These hits amplify pro-apoptotic pathways and/or suppress compensatory cell-survival pathways. A second hit relevant to atherosclerosis is activation of pattern recognition receptors (PRRs), such as scavenger and toll-like receptors. In vivo relevance is suggested by the fact that advanced human lesions express markers of UPR activation that correlate closely with the degree of plaque vulnerability and macrophage apoptosis. Moreover, studies with genetically altered mice have shown that ER stress and PRR activation are causative for advanced lesional macrophage apoptosis and plaque necrosis. In summary, a key cellular event in the conversion of benign to vulnerable atherosclerotic plaques is ER stress-induced macrophage apoptosis. Further understanding of the mechanisms and consequences of this event may lead to novel therapies directed at preventing the clinical progression of atheromata.
Collapse
Affiliation(s)
- Ira Tabas
- Department of Medicine, Columbia University Medical Center, New York, New York, USA.
| | | | | | | | | |
Collapse
|
38
|
Gao S, Zhong X, Ben J, Zhu X, Zheng Y, Zhuang Y, Bai H, Jiang L, Chen Y, Ji Y, Chen Q. Glucose regulated protein 78 prompts scavenger receptor A-mediated secretion of tumor necrosis factor-α by RAW 264.7 cells. Clin Exp Pharmacol Physiol 2009; 36:940-4. [PMID: 19473344 DOI: 10.1111/j.1440-1681.2009.05177.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Activation of macrophages plays an important role in atherosclerosis. In order to investigate the effect of endoplasmic reticulum (ER) stress on cytokine release from macrophages, the RAW264.7 mouse macrophage cell line was treated with 0.2 mmol/L 6-aminonicotinamide (6-AN) for 36 h and the secretion of tumour necrosis factor (TNF)-α determined. In addition, Raw 264.7 cells were incubated in the presence of 10 μg/mL acetylated low-density lipoprotein (acLDL) at 37 °C for 8 h. 2. Secretion of TNF-α from RAW264.7 cells was stimulated by both loading of cells with acLDL and following 6-AN treatment. In addition, the expression of glucose-regulated protein (GRP) 78 was increased in 6-AN-treated cells (by 165%). 3. In separate experiments, PD98059, a specific inhibitor of the mitogen-activated protein kinase kinase (MEK) pathway, blocked acLDL- and/or 6-AN-induced TNF-α secretion, whereas LY294002, which blocks the AKT signalling pathway, had no effect. On the basis of these results, we speculate that acLDL/6-AN-induced secretion of TNF-α from RAW264.7 cells may be regulated by activation of the MEK signalling pathway. 4. The present study suggests that the accumulation of lipids in cells and/or ER stress could lead to macrophage apoptosis as a result of the increased production of TNF-α, which integrates into atherosclerosis.
Collapse
Affiliation(s)
- Song Gao
- Atherosclerosis Research Center, Institute of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Skeie JM, Mullins RF. Macrophages in neovascular age-related macular degeneration: friends or foes? Eye (Lond) 2008; 23:747-55. [PMID: 18600240 DOI: 10.1038/eye.2008.206] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The events that lead to choroidal neovascularization in eyes with age-related macular degeneration are poorly understood. One possibility that has been explored in a number of studies is that macrophages can promote neovascular changes. In this paper, we summarize the evidence for inflammation in general and macrophages in particular in pathologic neovascularization, and discuss how the diverse functions of these cells may promote or inhibit macular disease. We also discuss some of the conflicting findings regarding the role of macrophages in experimental choroidal neovascularization in mouse models, and suggest areas for future research.
Collapse
Affiliation(s)
- J M Skeie
- Department of Ophthalmology and Visual Sciences, Carver Family Center for Macular Degeneration, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
40
|
Zecca L, Casella L, Albertini A, Bellei C, Zucca FA, Engelen M, Zadlo A, Szewczyk G, Zareba M, Sarna T. Neuromelanin can protect against iron-mediated oxidative damage in system modeling iron overload of brain aging and Parkinson's disease. J Neurochem 2008; 106:1866-75. [PMID: 18624918 DOI: 10.1111/j.1471-4159.2008.05541.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In Parkinson's disease (PD), dopamine neurons containing neuromelanin selectively degenerate. Neuromelanin binds iron and accumulates in aging. Iron accumulates in reactive form during aging, PD, and is involved in neurodegeneration. It is not clear how the interaction of neuromelanin and iron can be protective or toxic by modulating redox processes. Here, we investigated the interaction of neuromelanin from human substantia nigra with iron in the presence of ascorbic acid, dopamine, and hydrogen peroxide. We observed that neuromelanin blocks hydroxyl radical production by Fenton's reaction, in a dose-dependent manner. Neuromelanin also inhibited the iron-mediated oxidation of ascorbic acid, thus sparing this major antioxidant molecule in brain. The protective effect of neuromelanin on ascorbate oxidation occurs even in conditions of iron overload into neuromelanin. The blockade of iron into a stable iron-neuromelanin complex prevents dopamine oxidation, inhibiting the formation of neurotoxic dopamine quinones. The above processes occur intraneuronally in aging and PD, thus showing that neuromelanin is neuroprotective. The iron-neuromelanin complex is completely decomposed by hydrogen peroxide and its degradation rate increases with the amount of iron bound to neuromelanin. This occurs in PD when extraneuronal iron-neuromelanin is phagocytosed by microglia and iron-neuromelanin degradation releases reactive/toxic iron.
Collapse
Affiliation(s)
- Luigi Zecca
- Institute of Biomedical Technologies - Italian National Research Council, Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Macrophage scavenger receptors and host-derived ligands. Methods 2008; 43:207-17. [PMID: 17920517 DOI: 10.1016/j.ymeth.2007.06.004] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 06/25/2007] [Indexed: 02/07/2023] Open
Abstract
The scavenger receptors are a large family of molecules that are structurally diverse and have been implicated in a range of functions. They are expressed by myeloid cells, selected endothelial cells and some epithelial cells and recognise many different ligands, including microbial pathogens as well as endogenous and modified host-derived molecules. This review will focus on the eight classes of scavenger receptors (class A-H) in terms of their structure, expression and recognition of host-derived ligands. Scavenger receptors have been implicated in a range of physiological and pathological processes, such as atherosclerosis and Alzheimer's disease, and function in adhesion and tissue maintenance. More recently, some of the scavenger receptors have been shown to mediate binding and endocytosis of chaperone proteins, such as the heat shock proteins, thereby playing an important role in antigen cross-presentation.
Collapse
|
42
|
Ramasamy R, Yan SF, Schmidt AM. Arguing for the motion: yes, RAGE is a receptor for advanced glycation endproducts. Mol Nutr Food Res 2007; 51:1111-5. [PMID: 17854009 DOI: 10.1002/mnfr.200700008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Advanced glycation endproducts (AGEs) are an heterogenous class of compounds formed by diverse stimuli, including hyperglycemia, oxidative stress, inflammation, renal failure, and innate aging. Recent evidence suggests that dietary sources of AGE may contribute to pathology. AGEs impart diverse effects in cells; evidence strongly suggests that crosslinking of proteins by AGEs may irrevocably alter basement membrane integrity and function. In addition, the ability of AGEs to bind to cells and activate signal transduction, thereby affecting broad properties in the cellular milieu, indicates that AGEs are not innocent bystanders in the diseases of AGEing. Here, we present evidence that receptor for AGE (RAGE) is a receptor for AGEs.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Division of Surgical Science, Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
43
|
Nikolic DM, Gong MC, Turk J, Post SR. Class A scavenger receptor-mediated macrophage adhesion requires coupling of calcium-independent phospholipase A(2) and 12/15-lipoxygenase to Rac and Cdc42 activation. J Biol Chem 2007; 282:33405-33411. [PMID: 17873277 PMCID: PMC2080787 DOI: 10.1074/jbc.m704133200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class A scavenger receptors (SR-A) participate in multiple macrophage functions including adhesion to modified extracellular matrix proteins present in various inflammatory disorders such as atherosclerosis and diabetes. By mediating macrophage adhesion to modified proteins and increasing macrophage retention, SR-A may contribute to the inflammatory process. Eicosanoids produced after phospholipase A(2) (PLA(2))-catalyzed release of arachidonic acid (AA) are important regulators of macrophage function and inflammatory responses. The potential roles of AA release and metabolism in SR-A-mediated macrophage adhesion were determined using macrophages adherent to modified protein. SR-A-dependent macrophage adhesion was abolished by selectively inhibiting calcium-independent PLA(2) (iPLA(2)) activity and absent in macrophages isolated from iPLA(2) beta(-/-) mice. Our results further demonstrate that 12/15-lipoxygenase (12/15-LOX)-derived, but not cyclooxygenase- or cytochrome P450-dependent epoxygenase-derived AA metabolites, are specifically required for SR-A-dependent adhesion. Because of their role in regulating actin polymerization and cell adhesion, Rac and Cdc42 activation were also examined and shown to be increased via an iPLA(2)- and LOX-dependent pathway. Together, our results identify a novel role for iPLA(2)-catalyzed AA release and its metabolism by 12/15-LOX in coupling SR-A-mediated macrophage adhesion to Rac and Cdc42 activation.
Collapse
Affiliation(s)
- Dejan M Nikolic
- Departments of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, 40536
| | - Ming C Gong
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536
| | - John Turk
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Steven R Post
- Departments of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, 40536.
| |
Collapse
|
44
|
Kirkham P. Oxidative stress and macrophage function: a failure to resolve the inflammatory response. Biochem Soc Trans 2007; 35:284-7. [PMID: 17371261 DOI: 10.1042/bst0350284] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The suppression of pro-inflammatory gene expression along with the clearance of apoptotic cells by phagocytosis can play an important role in resolving the inflammatory response. Any impairment of these processes can therefore lead to a chronic inflammatory state. Oxidative stress can have both direct and indirect effects on macrophage function. This mini-review highlights a mechanism through which oxidative stress via the production of reactive carbonyls alters the ECM (extracellular matrix) environment of macrophages, thereby altering their behaviour. Carbonyl modification of ECM proteins causes increased macrophage adhesion and activation through receptors that are also involved in phagocytosis. Moreover, interaction of macrophages with these carbonyl-modified ECM proteins leads to decreased phagocytic activity towards apoptotic cells. At a more direct level, both oxidative and carbonyl stress inhibits activity of the transcriptional co-repressor HDAC-2 (histone deacetylase 2), which under normoxic conditions helps to suppress pro-inflammatory gene expression. Consequently, macrophages activated under conditions of oxidative or carbonyl stress can lead to a more enhanced inflammatory response. Coupled with an impairment of the phagocytic response, this can lead to ineffective clearance of apoptotic cells and secondary necrosis, with the result being failure to resolve the inflammatory response and the establishment of a chronic inflammatory state.
Collapse
Affiliation(s)
- P Kirkham
- Novartis Institutes for Biomedical Research, Wimblehurst Road, Horsham, West Sussex, UK.
| |
Collapse
|
45
|
Diagnostic utility of serum or cerebrospinal fluid levels of toxic advanced glycation end-products (TAGE) in early detection of Alzheimer's disease. Med Hypotheses 2007; 69:1358-66. [PMID: 17888585 DOI: 10.1016/j.mehy.2006.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 12/06/2006] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in developed countries. AD is characterized pathologically by the presence of senile plaques and neurofibrillary tangles (NFTs), the major constituents of which are amyloid beta protein (A beta) and tau protein, respectively. Based on the disease pathology, numerous blood and cerebrospinal fluid (CSF) tests have been proposed for early detection of AD. However, there is no definite clinical method to determine in which patients with mild cognitive impairment will progress to AD with dementia. Therefore, to develop a novel promising biomarker for early diagnosis of AD is urgently needed. Several epidemiological studies have reported moderately increased risks for AD in diabetic patients compared with general population. In diabetes mellitus, the formation and accumulation of advanced glycation end-products (AGEs), senescent macroprotein derivatives, progress more rapidly. In addition, recent understanding of this process has confirmed that AGEs-their receptor (RAGE) interactions may play a role in the pathogenesis of neurodegenerative disorders including AD. In human AD brains, AGEs are distributed in the cytosol of neurons in the hippocampus and para-hippocampal gyrus. In this paper, we discuss the pathophysiological role for toxic AGEs (TAGE) in AD. We further review here the possibility that serum or cerebrospinal fluid levels of TAGE could become a promising biomarker for early detection of AD.
Collapse
|
46
|
Reddy VP, Beyaz A. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug Discov Today 2007; 11:646-54. [PMID: 16793534 DOI: 10.1016/j.drudis.2006.05.016] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 04/28/2006] [Accepted: 05/22/2006] [Indexed: 01/04/2023]
Abstract
The Maillard reaction is a complex series of reactions that involve reducing-sugars and proteins, giving a multitude of end-products that are known as advanced glycation end-products (AGEs). AGEs can contribute to the pathogenesis of diabetes and neurological diseases such as Alzheimer's disease. AGEs also play a major role in vascular stiffening, atherosclerosis, osteoarthritis, inflammatory arthritis and cataracts. Thus, AGE inhibitors and AGE breakers offer a potential strategy as therapeutics for diverse diseases. Various AGE inhibitors have been developed in recent years, and their underlying mechanism is based on the attenuation of glycoxidation and/or oxidative stress by the sequestration of metal ions, reactive 1,2-dicarbonyl compounds, and reactive oxygen and reactive nitrogen species.
Collapse
Affiliation(s)
- V Prakash Reddy
- Department of Chemistry, University of Missouri-Rolla, Rolla, MO 65409, USA.
| | | |
Collapse
|
47
|
Tchaikovski V, Waltenberger J. Angiogenesis and Arteriogenesis in Diabetes Mellitus: Signal Transduction Defects as the Molecular Basis of Vascular Cell Dysfunction. THERAPEUTIC NEOVASCULARIZATION–QUO VADIS? 2007:33-73. [DOI: 10.1007/1-4020-5955-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
48
|
Arredouani MS, Franco F, Imrich A, Fedulov A, Lu X, Perkins D, Soininen R, Tryggvason K, Shapiro SD, Kobzik L. Scavenger Receptors SR-AI/II and MARCO limit pulmonary dendritic cell migration and allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2007; 178:5912-20. [PMID: 17442975 DOI: 10.4049/jimmunol.178.9.5912] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The class A scavenger receptors (SR-A) MARCO and SR-AI/II are expressed on lung macrophages (MPhis) and dendritic cells (DCs) and function in innate defenses against inhaled pathogens and particles. Increased expression of SR-As in the lungs of mice in an OVA-asthma model suggested an additional role in modulating responses to an inhaled allergen. After OVA sensitization and aerosol challenge, SR-AI/II and MARCO-deficient mice exhibited greater eosinophilic airway inflammation and airway hyperresponsiveness compared with wild-type mice. A role for simple SR-A-mediated Ag clearance ("scavenging") by lung MPhis was excluded by the observation of a comparable uptake of fluorescent OVA by wild-type and SR-A-deficient lung MPhis and DCs. In contrast, airway instillation of fluorescent Ag revealed a significantly higher traffic of labeled DCs to thoracic lymph nodes in SR-A-deficient mice than in controls. The increased migration of SR-A-deficient DCs was accompanied by the enhanced proliferation in thoracic lymph nodes of adoptively transferred OVA-specific T cells after airway OVA challenge. The data identify a novel role for SR-As expressed on lung DCs in the down-regulation of specific immune responses to aeroallergens by the reduction of DC migration from the site of Ag uptake to the draining lymph nodes.
Collapse
Affiliation(s)
- Mohamed S Arredouani
- Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ramasamy R, Yan SF, Schmidt AM. The RAGE connection to diabetes and atherosclerosis: an intertwined web of advanced glycation and inflammation. ACTA ACUST UNITED AC 2007. [DOI: 10.2217/17460875.2.2.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Usui HK, Shikata K, Sasaki M, Okada S, Matsuda M, Shikata Y, Ogawa D, Kido Y, Nagase R, Yozai K, Ohga S, Tone A, Wada J, Takeya M, Takeya M, Horiuchi S, Kodama T, Makino H. Macrophage scavenger receptor-a-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation. Diabetes 2007; 56:363-72. [PMID: 17259380 DOI: 10.2337/db06-0359] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microinflammation is a common major mechanism in the pathogenesis of diabetic vascular complications, including diabetic nephropathy. Macrophage scavenger receptor-A (SR-A) is a multifunctional receptor expressed on macrophages. This study aimed to determine the role of SR-A in diabetic nephropathy using SR-A-deficient (SR-A(-/-)) mice. Diabetes was induced in SR-A(-/-) and wild-type (SR-A(+/+)) mice by streptozotocin injection. Diabetic SR-A(+/+) mice presented characteristic features of diabetic nephropathy: albuminuria, glomerular hypertrophy, mesangial matrix expansion, and overexpression of transforming growth factor-beta at 6 months after induction of diabetes. These changes were markedly diminished in diabetic SR-A(-/-) mice, without differences in blood glucose and blood pressure levels. Interestingly, macrophage infiltration in the kidneys was dramatically decreased in diabetic SR-A(-/-) mice compared with diabetic SR-A(+/+) mice. DNA microarray revealed that proinflammatory genes were overexpressed in renal cortex of diabetic SR-A(+/+) mice and suppressed in diabetic SR-A(-/-) mice. Moreover, anti-SR-A antibody blocked the attachment of monocytes to type IV collagen substratum but not to endothelial cells. Our results suggest that SR-A promotes macrophage migration into diabetic kidneys by accelerating the attachment to renal extracellular matrices. SR-A may be a key molecule for the inflammatory process in pathogenesis of diabetic nephropathy and a novel therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Hitomi Kataoka Usui
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|