1
|
Thines L, Gorisse L, Li Z, Sayedyahossein S, Sacks DB. Calmodulin activates the Hippo signaling pathway by promoting LATS1 kinase-mediated inhibitory phosphorylation of the transcriptional coactivator YAP. J Biol Chem 2022; 298:101839. [PMID: 35307353 PMCID: PMC9019248 DOI: 10.1016/j.jbc.2022.101839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022] Open
Abstract
The Hippo signaling pathway regulates tissue growth and cell fate, and its dysregulation can induce tumorigenesis. When Hippo is activated by cell–cell contact, extracellular signals, or cell polarity among others, the large tumor suppressor 1 (LATS1) kinase catalyzes inhibitory phosphorylation of the transcriptional coactivator Yes-associated protein (YAP) to maintain YAP in the cytoplasm or promote its degradation. Separately, calmodulin is a Ca2+-dependent protein that modulates the activity of target proteins and regulates several signaling cascades; however, its potential role in the Hippo pathway has not been identified. Here, using diverse experimental approaches, including in vitro binding analyses, kinase assays, RT–PCR, and confocal microscopy, we reveal that calmodulin promotes Hippo signaling. We show that purified YAP and LATS1 bind directly to calmodulin and form a Ca2+-dependent ternary complex in vitro. Importantly, Ca2+/calmodulin directly stimulated the activity of LATS1 kinase. In cultured mammalian cells, we demonstrated that endogenous YAP and LATS1 coimmunoprecipitate with endogenous calmodulin. In cells with activated Hippo signaling, we show that calmodulin antagonism significantly (i) decreases YAP phosphorylation, (ii) increases expression of two Hippo target genes (connective tissue growth factor [CTGF] and cysteine-rich angiogenic inducer 61 [CYR61]) that regulate cell proliferation and tumor progression, and (iii) enhances the interaction of YAP with its major transcription factor, thereby facilitating transcription of target genes. Collectively, our data demonstrate that calmodulin activates the Hippo kinase cascade and inhibits YAP activity via a direct interaction with LATS1 and YAP, thereby uncovering previously unidentified crosstalk between the Ca2+/calmodulin and Hippo signaling pathways.
Collapse
Affiliation(s)
- Louise Thines
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Laëtitia Gorisse
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Samar Sayedyahossein
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Meinke C, Quinlan MA, Paffenroth KC, Harrison FE, Fenollar-Ferrer C, Katamish RM, Stillman I, Ramamoorthy S, Blakely RD. Serotonin Transporter Ala276 Mouse: Novel Model to Assess the Neurochemical and Behavioral Impact of Thr276 Phosphorylation In Vivo. Neurochem Res 2022; 47:37-60. [PMID: 33830406 PMCID: PMC11574550 DOI: 10.1007/s11064-021-03299-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/21/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022]
Abstract
The serotonin (5-HT) transporter (SERT) is a key regulator of 5-HT signaling and is a major target for antidepressants and psychostimulants. Human SERT coding variants have been identified in subjects with obsessive-compulsive disorder (OCD) and autism spectrum disorder (ASD) that impact transporter phosphorylation, cell surface trafficking and/or conformational dynamics. Prior to an initial description of a novel mouse line expressing the non-phosphorylatable SERT substitution Thr276Ala, we review efforts made to elucidate the structure and conformational dynamics of SERT with a focus on research implicating phosphorylation at Thr276 as a determinant of SERT conformational dynamics. Using the high-resolution structure of human SERT in inward- and outward-open conformations, we explore the conformation dependence of SERT Thr276 exposure, with results suggesting that phosphorylation is likely restricted to an inward-open conformation, consistent with prior biochemical studies. Assessment of genotypes from SERT/Ala276 heterozygous matings revealed a deviation from Mendelian expectations, with reduced numbers of Ala276 offspring, though no genotype differences were seen in growth or physical appearance. Similarly, no genotype differences were evident in midbrain or hippocampal 5-HT levels, midbrain and hippocampal SERT mRNA or midbrain protein levels, nor in midbrain synaptosomal 5-HT uptake kinetics. Behaviorally, SERT Ala276 homozygotes appeared normal in measures of anxiety and antidepressant-sensitive stress coping behavior. However, these mice displayed sex-dependent alterations in repetitive and social interactions, consistent with circuit-dependent requirements for Thr276 phosphorylation underlying these behaviors. Our findings indicate the utility of SERT Ala276 mice in evaluation of developmental, functional and behavioral consequences of regulatory SERT phosphorylation in vivo.
Collapse
Affiliation(s)
- Carina Meinke
- International Max Planck Research School for Brain and Behavior, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Meagan A Quinlan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Fiona E Harrison
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Cristina Fenollar-Ferrer
- Laboratories of Molecular Genetics and Molecular Biology, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Rania M Katamish
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | - Isabel Stillman
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA
| | | | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, USA.
- Florida Atlantic University Brain Institute, Rm 109, MC-17, 5353 Parkside Dr, Jupiter, FL, 35348, USA.
| |
Collapse
|
3
|
Differential Serotonin Uptake Mechanisms at the Human Maternal-Fetal Interface. Int J Mol Sci 2021; 22:ijms22157807. [PMID: 34360573 PMCID: PMC8346107 DOI: 10.3390/ijms22157807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/30/2022] Open
Abstract
Serotonin (5-HT) plays an extensive role during pregnancy in regulating both the placental physiology and embryonic/fetal development. The uptake of 5-HT into cells is central to the control of local concentrations of 5-HT near its molecular targets. Here, we investigated the mechanisms of 5-HT uptake into human primary placental cells and cord blood platelets, all isolated immediately after birth. Trophoblasts and cord blood platelets showed 5-HT uptake with similar Michaelis constant (Km) values (~0.6 μM), typical of the high-affinity serotonin transporter (SERT). The uptake of 5-HT into trophoblasts was efficiently inhibited by various SERT-targeting drugs. In contrast, the uptake of 5-HT into feto-placental endothelial cells was not inhibited by a SERT blocker and showed a Km value (~782 μM) in the low-affinity range. Consistent with this, SERT mRNAs were abundant in term trophoblasts but sparse in feto-placental endothelial cells, whereas the opposite was found for the low-affinity plasma membrane monoamine transporter (PMAT) mRNAs. Organic cation transporter (OCT) 1, 2, and 3 mRNAs were absent or sparse in both cell types. In summary, the results demonstrate, for the first time, the presence of functional 5-HT uptake systems in feto-placental endothelial cells and fetal platelets, cells that are in direct contact with fetal blood plasma. The data also highlight the sensitivity to various psychotropic drugs of 5-HT transport into trophoblasts facing the maternal blood. The multiple, high-, and low-affinity systems present for the cellular uptake of 5-HT underscore the importance of 5-HT homeostasis at the maternal-fetal interface.
Collapse
|
4
|
Kappa Opioid Receptor Mediated Differential Regulation of Serotonin and Dopamine Transporters in Mood and Substance Use Disorder. Handb Exp Pharmacol 2021; 271:97-112. [PMID: 34136961 DOI: 10.1007/164_2021_499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dynorphin (DYN) is an endogenous neurosecretory peptide which exerts its activity by binding to the family of G protein-coupled receptors, namely the kappa opioid receptor (KOR). Opioids are associated with pain, analgesia, and drug abuse, which play a central role in mood disorders with monoamine neurotransmitter interactions. Growing evidence demonstrates the cellular signaling cascades linked to KOR-mediated monoamine transporters regulation in cell models and native brain tissues. This chapter will review DYN/KOR role in mood and addiction in relevance to dopaminergic and serotonergic neurotransmissions. Also, we discuss the recent findings on KOR-mediated differential regulation of serotonin and dopamine transporters (SERT and DAT). These findings led to a better understanding of the role of DYN/KOR system in aminergic neurotransmission via its modulatory effect on both amine release and clearance. Detailed knowledge of these processes at the molecular level enables designing novel pharmacological reagents to target transporter motifs to treat mood and addiction and reduce unwanted side effects such as aversion, dysphoria, sedation, and psychomimesis.
Collapse
|
5
|
Parvathaneni S, Li Z, Sacks DB. Calmodulin influences MAPK signaling by binding KSR1. J Biol Chem 2021; 296:100577. [PMID: 33766558 PMCID: PMC8079274 DOI: 10.1016/j.jbc.2021.100577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 03/21/2021] [Indexed: 11/24/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade is a fundamental signaling pathway that regulates cell fate decisions in response to external stimuli. Several scaffold proteins bind directly to kinase components of this pathway and regulate their activation by growth factors. One of the best studied MAPK scaffolds is kinase suppressor of Ras1 (KSR1), which is induced by epidermal growth factor (EGF) to translocate to the plasma membrane where it activates extracellular signal-regulated kinase (ERK). While Ca2+ has been shown to modulate MAPK signaling, the molecular mechanisms by which this occurs are incompletely understood. Here we tested the hypothesis that Ca2+ alters MAPK activity at least in part via KSR1. Using several approaches, including fusion proteins, immunoprecipitation, confocal microscopy, and a cell-permeable chemical inhibitor, we investigated the functional interaction between KSR1 and calmodulin. In vitro analysis with pure proteins reveals that calmodulin binds directly to KSR1. Moreover, endogenous calmodulin and KSR1 co-immunoprecipitate from mammalian cell lysates. Importantly, Ca2+ is required for the association between calmodulin and KSR1, both in vitro and in cells. The cell-permeable calmodulin antagonist CGS9343B significantly reduced activation of ERK by EGF in mouse embryo fibroblasts that overexpress KSR1, but not in control cells. Moreover, CGS9343B impaired the ability of EGF to induce KSR1 translocation to the plasma membrane and to stimulate formation of KSR1-ERK and KSR1-pERK (phosphorylated ERK) complexes in cells. Collectively, our data identify a previously unrecognized mechanism by which the scaffold protein KSR1 couples Ca2+ and calmodulin signaling to the MAPK cascade.
Collapse
Affiliation(s)
- Swetha Parvathaneni
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhigang Li
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
6
|
Ragu Varman D, Jayanthi LD, Ramamoorthy S. Glycogen synthase kinase-3ß supports serotonin transporter function and trafficking in a phosphorylation-dependent manner. J Neurochem 2020; 156:445-464. [PMID: 32797733 DOI: 10.1111/jnc.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/23/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Serotonin (5-HT) transporter (SERT) plays a crucial role in serotonergic transmission in the central nervous system, and any aberration causes serious mental illnesses. Nevertheless, the cellular mechanisms that regulate SERT function and trafficking are not entirely understood. Growing evidence suggests that several protein kinases act as modulators. Here, we delineate the molecular mechanisms by which glycogen synthase kinase-3ß (GSK3ß) regulates SERT. When mouse striatal synaptosomes were treated with the GSK3α/ß inhibitor CHIR99021, we observed a significant increase in SERT function, Vmax , surface expression with a reduction in 5-HT Km and SERT phosphorylation. To further study how the SERT molecule is affected by GSK3α/ß, we used HEK-293 cells as a heterologous expression system. As in striatal synaptosomes, CHIR99021 treatment of cells expressing wild-type hSERT (hSERT-WT) resulted in a time and dose-dependent elevation of hSERT function with a concomitant increase in the Vmax and surface transporters because of reduced internalization and enhanced membrane insertion; silencing GSK3α/ß in these cells with siRNA also similarly affected hSERT. Converting putative GSK3α/ß phosphorylation site serine at position 48 to alanine in hSERT (hSERT-S48A) completely abrogated the effects of both the inhibitor CHIR99021 and GSK3α/ß siRNA. Substantiating these findings, over-expression of constitutively active GSK3ß with hSERT-WT, but not with hSERT-S48A, reduced SERT function, Vmax , surface density, and enhanced transporter phosphorylation. Both hSERT-WT and hSERT-S48A were inhibited similarly by PKC activation or by inhibition of Akt, CaMKII, p38 MAPK, or Src kinase. These findings provide new evidence that GSK3ß supports basal SERT function and trafficking via serine-48 phosphorylation.
Collapse
Affiliation(s)
- Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Lankupalle D Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
Annamalai B, Ragu Varman D, Horton RE, Daws LC, Jayanthi LD, Ramamoorthy S. Histamine Receptors Regulate the Activity, Surface Expression, and Phosphorylation of Serotonin Transporters. ACS Chem Neurosci 2020; 11:466-476. [PMID: 31916747 DOI: 10.1021/acschemneuro.9b00664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reuptake and clearance of released serotonin (5-HT) are critical in serotonergic neurotransmission. Serotonin transporter (SERT) is mainly responsible for clearing the extracellular 5-HT. Controlled trafficking, phosphorylation, and protein stability have been attributed to robust SERT activity. H3 histamine receptors (H3Rs) act in conjunction and regulate 5-HT release. H3Rs are expressed in the nervous system and located at the serotonergic terminals, where they act as heteroreceptors. Although histaminergic and serotonergic neurotransmissions are thought to be two separate events, whether H3Rs influence SERT in the CNS to control 5-HT reuptake has never been addressed. With a priori knowledge gained from our studies, we explored the possibility of using rat hippocampal synaptosomal preparations. We found that treatment with H3R/H4R-agonists immepip and (R)-(-)-α-methyl-histamine indeed resulted in a time- and concentration-dependent decrease in 5-HT transport. On the other hand, treatment with H3R/H4R-inverse agonist thioperamide caused a moderate increase in 5-HT uptake while blocking the inhibitory effect of H3R/H4R agonists. When investigated further, immepip treatment reduced the level of SERT on the plasma membrane and its phosphorylation. Likewise, CaMKII inhibitor KN93 or calcineurin inhibitor cyclosporine A also inhibited SERT function; however, an additive effect with immepip was not seen. High-speed in vivo chronoamperometry demonstrated that immepip delayed 5-HT clearance while thioperamide accelerated 5-HT clearance from the extracellular space. Immepip selectively inhibited SERT activity in the hippocampus and cortex but not in the striatum, midbrain, and brain stem. Thus, we report here a novel mechanism of regulating SERT activity by H3R-mediated CaMKII/calcineurin pathway in a brain-region-specific manner and perhaps synaptic 5-HT in the CNS that controls 5-HT clearance.
Collapse
Affiliation(s)
- Balasubramaniam Annamalai
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Durairaj Ragu Varman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Rebecca E. Horton
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | - Lankupalle D. Jayanthi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
8
|
Im S, Jeong J, Jin G, Yeom J, Jekal J, Lee SI, Cho JA, Lee S, Lee Y, Kim DH, Bae M, Heo J, Moon C, Lee CH. MAOA variants differ in oscillatory EEG & ECG activities in response to aggression-inducing stimuli. Sci Rep 2019; 9:2680. [PMID: 30804379 PMCID: PMC6390082 DOI: 10.1038/s41598-019-39103-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/17/2019] [Indexed: 01/11/2023] Open
Abstract
Among the genetic variations in the monoamine oxidase A (MAOA) gene, upstream variable number tandem repeats (uVNTRs) of the promoter have been associated with individual differences in human physiology and aggressive behaviour. However, the evidence for a molecular or neural link between MAOA uVNTRs and aggression remains ambiguous. Additionally, the use of inconsistent promoter constructs in previous studies has added to the confusion. Therefore, it is necessary to demonstrate the genetic function of MAOA uVNTR and its effects on multiple aspects of aggression. Here, we identified three MAOA alleles in Koreans: the predominant 3.5R and 4.5R alleles, as well as the rare 2.5R allele. There was a minor difference in transcriptional efficiency between the 3.5R and 4.5R alleles, with the greatest value for the 2.5R allele, in contrast to existing research. Psychological indices of aggression did not differ among MAOA genotypes. However, our electroencephalogram and electrocardiogram results obtained under aggression-related stimulation revealed oscillatory changes as novel phenotypes that vary with the MAOA genotype. In particular, we observed prominent changes in frontal γ power and heart rate in 4.5R carriers of men. Our findings provide genetic insights into MAOA function and offer a neurobiological basis for various socio-emotional mechanisms in healthy individuals.
Collapse
Affiliation(s)
- SeungYeong Im
- School of Undergraduate Studies, DGIST, Daegu, Korea
- Department of Brain and Cognitive Sciences, Graduate School, DGIST, Daegu, Korea
| | - Jinju Jeong
- Undergraduate School Administration Team, DGIST, Daegu, Korea
- Well Aging Research Center, DGIST, Daegu, Korea
| | - Gwonhyu Jin
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Jiwoo Yeom
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | | | - Sang-Im Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Jung Ah Cho
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Sukkyoo Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Youngmi Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Dae-Hwan Kim
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Mijeong Bae
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Jinhwa Heo
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Cheil Moon
- Department of Brain and Cognitive Sciences, Graduate School, DGIST, Daegu, Korea.
| | - Chang-Hun Lee
- School of Undergraduate Studies, DGIST, Daegu, Korea.
| |
Collapse
|
9
|
Decker AM, Blough BE. Development of serotonin transporter reuptake inhibition assays using JAR cells. J Pharmacol Toxicol Methods 2018; 92:52-56. [PMID: 29555537 DOI: 10.1016/j.vascn.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/13/2018] [Accepted: 03/14/2018] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The development and validation of serotonin transporter reuptake inhibition assays in 96-well format using commercially available human placental choriocarcinoma JAR cells is described. METHODS JAR cells were first shown to uptake [3H]serotonin in a saturable fashion with a KM value of 1 μM as determined by a Michaelis-Menten kinetic analysis. The cells were then utilized to determine the reuptake inhibition potencies of known ligands and the results were compared with results previously generated in the two most commonly used transporter assays (rat brain synaptosomes and transfected HEK293 cells). RESULTS Examination of a variety of ligands including selective serotonin reuptake inhibitors, tricyclic antidepressants, piperazine derivatives, and phenyltropane derivatives demonstrated that JAR cells are capable of detecting reuptake inhibition activity of a variety of ligands with potencies that correlate with one or both of the other assays. DISCUSSION This study demonstrates a novel pharmacological method of assessing human serotonin transporter reuptake inhibition activity using commercially available JAR cells. Our results show that JAR cells provide an easily available and good alternative to using rat brain tissue and HEK293 cells, with the advantage of studying serotonin transporter reuptake inhibition in a human background.
Collapse
Affiliation(s)
- Ann M Decker
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA.
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
Fraser M, Fortier M, Foucher D, Roumier PH, Brousseau P, Fournier M, Surette C, Vaillancourt C. Exposure to low environmental concentrations of manganese, lead, and cadmium alters the serotonin system of blue mussels. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:192-200. [PMID: 28796292 DOI: 10.1002/etc.3942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Serotonin plays a crucial role in mussel survival and reproduction. Although the serotonin system can be affected by metals, the effects of environmental concentrations of metals such as manganese (Mn), lead (Pd), and cadmium (Cd) have never been studied in blue mussels. The present study aimed to determine the effects of exposure to Mn, Pb, or Cd on serotonin levels, monoamine oxidase (MAO) activity, and serotonin transporter (SERT) levels in the blue mussel Mytilus edulis. Mussels were exposed in vivo to increasing and environmentally relevant doses of Mn (10-1000 nM; 0.5-50 μg/L), Pb (0.01-10 nM; 0.002-2 μg/L), or Cd (0.01-10 nM; 0.001-1 μg/L) for 28 d. Serotonin levels, MAO activity, and SERT expression were analyzed in the mussel mantle. Expression of SERT protein was significantly decreased, by up to 81%, following Mn, Pb, or Cd exposure. The activity of MAO in females was almost 2-fold higher, versus males, in nonexposed control mussels. In mussels exposed to 0.1 nM of Pb (0.02 μg/L), MAO activity was increased in males and decreased in females. In Cd-exposed mussels, a sex-dependent, inverted nonmonotonic pattern of MAO activity was observed. These results clearly indicate that low environmental concentrations of Mn, Pb, and Cd affect the serotonin system in blue mussels. Environ Toxicol Chem 2018;37:192-200. © 2017 SETAC.
Collapse
Affiliation(s)
- Marc Fraser
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
- Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Marlène Fortier
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Delphine Foucher
- Département de chimie et de biochimie, Université de Moncton, Moncton, New Brunswick, Canada
| | | | - Pauline Brousseau
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Michel Fournier
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
| | - Céline Surette
- Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement, Université du Québec à Montréal, Montréal, Québec, Canada
- Département de chimie et de biochimie, Université de Moncton, Moncton, New Brunswick, Canada
| | - Cathy Vaillancourt
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Québec, Canada
- Centre de recherche interdisciplinaire sur le bien-être, la santé, la société et l'environnement, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Modulation of serotonin transporter function by kappa-opioid receptor ligands. Neuropharmacology 2016; 113:281-292. [PMID: 27743931 DOI: 10.1016/j.neuropharm.2016.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/16/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Kappa opioid receptor (KOR) agonists produce dysphoria and psychotomimesis. While KOR agonists produce pro-depressant-like effects, KOR antagonists produce anti-depressant-like effects in rodent models. The cellular mechanisms and downstream effector(s) by which KOR ligands produce these effects are not clear. KOR agonists modulate serotonin (5-HT) transmission in the brain regions implicated in mood and motivation regulation. Presynaptic serotonin transporter (SERT) activity is critical in the modulation of synaptic 5-HT and, subsequently, in mood disorders. Detailing the molecular events of KOR-linked SERT regulation is important for examining the postulated role of this protein in mood disorders. In this study, we used heterologous expression systems and native tissue preparations to determine the cellular signaling cascades linked to KOR-mediated SERT regulation. KOR agonists U69,593 and U50,488 produced a time and concentration dependent KOR antagonist-reversible decrease in SERT function. KOR-mediated functional down-regulation of SERT is sensitive to CaMKII and Akt inhibition. The U69,593-evoked decrease in SERT activity is associated with a decreased transport Vmax, reduced SERT cell surface expression, and increased SERT phosphorylation. Furthermore, KOR activation enhanced SERT internalization and decreased SERT delivery to the membrane. These data demonstrate that KOR activation decreases 5-HT uptake by altering SERT trafficking mechanisms and phosphorylation status to reduce the functional availability of surface SERT.
Collapse
|
12
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
13
|
Abstract
Mood, cognition, and many other physiological functions are modulated by the midbrain raphe serotonin (5- HT) system. By directing the magnitude and duration of postsynaptic receptor-mediated signaling, the 5-HT transporter (5-HTT) plays a crucial role in the integration of 5-HT neurotransmission. Considerable progress has been made in the molecular characterization of the 5-HTT, and research is currently focusing on the organization of 5-HTT gene (SLC6A4, OMIM accession number 182138), on the regulation of 5-HTT ex pression, on alterations in expression because of allelic variation in gene transcription, on structure-activity relationships of the 5-HTT protein, and on mechanisms of 5-HT and ion translocation. In the psychobiological dimension, it is becoming increasingly evident that inadequate adaptive responses to environmental stress ors, in conjunction with predisposing genes like the 5-HTT, contribute to the etiopathogenesis of behavioral and psychiatric disorders. A polymorphism in the regulatory region of the 5-HTT gene is associated with anxiety- and depression-related personality traits, and preliminary studies suggest that it influences the risk to develop affective disorders, alcohol dependence, and late-onset dementias. Finally, transgenic strategies are gaining momentum for the validation of the concept of the 5-HTT gene as a susceptibility locus for emotional instability (neuroticism) and psychiatric disorders. This approach addresses the pertinent question: to what extent does targeted disruption of the 5-HTT gene affect biochemistry, electrophysiology, and phar macology of the 5-HT system and modulate neural development and synaptic plasticity? It may also provide a model system that facilitates the dissection of successive events that lead to disease states as well as to the testing of novel therapeutic concepts. NEUROSCIENTIST 4:25-34, 1998
Collapse
|
14
|
Abstract
Plasma membrane neurotransmitter transporters are a family of integral membrane proteins, found on both neurons and glia, that have the capacity to influence neuronal signaling through a number of mechanisms including transmitter reuptake and ionic flux. Clinically, these proteins are of interest because their dysfunction is associated with several neurological and psychiatric disorders, and because they are the targets of many drugs of abuse and therapy. In this review, the authors focus on one of the more recent, fascinating discoveries about neurotransmitter transporters; namely, that transporter function is regulated by altering the number of transporters on the cell surface. These data suggest that transporter expression is in continual flux and that transporters respond to their environment in an effort to maintain baseline transmitter levels in the brain. The authors examine the mechanisms underlying changes in transporter number, discuss clinical disorders that are correlated with transporter expression, and suggest that controlling transporter redistribution may be a future therapeutic strategy for disorders related to abnormal transmitter levels.
Collapse
Affiliation(s)
- Matthew L. Beckman
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, Alabama, Medical Scientist Training Program, University of Alabama at Birmingham Birmingham, Alabama
| | - Michael W. Quick
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, Alabama,
| |
Collapse
|
15
|
Akt-mediated regulation of antidepressant-sensitive serotonin transporter function, cell-surface expression and phosphorylation. Biochem J 2015; 468:177-90. [PMID: 25761794 DOI: 10.1042/bj20140826] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study is focused on the cellular basis for Akt-mediated SERT regulation. SERT has been implicated in mood disorders. SERT is a primary target for antidepressants used in the therapeutic intervention of psychiatric disorders.
Collapse
|
16
|
Müller HK, Kragballe M, Fjorback AW, Wiborg O. Differential regulation of the serotonin transporter by vesicle-associated membrane protein 2 in cells of neuronal versus non-neuronal origin. PLoS One 2014; 9:e97540. [PMID: 24878716 PMCID: PMC4039532 DOI: 10.1371/journal.pone.0097540] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/21/2014] [Indexed: 11/30/2022] Open
Abstract
The serotonin transporter (SERT) is a key regulator of serotonergic signalling as it mediates the re-uptake of synaptic serotonin into nerve terminals, thereby terminating or modulating its signal. It is well-known that SERT regulation is a dynamic process orchestrated by a wide array of proteins and mechanisms. However, molecular details on possible coordinated regulation of SERT activity and 5-HT release are incomplete. Here, we report that vesicle-associated membrane protein 2 (VAMP2), a SNARE protein that mediates vesicle fusion with the plasma membrane, interacts with SERT. This was documented in vitro, through GST pull-down assays, by co-immunoprecipitation experiments on heterologous cells and rat hippocampal synaptosomes, and with FRET analysis in live transfected HEK-293 MSR cells. The related isoforms VAMP1 and VAMP3 also physically interact with SERT. However, comparison of the three VAMP isoforms shows that only VAMP2 possesses a functionally distinct role in relation to SERT. VAMP2 influences 5-HT uptake, cell surface expression and the delivery rate of SERT to the plasma membrane differentially in HEK-293 MSR and PC12 cells. Moreover, siRNA-mediated knock-down of endogenous VAMP2 reduces 5-HT uptake in CAD cells stably expressing low levels of heterologous SERT. Deletion and mutant analysis suggest a role for the isoform specific C-terminal domain of VAMP2 in regulating SERT function. Our data identify a novel interaction between SERT and a synaptic vesicle protein and support a link between 5-HT release and re-uptake.
Collapse
Affiliation(s)
- Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Risskov, Denmark
| | - Marie Kragballe
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Risskov, Denmark
| | - Anja Winther Fjorback
- Stereology and Electron Microscopy Laboratory, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, University of Aarhus, Aarhus, Denmark
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Risskov, Denmark
| |
Collapse
|
17
|
Sørensen L, Strømgaard K, Kristensen AS. Characterization of intracellular regions in the human serotonin transporter for phosphorylation sites. ACS Chem Biol 2014; 9:935-44. [PMID: 24450286 DOI: 10.1021/cb4007198] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the central nervous system, synaptic levels of the monoamine neurotransmitter serotonin are mainly controlled by the serotonin transporter (SERT), and drugs used in the treatment of various psychiatric diseases have SERT as primary target. SERT is a phosphoprotein that undergoes phosphorylation/dephosphorylation during transporter regulation by multiple pathways. In particular, activation and/or inhibition of kinases including PKC, PKG, p38MAPK, and CaMKII modulate SERT function and trafficking. The molecular mechanisms by which kinase activity is linked to SERT regulation are poorly understood, including the identity of specific phosphorylated residues. To elucidate SERT phosphorylation sites, we have generated peptides corresponding to the entire intracellular region of human SERT and performed in vitro phosphorylation assays with a panel of kinases suggested to be involved in SERT regulation or for which canonical phosphorylation sites are predicted. Peptide analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify and quantify site-specific phosphorylation. Five residues located in the N- and C-termini and in intracellular loop 1 and 2 were identified as phosphorylation sites; Ser149, Ser277, and Thr603 for PKC, Ser13 for CaMKII, and Thr616 for p38MAPK. Possible regulatory roles of these potential phosphoacceptors for SERT function and surface expression were investigated using phospho-mimicking and phosphodeficient mutations, coexpression of constitutively active kinases and pharmacological kinase induction in a heterologous expression system. Our results suggest that Ser277 is involved in an initial phase of PKC-mediated down-regulation of SERT. The five identified sites can guide future studies of direct links between SERT phosphorylation and regulatory processes.
Collapse
Affiliation(s)
- Lena Sørensen
- Department of Drug Design
and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design
and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders S. Kristensen
- Department of Drug Design
and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Tsao CW, Lin CF, Wu HT, Ma CT, Huang WC, Hsieh CY, Choi PC, Young KC. Glycogen synthase kinase-3β is critical for Interferon-α-induced serotonin uptake in human Jurkat T cells. J Cell Physiol 2012; 227:2556-66. [DOI: 10.1002/jcp.22994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Annamalai B, Mannangatti P, Arapulisamy O, Shippenberg TS, Jayanthi LD, Ramamoorthy S. Tyrosine phosphorylation of the human serotonin transporter: a role in the transporter stability and function. Mol Pharmacol 2012; 81:73-85. [PMID: 21992875 PMCID: PMC3250108 DOI: 10.1124/mol.111.073171] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 10/12/2011] [Indexed: 11/22/2022] Open
Abstract
The serotonin (5-HT) transporter (SERT) regulates serotoninergic neurotransmission by clearing 5-HT released into the synaptic space. Phosphorylation of SERT on serine and threonine mediates SERT regulation. Whether tyrosine phosphorylation regulates SERT is unknown. Here, we tested the hypothesis that tyrosine-phosphorylation of SERT regulates 5-HT transport. In support of this, alkali-resistant (32)P-labeled SERT was found in rat platelets, and Src-tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4,d]pyrimidine (PP2) decreased platelet SERT function and expression. In human placental trophoblast cells expressing SERT, PP2 reduced transporter function, expression, and stability. Although siRNA silencing of Src expression decreased SERT function and expression, coexpression of Src resulted in PP2-sensitive increases in SERT function and expression. PP2 treatment markedly decreased SERT protein stability. Compared with WT-SERT, SERT tyrosine mutants Y47F and Y142F exhibited reduced 5-HT transport despite their higher total and cell surface expression levels. Moreover, Src-coexpression increased total and cell surface expression of Y47F and Y142F SERT mutants without affecting their 5-HT transport capacity. It is noteworthy that Y47F and Y142F mutants exhibited higher protein stability compared with WT-SERT. However, similar to WT-SERT, PP2 treatment decreased the stability of Y47F and Y142F mutants. Furthermore, compared with WT-SERT, Y47F and Y142F mutants exhibited lower basal tyrosine phosphorylation and no further enhancement of tyrosine phosphorylation in response to Src coexpression. These results provide the first evidence that SERT tyrosine phosphorylation supports transporter protein stability and 5HT transport.
Collapse
Affiliation(s)
- Balasubramaniam Annamalai
- Department of Neurosciences, Division of Neuroscience Research, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
20
|
Su HC, Ma CT, Lin CF, Wu HT, Chuang YH, Chen LJ, Tsao CW. The acid sphingomyelinase inhibitors block interferon-α-induced serotonin uptake via a COX-2/Akt/ERK/STAT-dependent pathway in T cells. Int Immunopharmacol 2011; 11:1823-31. [DOI: 10.1016/j.intimp.2011.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/30/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
|
21
|
Drago A, Crisafulli C, Sidoti A, Serretti A. The molecular interaction between the glutamatergic, noradrenergic, dopaminergic and serotoninergic systems informs a detailed genetic perspective on depressive phenotypes. Prog Neurobiol 2011; 94:418-60. [DOI: 10.1016/j.pneurobio.2011.05.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 05/28/2011] [Accepted: 05/31/2011] [Indexed: 12/12/2022]
|
22
|
Zhang YW, Rudnick G. Myristoylation of cGMP-dependent protein kinase dictates isoform specificity for serotonin transporter regulation. J Biol Chem 2010; 286:2461-8. [PMID: 21097501 DOI: 10.1074/jbc.m110.203935] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
By transporting serotonin (5-HT) into neurons and other cells, serotonin transporter (SERT) modulates the action of 5-HT at cell surface receptors. SERT itself is modulated by several processes, including the cGMP signaling pathway. Activation of SERT by cGMP requires the cGMP-dependent protein kinase (PKG). Here we show that in HeLa cells lacking endogenous PKG, expression of PKGIα or PKGIβ was required for 8-bromoguanosine-3',5'-cyclic monophosphate (8-Br-cGMP) to stimulate SERT phosphorylation and 5-HT influx. Catalytically inactive PKG mutants and wild-type PKGII did not support this stimulation. However, a mutant PKGII (G2A) that was not myristoylated substituted for functional PKGI, suggesting that myristoylation and subsequent membrane association blocked productive interaction with SERT. PKG also influenced SERT expression and localization. PKGI isoforms increased total and cell surface SERT levels, and PKGII decreased cell surface SERT without altering total expression. Remarkably, these changes did not require 8-Br-cGMP or functional kinase activity and were also observed with a SERT mutant resistant to activation by PKG. Both PKGIα and PKGIβ formed detergent-stable complexes with SERT, and this association did not require catalytic activity. The nonmyristoylated PKGII G2A mutant stimulated SERT expression similar to PKGI isoforms. These results suggest multiple mechanisms by which PKG can modulate SERT and demonstrate that the functional difference between PKG isoforms results from myristoylation of PKGII.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | |
Collapse
|
23
|
Anju TR, Smijin S, Korah PK, Paulose CS. Cortical 5HT2A Receptor Function under Hypoxia in Neonatal Rats: Role of Glucose, Oxygen, and Epinephrine Resuscitation. J Mol Neurosci 2010; 43:350-7. [DOI: 10.1007/s12031-010-9449-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/06/2010] [Indexed: 11/28/2022]
|
24
|
Mandela P, Chandley M, Xu YY, Zhu MY, Ordway GA. Reserpine-induced reduction in norepinephrine transporter function requires catecholamine storage vesicles. Neurochem Int 2010; 56:760-7. [PMID: 20176067 PMCID: PMC2859979 DOI: 10.1016/j.neuint.2010.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/09/2010] [Accepted: 02/12/2010] [Indexed: 02/01/2023]
Abstract
Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5min decreased [(3)H]NE uptake capacity, an effect characterized by a robust decrease in the V(max) of the transport of [(3)H]NE. As expected, reserpine did not displace the binding of [(3)H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [(3)H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [(3)H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca(2+)/Ca(2+)-calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [(3)H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, alpha-methyl-p-tyrosine, increased [(3)H]NE uptake and eliminated the inhibitory effects of reserpine on [(3)H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca(2+)-independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors.
Collapse
Affiliation(s)
- Prashant Mandela
- Departments of Pharmacology & Toxicology and Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216
| | - Michelle Chandley
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Yao-Yu Xu
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Meng-Yang Zhu
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Gregory A. Ordway
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| |
Collapse
|
25
|
Vähäkangas K, Myllynen P. Drug transporters in the human blood-placental barrier. Br J Pharmacol 2009; 158:665-78. [PMID: 19788499 DOI: 10.1111/j.1476-5381.2009.00336.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Studies on the increasing number of transporters found in the placental barrier are gaining momentum, because of their tissue-specific expression, significance in physiology and disease, and the possible utilization of the emerging knowledge in pharmacology. In the placenta, both syncytiotrophoblast and fetal capillary endothelium express transporters. Fetal exposure is determined by the net effect of combination of transporters, their nature and localization in relation to placental cells and their substrate specificity. Although the significance of placental transporters on human fetal drug exposure is almost an unstudied field so far, their potential use to design drugs that do not cross the placenta is already being pursued. It is thus of interest to review the existing knowledge of human placental transporters. Transporters in all groups which take part in drug transport are found in human placenta. Especially, ATP-binding cassette transporters ABCG2/breast cancer resistance protein, ABCB1/P-glycoprotein and ABCC2/MRP2 are all expressed at the apical surface of syncytiotrophoblast facing maternal blood and are putatively important protective proteins both for placental tissue and the fetus, because they are efflux transporters and their substrates include many drugs and also environmental chemicals. Such protective effect has been shown in animals, but these results cannot be directly extrapolated to humans due to interspecies differences in placental structure and function. Experimental models utilizing human placental tissue, especially human placental perfusion, offer valuable possibilities, which have been insufficiently studied so far.
Collapse
Affiliation(s)
- Kirsi Vähäkangas
- Department of Pharmacology and Toxicology, University of Kuopio, Kuopio, Finland.
| | | |
Collapse
|
26
|
Ciccone MA, Timmons M, Phillips A, Quick MW. Calcium/calmodulin-dependent kinase II regulates the interaction between the serotonin transporter and syntaxin 1A. Neuropharmacology 2008; 55:763-70. [PMID: 18602929 PMCID: PMC2573024 DOI: 10.1016/j.neuropharm.2008.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 06/11/2008] [Accepted: 06/11/2008] [Indexed: 01/09/2023]
Abstract
Plasma membrane serotonin transporters (SERTs) regulate serotonin (5HT) levels in brain and are a site of action of antidepressants and psychostimulant drugs of abuse. Syntaxin 1A is a component of the synaptic vesicle docking and fusion apparatus and has been shown to interact with multiple plasma membrane neurotransmitter transporters including SERT. Previously, we showed that syntaxin 1A regulates the transport stoichiometry of SERT. When not bound to syntaxin 1A, SERT shows both substrate-independent Na(+) fluxes and substrate-dependent Na(+) fluxes of variable stoichiometry; these fluxes are eliminated in the presence of syntaxin 1A as Na(+) flux becomes strictly coupled to 5HT uptake. However, not known are the endogenous signaling molecules that determine the conducting states that SERT exhibits. In the present experiments, we show that inhibitors of calcium/calmodulin-dependent kinase II (CaM kinase II) modulate the stoichiometry of 5HT flux and that this effect requires syntaxin 1A. The modulation correlates with a shift in the affinity of SERT for syntaxin 1A binding. The regulation by CaM kinase II is eliminated by a mutation in the N-terminal domain of SERT. In neonatal thalomocortical neurons that endogenously express SERT and syntaxin 1A, inhibition of CaM kinase II reveals SERT-mediated currents. These data suggest that calcium-mediated signals can serve as a trigger for regulating protein-protein interactions that control SERT conducting states.
Collapse
Affiliation(s)
- Marcia A. Ciccone
- Department of Biological Sciences, University of Southern California, Los Angeles CA 90089-2520
| | - Miranda Timmons
- Department of Biological Sciences, University of Southern California, Los Angeles CA 90089-2520
| | - Anthony Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles CA 90089-2520
| | - Michael W. Quick
- Department of Biological Sciences, University of Southern California, Los Angeles CA 90089-2520
| |
Collapse
|
27
|
Additive subthreshold dose effects of cannabinoid CB(1) receptor antagonist and selective serotonin reuptake inhibitor in antidepressant behavioral tests. Eur J Pharmacol 2008; 589:149-56. [PMID: 18571641 DOI: 10.1016/j.ejphar.2008.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 04/26/2008] [Accepted: 05/19/2008] [Indexed: 11/28/2022]
Abstract
The main clinically used antidepressant drugs are selective monoamine reuptake inhibitors, including selective serotonin reuptake inhibitors (citalopram, sertraline), selective dopamine reuptake inhibitor (nomifensine) and selective noradrenaline reuptake inhibitor (reboxetine), but they have various side effects. Because cannabinoid CB(1) receptor antagonists (SR141716A, AM251) enhance monoamine release, they might be beneficial in the therapy of affective disorders. We hypothesized that the use of monoamine reuptake inhibitors in combination with cannabinoid CB(1) receptor antagonists would allow a lower dose of monoamine reuptake inhibitors to be used in the therapy of depression, thereby reducing or eliminating the side effects. To test this hypothesis, we examined the combination of SR141716A or AM251 with citalopram, sertraline, nomifensine or reboxetine at subthreshold doses to see whether these combinations would show an additive effect in the forced swimming test and the tail suspension test with mice. Subthreshold doses of cannabinoid CB(1) receptor antagonist and selective serotonin reuptake inhibitors, which separately had no effect on the immobility of mice in the tests, showed a clear effect when the drugs were administered at 40 and 30 min, respectively, before the tests, without any change of motor activity. Therefore, the use of subthreshold doses of these agents in combination might be useful to enhance mainly serotonergic neurotransmission, and to reduce or eliminate the side effects of citalopram and sertraline.
Collapse
|
28
|
Abstract
Serotonin is involved in many of the same processes affected by cannabinoids; therefore, we investigated in vitro and in vivo effects of these drugs on the function of serotonin transporter. The effect of Delta(9)-tetrahydrocannabinol (Delta(9)-THC), endocannabinoid anandamide and synthetic cannabinoid receptor agonist WIN 55,212-2 on platelet serotonin uptake and membrane microviscosity was examined in 19 marijuana smokers and 20 controls. (1) Serotonin uptake was inhibited at higher doses of Delta(9)-THC (IC(50) = 139 micromol/l), anandamide (IC(50) = 201 micromol/l) or WIN 55,212-2 (IC(50) = 17.4 micromol/l); the inhibition was found non-competitive. Delta(9)-THC, anandamide and WIN 55,212-2 produced different effects on the membrane microviscosity. (2) Maximal velocity of platelet serotonin uptake was significantly increased in a group of chronic marijuana smokers suffering impairment of cognitive functions when compared with controls. Opposite effect of marijuana smoking on the serotonin uptake efficiency was observed in males beside females. In summary, this study provides evidence that (1) Activity of serotonin transporter is acutely affected by cannabinoids at relatively high drug concentrations; this effect is indirect and can be partially accounted for the changes in the membrane microviscosity. (2) Increase of maximal velocity of the serotonin uptake could be understood as adaptation change in the serotonergic system induced by chronic cannabis use. A hypothesis was supported that lowered serotonin uptake may reflect a gender-related differences in effects of psychoactive cannabinoids.
Collapse
Affiliation(s)
- Marie Velenovská
- Department of Psychiatry, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | |
Collapse
|
29
|
Ramamoorthy S, Samuvel DJ, Buck ER, Rudnick G, Jayanthi LD. Phosphorylation of threonine residue 276 is required for acute regulation of serotonin transporter by cyclic GMP. J Biol Chem 2007; 282:11639-47. [PMID: 17310063 DOI: 10.1074/jbc.m611353200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular protein kinases, phosphatases, and other serotonin transporter (SERT) interacting proteins participate in several signaling mechanisms regulating SERT activity. The molecular mechanisms of protein kinase G (PKG)-mediated SERT regulation and the site of transporter phosphorylation were investigated. Treatment of rat midbrain synaptosomes with 8-bromo-cGMP increased SERT activity, and the increase was selectively blocked by PKG inhibitors. The V(max) value for serotonin (5-HT) transport increased following cGMP treatment. However, surface biotinylation studies showed no change in SERT surface abundance following PKG activation. (32)P metabolic labeling experiments showed increased SERT phosphorylation in the presence of cGMP that was abolished by selectively inhibiting PKG. Phosphoamino acid analysis revealed that cGMP-stimulated native SERT phosphorylation occurred only on threonine residues. When added to CHO-1 cells expressing SERT, 8-bromo-cGMP stimulated 5-HT transport and SERT phosphorylation. Mutation of SERT threonine 276 to alanine completely abolished cGMP-mediated stimulation of 5-HT transport and SERT phosphorylation. Although the T276A mutation had no significant effect on 5-HT transport or SERT protein expression, mutation to aspartate (T276D) increased the level of 5-HT uptake to that of cGMP-stimulated 5-HT uptake in wild-type SERT-expressing cells and was no longer sensitive to cGMP. These findings provide the first identification of a phosphorylation site in SERT and demonstrate that phosphorylation of Thr-276 is required for cGMP-mediated SERT regulation. They also constitute the first evidence that in the central nervous system PKG activation stimulates endogenous SERT activity by a trafficking-independent mechanism.
Collapse
Affiliation(s)
- Sammanda Ramamoorthy
- Department of Neurosciences, Division of Neuroscience Research, Medical University of South Carolina, Charleston, South Carolina 29425
| | | | | | | | | |
Collapse
|
30
|
Li C, Zhong H, Wang Y, Wang H, Yang Z, Zheng Y, Liu K, Liu Y. Voltage and ionic regulation of human serotonin transporter in Xenopus oocytes. Clin Exp Pharmacol Physiol 2007; 33:1088-92. [PMID: 17042919 DOI: 10.1111/j.1440-1681.2006.04491.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The serotoninergic system is known to be involved in the control of multiple behavioural and physiological functions. The serotonin (5-hydroxtryptamine; 5-HT) transporter (SERT), which controls the synaptic 5-HT concentration through re-uptake of this neurotransmitter into presynaptic terminals, has been a primary therapeutic target for various psychiatric and peripheral disorders. The aim of the present study was to identify the regulatory mechanism(s) of the human SERT (hSERT) in heterologously expressed oocytes. 2. The hSERT cRNA was transcribed in vitro and injected into Xenopus oocytes. The 5-HT-induced transporter currents were measured by voltage clamp. The effects of extracellular sodium or chloride were studied by replacement perfusion with tetramethylammonium-chloride (96 mmol/L) or sodium acetate (96 mmol/L). In addition, to alter the internal calcium concentration, CaCl2 (50 micromol/L) and inositol triphosphate (IP3; 50 micromol/L), with or without EGTA (2.5 mmol/L), were injected into oocytes. The specificity of 5-HT-sensitive currents was determined by the use of the SERT antagonist desipramine and niflumic acid to block background chloride currents. 3. The hSERT-expressing oocytes displayed voltage-dependent, 5-HT-induced currents that increased at negative potentials. Replacing extracellular sodium or chloride significantly decreased the hSERT currents by 89 and 45%, respectively (P < 0.05, n = 7 each). Injection of IP3 or CaCl2 increased the hSERT currents by approximately 65% (P < 0.05; n = 10 each) and the effect of IP3 was abolished by preinjection of EGTA. 4. These results demonstrate that hSERT activity is not only voltage dependent, but is also affected by intracellular calcium and extracellular sodium and chloride.
Collapse
Affiliation(s)
- Cizhen Li
- Department of Physiology, Shanghai Jiao Tong University Medical School, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The norepinephrine transporter (NET) plays a pivotal role in terminating noradrenergic signaling and conserving norepinephrine (NE) through the process of re-uptake. Recent evidence suggests a close association between NE release and regulation of NET function. The present study evaluated the relationship between release and uptake, and the cellular mechanisms that govern these processes. KCl stimulation of PC12 cells robustly increased [3H]NE uptake via the NET and simultaneously increased [3H]NE release. KCl-stimulated increases in uptake and release were dependent on Ca2+. Treatment of cells with phorbol-12-myristate-13-acetate (PMA) or okadaic acid decreased [3H]NE uptake but did not block KCl-stimulated increases in [3H]NE uptake. In contrast, PMA increased [3H]NE release and augmented KCl-stimulated release, while okadaic acid had no effects on release. Inhibition of Ca2+-activated signaling cascades with KN93 (a Ca2+ calmodulin-dependent kinase inhibitor), or ML7 and ML9 (myosin light chain kinase inhibitors), reduced [3H]NE uptake and blocked KCl-stimulated increases in uptake. In contrast, KN93, ML7 and ML9 had no effect on KCl-stimulated [3H]NE release. KCl-stimulated increases in [3H]NE uptake were independent of transporter trafficking to the plasma membrane. While increases in both NE release and uptake mediated by KCl stimulation require Ca2+, different intracellular mechanisms mediate these two events.
Collapse
Affiliation(s)
- Prashant Mandela
- Department of Pharmacology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | |
Collapse
|
32
|
Awtry TL, Frank JG, Werling LL. In vitro regulation of serotonin transporter activity by protein kinase A and nicotinic acetylcholine receptors in the prefrontal cortex of rats. Synapse 2006; 59:342-9. [PMID: 16463401 DOI: 10.1002/syn.20251] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We investigated the effect of in vitro exposure to nicotinic acetylcholine receptors (nAChRs), agonists, antagonists, and protein kinase A (PKA) modulators on the activity of the serotonin transporter (SERT) in prefrontocortical (PFC) synaptosomes. The plasma membrane SERT is an active transport mechanism specific for serotonin. Receptors and second messengers capable of altering transporter activity would be expected to have profound effects on serotonergic neurotransmission and on functions involving serotonergic input, such as cognition, anxiety, and mood. Our data suggest that activation of nAChRs, quite likely via PKA, increase the activity of the SERT in the PFC and, thereby, can alter 5-HT levels in a region important in the behavioral effects of nicotine and 5-HT. Nicotine at 4 microM increased [(3)H]5-HT uptake by 75%. Because the nAChR antagonists mecamylamine and dihydro-beta-erythrodine (DHbetaE) both decreased [(3)H]5-HT uptake into synaptosomes, it appeared that the SERT might be tonically activated by acetylcholine present within our synaptosomal preparations. Blocking PKA significantly decreased [(3)H]5-HT, while stimulation of PKA activity significantly increased the uptake. A 66% decrease compared with control was produced by 100 microM Rp-cAMP, and a 41% increase in 5-HT uptake over control was observed with 30 microM Sp-cAMPs. Furthermore, the enhancement in uptake produced by 4 microM nicotine was inhibited in a time-dependent fashion by preincubation with 10 microM Rp-cAMP. A better understanding of the influence of the cholinergic system and the receptors involved in the trafficking of SERT would help clarify the important relationship between the cholinergic and serotonergic systems and the role these systems play in behavior.
Collapse
Affiliation(s)
- Tammy L Awtry
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | |
Collapse
|
33
|
Tsao CW, Lin YS, Cheng JT, Chang WW, Chen CL, Wu SR, Fan CW, Lo HY. Serotonin transporter mRNA expression is decreased by lamivudine and ribavirin and increased by interferon in immune cells. Scand J Immunol 2006; 63:106-15. [PMID: 16476009 DOI: 10.1111/j.1365-3083.2005.01715.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Clinical reports document that depression as a side effect is more prevalent in hepatic patients given interferon (IFN)-alpha therapy than in those given lamivudine. The mechanisms, however, are poorly understood. Serotonin transporter (5-HTT), via uptake of serotonin (5-HT) into presynaptic serotoninergic neurons, is an initial action site for antidepressants. Real-time polymerase chain reaction (PCR) was used to quantify 5-HTT mRNA expression in immune cells in order to evaluate whether 5-HTT acted as an indicator of depression. Results showed that the 5-HTT mRNA expression was much higher in T-cell and B-cell lines than that in a monocytic cell line. Treatment with either lamivudine or ribavirin reduced the 5-HTT mRNA expression, protein level and 5-HT uptake in T-cell line. Treatment with IFN-alpha, however, increased those levels in the same group. A similar effect was observed in peripheral blood mononuclear cells (PBMC). Mimicking clinical use by treating PBMC with a combination of IFN-alpha and ribavirin increased the 5-HTT mRNA expression level. Our study indicates that these therapeutic drugs regulate 5-HTT expression, which implies that 5-HTT might be a trait marker in IFN-alpha-induced depression after hepatic therapy.
Collapse
Affiliation(s)
- C-W Tsao
- Department of Nursing, Chung Hwa College of Medical Technology, Tainan County, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Shinkai K, Yoshimura R, Toyohira Y, Ueno S, Tsutsui M, Nakamura J, Yanagihara N. Effect of prolonged exposure to milnacipran on norepinephrine transporter in cultured bovine adrenal medullary cells. Biochem Pharmacol 2005; 70:1389-97. [PMID: 16153610 DOI: 10.1016/j.bcp.2005.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 07/29/2005] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
The antidepressants milnacipran and paroxetine are used clinically worldwide. In the present study, we report here the effects of treatment with milnacipran and paroxetine on the functional activity, binding sites, and mRNA of the norepinephrine (NE) transporter (NET) in cultured bovine adrenal medullary cells. In acute treatment with antidepressants for 20 min, both milnacipran and paroxetine competitively inhibited NET function in cultured adrenal medullary cells. Prolonged treatment of adrenal medullary cells with milnacipran produced time (48-96h)- and concentration (35-355 nM)-dependent increases in [3H]NE uptake and [3H]DMI binding without any increase in NET mRNA. At a high concentration (800 nM, 72 h), paroxetine suppressed [3H]NE uptake. To examine whether milnacipran-induced [3H]NE uptake is mediated by newly synthesized mRNAs or proteins, we used actinomycin D, an inhibitor of DNA-dependent RNA polymerase, and cycloheximide, an inhibitor of ribosomal protein synthesis. Cycloheximide (1 micorM, 72 h) abolished the effect of milnacipran on [3H]NE uptake, while the stimulatory effect of milnacipran was observed in actinomycin D-treated cells. The present findings suggest that prolonged exposure to milnacipran up-regulates the NET function, probably through a post-transcriptional process of NET or other proteins.
Collapse
Affiliation(s)
- Koji Shinkai
- Department of Psychiatry, University of Occupational and Environmental Health, School of Medicine, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Keating E, Lemos C, Monteiro R, Azevedo I, Martel F. The effect of a series of organic cations upon the plasmalemmal serotonin transporter, SERT. Life Sci 2004; 76:103-19. [PMID: 15501483 DOI: 10.1016/j.lfs.2004.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 08/28/2004] [Indexed: 11/17/2022]
Abstract
The aim of this work was to test the effect of a series of organic cations upon the activity of the plasma membrane serotonin transporter (SERT). The experiments were performed using the JAR cell line that constitutively expresses high levels of SERT, and rat intestine, whose mucosal epithelial cells also express SERT. Initial rates of (3)H-serotonin ((3)H-5HT; 200 nM) uptake were not changed by some of the organic cations tested (guanidine, N-methylnicotinamide, choline, atenolol, caffeine and theophylline), but were slightly (15-30%) inhibited by some other organic cations, at the highest concentrations tested (thiamine (3 mM), cimetidine (1 mM) and tetraethylammonium (3 mM)). On the other hand, some other organic cations reduced, in a concentration-dependent manner, uptake of (3)H-5HT by JAR cells (IC(50)s of 0.3, 1.3, 5.4, 89.3, 460 and 748 microM for quinidine, verapamil, propranolol, amiloride, nicotine and clonidine, respectively). Quinidine, clonidine and amiloride seem to be competitive inhibitors of (3)H-5HT uptake, whereas verapamil, nicotine and propranolol appear to be uncompetitive or non-competitive inhibitors. Moreover, quinidine, verapamil and propranolol trans-inhibited (3)H-5HT uptake, whereas clonidine, nicotine and amiloride were devoid of effect. Finally, these six organic cations were able to significantly increase the serosal-to-mucosal apparent permeability (P(app)) to (3)H-5HT of rat jejunum, ileum and colon. In conclusion, human and rat SERT-mediated transport is inhibited by several distinct organic cations, some of which are therapeutic agents or drugs of abuse. Knowledge on which organic cations interfere with SERT-mediated transport of 5HT will have major implications in tissues where 5HT plays important physiological roles (eg. central nervous system, intestine and placenta).
Collapse
Affiliation(s)
- E Keating
- Department of Biochemistry (U38-FCT), Faculty of Medicine, 4200-319 Porto, Portugal
| | | | | | | | | |
Collapse
|
36
|
Zhu CB, Hewlett WA, Feoktistov I, Biaggioni I, Blakely RD. Adenosine receptor, protein kinase G, and p38 mitogen-activated protein kinase-dependent up-regulation of serotonin transporters involves both transporter trafficking and activation. Mol Pharmacol 2004; 65:1462-74. [PMID: 15155839 DOI: 10.1124/mol.65.6.1462] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) transporters (SERTs) are critical determinants of synaptic 5-HT inactivation and the targets for multiple drugs used to treat psychiatric disorders. In support of prior studies, we found that short-term (5-30 min) application of the adenosine receptor (AR) agonist 5'-N-ethylcarboxamidoadenosine (NECA) induces an increase in 5-HT uptake Vmax in rat basophilic leukemia 2H3 cells that is enhanced by pretreatment with the cGMP phosphodiesterase inhibitor sildenafil. NECA stimulation is blocked by the A3 AR antagonist 3-ethyl-5-benzyl-2-methyl-phenylethynyl-6-phenyl-1,4(+/-)dihydropyridine-3,5-dicarboxylate (MRS1191), by the phospholipase C inhibitor 1-(6-[[17beta-3-methoxyestra-1,3,5(10)-trien-17-yl] amino]hexyl)-1H-pyrrole-2,5-dione (U73122), by the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, and by the guanyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Hydroxylamine, a nitric-oxide donor, and 8-bromo-cGMP, a membrane-permeant analog of cGMP, mimic the effects of NECA on 5-HT uptake, whereas the protein kinase G (PKG) inhibitor N-[2-(methylamino)ethy]-5-isoquinoline-sulfonamide (H8) blocks NECA, hydroxylamine, and 8-bromo-cGMP effects. NECA stimulation activates p38 mitogen-activated protein kinase (MAPK), whereas p38 MAPK inhibitors block NECA stimulation of SERT activity, as does the protein phosphatase 2A (PP2A) inhibitor calyculin A. 5-HT-displaceable [125I]3beta-(4-iodophenyl)-tropane-2beta-carboxylic acid methylester tartrate (RTI-55) whole-cell binding is increased by NECA or sildenafil, and both surface binding and cell surface SERT protein are elevated after NECA or sildenafil stimulation of AR/SERT-cotransfected Chinese hamster ovary cells. Whereas p38 MAPK inhibition blocks NECA stimulation of 5-HT activity, it fails to blunt stimulation of SERT surface density. Moreover, inactivation of existing surface SERTs fails to eliminate NECA stimulation of SERT. Together, these results reveal two PKG-dependent pathways supporting rapid SERT regulation by A3 ARs, one leading to enhanced SERT surface trafficking, and a separate, p38 MAPK-dependent process augmenting SERT intrinsic activity.
Collapse
Affiliation(s)
- Chong-Bin Zhu
- Department of Psychiatry, Vanderbilt School of Medicine, Nashville, Tennessee 37232-8548, USA
| | | | | | | | | |
Collapse
|
37
|
Ansah TA, Ramamoorthy S, Montañez S, Daws LC, Blakely RD. Calcium-dependent inhibition of synaptosomal serotonin transport by the alpha 2-adrenoceptor agonist 5-bromo-N-[4,5-dihydro-1H-imidazol-2-yl]-6-quinoxalinamine (UK14304). J Pharmacol Exp Ther 2003; 305:956-65. [PMID: 12626658 DOI: 10.1124/jpet.102.047134] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Termination of serotonergic transmission is the function of the plasma membrane 5-hydroxytryptamine (serotonin, 5-HT) transporter (SERT), which is also a high-affinity target in vivo for antidepressants, amphetamines, and cocaine. Studies show that SERT is regulated by protein kinase- and phosphataselinked pathways. In contrast, receptor-linked modulation of SERT is only minimally defined. Because noradrenergic stimulation is reported to influence 5-HT release, we explored possible presynaptic adrenoceptor-mediated regulation of SERT. In mouse forebrain synaptosomes, alpha2-adrenoceptor agonists, particularly 5-bromo-N-[4,5-dihydro-1H-imidazol-2-yl]-6-quinoxalinamine (UK14304), triggered a concentration- and time-dependent decrease in 5-HT transport. In contrast, 5-HT uptake was unaffected by pharmacological alpha1-adrenoceptor activation. Kinetically, UK14304 significantly decreased the apparent substrate affinity, Km without altering transport capacity, Vmax. At concentrations of UK14304 supporting maximal inhibition of SERT in synaptosomes, no effect on SERT in transfected cells was observed, suggesting that UK14304 acts indirectly to reduce SERT activity. The effect of UK14304 on 5-HT uptake was not shared by other Na+ and Cl--dependent transporters. UK14304-mediated inhibition of SERT function was yohimbine-sensitive, as was inhibition triggered by norepinephrine, and was abolished in the absence of added Ca2+. Moreover, UK14304 effects were attenuated by voltage-sensitive Ca2+ channel antagonists, consistent with a role for Ca2+ in UK14304 effects. In agreement with altered 5-HT transport activity in vitro, in vivo chronoamperometry studies revealed that UK14304 significantly prolonged 5-HT clearance. Our findings suggest that UK14304 modulates SERT function in vitro and in vivo via signaling pathways, possibly supported by an influx of Ca2+ through voltage-sensitive Ca2+ channels.
Collapse
Affiliation(s)
- Twum-Ampofo Ansah
- Department of Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN 37208, USA.
| | | | | | | | | |
Collapse
|
38
|
Quick MW. Role of syntaxin 1A on serotonin transporter expression in developing thalamocortical neurons. Int J Dev Neurosci 2002; 20:219-24. [PMID: 12175857 DOI: 10.1016/s0736-5748(02)00021-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neurotransmitter transporters are regulated through a variety of signal transduction mechanisms which may operate in order to maintain appropriate levels of transmitter in the synaptic cleft. GABA and glycine transporters both interact with components of the neurotransmitter release, such as the SNARE protein syntaxin 1A, suggesting that protein-protein interactions are a common method for regulating members of the neurotransmitter transporter family, and thus, linking the release of transmitter to its subsequent re-uptake. In the present report, the interaction of syntaxin 1A with endogenous serotonin transporters (SERT) expressed in developing thalamocortical neurons is examined. Incubation of thalamocortical cultures with botulinum toxin C1, which specifically cleaves syntaxin 1A, decreased SERT function. Serotonin (5HT) saturation analysis showed that the effect of the toxin was to decrease maximum transport capacity with little change to the affinity of the transporter for 5HT. The 5HT uptake data were consistent with biotinylation experiments showing a decrease in the surface expression of SERT following toxin treatment. In addition, co-immunoprecipitation experiments showed that SERT and syntaxin 1A form a protein complex in these neurons. These data show that components of the transmitter release machinery interact with endogenously expressed amine transporters, and suggest a mechanism for the control of transmitter levels in disorders related to aminergic signaling.
Collapse
Affiliation(s)
- Michael W Quick
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA.
| |
Collapse
|
39
|
Jayanthi LD, Vargas G, DeFelice LJ. Characterization of cocaine and antidepressant-sensitive norepinephrine transporters in rat placental trophoblasts. Br J Pharmacol 2002; 135:1927-34. [PMID: 11959795 PMCID: PMC1573321 DOI: 10.1038/sj.bjp.0704658] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. This paper reports on a primary cell culture system that predominantly expresses native norepinephrine (NE) transporters (NETs), and is amenable to biophysical as well as biochemical analyses. 2. Previous research has identified human and rat placentas as rich sources of NET. We have exploited this to develop primary cultures of rat placental trophoblasts. NE uptake in these cultures is about 10 times higher when compared to 5HT uptake. The presence of NET protein is revealed by immunoblot analysis, while there is no detectable SERT protein. 3. NE transport in rat trophoblasts is sensitive to NET-specific antagonists, desipramine (DS) and nisoxetine (NX), but not to the dopamine-transporter (DAT) specific antagonist, GBR12909 or to the serotonin (5HT) transporter (SERT) specific antagonist paroxetine (PX). Drugs of abuse such as cocaine and amphetamine also inhibit NE transport in these cells. Together these results suggest that rat placental trophoblasts predominantly express NET over other monoamine transporters. 4. Patch-clamp analysis reveals that NETs in intact rat trophoblasts are electrogenic. Comparison of NE uptake with NE-induced currents suggests that these two modes of transporter activity are differentially regulated.
Collapse
Affiliation(s)
- Lankupalle D Jayanthi
- Department of Pharmacology, Vanderbilt University School of Medicine, Center for Molecular Neuroscience, Nashville, Tennessee, TN 37232, USA.
| | | | | |
Collapse
|
40
|
Yoshimura R, Yanagihara N, Hara K, Nakamura J, Toyohira Y, Ueno S, Izumi F. Dual phases of functional change in norepinephrine transporter in cultured bovine adrenal medullary cells by long-term treatment with clozapine. J Neurochem 2001; 77:1018-26. [PMID: 11359867 DOI: 10.1046/j.1471-4159.2001.00316.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of long-term treatment with clozapine, a prototype of atypical antipsychotic drugs, on the functional activity, synthesis and mRNA of norepinephrine (NE) transporter were examined in bovine adrenal medullary cells in culture. Treatment of cells with clozapine at 0.1-3.0 microM concentrations produced dual phases of changes in [(3)H]NE uptake, i.e. the first phase showed a decrease in [(3)H]NE uptake at 2-48 h, and the following phase showed an increase in uptake at 72-168 h. Treatment with clozapine for 6 h decreased V(max) to 40% of the control without changing the K(m) value for [(3)H]NE uptake. However, treatment with clozapine for 96 h increased V(max) by 56% over the control without a change in K(m). Scatchard plot analysis of [(3)H]desipramine (DMI) binding to membranes isolated from cells treated with clozapine for 6 h revealed a decrease in B(max) without any change in K(d); in contrast, treatment with clozapine for 96 h caused an increase in B(max) without any change in K(d). Both actinomycin D and cycloheximide, which are inhibitors of protein synthesis, suppressed the clozapine (96 h)-induced increase in [(3)H]NE uptake. Treatment of cells with clozapine for 12-96 h increased the level of NE transporter mRNA in a concentration-dependent manner (0.3-3.0 microM). These findings suggest that treatment of cells with clozapine results in the down-regulation and subsequent up-regulation of NE transporter. The latter change may be caused by the synthesis of new proteins of NE transporter via an increase in its mRNA.
Collapse
Affiliation(s)
- R Yoshimura
- Departments of Psychiatry, Pharmacology and Anesthesiology, University of Occupational and Environmental Health, School of Medicine, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Zahniser NR, Doolen S. Chronic and acute regulation of Na+/Cl- -dependent neurotransmitter transporters: drugs, substrates, presynaptic receptors, and signaling systems. Pharmacol Ther 2001; 92:21-55. [PMID: 11750035 DOI: 10.1016/s0163-7258(01)00158-9] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Na+/Cl- -dependent neurotransmitter transporters, which constitute a gene superfamily, are crucial for limiting neurotransmitter activity. Thus, it is critical to understand their regulation. This review focuses primarily on the norepinephrine transporter, the dopamine transporter, the serotonin transporter, and the gamma-aminobutyric acid transporter GAT1. Chronic administration of drugs that alter neurotransmitter release or inhibit transporter activity can produce persistent compensatory changes in brain transporter number and activity. However, regulation has not been universally observed. Transient alterations in norepinephrine transporter, dopamine transporter, serotonin transporter, and GAT1 function and/or number occur in response to more acute manipulations, including membrane potential changes, substrate exposure, ethanol exposure, and presynaptic receptor activation/inhibition. In many cases, acute regulation has been shown to result from a rapid redistribution of the transporter between the cell surface and intracellular sites. Second messenger systems involved in this rapid regulation include protein kinases and phosphatases, of which protein kinase C has been the best characterized. These signaling systems share the common characteristic of altering maximal transport velocity and/or cell surface expression, consistent with regulation of transporter trafficking. Although less well characterized, arachidonic acid, reactive oxygen species, and nitric oxide also alter transporter function. In addition to post-translational modifications, cytoskeleton interactions and transporter oligomerization regulate transporter activity and trafficking. Furthermore, promoter regions involved in transporter transcriptional regulation have begun to be identified. Together, these findings suggest that Na+/Cl- -dependent neurotransmitter transporters are regulated both long-term and in a more dynamic manner, thereby providing several distinct mechanisms for altering synaptic neurotransmitter concentrations and neurotransmission.
Collapse
Affiliation(s)
- N R Zahniser
- Department of Pharmacology, C-236, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | |
Collapse
|
42
|
Scanlon SM, Williams DC, Schloss P. Membrane cholesterol modulates serotonin transporter activity. Biochemistry 2001; 40:10507-13. [PMID: 11523992 DOI: 10.1021/bi010730z] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synaptic actions of the neurotransmitter serotonin are terminated by a selective high-affinity reuptake mediated by the serotonin transporter (SERT). To gain insight into the modulation of the functional properties of this integral membrane protein by cholesterol, a main component of the lipid bilayer, we stably expressed the rat SERT in human embryonic kidney 293 cells and, upon altering the cholesterol content of these cells by different means, analyzed SERT activity. Depletion of the level of membrane cholesterol by treatment with either the cholesterol chelating agent methyl-beta-cyclodextrin (MbetaCD), cholesterol oxidase, or the cholesterol-binding fluorochrome filipin resulted in a decrease in SERT activity due to both a loss of affinity of substrate and ligand binding and a concomitant reduction of the maximal transport rate. In cholesterol-depleted membranes, cholesterol levels could be restored to those found in untreated membranes by incubation of the membranes with an MbetaCD-cholesterol complex, which correlated with a reversal of the cholesterol depletion-mediated decrease in the level of high-affinity binding. This was not the case when other steroids, such as ergosterol, 5-cholestene, or pregnenolone, were substituted into cholesterol-depleted membranes. These results suggest that membrane cholesterol modulates the functional properties of the SERT by specific molecular interactions which are needed to stabilize the transporter in its optimally active form.
Collapse
Affiliation(s)
- S M Scanlon
- Biochemistry Department, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
43
|
Geerlings A, Núñez E, López-Corcuera B, Aragón C. Calcium- and syntaxin 1-mediated trafficking of the neuronal glycine transporter GLYT2. J Biol Chem 2001; 276:17584-90. [PMID: 11278707 DOI: 10.1074/jbc.m010602200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we demonstrated the existence of a physical and functional interaction between the glycine transporters and the SNARE protein syntaxin 1. In the present report the physiological role of the syntaxin 1-glycine transporter 2 (GLYT2) interaction has been investigated by using a brain-derived preparation. Previous studies, focused on syntaxin 1-transporter interactions using overexpression systems, led to the postulation that syntaxin is somehow implicated in protein trafficking. Since syntaxin 1 is involved in exocytosis of neurotransmitter and also interacts with GLYT2, we stimulated exocytosis in synaptosomes and examined its effect on surface-expression and transport activity of GLYT2. We found that, under conditions that stimulate vesicular glycine release, GLYT2 is rapidly trafficked first toward the plasma membrane and then internalized. When the same experiments were performed with synaptosomes inactivated for syntaxin 1 by a pretreatment with the neurotoxin Bont/C, GLYT2 was unable to reach the plasma membrane but still was able to leave it. These results indicate the existence of a SNARE-mediated regulatory mechanism that controls the surface-expression of GLYT2. Syntaxin 1 is involved in the arrival to the plasma membrane but not in the retrieval. Furthermore, by using immunogold labeling on purified preparations from synaptosomes, we demonstrate that GLYT2 is present in small synaptic-like vesicles. GLYT2-containing vesicles may represent neurotransmitter transporter that is being trafficked. The results of our work suggest a close correlation between exocytosis of neurotransmitter and its reuptake by transporters.
Collapse
Affiliation(s)
- A Geerlings
- Centro de Biologia Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
44
|
Sakai N, Kodama N, Ohmori S, Sasaki K, Saito N. Involvement of the actin cytoskeleton in the regulation of serotonin transporter (SET) activity: possible mechanism underlying SET regulation by protein kinase C. Neurochem Int 2000; 36:567-79. [PMID: 10771115 DOI: 10.1016/s0197-0186(99)00160-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Our previous report has revealed that PKC activation by 12-O-tetradecanoylphorbol 13-acetate (TPA) inhibited the uptake activity of serotonin transporter (SET), via an indirect mechanism unknown, but not likely via direct phosphorylation of SET by PKC (Sakai et al., 1997. J. Neurochem. 68, 2618-2624). To elucidate whether PKC can directly phosphorylate SET in vivo, FLAG-tagged SET (FLAG-SET) was expressed in COS-7 cells and the TPA-induced incorporation of (32)P into immunoprecipitated FLAG-SET was examined. PKC activation with TPA caused no phosphorylation of FLAG-SET expressed in COS-7 cells. On the other hand, morphological change associated with the disruption of filamentous actin (F-actin) was seen in TPA-treated COS-7 cells. Therefore, we studied the effects of cytochalasin D, an inhibitor of actin polymerization, on the uptake activity of the serotonin transporter (SET) to elucidate whether the actin cytoskeleton modulates the SET uptake activity. The treatment with cytochalasin D inhibited the uptake activity of both native and recombinant SET in a concentration-dependent manner. Eadie-Hofstee analysis revealed that cytochalasin D down-regulated the recombinant SET uptake activity by reducing the V(max), but not the K(m), mimicking the result observed in TPA-induced inhibition of SET activity (Sakai et al., 1997. J. Neurochem. 68, 2618-2624). The cytochalasin D-induced inhibition of SET activity was partially, but significantly, reversed by jasplakinolide, a cell permeable stabilizer of F-actin, whereas TPA-induced inhibition of SET activity was not reversed by jasplakinolide. To elucidate whether the subcellular localization of SET was changed in response to cytochalasin D or TPA, we expressed the SET fused with the green fluorescent protein (SET-GFP) in COS-7 cells and observed the subcellular distribution of SET-GFP under a confocal laser scanning fluorescent microscope. Neither cytochalasin D nor TPA markedly changed the SET-GFP cellular localization, although these drugs caused morphological change in the GFP-transfected COS-7 cells. In addition, SET activity was not altered by the treatment with either colchicine, an inhibitor of microtubule polymerization, or taxol, a stabilizer of microtubule polymerization. These results suggest that the SET uptake activity was regulated by the state of the actin cytoskeleton and that TPA exerts its inhibitory action on SET activity, in part, via disruption of F-actin and subsequent morphological change in cells.
Collapse
Affiliation(s)
- N Sakai
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Japan
| | | | | | | | | |
Collapse
|
45
|
Mössner R, Daniel S, Albert D, Heils A, Okladnova O, Schmitt A, Lesch KP. Serotonin transporter function is modulated by brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF). Neurochem Int 2000; 36:197-202. [PMID: 10676853 DOI: 10.1016/s0197-0186(99)00122-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The serotonin transporter (5-HTT) regulates serotonergic neurotransmission by determining the magnitude and duration of serotonergic responses. We have recently described a polymorphism in the 5-HTT gene promoter (5-HTTLPR) which influences the function of the 5-HTT and is associated with several psychiatric disorders. Immortalized B lymphocytes express the 5-HTT, and a B lymphocyte line has been shown to express the receptor for brain-derived neurotrophic factor, trkB. Since brain-derived neurotrophic factor (BDNF) is a specific growth and differentiation factor for serotonergic neurons, we assessed whether BDNF is able to modulate 5-HTT function in B lymphoblasts. Nerve growth factor (NGF), another neurotrophin which acts via the trkA receptor, was also studied. Eight immortalized B lymphoblast lines were generated and genotyped for the 5-HTTLPR. After treatment with BDNF or NGF, 5-HT uptake and proliferation of the cell lines were assessed. Two of the B cell lines showed a dose-dependent reduction of 5-HT uptake after exposure to BDNF. Both of these cell lines were homozygous for the long allele of the 5-HTTLPR. NGF did not influence 5-HT uptake or cellular proliferation in any of the cell lines. Thus, BDNF but not NGF may influence 5-HT uptake in some B lymphocytes. The fact that regulation of the 5-HTT was observed preferentially in cells of the long/long genotype indicates that presence of a short allele confers reduced regulatory capacity on the 5-HTT. In conclusion, B lymphoblasts represent a practical model for functional regulation of the 5-HTT by neurotrophins in serotonergic neurons.
Collapse
Affiliation(s)
- R Mössner
- Department of Psychiatry, University of Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Jayanthi LD, Wilson JJ, Montalvo J, DeFelice LJ. Differential regulation of mammalian brain-specific proline transporter by calcium and calcium-dependent protein kinases. Br J Pharmacol 2000; 129:465-70. [PMID: 10711344 PMCID: PMC1571857 DOI: 10.1038/sj.bjp.0703071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. This study examined the role of [Ca2+]I and Ca(2+)-dependent kinases in the modulation of high-affinity, mammalian brain-specific L-proline transporter (PROT). 2. beta-PMA (phorbol 12-myristate 13-acetate), an activator of protein kinase C (PKC), inhibits PRO uptake, and bisindolymalemide I (BIM), a potent PKC inhibitor, prevents beta-PMA inhibition. Down-regulation of PKC by chronic treatment with beta-PMA enhances PROT function indicating PROT regulation by tonic activity of PKC. 3. Thapsigargin, which increases [Ca2+]I levels by inhibiting Ca(2+)-ATPase, inhibits PROT and exhibits additive inhibition when co-treated with beta-PMA. KN-62, a Ca2+/calmodulin-dependent kinase II (CaMK II) inhibitor, but not BIM (a PKC inhibitor) prevents the inhibition by thapsigargin. These data suggest that PKC and CaMK II modulate PROT and that thapsigargin mediates its effect via CaMK II. 4. Thapsigargin raises [Ca2+]I and increases PRO-induced current on a second time scale, whereas the inhibitory effect of thapsigargin occurs only after 10 min of treatment. These data suggest that Ca2+ differentially regulate PROT: Ca2+ initially enhances PRO transport but eventually inhibits transport function through CaMK II pathway. 5. Ca(2+)-induced stimulation exemplifies the acute regulation of a neurotransmitter transporter, which may play a critical role in the profile of neurotransmitters during synaptic transmission.
Collapse
Affiliation(s)
- L D Jayanthi
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-660, USA
| | | | | | | |
Collapse
|
47
|
Kenney SP, Kekuda R, Prasad PD, Leibach FH, Devoe LD, Ganapathy V. Cannabinoid receptors and their role in the regulation of the serotonin transporter in human placenta. Am J Obstet Gynecol 1999; 181:491-7. [PMID: 10454705 DOI: 10.1016/s0002-9378(99)70583-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We sought to investigate the expression of cannabinoid receptors in human placenta and BeWo choriocarcinoma cells and study their role in the regulation of the serotonin transporter. STUDY DESIGN Expression of the 2 types of cannabinoid receptors (CB1 and CB2) in human placenta and BeWo cells was investigated by reverse transcriptase-polymerase chain reaction and Northern blot analysis. The involvement of the receptors in the regulation of the serotonin transporter expression was studied by using a cannabinoid receptor agonist (WIN 55212-2). BeWo cells were treated with the agonist in the presence or absence of forskolin, and the serotonin transporter activity was measured by assessing paroxetine-sensitive serotonin transport. Serotonin transporter density in cell membranes was monitored by measuring paroxetine-sensitive binding of RTI-55, a specific high-affinity ligand for the transporter. Agonist-induced changes in intracellular levels of cyclic adenosine monophosphate were also monitored. RESULTS Reverse transcriptase-polymerase chain reaction and Northern blot analysis demonstrated unequivocally that human placenta and BeWo cells express both types of cannabinoid receptors. Treatment of BeWo cells with the receptor agonist blocked the activity of the constitutive, as well as the forskolin-induced, serotonin transporter without affecting the serotonin transporter density. This effect is not mediated by alterations in intracellular cyclic adenosine monophosphate levels. CONCLUSION The results show that cannabinoid receptors are expressed in human placenta and BeWo cells and play a role in the regulation of the serotonin transporter activity. Human placenta is therefore a direct target for cannabinoids, and marijuana use during pregnancy is likely to affect the placental clearance of serotonin through the serotonin transporter.
Collapse
Affiliation(s)
- S P Kenney
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta, USA
| | | | | | | | | | | |
Collapse
|
48
|
Ganapathy V, Prasad PD, Ganapathy ME, Leibach FH. Drugs of abuse and placental transport. Adv Drug Deliv Rev 1999; 38:99-110. [PMID: 10837749 DOI: 10.1016/s0169-409x(99)00009-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The placenta provides the only link between the mother and the developing fetus. The function of the placenta as a transport organ is obligatory for fetal development because this process, mediated by a variety of transport systems, is responsible for the delivery of nutrients from the mother to the fetus. Some of the transport systems in the placenta also play a role in the clearance of vasoactive compounds, thus maintaining optimal blood flow to this organ. There is strong supporting evidence to indicate that several of these placental transport systems are either direct or indirect targets for the abusable drugs cocaine, amphetamines, nicotine, and cannabinoids. These drugs of abuse compromise the placental transport function and consequently produce detrimental effects on the developing fetus.
Collapse
Affiliation(s)
- V Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | |
Collapse
|
49
|
Uchida J, Kiuchi Y, Ohno M, Yura A, Oguchi K. Ca(2+)-dependent enhancement of [3H]noradrenaline uptake in PC12 cells through calmodulin-dependent kinases. Brain Res 1998; 809:155-64. [PMID: 9853106 DOI: 10.1016/s0006-8993(98)00850-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ca(2+)-dependent regulation of [3H]noradrenaline ([3H]NA) uptake through the NA transporter was studied using PC12 cells. Preincubation for 10 min in the presence of 0.3-10 mM ca2+ in Krebs-Ringer (KR) buffer induced marked enhancement of the uptake (at 1 mM Ca2+, 6.6 times greater than that observed in the absence of Ca2+), which reflected both an increase in Vmax and a decrease in K(m) of the uptake process. Preincubation with 1 mM Ca2+ also induced a significant increase in the Bmax and Kd of [3H]desipramine binding. The uptake was still enhanced after washing cells with Ca(2+)-free buffer following preincubation with 1 mM Ca2+. 1-[N, O-bis(5-Isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), 2-[N-(2-hydroxyethyl)-N-(4-methoxybenzenesulfonyl)]amino-N-(4-c hlo rocinnamyl) -N-methylbenzylamine (KN-93) (inhibitors of Ca2+/calmodulin-dependent kinase II), N-(6-aminohexyl)-5-chloro-1-naphthalenesulonamide (W-7) (a calmodulin antagonist), wortmannin (a myosin light chain kinase inhibitor) significantly reduced Ca(2+)-dependent enhancement of the uptake. Mycalolide B (an inhibitor of actin-myosin interaction) also inhibited the enhancement. Although calphostin C (a protein kinase C (PKC) inhibitor) did not affect the enhancement, 12-o-tetradecanoylphorbol 13-acetate (TPA) inhibited the uptake. A synthetic peptide with a sequence (KKVIYKFFS579 IRGSLW) contained in the intracellular COOH-terminal domain of a rat NA transporter was phosphorylated by purified brain Ca2+/calmodulin-dependent protein kinase II. These results suggest that Ca(2+)-dependent enhancement of the [3H]NA uptake in PC12 cells are mediated by activation of calmodulin-dependent protein kinases, probably through stimulation of translocation of the NA transporter to the plasma membrane and/or direct phosphorylation of the transporter itself.
Collapse
Affiliation(s)
- J Uchida
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
50
|
Ganapathy V, Prasad PD, Leibach FH. Use of human placenta in studies of monoamine transporters. Methods Enzymol 1998; 296:278-90. [PMID: 9779455 DOI: 10.1016/s0076-6879(98)96021-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- V Ganapathy
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta 30912, USA
| | | | | |
Collapse
|