1
|
Aguilera AC, Leiva N, Alvarez PA, Pulcini G, Pereyra LL, Morales CR, Sosa MÁ, Carvelli L. Sortilin knock-down alters the expression and distribution of cathepsin D and prosaposin and up-regulates the cation-dependent mannose-6-phosphate receptor in rat epididymal cells. Sci Rep 2023; 13:3461. [PMID: 36859404 PMCID: PMC9977780 DOI: 10.1038/s41598-023-29157-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
The selective transport to lysosomes can be mediated by either mannose-6-phosphate receptors (CD-MPR and CI-MPR) or sortilin. In mammalian epididymis, some lysosomal proteins are secreted into the lumen through unknown mechanisms. To investigate the underlying mechanisms of lysosomal protein transport in epididymal cells we studied the expression and distribution of cathepsin D (CatD) and prosaposin (PSAP) in a sortilin knocked down RCE-1 epididymal cell line (RCE-1 KD) in comparison with non-transfected RCE-1 cells. In RCE-1 cells, CatD was found in the perinuclear zone and co-localize with sortilin, whereas in RCE-1 KD cells, the expression, distribution and processing of the enzyme were altered. In turn, PSAP accumulated intracellularly upon sortilin knock-down and redistributed from LAMP-1-positive compartment to a perinuclear location, remaining co-localized with CatD. Interestingly, the sortilin knock-down induced CD-MPR overexpression and a redistribution of the receptor from the perinuclear zone to a dispersed cytoplasmic location, accompanied by an increased co-localization with CatD. The increase in CD-MPR could result from a compensatory response for the proper delivery of CatD to lysosomes in epididymal cells. The intracellular pathway taken by lysosomal proteins could be an approach for addressing further studies to understand the mechanism of exocytosis and therefore the role of these proteins in the epididymis.
Collapse
Affiliation(s)
- Andrea Carolina Aguilera
- CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina
| | - Natalia Leiva
- CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina
| | - Pablo Ariel Alvarez
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina
| | - Georgina Pulcini
- IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina
| | - Laura Lucía Pereyra
- IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina
| | | | - Miguel Ángel Sosa
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina.,IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina
| | - Lorena Carvelli
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina. .,IHEM-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, M5500, Mendoza, Argentina.
| |
Collapse
|
2
|
Weesner JA, Annunziata I, Yang T, Acosta W, Gomero E, Hu H, van de Vlekkert D, Ayala J, Qiu X, Fremuth LE, Radin DN, Cramer CL, d’Azzo A. Preclinical Enzyme Replacement Therapy with a Recombinant β-Galactosidase-Lectin Fusion for CNS Delivery and Treatment of GM1-Gangliosidosis. Cells 2022; 11:2579. [PMID: 36010656 PMCID: PMC9406850 DOI: 10.3390/cells11162579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
GM1-gangliosidosis is a catastrophic, neurodegenerative lysosomal storage disease caused by a deficiency of lysosomal β-galactosidase (β-Gal). The primary substrate of the enzyme is GM1-ganglioside (GM1), a sialylated glycosphingolipid abundant in nervous tissue. Patients with GM1-gangliosidosis present with massive and progressive accumulation of GM1 in the central nervous system (CNS), which leads to mental and motor decline, progressive neurodegeneration, and early death. No therapy is currently available for this lysosomal storage disease. Here, we describe a proof-of-concept preclinical study toward the development of enzyme replacement therapy (ERT) for GM1-gangliosidosis using a recombinant murine β-Gal fused to the plant lectin subunit B of ricin (mβ-Gal:RTB). We show that long-term, bi-weekly systemic injection of mβ-Gal:RTB in the β-Gal-/- mouse model resulted in widespread internalization of the enzyme by cells of visceral organs, with consequent restoration of enzyme activity. Most importantly, β-Gal activity was detected in several brain regions. This was accompanied by a reduction of accumulated GM1, reversal of neuroinflammation, and decrease in the apoptotic marker caspase 3. These results indicate that the RTB lectin delivery module enhances both the CNS-biodistribution pattern and the therapeutic efficacy of the β-Gal ERT, with the potential to translate to a clinical setting for the treatment of GM1-gangliosidosis.
Collapse
Affiliation(s)
- Jason Andrew Weesner
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Anatomy and Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ida Annunziata
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Compliance Office, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Tianhong Yang
- BioStrategies, LC, P.O. Box 2428, State University, Jonesboro, AR 72467, USA
| | - Walter Acosta
- BioStrategies, LC, P.O. Box 2428, State University, Jonesboro, AR 72467, USA
| | - Elida Gomero
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Huimin Hu
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | | | - Jorge Ayala
- BioStrategies, LC, P.O. Box 2428, State University, Jonesboro, AR 72467, USA
| | - Xiaohui Qiu
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Leigh Ellen Fremuth
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - David N. Radin
- BioStrategies, LC, P.O. Box 2428, State University, Jonesboro, AR 72467, USA
| | - Carole L. Cramer
- BioStrategies, LC, P.O. Box 2428, State University, Jonesboro, AR 72467, USA
| | - Alessandra d’Azzo
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Anatomy and Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Aslam M, Kandasamy N, Ullah A, Paramasivam N, Öztürk MA, Naureen S, Arshad A, Badshah M, Khan K, Wajid M, Abbasi R, Ilyas M, Eils R, Schlesner M, Wade RC, Ahmad N, von Engelhardt J. Putative second hit rare genetic variants in families with seemingly GBA-associated Parkinson's disease. NPJ Genom Med 2021; 6:2. [PMID: 33402667 PMCID: PMC7785741 DOI: 10.1038/s41525-020-00163-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/12/2020] [Indexed: 11/08/2022] Open
Abstract
Rare variants in the beta-glucocerebrosidase gene (GBA1) are common genetic risk factors for alpha synucleinopathy, which often manifests clinically as GBA-associated Parkinson's disease (GBA-PD). Clinically, GBA-PD closely mimics idiopathic PD, but it may present at a younger age and often aggregates in families. Most carriers of GBA variants are, however, asymptomatic. Moreover, symptomatic PD patients without GBA variant have been reported in families with seemingly GBA-PD. These observations obscure the link between GBA variants and PD pathogenesis and point towards a role for unidentified additional genetic and/or environmental risk factors or second hits in GBA-PD. In this study, we explored whether rare genetic variants may be additional risk factors for PD in two families segregating the PD-associated GBA1 variants c.115+1G>A (ClinVar ID: 93445) and p.L444P (ClinVar ID: 4288). Our analysis identified rare genetic variants of the HSP70 co-chaperone DnaJ homolog subfamily B member 6 (DNAJB6) and lysosomal protein prosaposin (PSAP) as additional factors possibly influencing PD risk in the two families. In comparison to the wild-type proteins, variant DNAJB6 and PSAP proteins show altered functions in the context of cellular alpha-synuclein homeostasis when expressed in reporter cells. Furthermore, the segregation pattern of the rare variants in the genes encoding DNAJB6 and PSAP indicated a possible association with PD in the respective families. The occurrence of second hits or additional PD cosegregating rare variants has important implications for genetic counseling in PD families with GBA1 variant carriers and for the selection of PD patients for GBA targeted treatments.
Collapse
Affiliation(s)
- Muhammad Aslam
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Nirosiya Kandasamy
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anwar Ullah
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
- Department of Biochemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Nagarajan Paramasivam
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mehmet Ali Öztürk
- Molecular and Cellular Modeling Group, Heidelberg Institute of Theoretical Studies (HITS), Heidelberg, Germany
- The Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Saima Naureen
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Department of Zoology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Abida Arshad
- Department of Zoology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Mazhar Badshah
- Department of Neurology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Kafaitullah Khan
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Muhammad Wajid
- Department of Biological Sciences, University of Okara, Okara, Pakistan
| | - Rashda Abbasi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Muhammad Ilyas
- Faculty of Mechanical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health and Charité Universitätsmedizin Berlin, Berlin, Germany
- Health Data Science Unit, Bioquant, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute of Theoretical Studies (HITS), Heidelberg, Germany
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, Germany
| | - Nafees Ahmad
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| | - Jakob von Engelhardt
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Cheung LKY, Dupuis JH, Dee DR, Bryksa BC, Yada RY. Roles of Plant-Specific Inserts in Plant Defense. TRENDS IN PLANT SCIENCE 2020; 25:682-694. [PMID: 32526173 DOI: 10.1016/j.tplants.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Ubiquitously expressed in plants, the plant-specific insert (PSI) of typical plant aspartic proteases (tpAPs) has been associated with plant development, stress response, and defense processes against invading pathogens. Despite sharing high sequence identity, structural studies revealed possible different mechanisms of action among species. The PSI induces signaling pathways of defense hormones in vivo and demonstrates broad-spectrum activity against phytopathogens in vitro. Recent characterization of the PSI-tpAP relationship uncovered novel, nonconventional intracellular protein transport pathways and improved tpAP production yields for industrial applications. In spite of research to date, relatively little is known about the structure-function relationships of PSIs. A comprehensive understanding of their biological roles may benefit plant protection strategies against virulent phytopathogens.
Collapse
Affiliation(s)
- Lennie K Y Cheung
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John H Dupuis
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Derek R Dee
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Brian C Bryksa
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada. @ubc.ca
| |
Collapse
|
5
|
Vidoni C, Follo C, Savino M, Melone MAB, Isidoro C. The Role of Cathepsin D in the Pathogenesis of Human Neurodegenerative Disorders. Med Res Rev 2016; 36:845-70. [DOI: 10.1002/med.21394] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Miriam Savino
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Mariarosa A. B. Melone
- Division of Neurology, Department of Clinic and Experimental Medicine and Surgery; Second University of Naples; Naples Italy
- InterUniversity Center for Research in Neurosciences; Second University of Naples; Naples Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
- InterUniversity Center for Research in Neurosciences; Second University of Naples; Naples Italy
| |
Collapse
|
6
|
Zhou X, Sun L, Bastos de Oliveira F, Qi X, Brown WJ, Smolka MB, Sun Y, Hu F. Prosaposin facilitates sortilin-independent lysosomal trafficking of progranulin. J Cell Biol 2015; 210:991-1002. [PMID: 26370502 PMCID: PMC4576858 DOI: 10.1083/jcb.201502029] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prosaposin directly interacts with progranulin and facilitates progranulin lysosomal trafficking via the trafficking receptors M6PR and LRP1, independent of the previously identified progranulin trafficking pathway mediated by sortilin. Mutations in the progranulin (PGRN) gene have been linked to two distinct neurodegenerative diseases, frontotemporal lobar degeneration (FTLD) and neuronal ceroid lipofuscinosis (NCL). Accumulating evidence suggests a critical role of PGRN in lysosomes. However, how PGRN is trafficked to lysosomes is still not clear. Here we report a novel pathway for lysosomal delivery of PGRN. We found that prosaposin (PSAP) interacts with PGRN and facilitates its lysosomal targeting in both biosynthetic and endocytic pathways via the cation-independent mannose 6-phosphate receptor and low density lipoprotein receptor-related protein 1. PSAP deficiency in mice leads to severe PGRN trafficking defects and a drastic increase in serum PGRN levels. We further showed that this PSAP pathway is independent of, but complementary to, the previously identified PGRN lysosomal trafficking mediated by sortilin. Collectively, our results provide new understanding on PGRN trafficking and shed light on the molecular mechanisms behind FTLD and NCL caused by PGRN mutations.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Lirong Sun
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853 Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Francisco Bastos de Oliveira
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Xiaoyang Qi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - William J Brown
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Marcus B Smolka
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Ying Sun
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
7
|
Kowalewski B, Lübke T, Kollmann K, Braulke T, Reinheckel T, Dierks T, Damme M. Molecular characterization of arylsulfatase G: expression, processing, glycosylation, transport, and activity. J Biol Chem 2014; 289:27992-8005. [PMID: 25135642 DOI: 10.1074/jbc.m114.584144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Arylsulfatase G (ARSG) is a recently identified lysosomal sulfatase that was shown to be responsible for the degradation of 3-O-sulfated N-sulfoglucosamine residues of heparan sulfate glycosaminoglycans. Deficiency of ARSG leads to a new type of mucopolysaccharidosis, as described in a mouse model. Here, we provide a detailed molecular characterization of the endogenous murine enzyme. ARSG is expressed and proteolytically processed in a tissue-specific manner. The 63-kDa single-chain precursor protein localizes to pre-lysosomal compartments and tightly associates with organelle membranes, most likely the endoplasmic reticulum. In contrast, proteolytically processed ARSG fragments of 34-, 18-, and 10-kDa were found in lysosomal fractions and lost their membrane association. The processing sites and a disulfide bridge between the 18- and 10-kDa chains could be roughly mapped. Proteases participating in the processing were identified as cathepsins B and L. Proteolytic processing is dispensable for hydrolytic sulfatase activity in vitro. Lysosomal transport of ARSG in the liver is independent of mannose 6-phosphate, sortilin, and Limp2. However, mutation of glycosylation site N-497 abrogates transport of ARSG to lysosomes in human fibrosarcoma cells, due to impaired mannose 6-phosphate modification.
Collapse
Affiliation(s)
- Björn Kowalewski
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld
| | - Torben Lübke
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld
| | - Katrin Kollmann
- the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg 20246, and
| | - Thomas Braulke
- the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg 20246, and
| | - Thomas Reinheckel
- the Institute of Molecular Medicine and Cell Research and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Thomas Dierks
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld,
| | - Markus Damme
- From the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld,
| |
Collapse
|
8
|
Carvelli L, Bannoud N, Aguilera AC, Sartor T, Malossi E, Sosa MA. Testosterone influences the expression and distribution of the cation-dependent mannose-6-phosphate receptor in rat epididymis. Implications in the distribution of enzymes. Andrologia 2013; 46:224-30. [PMID: 23290006 DOI: 10.1111/and.12065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 11/30/2022] Open
Abstract
The mammalian epididymis plays a role in sperm maturation through its secretory activity. Among the proteins secreted by the epithelium, there are significant amounts of acid hydrolases. In most cell types, the normal distribution of lysosomal enzymes is mediated by mannose-6-phosphate receptors (MPRs). In this study, we analysed the expression and distribution of the cation-dependent MPR (CD-MPR) in epididymis from control, castrated or castrated rats with testosterone replacement. It was observed that expression of CD-MPR increased due to castration in all regions of the epididymis, which was reversed by injection of testosterone. We also measured the activity of α-mannosidase and observed that the castration tends to increase the retention of this enzyme in the tissue, which is reversed by the hormone replacement. In corpus, this resulted in a reduced secretion of the enzyme. Immunohistochemistry showed that CD-MPR has a supranuclear location (different from the cation-independent MPR), most likely in principal cells, and low reactivity in other cell types. The signal in castrated animals was more intense and tended to redistribute towards the apical cytoplasm. Thus, we concluded that expression and distribution of CD-MPR is affected by decrease of testosterone in rat epididymis, and this could change the distribution of lysosomal enzymes.
Collapse
Affiliation(s)
- L Carvelli
- Laboratorio de Biología y Fisiología Celular 'Dr. Francisco Bertini', Instituto de Histología y Embriología, CONICET - Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Ciencias Básicas (ICB), Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
9
|
Vetvicka V, Vashishta A, Saraswat-Ohri S, Vetvickova J. Procathepsin D and cancer: From molecular biology to clinical applications. World J Clin Oncol 2010; 1:35-40. [PMID: 21603309 PMCID: PMC3095452 DOI: 10.5306/wjco.v1.i1.35] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/24/2010] [Accepted: 09/01/2010] [Indexed: 02/06/2023] Open
Abstract
Procathepsin D (pCD) is overexpressed and secreted by cells of various tumor types including breast and lung carcinomas. pCD affects multiple features of tumor cells including proliferation, invasion, metastases and apoptosis. Several laboratories have previously shown that the mitogenic effect of pCD on cancer cells is mediated via its propeptide part (APpCD). However, the exact mechanism of how pCD affects cancer cells has not been identified. Recent observations have also revealed the possible use of pCD/APpcD as a marker of cancer progression. The purpose of this review is to summarize the three major potentials of pCD-tumor marker, potential drug, and screening agent.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Vaclav Vetvicka, Jana Vetvickova, Department of Pathology, University of Louisville, Louisville, KY 40202, United States
| | | | | | | |
Collapse
|
10
|
Hu S, Delorme N, Liu Z, Liu T, Velasco-Gonzalez C, Garai J, Pullikuth A, Koochekpour S. Prosaposin down-modulation decreases metastatic prostate cancer cell adhesion, migration, and invasion. Mol Cancer 2010; 9:30. [PMID: 20132547 PMCID: PMC2825248 DOI: 10.1186/1476-4598-9-30] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/04/2010] [Indexed: 01/24/2023] Open
Abstract
Background Factors responsible for invasive and metastatic progression of prostate cancer (PCa) remain largely unknown. Previously, we reported cloning of prosaposin (PSAP) and its genomic amplification and/or overexpression in several androgen-independent metastatic PCa cell lines and lymph node metastases. PSAP is the lysosomal precursor of saposins, which serve as activators for lysosomal hydrolases involved in the degradation of ceramide (Cer) and other sphingolipids. Results Our current data show that, in metastatic PCa cells, stable down-modulation of PSAP by RNA-interference via a lysosomal proteolysis-dependent pathway decreased β1A-integrin expression, its cell-surface clustering, and adhesion to basement membrane proteins; led to disassembly of focal adhesion complex; and decreased phosphorylative activity of focal adhesion kinase and its downstream adaptor molecule, paxillin. Cathepsin D (CathD) expression and proteolytic activity, migration, and invasion were also significantly decreased in PSAP knock-down cells. Transient-transfection studies with β1A integrin- or CathD-siRNA oligos confirmed the cause and effect relationship between PSAP and CathD or PSAP and Cer-β1A integrin, regulating PCa cell migration and invasion. Conclusion Our findings suggest that by a coordinated regulation of Cer levels, CathD and β1A-integrin expression, and attenuation of "inside-out" integrin-signaling pathway, PSAP is involved in PCa invasion and therefore might be used as a molecular target for PCa therapy.
Collapse
Affiliation(s)
- Siyi Hu
- Stanley S Scott Cancer Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Puxbaum V, Mach L. Proteinases and their inhibitors in liver cancer. World J Hepatol 2009; 1:28-34. [PMID: 21160962 PMCID: PMC2998952 DOI: 10.4254/wjh.v1.i1.28] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/05/2009] [Accepted: 09/12/2009] [Indexed: 02/06/2023] Open
Abstract
Proteinases are known to be involved in many cancer-related processes, particularly in the breakdown of extracellular matrix barriers in the course of tumor invasion and metastasis. In this review we summarize the current knowledge about the role of the most important matrix-degrading proteinases (cathepsins, matrix metalloproteinases, plasmin/plasminogen activators) and their respective inhibitors in liver cancer progression and metastasis.
Collapse
Affiliation(s)
- Verena Puxbaum
- Verena Puxbaum, Lukas Mach, Department of Applied Genetics and Cell Biology, University of Natural Resources and Applied Life Sciences, Muthgasse 18, Vienna A-1190, Austria
| | | |
Collapse
|
12
|
Kuronen M, Talvitie M, Lehesjoki AE, Myllykangas L. Genetic modifiers of degeneration in the cathepsin D deficient Drosophila model for neuronal ceroid lipofuscinosis. Neurobiol Dis 2009; 36:488-93. [PMID: 19761846 DOI: 10.1016/j.nbd.2009.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 08/14/2009] [Accepted: 09/07/2009] [Indexed: 11/20/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are pediatric, neurodegenerative, lysosomal storage disorders. Mutations in cathepsin D result in the most severe, congenital form of NCLs. We have previously generated a cathepsin D deficient Drosophila model, which exhibits the key features of NCLs: progressive intracellular accumulation of autofluorescent storage material and modest neurodegeneration in the brain areas related to visual functions. Here we extend the phenotypic characterization of cathepsin D deficient Drosophila and report that modest degenerative changes are also present in their retinae. Furthermore, by utilizing this phenotype, we examined the possible effect of 17 candidate modifiers, selected based on the results from other cathepsin D deficiency models. We found enhancers of this phenotype that support the involvement of endocytosis-, lipid metabolism- and oxidation-related factors in the cathepsin D deficiency induced degeneration. Our results warrant further investigation of these mechanisms in the pathogenesis of cathepsin D deficiency.
Collapse
Affiliation(s)
- Mervi Kuronen
- Folkhälsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
13
|
Benes P, Vetvicka V, Fusek M. Cathepsin D--many functions of one aspartic protease. Crit Rev Oncol Hematol 2008; 68:12-28. [PMID: 18396408 PMCID: PMC2635020 DOI: 10.1016/j.critrevonc.2008.02.008] [Citation(s) in RCA: 468] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/05/2008] [Accepted: 02/22/2008] [Indexed: 12/11/2022] Open
Abstract
For years, it has been held that cathepsin D (CD) is involved in rather non-specific protein degradation in a strongly acidic milieu of lysosomes. Studies with CD knock-out mice revealed that CD is not necessary for embryonal development, but it is indispensable for postnatal tissue homeostasis. Mutation that abolishes CD enzymatic activity causes neuronal ceroid lipofuscinosis (NCL) characterized by severe neurodegeneration, developmental regression, visual loss and epilepsy in both animals and humans. In the last decade, however, an increasing number of studies demonstrated that enzymatic function of CD is not restricted solely to acidic milieu of lysosomes with important consequences in regulation of apoptosis. In addition to CD enzymatic activity, it has been shown that apoptosis is also regulated by catalytically inactive mutants of CD which suggests that CD interacts with other important molecules and influences cell signaling. Moreover, procathepsin D (pCD), secreted from cancer cells, acts as a mitogen on both cancer and stromal cells and stimulates their pro-invasive and pro-metastatic properties. Numerous studies found that pCD/CD level represents an independent prognostic factor in a variety of cancers and is therefore considered to be a potential target of anti-cancer therapy. Studies dealing with functions of cathepsin D are complicated by the fact that there are several simultaneous forms of CD in a cell-pCD, intermediate enzymatically active CD and mature heavy and light chain CD. It became evident that these forms may differently regulate the above-mentioned processes. In this article, we review the possible functions of CD and its various forms in cells and organisms during physiological and pathological conditions.
Collapse
Affiliation(s)
- Petr Benes
- Laboratory of Cell Differentiation, Department of Experimental Biology, Faculty of Science, Masaryk University, ILBIT A3, Kamenice 3, Brno 625 00, Czech Republic.
| | | | | |
Collapse
|
14
|
The secretion and maturation of prosaposin and procathepsin D are blocked in embryonic neural progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1480-9. [DOI: 10.1016/j.bbamcr.2008.01.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 01/30/2008] [Indexed: 01/14/2023]
|
15
|
Duarte P, Pissarra J, Moore I. Processing and trafficking of a single isoform of the aspartic proteinase cardosin A on the vacuolar pathway. PLANTA 2008; 227:1255-68. [PMID: 18273641 DOI: 10.1007/s00425-008-0697-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/22/2008] [Indexed: 05/25/2023]
Abstract
Cardosin A is the major vacuolar aspartic proteinase (APs) (E.C.3.4.23) in pistils of Cynara cardunculus L. (cardoon). Plant APs carry a unique domain, the plant-specific-insert (PSI), and a pro-segment which are separated from the catalytic domains during maturation but the sequence and location of processing steps for cardosins have not been established. Here transient expression in tobacco and inducible expression in Arabidopsis indicate that processing of cardosin A is conserved in heterologous species. Pulse chase analysis in tobacco protoplasts indicated that cleavage at the carboxy-terminus of the PSI could generate a short-lived 50 kDa intermediate which was converted to a more stable 35 kDa intermediate by removal of the PSI. Processing intermediates detected immunologically in tobacco leaves and Arabidopsis seedlings confirmed that cleavage at the amino-terminus of the PSI either preceded or followed quickly after cleavage at its carboxy-terminus. Thus removal of PSI preceded the loss of the prosegment in contrast to the well-characterised barley AP, phytepsin. PreprocardosinA acquired a complex glycan and its processing was inhibited by brefeldin A and dominant-inhibitory AtSAR1 or AtRAB-D2(a )mutants indicating that it was transported via the Golgi and that processing followed ER export. The 35 kDa intermediate was present in the cell wall and protoplast culture medium as well as the vacuole but the 31 kDa mature subunit, lacking the amino-terminal prosegment, was detected only in the vacuole. Thus maturation appears to occur only after sorting from the trans-Golgi to the vacuole. Processing or transport of cardosin A was apparently slower in tobacco protoplasts than in whole cells.
Collapse
Affiliation(s)
- Patrícia Duarte
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal.
| | | | | |
Collapse
|
16
|
Follo C, Castino R, Nicotra G, Trincheri NF, Isidoro C. Folding, activity and targeting of mutated human cathepsin D that cannot be processed into the double-chain form. Int J Biochem Cell Biol 2007; 39:638-49. [PMID: 17188016 DOI: 10.1016/j.biocel.2006.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 11/02/2006] [Accepted: 11/06/2006] [Indexed: 11/21/2022]
Abstract
The precursor of human cathepsin D (CD) is converted into the single-chain and the double-chain active polypeptides by subsequent proteolysis reactions taking place in the endosomal-lysosomal compartment and involving specific aminoacid sequences. We have mutagenized the region of aminoacids (comprising the beta-hairpin loop) involved in the latter proteolytic maturation step and generated a mutant CD that cannot be converted into the mature double-chain form. This mutant CD expressed in rodent cells reaches the lysosome and is stable as single-chain polypeptide, bears high-mannose type sugars, binds to pepstatin A and is enzymatically active, indicating that it is correctly folded. The present work provides new insights on the aminoacid region involved in the terminal processing of human CD and on the function of the processing beta-hairpin loop.
Collapse
Affiliation(s)
- Carlo Follo
- Laboratory of Molecular Pathology, Dipartimento di Scienze Mediche, Università del Piemonte Orientale A. Avogadro, via Solaroli 17, 28100 Novara, Italy
| | | | | | | | | |
Collapse
|
17
|
Richter R, Forssmann U, Henschler R, Escher S, Frimpong-Boateng A, Forssmann WG. Increase of expression and activation of chemokine CCL15 in chronic renal failure. Biochem Biophys Res Commun 2006; 345:1504-12. [PMID: 16737685 DOI: 10.1016/j.bbrc.2006.05.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 05/10/2006] [Indexed: 11/19/2022]
Abstract
Chemokines are believed to be involved in the pathogenesis of chronic renal failure (CRF). In CRF, significantly increased CCL15-IR plasma concentrations were detected. Whereas in plasma of healthy individuals one predominant CCL15-IR molecule with a M(w) of 15kDa [high molecular weight (HMW-CCL15-IR)] was identified, CRF plasma contains increased concentrations of truncated CCL15-IR molecules [intermediate molecular weight (IMW-CCL15-IR)]. HMW-CCL15-IR isolated from hemofiltrate revealed an M(w) of 10141.3, corresponding to deglycosylated CCL15(1-92) carrying a N-terminal pyrrolidone carboxylic acid. CCL15(12-92) was identified as a major component of IMW-CCL15-IR in CRF plasma. Compared to CCL15(1-92), in monocytes CCL15(12-92) causes stronger induction of intracellular calcium flux, chemotactic activity, and adhesion to fibronectin. Intracellular calcium flux assays revealed that, in comparison to peripheral blood mononuclear cells (PBMC) of healthy donors, PBMCs of CRF patients demonstrated an increased sensitivity to CCL15. Our results point to an involvement of the CCL15-CCR1 axis in the pathophysiology of CRF.
Collapse
|
18
|
Bechet D, Tassa A, Taillandier D, Combaret L, Attaix D. Lysosomal proteolysis in skeletal muscle. Int J Biochem Cell Biol 2005; 37:2098-114. [PMID: 16125113 DOI: 10.1016/j.biocel.2005.02.029] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 02/09/2005] [Accepted: 02/22/2005] [Indexed: 01/06/2023]
Abstract
Lysosomal proteases are abundantly expressed in fetal muscles, but poorly represented in the adult skeletal muscles. The lysosomal proteolytic system is nonetheless stimulated in adult muscles in a variety of pathological conditions. Furthermore, recent investigations describe autophagosomes in muscle fibers in vitro and in vivo, and report myopathies with excessive autophagy. This review presents our current knowledge about the lysosomal proteolytic system and summarizes the evidences pertaining to the role of lysosomes and autophagosomes in muscle physiology and pathology.
Collapse
Affiliation(s)
- Daniel Bechet
- Human Nutrition Research Center of Clermont-Ferrand, Nutrition and Protein Metabolism Unit, INRA UR551, 63122 Ceyrat, France.
| | | | | | | | | |
Collapse
|
19
|
Démoz M, Castino R, Follo C, Hasilik A, Sloane BF, Isidoro C. High yield synthesis and characterization of phosphorylated recombinant human procathepsin D expressed in mammalian cells. Protein Expr Purif 2005; 45:157-67. [PMID: 16242956 DOI: 10.1016/j.pep.2005.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 07/06/2005] [Accepted: 07/12/2005] [Indexed: 11/17/2022]
Abstract
We used a vaccinia virus expression system for the production of recombinant human cathepsin D (CD), a lysosomal protease implicated in various patho-physiological processes including cancer, neurodegeneration, and development. The recombinant protein was successfully expressed in various human and non-human cells. It was correctly synthesized as a glycosylated 53 kDa precursor (proCDrec) that reacted with a polyclonal antibody against residues 7-21 of the propeptide sequence. In contrast to the control, in cells infected with the recombinant virus proCDrec was largely secreted into the culture medium, although it contained high-mannose oligosaccharides with uncovered mannose-6-phosphate residues. Intracellular proCDrec was processed into the 48 kDa intermediate single-chain and the 31 plus 13 kDa double-chain forms, however, the processing was slower than in normal cells. A method based on Pepstatin A-affinity chromatography allowed to isolate the recombinant protein from the medium of infected cells. Based on its latency in activity assay at acid pH and on its reactivity with antibodies specific for the N-terminus, the purified protein was judged to be in the inactive precursor form. During incubation at acid pH the purified proCDrec underwent autocatalytic processing and acquired pepstatin A-sensitive enzyme activity, as expected for correctly folded proCD. Antiserum raised in rabbits against proCDrec specifically reacted with human, but not with mouse proCD under non-denaturing conditions. We conclude that our vaccinia virus-directed proCDrec displays structural and functional features resembling those of native human proCD. This system can therefore be exploited for the synthesis of large quantities of human proCD, allowing further studies on the structure and function of this interesting protein.
Collapse
Affiliation(s)
- Marina Démoz
- Dipartimento di Scienze Mediche, Università A. Avogadro, via Solaroli 17, 28100 Novara, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Fusek M, Vetvicka V. DUAL ROLE OF CATHEPSIN D: LIGAND AND PROTEASE. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2005; 149:43-50. [PMID: 16170387 DOI: 10.5507/bp.2005.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cathepsin D is peptidase belonging to the family of aspartic peptidases. Its mostly described function is intracellular catabolism in lysosomal compartments, other physiological effect include hormone and antigen processing. For almost two decades, there have been an increasing number of data describing additional roles imparted by cathepsin D and its pro-enzyme, resulting in cathepsin D being a specific biomarker of some diseases. These roles in pathological conditions, namely elevated levels in certain tumor tissues, seem to be connected to another, yet not fully understood functionality. However, despite numerous studies, the mechanisms of cathepsin D and its precursor's actions are still not completely understood. From results discussed in this article it might be concluded that cathepsin D in its zymogen status has additional function, which is rather dependent on a "ligand-like" function then on proteolytic activity.
Collapse
Affiliation(s)
- Martin Fusek
- Institute of Organic Chemistry and Biochemistry, CAS, Prague, Czech Republic
| | | |
Collapse
|
21
|
Gopalakrishnan M, Grosch HW, Locatelli-Hoops S, Werth N, Smolenová E, Nettersheim M, Sandhoff K, Hasilik A. Purified recombinant human prosaposin forms oligomers that bind procathepsin D and affect its autoactivation. Biochem J 2005; 383:507-15. [PMID: 15255780 PMCID: PMC1133744 DOI: 10.1042/bj20040175] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Before delivery to endosomes, portions of proCD (procathepsin D) and proSAP (prosaposin) are assembled into complexes. We demonstrate that such complexes are also present in secretions of cultured cells. To study the formation and properties of the complexes, we purified proCD and proSAP from culture media of Spodoptera frugiperda cells that were infected with baculoviruses bearing the respective cDNAs. The biological activity of proCD was demonstrated by its pH-dependent autoactivation to pseudocathepsin D and that of proSAP was demonstrated by feeding to saposin-deficient cultured cells that corrected the storage of radioactive glycolipids. In gel filtration, proSAP behaved as an oligomer and proCD as a monomer. ProSAP altered the elution of proCD such that the latter was shifted into proSAP-containing fractions. ProSAP did not change the elution of mature cathepsin D. Using surface plasmon resonance and an immobilized biotinylated proCD, binding of proSAP was demonstrated under neutral and weakly acidic conditions. At pH 6.8, specific binding appeared to involve more than one binding site on a proSAP oligomer. The dissociation of the first site was characterized by a K(D1) of 5.8+/-2.9x10(-8) M(-1) (calculated for the monomer). ProSAP stimulated the autoactivation of proCD and also the activity of pseudocathepsin D. Concomitant with the activation, proSAP behaved as a substrate yielding tri- and disaposins and smaller fragments. Our results demonstrate that proSAP forms oligomers that are capable of binding proCD spontaneously and independent of the mammalian type N-glycosylation but not capable of binding mature cathepsin D. In addition to binding proSAP, proCD behaves as an autoactivable and processing enzyme and its binding partner as an activator and substrate.
Collapse
Affiliation(s)
| | - Hans-Wilhelm Grosch
- *Institute of Physiological Chemistry, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, 35033 Marburg, Germany
| | - Silvia Locatelli-Hoops
- †The Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Norbert Werth
- †The Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Eva Smolenová
- *Institute of Physiological Chemistry, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, 35033 Marburg, Germany
| | - Michael Nettersheim
- †The Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Konrad Sandhoff
- †The Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Andrej Hasilik
- *Institute of Physiological Chemistry, Philipps-University Marburg, Karl-von-Frisch-Strasse 1, 35033 Marburg, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
22
|
Abstract
Aspartic proteinases of the A1 family are widely distributed among plant species and have been purified from a variety of tissues. They are most active at acidic pH, are specifically inhibited by pepstatin A and contain two aspartic residues indispensible for catalytic activity. The three-dimensional structure of two plant aspartic proteinases has been determined, sharing significant structural similarity with other known structures of mammalian aspartic proteinases. With a few exceptions, the majority of plant aspartic proteinases identified so far are synthesized with a prepro-domain and subsequently converted to mature two-chain enzymes. A characteristic feature of the majority of plant aspartic proteinase precursors is the presence of an extra protein domain of about 100 amino acids known as the plant-specific insert, which is highly similar both in sequence and structure to saposin-like proteins. This insert is usually removed during processing and is absent from the mature form of the enzyme. Its functions are still unclear but a role in the vacuolar targeting of the precursors has been proposed. The biological role of plant aspartic proteinases is also not completely established. Nevertheless, their involvement in protein processing or degradation under different conditions and in different stages of plant development suggests some functional specialization. Based on the recent findings on the diversity of A1 family members in Arabidopsis thaliana, new questions concerning novel structure-function relationships among plant aspartic proteinases are now starting to be addressed.
Collapse
Affiliation(s)
- Isaura Simões
- Departamento de Biologia Molecular e Biotecnologia, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3000 Coimbra, Portugal
| | | |
Collapse
|
23
|
Collette J, Bocock JP, Ahn K, Chapman RL, Godbold G, Yeyeodu S, Erickson AH. Biosynthesis and alternate targeting of the lysosomal cysteine protease cathepsin L. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:1-51. [PMID: 15548418 DOI: 10.1016/s0074-7696(04)41001-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Upregulation of cathepsin L expression, whether during development or cell transformation, or mediated by ectopic expression from a plasmid, alters the targeting of the protease and thus its physiological function. Upregulated procathepsin L is targeted to small dense core vesicles and to the dense cores of multivesicular bodies, as well as to lysosomes and to the plasma membrane for selective secretion. The multivesicular vesicles resemble secretory lysosomes characterized in specialized cell types in that they are endosomes that stably store an upregulated protein and they possess the tetraspanin CD63. Morphologically the multivesicular endosomes also resemble late endosomes, but they store procathepsin L, not the active protease, and they are not the major site for LAMP-1 accumulation. Distinction between the lysosomal proenzyme and active protease thus identifies two populations of multivesicular endosomes in fibroblasts, one a storage compartment and one an enzymatically active compartment. A distinctive targeting pathway using aggregation is utilized to enrich the storage endosomes with a particular lysosomal protease that can potentially activate and be secreted.
Collapse
Affiliation(s)
- John Collette
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, Miami, Florida 33101 USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Bruchhaus I, Loftus BJ, Hall N, Tannich E. The intestinal protozoan parasite Entamoeba histolytica contains 20 cysteine protease genes, of which only a small subset is expressed during in vitro cultivation. EUKARYOTIC CELL 2003; 2:501-9. [PMID: 12796295 PMCID: PMC161451 DOI: 10.1128/ec.2.3.501-509.2003] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cysteine proteases are known to be important pathogenicity factors of the protozoan parasite Entamoeba histolytica. So far, a total of eight genes coding for cysteine proteases have been identified in E. histolytica, two of which are absent in the closely related nonpathogenic species E. dispar. However, present knowledge is restricted to enzymes expressed during in vitro cultivation of the parasite, which might represent only a subset of the entire repertoire. Taking advantage of the current E. histolytica genome-sequencing efforts, we analyzed databases containing more than 99% of all ameba gene sequences for the presence of cysteine protease genes. A total of 20 full-length genes was identified (including all eight genes previously reported), which show 10 to 86% sequence identity. The various genes obviously originated from two separate ancestors since they form two distinct clades. Despite cathepsin B-like substrate specificities, all of the ameba polypeptides are structurally related to cathepsin L-like enzymes. None of the previously described enzymes but 7 of the 12 newly identified proteins are unique compared to cathepsins of higher eukaryotes in that they are predicted to have transmembrane or glycosylphosphatidylinositol anchor attachment domains. Southern blot analysis revealed that orthologous sequences for all of the newly identified proteases are present in E. dispar. Interestingly, the majority of the various cysteine protease genes are not expressed in E. histolytica or E. dispar trophozoites during in vitro cultivation. Therefore, it is likely that at least some of these enzymes are required for infection of the human host and/or for completion of the parasite life cycle.
Collapse
Affiliation(s)
- Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
| | | | | | | |
Collapse
|
25
|
Chen X, Pfeil JE, Gal S. The three typical aspartic proteinase genes of Arabidopsis thaliana are differentially expressed. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4675-84. [PMID: 12230581 DOI: 10.1046/j.1432-1033.2002.03168.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genomic sequencing has identified three different typical plant aspartic proteinases in the genome of Arabidopsis thaliana, named Pasp-A1, A2 and A3. A1 is identical to a cDNA we had previously isolated and the two others produce proteins 81 and 63% identical to that predicted protein. Sequencing of the aspartic proteinase protein purified from Arabidopsis seeds showed that the peptides are derived from two of these genes, A1 and A2. Using gene specific probes, we have analyzed RNA from different tissues and found these three genes are differentially expressed. A1 mRNA is detected in all tissues analyzed and more abundant in leaves during the light phase of growth. The other two genes are expressed either primarily in flowers (A3) or in seeds (A2). Insitu hybridization demonstrated that all three genes are expressed in many cells of the seeds and developing seed pods. The A1 and A3 genes are expressed in the sepals and petals of flowers as well as the outer layer of the style, but are not expressed in the transmitting tract or on the stigmatal surface. The A2 gene is weakly expressed only in the transmitting tissue of the style. All three genes are also expressed in the guard cells of sepals. These data suggest multiple roles for aspartic proteinases besides those proposed in seeds.
Collapse
Affiliation(s)
- Xia Chen
- Department of Biological Sciences, The State University of New York at Binghamton, Binghamton, NY 13902-6000, USA
| | | | | |
Collapse
|
26
|
Laurent-Matha V, Lucas A, Huttler S, Sandhoff K, Garcia M, Rochefort H. Procathepsin D interacts with prosaposin in cancer cells but its internalization is not mediated by LDL receptor-related protein. Exp Cell Res 2002; 277:210-9. [PMID: 12083803 DOI: 10.1006/excr.2002.5556] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cell surface binding, endocytosis, and lysosomal routing of procathepsin D (procath-D) in cancer cells are mostly independent of the mannose-6-phosphate (M6P) receptors. In an attempt to define the receptor involved, we intracellularly cross-linked procath-D with a 68-kDa protein that we identified with specific antibodies as prosaposin in human breast and ovarian cancer cell lines. In cancer cells, this protein-protein interaction was resistant to ammonium chloride or M6P treatment, indicating that it was independent of the M6P receptors. A similar interaction also occurred in the breast cancer cell culture medium between the secreted prosaposin and procath-D. Since these two precursors can be endocytosed, we then determined whether they were interacting with the same cell surface receptor. In fibroblasts, we confirmed that the endocytosis of these two proteins was different since it was generally mediated by the M6P receptors for procath-D and mostly by LRP (LDL receptor-related protein) for prosaposin. In breast cancer cells, prosaposin endocytosis was not detected, in contrast to procath-D endocytosis, suggesting that the majority of procath-D is not internalized as a complex with prosaposin. Moreover, RAP (receptor-associated protein), a ligand inhibiting LRP-mediated endocytosis, prevented internalization of prosaposin in 49-F rat fibroblasts, but did not affect procath-D M6P-independent internalization in MDA-MB231 cells. We conclude that in breast cancer cells, even though procath-D interacts intracellularly and extracellarly with prosaposin, it is endocytosed independent of prosaposin by a receptor different from the M6P receptors and the LRP.
Collapse
Affiliation(s)
- Valérie Laurent-Matha
- INSERM Endocrinologie Moléculaire et Cellulaire des Cancers (U540), University of Montpellier 1, 60, rue de Navacelles, France
| | | | | | | | | | | |
Collapse
|
27
|
Ahn K, Yeyeodu S, Collette J, Madden V, Arthur J, Li L, Erickson AH. An alternate targeting pathway for procathepsin L in mouse fibroblasts. Traffic 2002; 3:147-59. [PMID: 11929604 DOI: 10.1034/j.1600-0854.2002.030207.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In transformed mouse fibroblasts, a significant proportion of the lysosomal cysteine protease cathepsin L remains in cells as an inactive precursor which associates with membranes by a mannose phosphate-independent interaction. When microsomes prepared from these cells were resolved on sucrose gradients, this procathepsin L was localized in dense vesicles distinct from those enriched for growth hormone, which is secreted constitutively when expressed in fibroblasts. Ultrastructural studies using antibodies directed against the propeptide to avoid detection of the mature enzyme in lysosomes revealed that the proenzyme was concentrated in dense cores within small vesicles and multivesicular endosomes which labeled with antibodies specific for CD63. Consistent with the resemblance of these cores to those of regulated secretory granules, secretion of procathepsin L from fibroblasts was modestly stimulated by phorbol, 12-myristate, 13-acetate. When protein synthesis was blocked with cycloheximide and lysosomal proteolysis inhibited with leupeptin, procathepsin L was found to gradually convert to the active single-chain protease. The data suggest that when synthesis levels are high, a portion of the procathepsin L is packaged in dense cores within multivesicular endosomes localized near the plasma membrane. Gradual activation of this proenzyme achieves targeting of the proenzyme to lysosomes by a mannose phosphate receptor-independent pathway.
Collapse
Affiliation(s)
- Kyujeong Ahn
- Departments of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Sameni M, Elliott E, Ziegler G, Fortgens PH, Dennison C, Sloane BF. Cathepsin B and D are Localized at the Surface of Human Breast Cancer Cells. Pathol Oncol Res 2001; 1:43-53. [PMID: 11173567 DOI: 10.1007/bf02893583] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alterations in trafficking of cathepsins B and D have been reported in human and animal tumors. In MCF10 human breast epithelial cells, altered trafficking of cathepsin B occurs during their progression from a preneoplastic to neoplastic state. We now show that this is also the case for altered trafficking of cathepsin D. Nevertheless, the two cathepsins are not necessarily trafficked to the same vesicles. Perinuclear vesicles of immortal MCF10A cells label for both cathepsins B and D, yet the peripheral vesicles found in ras-transfected MCF10AneoT cells label for cathepsin B, cathepsin D or both enzymes. Studies at the electron microscopic level confirm these findings and show in addition surface labeling for both enzymes in the transfected cells. By immunofluorescence staining, cathepsin B can be localized on the outer surface of the cells. Similar patterns of peripheral intracellular and surface staining for cathepsin B are seen in the human breast carcinoma lines MCF7 and BT20. We suggest that the altered trafficking of cathepsins B and D may be of functional significance in malignant progression of human breast epithelial cells. Translocation of vesicles containing cathepsins B and D toward the cell periphery occurs in human breast epithelial cells that are at the point of transition between the pre-neoplastic and neoplastic state and remains part of the malignant phenotype of breast carcinoma cells.
Collapse
Affiliation(s)
- Mansoureh Sameni
- Wayne State University, Department of Pharmacology, Detroit, USA
| | | | | | | | | | | |
Collapse
|
29
|
Sperker B, Tomkiewicz C, Burk O, Barouki R, Kroemer HK. Regulation of human beta-glucuronidase by A23187 and thapsigargin in the hepatoma cell line HepG2. Mol Pharmacol 2001; 59:177-82. [PMID: 11160851 DOI: 10.1124/mol.59.2.177] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel approach to reducing organ toxicity of anticancer agents is the application of nontoxic glucuronide prodrugs from which the active drug is released by human beta-glucuronidase, an enzyme present at high levels in many tumors. In view of high interindividual variability in beta-glucuronidase expression, regulation of this enzyme is an essential factor modulating bioactivation of glucuronide prodrugs. However, data on regulation of human beta-glucuronidase expression are not available. Preliminary evidence from animal experiments points to a role of intracellular calcium in regulation of beta-glucuronidase activity. Therefore, we investigated regulation of beta-glucuronidase by the calcium ionophore A23187 and the calcium ATPase inhibitor thapsigargin in the human hepatoma cell line HepG2. The enzyme was characterized on activity, protein, and mRNA levels by cleavage of 4-methylumbelliferyl-beta-D-glucuronide, Western blotting, Northern blotting, and nuclear run-on transcription. Incubation of HepG2 cells with A23187 and thapsigargin, respectively, revealed a time and concentration dependent down-regulation of beta-glucuronidase activity to about 50% of the control level. This effect could also be demonstrated in several other cell lines (e.g., HL-60, ECV 304, 32M1, Caco-2/TC7). Effects on protein and mRNA levels paralleled those obtained on enzymatic activity. In line with these data, A23187 and thapsigargin decreased beta-glucuronidase transcriptional rate. Our data demonstrate regulation of human beta-glucuronidase by xenobiotics. Down-regulation of beta-glucuronidase by A23187 and thapsigargin is at least partly mediated by a transcriptional mechanism. Based on our findings, we speculate that beta-glucuronidase activity and hence bioactivation of glucuronide prodrugs in humans can be modulated by exogenous factors.
Collapse
Affiliation(s)
- B Sperker
- Institut für Pharmakologie, Ernst Moritz Arndt Universität Greifswald, Greifswald, Germany.
| | | | | | | | | |
Collapse
|
30
|
Lemansky P, Hasilik A. Chondroitin sulfate is involved in lysosomal transport of lysozyme in U937 cells. J Cell Sci 2001; 114:345-52. [PMID: 11148136 DOI: 10.1242/jcs.114.2.345] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human promonocytes U937 synthesize lysozyme and retain approximately one third of it within lysosomes. Lysozyme is not glycosylated; thus, it cannot be subject to mannose-6-phosphate-dependent targeting to lysosomes. It is a basic protein with a pI of 10.5 and is known to interact with negatively charged macromolecules like proteoglycans. Therefore, we examined whether the latter are involved in the lysosomal targeting of lysozyme in U937 cells. We partially diminished the electronegative charge of newly synthesized proteoglycans by inhibiting their sulfation with chlorate. This increased the rate of secretion of lysozyme. Upon treatment of U937 cells with phorbol esters, the rate of secretion of lysozyme was increased to more than 90%. This coincided with an almost complete redistribution of a [(35)S]sulfate bearing proteoglycan to the secretory pathway. After a brief pulse with [(35)S]sulfate in the control, 80% of the [(35)S]sulfate-bearing proteoglycan was retained within the cells, whereas in the treated cells this proportion was decreased to 13%. The secreted proteoglycan was sensitive to chondroitinase ABC and bound to immobilized lysozyme. This interaction was disrupted by 50–300 mM NaCl. The intracellularly retained proteoglycan was degraded with a half-life of 50–60 minutes and seemed to be directed to lysosomes because in the presence of NH(4)Cl the degradation was strongly inhibited. Our results suggest that the proteoglycan is involved in lysosomal targeting of lysozyme in U937 cells.
Collapse
Affiliation(s)
- P Lemansky
- Philipps-Universität Marburg, Institut für Physiologische Chemie, Karl-von-Frisch-Strasse 1, Germany
| | | |
Collapse
|
31
|
Domingos A, Cardoso PC, Xue ZT, Clemente A, Brodelius PE, Pais MS. Purification, cloning and autoproteolytic processing of an aspartic proteinase from Centaurea calcitrapa. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6824-31. [PMID: 11082193 DOI: 10.1046/j.1432-1033.2000.01780.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plant aspartic proteinases (APs) have been isolated from several seed and leaf sources but the only well characterized enzymes from flowers are cardosins and cyprosins from cardoon, Cynara cardunculus L. Here we report a full-length cDNA clone encoding an AP named cenprosin from the flowers of Centaurea calcitrapa L., a thistle related to cardoon. As found for all eukaryotic APs, the deduced primary sequence consists of a signal sequence, a propart and a mature enzyme. In addition, an internal sequence region of 104 residues typical only of plant APs (a plant-specific insert) is present in the primary structure. Northern analysis revealed that the strongest expression is in fresh flowers. The enzyme is also expressed in fairly high amounts in seeds and in leaves, a feature not detected for cardoon APs. The corresponding enzyme was purified in its precursor form from fresh flowers using ammonium-sulfate precipitation followed by ion-exchange and hydrophobic-interaction chromatography. The processing of the precursor into its mature form was studied in vitro. The enzyme underwent autocatalytic processing at pH 3.0 resulting in two chains of 16 and 30 kDa. When dried flowers were used as a starting material for purification, only 16- and 30-kDa chains were obtained, suggesting that autoproteolytic activation of procenprosin in vivo occurs mainly during drying of the flowers. This may indicate a specific degradative role for the enzyme during senescence of the flowers.
Collapse
Affiliation(s)
- A Domingos
- Departamento de Biotecnologia, Instituto Nacional de Engenharia e Tecnologia Industrial, Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
32
|
Brooks DR, Tetley L, Coombs GH, Mottram JC. Processing and trafficking of cysteine proteases in Leishmania mexicana. J Cell Sci 2000; 113 ( Pt 22):4035-41. [PMID: 11058090 DOI: 10.1242/jcs.113.22.4035] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Removal of the pro-domain of a cysteine protease is essential for activation of the enzyme. We have engineered a cysteine protease (CPB2.8) of the protozoan parasite Leishmania mexicana by site-directed mutagenesis to remove the active site cysteine (to produce CPB(C25G)). When CPB(C25G) was expressed in a L. mexicana mutant lacking all CPB genes, the inactive pro-enzyme was processed to the mature protein and trafficked to the lysosome. These results show that auto-activation is not required for correct processing of CPB in vivo. When CPB(C25G) was expressed in a L. mexicana mutant lacking both CPA and CPB genes, the majority of the pro-enzyme remained unprocessed and accumulated in the flagellar pocket. These data reveal that CPA can directly or indirectly process CPB(C25G) and suggest that cysteine proteases are targeted to lysosomes via the flagellar pocket. Moreover, they show that another protease can process CPB in the absence of either CPA or CPB, albeit less efficiently. Abolition of the glycosylation site in the mature domain of CPB did not affect enzyme processing, targeting or in vitro activity towards gelatin. This indicates that glycosylation is not required for trafficking. Together these findings provide evidence that the major route of trafficking of Leishmania cysteine proteases to lysosomes is via the flagellar pocket and therefore differs significantly from cysteine protease trafficking in mammalian cells.
Collapse
Affiliation(s)
- D R Brooks
- Wellcome Centre for Molecular Parasitology, University of Glasgow, The Anderson College, Glasgow G11 6NU, UK
| | | | | | | |
Collapse
|
33
|
Yeyeodu S, Ahn K, Madden V, Chapman R, Song L, Erickson AH. Procathepsin L self-association as a mechanism for selective secretion. Traffic 2000; 1:724-37. [PMID: 11208160 DOI: 10.1034/j.1600-0854.2000.010905.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The lysosomal cysteine pro-protease procathepsin L was enriched in dense vesicles detectable when microsomes prepared from wild-type or transformed mouse fibroblasts were resolved on sucrose gradients. These dense vesicles did not comigrate with proteins characteristic of the endoplasmic reticulum, Golgi, endosomes or lysosomes. When gradient fraction vesicles were lysed at acidic pH in the presence of excess mannose 6-phosphate to prevent binding to mannose phosphate receptors, the majority of the procathepsin L was associated with the membrane, not the soluble, fraction. Immunogold labeling of procathepsin L in thin sections of cells or gradient fractions, using antibodies directed against the propeptide to avoid detection of the mature enzyme in dense lysosomes, revealed that the proenzyme was concentrated in dense cores localized in small vesicles near the plasma membrane and in multivesicular bodies. Consistent with the density of the gradient fraction and the electron density of the cores, yeast two-hybrid assays indicated the proenzyme could bind itself but could not interact with the aspartic proprotease procathepsin D. The data suggest that in mouse fibroblasts procathepsin L may self-associate into aggregates, initiating the formation of dense vesicles that could mediate the selective secretion of procathepsin L independent of mannose phosphate receptors.
Collapse
Affiliation(s)
- S Yeyeodu
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | |
Collapse
|
34
|
Zhao Q, Morales CR. Identification of a novel sequence involved in lysosomal sorting of the sphingolipid activator protein prosaposin. J Biol Chem 2000; 275:24829-39. [PMID: 10818106 DOI: 10.1074/jbc.m003497200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prosaposin is synthesized as a 53-kDa protein, post-translationally modified to a 65-kDa form and further glycosylated to a 70-kDa secretory product. The 65-kDa protein is associated to Golgi membranes and is targeted to lysosomes, where four smaller nonenzymatic saposins implicated in the hydrolysis of sphingolipids are generated by its partial proteolysis. The targeting of the 65-kDa protein to lysosomes is not mediated by the mannose 6-phosphate receptor. The Golgi apparatus appears to accomplish the molecular sorting of the 65-kDa prosaposin by decoding a signal from its amino acid backbone. This investigation deals with the characterization of the sequence involved in this process by deleting the saposin functional domains A, B, C, and D and the highly conserved N and C termini of prosaposin. The truncated cDNAs were subcloned into expression vectors and transfected to COS-7 cells. The destination of the mutated proteins was assessed by immunocytochemistry. Deletion of the C terminus did not interfere with the secretion of prosaposin but abolished its transport to lysosomes. Deletion of saposins and the N-terminal domain did not affect the lysosomal or secretory routing of prosaposin. A chimeric construct of albumin and the C terminus of prosaposin was not directed to lysosomes. However, albumin connected to the C terminus and one or more functional domains of prosaposin reached lysosomes, indicating that the C terminus and at least one saposin domain are required for this process. In summary, we are reporting a novel sequence involved in the targeting of prosaposin to lysosomes.
Collapse
Affiliation(s)
- Q Zhao
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada
| | | |
Collapse
|
35
|
Abstract
Gaucher disease (GD) is associated with mutations at the acid beta-glucosidase (GCase) locus and the resultant defective activity of the enzyme product. GCase is a membrane-associated glycoprotein that requires detergents for extraction and phospholipid interfaces for full catalytic activity. Normal human fibroblasts and overexpressing transgenic cell lines were used to evaluate the intracellular disappearance, degradation, and secretion of human GCase, including GD fibroblasts and C2C12 cells transduced with MFG-GCase retrovirus and CHO cells stably transfected with the tetracycline transactivation conditional expression system (tet-CHO-GCase). Compared to HF, the disappearance of GCase from the transgenic cells was 12-30 times greater, and had degradative and secretory components. In tet-CHO-GCase cells the majority of GCase was secreted. Intracellular degradation occurred in compartments sensitive to monensin and brefeldin A, and the ALLN or leupeptin protease inhibitors, i.e., ER, Golgi, and lysosomes. In tet-CHO-GCase cells, GCase degradation and secretion rates were inversely related to expression level. Saponin permeabilization analyses of tet-CHO-GCase cells showed that a majority of GCase was soluble, with a rapid disappearance via secretion and degradation. A progressively increasing proportion of GCase became saponin insoluble with a t(1/2) = 2-3 h. Intracellular saponin-soluble and -insoluble GCases were degraded with t(1/2) approximately 2 and 14 h, respectively. Confocal microscopy showed colocalization of glycosylated or unglycosylated GCase with LAMP-2, an integral lysosomal membrane protein, to vesicular bodies. These studies show that GCase secretion was N-linked glycosylation dependent, whereas sorting to and membrane attachment in the lysosome were N-linked glycosylation independent.
Collapse
Affiliation(s)
- T Leonova
- The Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | |
Collapse
|
36
|
Suokas M, Myllyla R, Kellokumpu S. A single C-terminal peptide segment mediates both membrane association and localization of lysyl hydroxylase in the endoplasmic reticulum. J Biol Chem 2000; 275:17863-8. [PMID: 10748089 DOI: 10.1074/jbc.m908025199] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydroxylation of lysyl residues is crucial for the unique glycosylation pattern found in collagens and for the mechanical strength of fully assembled extracellular collagen fibers. Hydroxylation is catalyzed in the lumen of the endoplasmic reticulum (ER) by a specific enzyme, lysyl hydroxylase (LH). The absence of the known ER-specific retrieval motifs in its primary structure and its association with the ER membranes in vivo have suggested that the enzyme is localized in the ER via a novel retention/retrieval mechanism. We have identified here a 40-amino acid C-terminal peptide segment of LH that is able to convert cathepsin D, normally a soluble lysosomal protease, into a membrane-associated protein. The same segment also markedly slows down the transport of the reporter protein from the ER into post-ER compartments, as assessed by our pulse-chase experiments. The retardation efficiency mediated by this C-terminal peptide segment is comparable with that of the intact LH but lower than that of the KDEL receptor-based retrieval mechanism. Within this 40-amino acid segment, the first 25 amino acids appear to be the most crucial ones in terms of membrane association and ER localization, because the last 15 C-terminal amino acids did not possess substantial retardation activity alone. Our findings thus define a short peptide segment very close to the extreme C terminus of LH as the only necessary determinant both for its membrane association and localization in the ER.
Collapse
Affiliation(s)
- M Suokas
- Department of Anatomy and Cell Biology, University of Oulu, PL 5000, FIN-90401 Oulu, Finland
| | | | | |
Collapse
|
37
|
Rochefort H, Garcia M, Glondu M, Laurent V, Liaudet E, Rey JM, Roger P. Cathepsin D in breast cancer: mechanisms and clinical applications, a 1999 overview. Clin Chim Acta 2000; 291:157-70. [PMID: 10675721 DOI: 10.1016/s0009-8981(99)00226-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A short review of the literature first confirms the clinical value of cathepsin D as a prognostic marker in breast cancer, when using well standardized assays. We then summarize results of studies, mostly performed in our laboratory, aimed at understanding the effect of cathepsin D overexpression on metastasis and the molecular mechanisms involved. Cathepsin D-cDNA transfection increases tumor cell proliferation in vitro and the metastatic potential of 3Y1-Ad12 embryonic rat tumorigenic cells when injected in vivo into nude mice. The mechanism by which cathepsin D increases the incidence of clinical metastasis involves increased cell growth and decreased contact inhibition rather than escape of cancer cells through the basement membrane. Different mechanisms are considered to explain this mitogenic activity. Cathepsin D could act as a protease following its activation at an acidic pH, or as a ligand of different membrane receptors at a more neutral pH. In this case cathepsin D can displace IGFII from the mannose-6-phosphate/IGFII receptor to the IGFI receptor or activate another membrane receptor to be identified. The nature of the mechanisms involved in vivo may depend on the micro environment of the tumor cells. These studies should guide in the development of new therapies aimed at inhibiting the deleterious effect of overexpressed cathepsin D.
Collapse
Affiliation(s)
- H Rochefort
- Faculté de Médecine, Université de Montpellier 1, Unité Hormones and Cancer (U 148), 60, rue de Navacelles, 34090, Montpellier, France.
| | | | | | | | | | | | | |
Collapse
|
38
|
Lefrancois S, Michaud L, Potier M, Igdoura S, Morales CR. Role of sphingolipids in the transport of prosaposin to the lysosomes. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33405-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Zimmer KP, le Coutre P, Aerts HM, Harzer K, Fukuda M, O'Brien JS, Naim HY. Intracellular transport of acid beta-glucosidase and lysosome-associated membrane proteins is affected in Gaucher's disease (G202R mutation). J Pathol 1999; 188:407-14. [PMID: 10440752 DOI: 10.1002/(sici)1096-9896(199908)188:4<407::aid-path377>3.0.co;2-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gaucher's disease (GD) is caused by an inherited deficiency of acid beta-glucosidase with storage of glucosylceramides in the lysosomes of macrophages. This study identifies a G202R mutation in the acid beta-glucosidase gene in an infant with severe neuronopathic (type 2) GD and only slightly reduced acid beta-glucosidase activity. Western blot analysis, pulse chase experiments, and the thin frozen section immunogold method were used to analyse the implications of this mutation on the pathogenesis, clinical heterogeneity and diagnostic evaluation of GD. The results show that acid beta-glucosidase persists in the patient's fibroblasts as a mannose-rich polypeptide in the endoplasmic reticulum and is not transported to the lysosomes. By contrast, high expression of the lysosome-associated membrane proteins LAMP-1 and LAMP-2, saposin C, and cathepsin D was observed in the patient's lysosomes. Immunogold labelling of the integral membrane proteins LAMP-1 and LAMP-2 increases significantly at the cell surface of Kupffer cells and fibroblasts as well as at the apical membrane of hepatocytes. In addition, LAMP-1 and LAMP-2 associate with the bilayer of stored glucosylceramide. It is concluded that defective intracellular transport of mutant acid beta-glucosidase from the endoplasmic reticulum to lysosomes leads to a more severe clinical phenotype than the residual enzyme activity may indicate. Furthermore, the detection of LAMP in the tubular bundles of undigested glucosylceramides, as well as their increased concentration at the surfaces of the affected cells, suggests that these proteins play a role in the storage or removal of substrate in GD. Intracellular targeting of acid beta-glucosidase and LAMP contributes to the broad phenotypic heterogeneity of GD.
Collapse
Affiliation(s)
- K P Zimmer
- Universitätskinderklinik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Bazzett LB, Watkins CS, Gercel-Taylor C, Taylor DD. Modulation of proliferation and chemosensitivity by procathepsin D and its peptides in ovarian cancer. Gynecol Oncol 1999; 74:181-7. [PMID: 10419729 DOI: 10.1006/gyno.1999.5426] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the presence of precursors (pro-forms) of the aspartyl endoprotease, cathepsin D, appears to be linked with tumor progression, their presence was examined in sera and tumor tissues of ovarian cancer patients. The role of cathepsin D pro-forms was further assessed in the dysregulated proliferation and chemoresistance observed in advanced ovarian cancer. Cathepsin D was isolated from sera of ovarian cancer patients (n = 20) and normal volunteers (n = 11), as well as from solubilized normal ovarian epithelium (n = 8) and ovarian epithelial tumor tissue (n = 12). The specific molecular forms of cathepsin D were analyzed in these samples by Western immunoblot. Multiple circulating molecular weight forms of cathepsin D were identified in ovarian cancer patients ranging from 24 to 60 kDa, while in normal controls, a major band was observed at 34 kDa in all samples and minor bands corresponding to 27 and 48 kDa were detected in approximately half of the controls. To assess its consequences on ovarian cancer, the 52-kDa protein was immunoprecipitated from culture medium of an exponentially growing ovarian tumor cell line and was further purified by reverse-phase high-pressure liquid chromatography. Its effect on proliferation was assayed by determining cell doubling times and their chemosensitivity was measured in a standard cytotoxicity assay using cisplatin. In addition, decapeptides corresponding to the pro-portion of cathepsin D were analyzed in parallel. Procathepsin D and one decapeptide, peptide 2, as well as IGF-II (as a known positive) increased cell proliferation, with doubling times of 28.4, 28.8, and 30.3 h, respectively, versus untreated UL-1 cells (36.4 h). Procathepsin D treatment of UL-1 tumor cells significantly increased the cisplatin LD(50) (74.9 microgram/ml) over untreated (33.9 microgram/ml) as well as IGF-II-treated (38.8 microgram/ml) cells. Peptide 2 also showed a significant increase in LD(50) (69.5 microgram/ml) compared to untreated and peptide 1-treated cells (37.1 microgram/ml). There are several unique forms of cathepsin D expressed and accumulated by ovarian tumors and these forms are detectable in the sera of those with ovarian cancer. The presence of these procathepsin D can increase the proliferation of these tumor cells, while decreasing their sensitivity to chemotherapeutic agents. While procathepsin D and IGF-II both enhance proliferation, only procathepsin D (and peptide 2) appears to modulate chemosensitivity, suggesting a separate receptor or pathway for this consequence.
Collapse
Affiliation(s)
- L B Bazzett
- Departments of Obstetrics & Gynecology, University of Louisville School of Medicine, Louisville, Kentucky, 40292, USA
| | | | | | | |
Collapse
|
41
|
Campana WM, O'Brien JS, Hiraiwa M, Patton S. Secretion of prosaposin, a multifunctional protein, by breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1427:392-400. [PMID: 10350655 DOI: 10.1016/s0304-4165(99)00036-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Western blotting and immunodetection with three antibodies were used to probe conditioned media of breast cancer cells (MDA231, MDA435, MCF-7) for prosaposin, a lysosomal protein that occurs in milk. It was readily detected in media from these cells, and from that of an sv40-transformed mammary epithelial cell, HBL100, but not from medium of human neural tumor cells (SK-N-MC). In cultures of MCF-7 cells, the prosaposin pattern of secretion over time closely resembled that of procathepsin D, another lysosomal protein occurring in milk. Supplementing medium with 17beta-estradiol (0. 1-100 nM) dose dependently increased secretion of both proteins after 48 h without changes in cell viability. The influence of 17beta-estradiol on secretion could play a role in the trophic activity of prosaposin in cellular differentiation and cell death protection. In concert with other lysosomal proteins in the tumor environment, such as procathepsin D, prosaposin may be a factor in eliminating barriers to tumor metastasis by facilitating hydrolysis of membrane glycolipids. The number of milk proteins known to be secreted by breast cancer cells is growing. There is evidence that at least some of these may be secreted in an endocrine manner in the normal, non-lactating breast.
Collapse
Affiliation(s)
- W M Campana
- Department of Neurosciences, 0634J, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
42
|
Sun H, Yang M, Haskins ME, Patterson DF, Wolfe JH. Retrovirus vector-mediated correction and cross-correction of lysosomal alpha-mannosidase deficiency in human and feline fibroblasts. Hum Gene Ther 1999; 10:1311-9. [PMID: 10365662 DOI: 10.1089/10430349950017996] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysosomal alpha-mannosidase (EC 3.2.1.24) is an exoglycosidase in the glycoprotein degradation pathway. A deficiency of this enzyme causes the lysosomal storage disease alpha-mannosidosis. Retrovirus vector transfer of a new human alpha-mannosidase cDNA resulted in high-level expression of alpha-mannosidase enzymatic activity in deficient human and feline fibroblasts. The expressed alpha-mannosidase had the same biochemical properties (thermal stability, pH profile, inhibitor/activator sensitivity) as the native enzyme expressed in normal cells. The transferred enzyme colocalized with a control lysosomal hydrolase in cell fractionation experiments. The vector-encoded enzyme also was released at high levels from the corrected cells, and was taken up by untreated mutant cells via the mannose 6-phosphate receptor-mediated endocytic pathway (cross-correction). It is envisioned that genetic correction of a subset of cells (e.g., hematopoietic stem cells) in patients will provide a source of corrective enzyme for other affected tissues in this multisystem disease. Development of a vector expressing high levels of alpha-mannosidase that cross-corrects mutant cells will enable somatic gene transfer experiments in the cat model of human alpha-mannosidosis.
Collapse
Affiliation(s)
- H Sun
- Laboratory of Pathology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Cathepsin D (cath-D) overexpression in breast cancer cells is associated with increased risk of metastasis in patients according to several clinical studies. No alterations of pro-cath-D structure or activation have been demonstrated in cancer cells. However, overexpression and dysrouting of pro-cath-D in illegitimate compartments could have consequences on tumor progression. Transfection of a human cDNA cath-D expression vector increases the metastatic potential of 3Y1-Ad12 embryonic rat tumorigenic cells when intravenously injected into nude mice. The mechanism by which cath-D increases the incidence of clinical metastasis seems to involve increased cell growth and decreased contact inhibition rather than escape of cancer cells through the basement membrane. Different mechanisms are discussed by which cath-D could act as a protease following its activation or as a ligand of different membrane receptors at a more neutral pH.
Collapse
Affiliation(s)
- H Rochefort
- Institut National de la Santé et de la Recherche Médicale, Unit 148 (Hormones and Cancer), University of Montpellier I, France
| | | |
Collapse
|
44
|
Faulhaber J, Fensom A, Hasilik A. Abnormal lysosomal sorting with an enhanced secretion of cathepsin D precursor molecules bearing monoester phosphate groups. Eur J Cell Biol 1998; 77:134-40. [PMID: 9840463 DOI: 10.1016/s0171-9335(98)80081-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
It has been reported that besides defects in the phosphorylation such as in the I-cell disease, a failure in the uncovering of mannose 6-phosphate residues may result in an increase of lysosomal enzyme activities in serum [Alexander et al., Hum. Genet. 73, 53-59 (1986)]. We examined fibroblasts that were derived from the original biopsy, observed an enhanced secretion of lysosomal enzymes including cathepsin D, but found that both the phosphorylation and uncovering of mannose 6-phosphate residues were normal. The enhanced secretion of cathepsin D was characterized by an increase in the secretion of phosphorylated molecules that were sensitive to a treatment with alkaline phosphatase. The enhanced secretion of the phosphatase-sensitive form of procathepsin D was further increased in the presence of antibodies directed to cation-independent mannose 6-phosphate receptors. In contrast, antibodies specific to cation-dependent mannose 6-phosphate receptors selectively inhibited the secretion of the phosphatase-sensitive procathepsin D molecules. A chromatographic analysis of oligosaccharides from the secreted procathepsin D confirmed that the cells secrete proenzyme molecules rich in oligosaccharides with two uncovered phosphate residues. It is suggested that the enhanced secretion of procathepsin D in the variant fibroblasts results from an abnormal sorting rather than processing of phosphorylated lysosomal enzymes.
Collapse
Affiliation(s)
- J Faulhaber
- Institut für Physiologische Chemie der Philipps-Universität Marburg, Germany
| | | | | |
Collapse
|
45
|
Neuhaus JM, Rogers JC. Sorting of proteins to vacuoles in plant cells. PLANT MOLECULAR BIOLOGY 1998; 38:127-144. [PMID: 9738964 DOI: 10.1007/978-94-011-5298-3_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An individual plant cell may contain at least two functionally and structurally distinct types of vacuoles: protein storage vacuoles and lytic vacuoles. Presumably a cell that stores proteins in vacuoles must maintain these separate compartments to prevent exposure of the storage proteins to an acidified environment with active hydrolytic enzymes where they would be degraded. Thus, the organization of the secretory pathway in plant cells, which includes the vacuoles, has a fascinating complexity not anticipated from the extensive genetic and biochemical studies of the secretory pathway in yeast. Plant cells must generate the membranes to form two separate types of tonoplast, maintain them as separate organelles, and direct soluble proteins from the secretory flow specifically to one or the other via separate vesicular pathways. Individual soluble and membrane proteins must be recognized and sorted into one or the other pathway by distinct, specific mechanisms. Here we review the emerging picture of how separate plant vacuoles are organized structurally and how proteins are recognized and sorted to each type.
Collapse
Affiliation(s)
- J M Neuhaus
- Laboratoire de Biochimie, Institut de Botanique, Université de Neuchâtel, Switzerland
| | | |
Collapse
|
46
|
Laurent-Matha V, Farnoud MR, Lucas A, Rougeot C, Garcia M, Rochefort H. Endocytosis of pro-cathepsin D into breast cancer cells is mostly independent of mannose-6-phosphate receptors. J Cell Sci 1998; 111 ( Pt 17):2539-49. [PMID: 9701553 DOI: 10.1242/jcs.111.17.2539] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cathepsin D trafficking is altered in cancer cells, leading to increased secretion of the pro-enzyme, which can be reinternalized by the same cancer cells and by stromal cells. We studied pro-cathepsin D endocytosis in two human breast cancer cell lines (MDA-MB231, MCF-7) and in human normal fibroblasts. Pro-enzyme uptake was studied indirectly through immunofluorescence analysis of anti-pro-cathepsin D monoclonal antibodies internalized in living cells. Both cancer cell lines internalized the pro-cathepsin D-antibody complex into endosomal compartments in the presence of 10 mM mannose-6-phosphate. Non-malignant fibroblasts, which do not secrete pro-cathepsin D, only internalized anti-cathepsin D antibody when purified pro-cathepsin D was added and this endocytosis was totally inhibited by mannose-6-phosphate. Cathepsin D endocytosis in cancer cells was not mediated by lectins or another receptor binding the cathepsin profragment. It was not due to fluid endocytosis, since another protein pS2 secreted by MCF-7 was not endocytosed with its antibody in the same conditions. Double-immunofluorescence and confocal microscopy analyses revealed that antibodies specific to pro-cathepsin D (M2E8) and to the mannose-6-phosphate/IGFII receptor were co-internalized independently in non-permeabilized MDA-MB231 cells and MCF-7 cells, but not in fibroblasts. Moreover, when metabolically labelled pro-cathepsin D secreted by MCF-7 or MDA-MB231 cells was incubated with homologous or heterologous non-radioactive cells, the time-dependent uptake and maturation of the pro-enzyme into fibroblasts were totally inhibited by mannose-6-phosphate, whereas they were not in the two breast cancer cell lines. The percentage of mannose-6-phosphate-independent binding of radioactively labelled pro-cathepsin D to MDA-MB231 cells at 16 degrees C was higher (7–8%) at low pro-cathepsin D concentration than at high concentration (1.5%), indicating the presence of saturable binding site(s) at the cell surface that are different from the mannose-6-phosphate receptors. We conclude that, in contrast to fibroblasts, breast cancer cells can endocytose the secreted pro-cathepsin D by a cell surface receptor that is different from the mannose-6-phosphate receptors or other lectins. The nature of this alternative receptor and its significance in the action of secreted pro-cathepsin D remain to be elucidated.
Collapse
Affiliation(s)
- V Laurent-Matha
- INSERM Unité Hormones et Cancer (U 148), Université de Montpellier 1, 34090 Montpellier, France
| | | | | | | | | | | |
Collapse
|
47
|
Mahuran DJ. The GM2 activator protein, its roles as a co-factor in GM2 hydrolysis and as a general glycolipid transport protein. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1393:1-18. [PMID: 9714704 DOI: 10.1016/s0005-2760(98)00057-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although there is only one documented function carried out by the GM2 activator protein in the lysosome, new information suggests that other less obvious roles may also be played by this protein in vivo. This information includes data demonstrating that the GM2 activator is a secretory, as well as a lysosomal protein, and that cells possess a carbohydrate-independent mechanism to re-capture the activator, with or without bound lipid, from the extracellular fluid. Additionally the GM2 activator has been shown to bind, solubilize and transport a broad spectrum of lipid molecules, such as glycolipids, gangliosides and at least one phosphoacylglycerol, between liposomes. At pH 7 the GM2 activator's rate of lipid transport is reduced by only 50% from its maximum rate which is achieved at approx. pH 5, suggesting that the GM2 activator may serve as a general intra- and/or inter-cellular lipid transport protein in vivo. Since the late 1970s the lysosomal form of the GM2 activator has been known to act as a substrate-specific co-factor for the hydrolysis of GM2 ganglioside by beta-hexosaminidase A. Gangliosides are a class of negatively charged glycolipids particularly abundant in neuronal cells which have been linked to numerous in vivo functions, such as memory formation and signal transduction events. Deficiency of the GM2 activator protein results in the storage of GM2 ganglioside and severe neurological disease, the AB-variant form of GM2 gangliosidosis, usually culminating in death before the age of 4 years. The exact mode-of-action of the GM2 activator in its role as a co-factor, and its specificity for various glycolipids are currently matters of debate in the literature.
Collapse
Affiliation(s)
- D J Mahuran
- Research Institute, The Hospital for Sick Children, 555 University Ave, Toronto, Ont. M5G 1X8, Canada.
| |
Collapse
|
48
|
Lingeman RG, Joy DS, Sherman MA, Kane SE. Effect of carbohydrate position on lysosomal transport of procathepsin L. Mol Biol Cell 1998; 9:1135-47. [PMID: 9571245 PMCID: PMC25336 DOI: 10.1091/mbc.9.5.1135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To study the role of carbohydrate in lysosomal protein transport, we engineered two novel glycosylation signals (Asn-X-Ser/Thr) into the cDNA of human procathepsin L, a lysosomal acid protease. We constructed six mutant cDNAs encoding glycosylation signals at mutant sites Asn-138, Asn-175, or both sites together, in the presence or absence of the wild-type Asn-204 site. We stably transfected wild-type and mutant cDNAs into NIH3T3 mouse fibroblasts and then used species-specific antibodies to determine the glycosylation status, phosphorylation, localization, and transport kinetics of recombinant human procathepsin L containing one, two, or three glycosylation sites. Both novel glycosylation sites were capable of being glycosylated, although Asn-175 was utilized only 30-50% of the time. Like the wild-type glycosylation at Asn-204, carbohydrates at Asn-138 and Asn-175 were completely sensitive to endoglycosidase H, and they were phosphorylated. Mutant proteins containing two carbohydrates were capable of being delivered to lysosomes, but there was not a consistent relationship between the efficiency of lysosomal delivery and carbohydrate content of the protein. Pulse-chase labeling revealed a unique biosynthetic pattern for proteins carrying the Asn-175 glycosylation sequence. Whereas wild-type procathepsin L and mutants bearing carbohydrate at Asn-138 appeared in lysosomes by about 60 min, proteins with carbohydrate at Asn-175 were processed to a lysosome-like polypeptide within 15 min. Temperature shift, brefeldin A, and NH4Cl experiments suggested that the rapid processing did not occur in the endoplasmic reticulum and that Asn-175 mutants could interact with the mannose 6-phosphate receptor. Taken together, our results are consistent with the interpretation that Asn-175 carbohydrate confers rapid transport to lysosomes. We may have identified a recognition domain in procathepsin L that is important for its interactions with the cellular transport machinery.
Collapse
Affiliation(s)
- R G Lingeman
- Department of Cell and Tumor Biology, City of Hope National Medical Center, Duarte, California, 91010, USA
| | | | | | | |
Collapse
|
49
|
Nissler K, Kreusch S, Rommerskirch W, Strubel W, Weber E, Wiederanders B. Sorting of non-glycosylated human procathepsin S in mammalian cells. Biol Chem 1998; 379:219-24. [PMID: 9524075 DOI: 10.1515/bchm.1998.379.2.219] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cathepsin S, a lysosomal cysteine protease, is synthesized as inactive precursor. It is activated in the lysosomes by a proteolytic cleavage of the propeptide. HEK 293-cells which do not express cathepsin S were transfected with cDNA of either wild type human procathepsin S or a mutant procathepsin S in which Asn of the only glycosylation site in the proregion was replaced by Gln. The cells expressed glycosylated and non-glycosylated procathepsin S, respectively. Large amounts of the precursors were secreted into the culture media by both transfectants. Secreted wild type procathepsin S contained Man-6-phosphate in the oligosaccharide chain. Wild type procathepsin S was activated in the cells but no maturation occurred in the culture media. In vitro processing of glycosylated as well as of non-glycosylated procathepsin S gave fully active enzymes thus indicating that the oligosaccharide chain was not necessary for proper folding. A reuptake of the glycosylated and non-glycosylated procathepsin S by HEK 293-cells could be observed. Small amounts of mature cathepsin S were detected in the lysosomes of the mutant transfectants. Subcellular fractionation showed non-glycosylated procathepsin S in the membrane fraction. Non-glycosylated procathepsin S was bound to the plasma membrane at 2 degrees C, suggesting an additional sorting motif in the cathepsin S molecule besides the Man-6-phosphate residue.
Collapse
Affiliation(s)
- K Nissler
- Institut für Biochemie, Friedrich-Schiller-Universität, Jena, Germany
| | | | | | | | | | | |
Collapse
|
50
|
|