1
|
Mark JR, Tansey MG. Immune cell metabolic dysfunction in Parkinson's disease. Mol Neurodegener 2025; 20:36. [PMID: 40128809 PMCID: PMC11934562 DOI: 10.1186/s13024-025-00827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
Parkinson's disease (PD) is a multi-system disorder characterized histopathologically by degeneration of dopaminergic neurons in the substantia nigra pars compacta. While the etiology of PD remains multifactorial and complex, growing evidence suggests that cellular metabolic dysfunction is a critical driver of neuronal death. Defects in cellular metabolism related to energy production, oxidative stress, metabolic organelle health, and protein homeostasis have been reported in both neurons and immune cells in PD. We propose that these factors act synergistically in immune cells to drive aberrant inflammation in both the CNS and the periphery in PD, contributing to a hostile inflammatory environment which renders certain subsets of neurons vulnerable to degeneration. This review highlights the overlap between established neuronal metabolic deficits in PD with emerging findings in central and peripheral immune cells. By discussing the rapidly expanding literature on immunometabolic dysfunction in PD, we aim to draw attention to potential biomarkers and facilitate future development of immunomodulatory strategies to prevent or delay the progression of PD.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
| |
Collapse
|
2
|
Perez-Abshana LP, Mendivil-Perez M, Jimenez-Del-Rio M, Velez-Pardo C. The GBA1 K198E Variant Is Associated with Suppression of Glucocerebrosidase Activity, Autophagy Impairment, Oxidative Stress, Mitochondrial Damage, and Apoptosis in Skin Fibroblasts. Int J Mol Sci 2024; 25:9220. [PMID: 39273169 PMCID: PMC11394901 DOI: 10.3390/ijms25179220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Parkinson's disease (PD) is a multifactorial, chronic, and progressive neurodegenerative disorder inducing movement alterations as a result of the loss of dopaminergic (DAergic) neurons of the pars compacta in the substantia nigra and protein aggregates of alpha synuclein (α-Syn). Although its etiopathology agent has not yet been clearly established, environmental and genetic factors have been suggested as the major contributors to the disease. Mutations in the glucosidase beta acid 1 (GBA1) gene, which encodes the lysosomal glucosylceramidase (GCase) enzyme, are one of the major genetic risks for PD. We found that the GBA1 K198E fibroblasts but not WT fibroblasts showed reduced catalytic activity of heterozygous mutant GCase by -70% but its expression levels increased by 3.68-fold; increased the acidification of autophagy vacuoles (e.g., autophagosomes, lysosomes, and autolysosomes) by +1600%; augmented the expression of autophagosome protein Beclin-1 (+133%) and LC3-II (+750%), and lysosomal-autophagosome fusion protein LAMP-2 (+107%); increased the accumulation of lysosomes (+400%); decreased the mitochondrial membrane potential (∆Ψm) by -19% but the expression of Parkin protein remained unperturbed; increased the oxidized DJ-1Cys106-SOH by +900%, as evidence of oxidative stress; increased phosphorylated LRRK2 at Ser935 (+1050%) along with phosphorylated α-synuclein (α-Syn) at pathological residue Ser129 (+1200%); increased the executer apoptotic protein caspase 3 (cleaved caspase 3) by +733%. Although exposure of WT fibroblasts to environmental neutoxin rotenone (ROT, 1 μM) exacerbated the autophagy-lysosomal system, oxidative stress, and apoptosis markers, ROT moderately increased those markers in GBA1 K198E fibroblasts. We concluded that the K198E mutation endogenously primes skin fibroblasts toward autophagy dysfunction, OS, and apoptosis. Our findings suggest that the GBA1 K198E fibroblasts are biochemically and molecularly equivalent to the response of WT GBA1 fibroblasts exposed to ROT.
Collapse
Affiliation(s)
- Laura Patricia Perez-Abshana
- Neuroscience Research Group, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Faculty of Nursing, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Institute of Medical Research, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Faculty of Medicine, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
- Institute of Medical Research, University of Antioquia, University Research Headquarters, Calle 62#52-59, Building 1, Laboratory 411/412, Medellin 050010, Colombia
| |
Collapse
|
3
|
Dobert JP, Bub S, Mächtel R, Januliene D, Steger L, Regensburger M, Wilfling S, Chen J, Dejung M, Plötz S, Hehr U, Moeller A, Arnold P, Zunke F. Activation and Purification of ß-Glucocerebrosidase by Exploiting its Transporter LIMP-2 - Implications for Novel Treatment Strategies in Gaucher's and Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401641. [PMID: 38666485 PMCID: PMC11220700 DOI: 10.1002/advs.202401641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Indexed: 07/04/2024]
Abstract
Genetic variants of GBA1 can cause the lysosomal storage disorder Gaucher disease and are among the highest genetic risk factors for Parkinson's disease (PD). GBA1 encodes the lysosomal enzyme beta-glucocerebrosidase (GCase), which orchestrates the degradation of glucosylceramide (GluCer) in the lysosome. Recent studies have shown that GluCer accelerates α-synuclein aggregation, exposing GCase deficiency as a major risk factor in PD pathology and as a promising target for treatment. This study investigates the interaction of GCase and three disease-associated variants (p.E326K, p.N370S, p.L444P) with their transporter, the lysosomal integral membrane protein 2 (LIMP-2). Overexpression of LIMP-2 in HEK 293T cells boosts lysosomal abundance of wt, E326K, and N370S GCase and increases/rescues enzymatic activity of the wt and E326K variant. Using a novel purification approach, co-purification of untagged wt, E326K, and N370S GCase in complex with His-tagged LIMP-2 from cell supernatant of HEK 293F cells is achieved, confirming functional binding and trafficking for these variants. Furthermore, a single helix in the LIMP-2 ectodomain is exploited to design a lysosome-targeted peptide that enhances lysosomal GCase activity in PD patient-derived and control fibroblasts. These findings reveal LIMP-2 as an allosteric activator of GCase, suggesting a possible therapeutic potential of targeting this interaction.
Collapse
Affiliation(s)
- Jan Philipp Dobert
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Simon Bub
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Rebecca Mächtel
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Dovile Januliene
- Department of Structural BiologyOsnabrueck University49076OsnabrueckGermany
| | - Lisa Steger
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Martin Regensburger
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
- Deutsches Zentrum Immuntherapie (DZI)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | | | - Jia‐Xuan Chen
- Institute of Molecular Biology (IMB)55128MainzGermany
| | - Mario Dejung
- Institute of Molecular Biology (IMB)55128MainzGermany
| | - Sonja Plötz
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Ute Hehr
- Center for Human Genetics Regensburg93059RegensburgGermany
| | - Arne Moeller
- Department of Structural BiologyOsnabrueck University49076OsnabrueckGermany
| | - Philipp Arnold
- Institute of AnatomyFunctional and Clinical AnatomyFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| | - Friederike Zunke
- Department of Molecular NeurologyUniversity Hospital ErlangenFriedrich‐Alexander‐University Erlangen‐Nürnberg (FAU)91054ErlangenGermany
| |
Collapse
|
4
|
Smith LJ, Lee CY, Menozzi E, Schapira AHV. Genetic variations in GBA1 and LRRK2 genes: Biochemical and clinical consequences in Parkinson disease. Front Neurol 2022; 13:971252. [PMID: 36034282 PMCID: PMC9416236 DOI: 10.3389/fneur.2022.971252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Variants in the GBA1 and LRRK2 genes are the most common genetic risk factors associated with Parkinson disease (PD). Both genes are associated with lysosomal and autophagic pathways, with the GBA1 gene encoding for the lysosomal enzyme, glucocerebrosidase (GCase) and the LRRK2 gene encoding for the leucine-rich repeat kinase 2 enzyme. GBA1-associated PD is characterized by earlier age at onset and more severe non-motor symptoms compared to sporadic PD. Mutations in the GBA1 gene can be stratified into severe, mild and risk variants depending on the clinical presentation of disease. Both a loss- and gain- of function hypothesis has been proposed for GBA1 variants and the functional consequences associated with each variant is often linked to mutation severity. On the other hand, LRRK2-associated PD is similar to sporadic PD, but with a more benign disease course. Mutations in the LRRK2 gene occur in several structural domains and affect phosphorylation of GTPases. Biochemical studies suggest a possible convergence of GBA1 and LRRK2 pathways, with double mutant carriers showing a milder phenotype compared to GBA1-associated PD. This review compares GBA1 and LRRK2-associated PD, and highlights possible genotype-phenotype associations for GBA1 and LRRK2 separately, based on biochemical consequences of single variants.
Collapse
Affiliation(s)
- Laura J. Smith
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Chiao-Yin Lee
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Anthony H. V. Schapira
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London (UCL), London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
5
|
GBA Variants and Parkinson Disease: Mechanisms and Treatments. Cells 2022; 11:cells11081261. [PMID: 35455941 PMCID: PMC9029385 DOI: 10.3390/cells11081261] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 01/01/2023] Open
Abstract
The GBA gene encodes for the lysosomal enzyme glucocerebrosidase (GCase), which maintains glycosphingolipid homeostasis. Approximately 5–15% of PD patients have mutations in the GBA gene, making it numerically the most important genetic risk factor for Parkinson disease (PD). Clinically, GBA-associated PD is identical to sporadic PD, aside from the earlier age at onset (AAO), more frequent cognitive impairment and more rapid progression. Mutations in GBA can be associated with loss- and gain-of-function mechanisms. A key hallmark of PD is the presence of intraneuronal proteinaceous inclusions named Lewy bodies, which are made up primarily of alpha-synuclein. Mutations in the GBA gene may lead to loss of GCase activity and lysosomal dysfunction, which may impair alpha-synuclein metabolism. Models of GCase deficiency demonstrate dysfunction of the autophagic-lysosomal pathway and subsequent accumulation of alpha-synuclein. This dysfunction can also lead to aberrant lipid metabolism, including the accumulation of glycosphingolipids, glucosylceramide and glucosylsphingosine. Certain mutations cause GCase to be misfolded and retained in the endoplasmic reticulum (ER), activating stress responses including the unfolded protein response (UPR), which may contribute to neurodegeneration. In addition to these mechanisms, a GCase deficiency has also been associated with mitochondrial dysfunction and neuroinflammation, which have been implicated in the pathogenesis of PD. This review discusses the pathways associated with GBA-PD and highlights potential treatments which may act to target GCase and prevent neurodegeneration.
Collapse
|
6
|
Karatas M, Dogan S, Spahiu E, Ašić A, Bešić L, Turan Y. Enzyme kinetics and inhibition parameters of human leukocyte glucosylceramidase. Heliyon 2020; 6:e05191. [PMID: 33163670 PMCID: PMC7609449 DOI: 10.1016/j.heliyon.2020.e05191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/29/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022] Open
Abstract
Glucosylceramidase (GCase) is a lysosomal enzyme that catalyzes the cleavage of β-glucosidic linkage of glucocerebroside (GC) into glucose and ceramide; thereby, plays an essential function in the degradation of complex lipids and the turnover of cellular membranes. The growing list of 460 mutations in the gene coding for it-glucosylceramidase beta acid 1 (GBA1)-is reported to abolish its catalytic activity and decrease its enzyme stability, associating it with severe health conditions such as Gaucher disease (GD), Parkinson Disease (PD) and Dementia with Lewy bodies (DLB). Although the three-dimensional structure of wild type glucosylceramidase is elucidated, little is known about its features in human cells. Moreover, alternative sources of GCase that prove to be effective in the treatment of diseases with enzyme treatment therapies, impose the need for a simple and cost-effective procedure to study the enzyme behavior. This work, for the first time, shows a well-established, yet simple, cost- and time-efficient protocol for the study of GCase enzyme in human leukocytes by the artificial substrate p-Nitrophenyl-β-D-glucopyranoside (PNPG). Characterization of the enzyme in human leukocytes for activation parameters (optimal pH, Km, and Vmax) and enzyme inhibition was done. The results indicate that the optimum pH of GCase enzyme with PNPG is 5.0. The Km and Vmax values are 12.6mM and 333 U/mg, respectively. Gluconolactone competitively inhibits GCase, with a Ki value of 0.023 mM and IC50 of 0.047 mM. Glucose inhibition is uncompetitive with a Ki of 1.94 mM and IC50 of 55.3 mM. This is the first report for the inhibitory effect of glucose, δ-gluconolactone on human leukocyte GCase activity.
Collapse
Affiliation(s)
- Mesut Karatas
- International Burch University, Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, Francuske revolucije bb, 71000 Sarajevo, Bosnia and Herzegovina
| | - Senol Dogan
- Leipzig University, Faculty for Physics and Earth Sciences, Peter Debye Institute, Linnéstraße 5, 04103, Leipzig, Germany
| | - Emrulla Spahiu
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Adna Ašić
- International Burch University, Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, Francuske revolucije bb, 71000 Sarajevo, Bosnia and Herzegovina
| | - Larisa Bešić
- International Burch University, Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, Francuske revolucije bb, 71000 Sarajevo, Bosnia and Herzegovina
| | - Yusuf Turan
- International Burch University, Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, Francuske revolucije bb, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
7
|
Abrams R, Kaddi CD, Tao M, Leiser RJ, Simoni G, Reali F, Tolsma J, Jasper P, van Rijn Z, Li J, Niesner B, Barrett JS, Marchetti L, Peterschmitt MJ, Azer K, Neves-Zaph S. A Quantitative Systems Pharmacology Model of Gaucher Disease Type 1 Provides Mechanistic Insight Into the Response to Substrate Reduction Therapy With Eliglustat. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:374-383. [PMID: 32558397 PMCID: PMC7376290 DOI: 10.1002/psp4.12506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/17/2020] [Indexed: 12/27/2022]
Abstract
Gaucher’s disease type 1 (GD1) leads to significant morbidity and mortality through clinical manifestations, such as splenomegaly, hematological complications, and bone disease. Two types of therapies are currently approved for GD1: enzyme replacement therapy (ERT), and substrate reduction therapy (SRT). In this study, we have developed a quantitative systems pharmacology (QSP) model, which recapitulates the effects of eliglustat, the only first‐line SRT approved for GD1, on treatment‐naïve or patients with ERT‐stabilized adult GD1. This multiscale model represents the mechanism of action of eliglustat that leads toward reduction of spleen volume. Model capabilities were illustrated through the application of the model to predict ERT and eliglustat responses in virtual populations of adult patients with GD1, representing patients across a spectrum of disease severity as defined by genotype‐phenotype relationships. In summary, the QSP model provides a mechanistic computational platform for predicting treatment response via different modalities within the heterogeneous GD1 patient population.
Collapse
Affiliation(s)
- Ruth Abrams
- Translational Disease Modelling, Digital Data Science, Sanofi, Bridgewater, New Jersey, USA
| | - Chanchala D Kaddi
- Translational Disease Modelling, Digital Data Science, Sanofi, Bridgewater, New Jersey, USA
| | - Mengdi Tao
- Translational Disease Modelling, Digital Data Science, Sanofi, Bridgewater, New Jersey, USA
| | - Randolph J Leiser
- Translational Disease Modelling, Digital Data Science, Sanofi, Bridgewater, New Jersey, USA
| | - Giulia Simoni
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | - Federico Reali
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | | | | | - Zachary van Rijn
- Translational Disease Modelling, Digital Data Science, Sanofi, Bridgewater, New Jersey, USA
| | - Jing Li
- Translational Disease Modelling, Digital Data Science, Sanofi, Bridgewater, New Jersey, USA
| | - Bradley Niesner
- Translational Disease Modelling, Digital Data Science, Sanofi, Bridgewater, New Jersey, USA
| | - Jeffrey S Barrett
- Translational Disease Modelling, Digital Data Science, Sanofi, Bridgewater, New Jersey, USA
| | - Luca Marchetti
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | | | - Karim Azer
- Translational Disease Modelling, Digital Data Science, Sanofi, Bridgewater, New Jersey, USA
| | - Susana Neves-Zaph
- Translational Disease Modelling, Digital Data Science, Sanofi, Bridgewater, New Jersey, USA
| |
Collapse
|
8
|
Do MA, Levy D, Brown A, Marriott G, Lu B. Targeted delivery of lysosomal enzymes to the endocytic compartment in human cells using engineered extracellular vesicles. Sci Rep 2019; 9:17274. [PMID: 31754156 PMCID: PMC6872767 DOI: 10.1038/s41598-019-53844-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Targeted delivery of lysosomal enzymes to the endocytic compartment of human cells represents a transformative technology for treating a large family of lysosomal storage diseases (LSDs). Gaucher disease is one of the most common types of LSDs caused by mutations to the lysosomal β-glucocerebrosidase (GBA). Here, we describe a genetic strategy to produce engineered exosomes loaded with GBA in two different spatial configurations for targeted delivery to the endocytic compartment of recipient cells. By fusing human GBA to an exosome-anchoring protein: vesicular stomatitis virus glycoprotein (VSVG), we demonstrate that the chimeric proteins were successfully integrated into exosomes which were secreted as extracellular vesicles (EVs) by producer cells. Isolation and molecular characterization of EVs confirmed that the fusion proteins were loaded onto exosomes without altering their surface markers, particle size or distribution. Further, enzyme-loaded exosomes/EVs added to cultured medium were taken up by recipient cells. Further, the endocytosed exosomes/EVs targeted to endocytic compartments exhibited a significant increase in GBA activity. Together, we have developed a novel method for targeting and delivery of lysosomal enzymes to their natural location: the endocytic compartment of recipient cells. Since exosomes/EVs have an intrinsic ability to cross the blood-brain-barrier, our technology may provide a new approach to treat severe types of LSDs, including Gaucher disease with neurological complications.
Collapse
Affiliation(s)
- Mai Anh Do
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Daniel Levy
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Annie Brown
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA
| | - Gerard Marriott
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA94720, USA
| | - Biao Lu
- Department of Bioengineering, School of Engineering, Santa Clara University, 500 El Camino Real, Santa Clara, California, 95053, USA.
| |
Collapse
|
9
|
Do J, McKinney C, Sharma P, Sidransky E. Glucocerebrosidase and its relevance to Parkinson disease. Mol Neurodegener 2019; 14:36. [PMID: 31464647 PMCID: PMC6716912 DOI: 10.1186/s13024-019-0336-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Mutations in GBA1, the gene encoding the lysosomal enzyme glucocerebrosidase, are among the most common known genetic risk factors for the development of Parkinson disease and related synucleinopathies. A great deal is known about GBA1, as mutations in GBA1 are causal for the rare autosomal storage disorder Gaucher disease. Over the past decades, significant progress has been made in understanding the genetics and cell biology of glucocerebrosidase. A least 495 different mutations, found throughout the 11 exons of the gene are reported, including both common and rare variants. Mutations in GBA1 may lead to degradation of the protein, disruptions in lysosomal targeting and diminished performance of the enzyme in the lysosome. Gaucher disease is phenotypically diverse and has both neuronopathic and non-neuronopathic forms. Both patients with Gaucher disease and heterozygous carriers are at increased risk of developing Parkinson disease and Dementia with Lewy Bodies, although our understanding of the mechanism for this association remains incomplete. There appears to be an inverse relationship between glucocerebrosidase and α-synuclein levels, and even patients with sporadic Parkinson disease have decreased glucocerebrosidase. Glucocerebrosidase may interact with α-synuclein to maintain basic cellular functions, or impaired glucocerebrosidase could contribute to Parkinson pathogenesis by disrupting lysosomal homeostasis, enhancing endoplasmic reticulum stress or contributing to mitochondrial impairment. However, the majority of patients with GBA1 mutations never develop parkinsonism, so clearly other risk factors play a role. Treatments for Gaucher disease have been developed that increase visceral glucocerebrosidase levels and decrease lipid storage, although they have yet to properly address the neurological defects associated with impaired glucocerebrosidase. Mouse and induced pluripotent stem cell derived models have improved our understanding of glucocerebrosidase function and the consequences of its deficiency. These models have been used to test novel therapies including chaperone proteins, histone deacetylase inhibitors, and gene therapy approaches that enhance glucocerebrosidase levels and could prove efficacious in the treatment of forms of parkinsonism. Consequently, this rare monogenic disorder, Gaucher disease, provides unique insights directly applicable to our understanding and treatment of Parkinson disease, a common and complex neurodegenerative disorder.
Collapse
Affiliation(s)
- Jenny Do
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35A, Room 1E623, 35 Convent Drive, MSC 3708, Bethesda, MD, 20892-3708, USA
| | - Cindy McKinney
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35A, Room 1E623, 35 Convent Drive, MSC 3708, Bethesda, MD, 20892-3708, USA
| | - Pankaj Sharma
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35A, Room 1E623, 35 Convent Drive, MSC 3708, Bethesda, MD, 20892-3708, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Building 35A, Room 1E623, 35 Convent Drive, MSC 3708, Bethesda, MD, 20892-3708, USA.
| |
Collapse
|
10
|
Liou B, Zhang W, Fannin V, Quinn B, Ran H, Xu K, Setchell KDR, Witte D, Grabowski GA, Sun Y. Combination of acid β-glucosidase mutation and Saposin C deficiency in mice reveals Gba1 mutation dependent and tissue-specific disease phenotype. Sci Rep 2019; 9:5571. [PMID: 30944381 PMCID: PMC6447580 DOI: 10.1038/s41598-019-41914-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/20/2019] [Indexed: 11/09/2022] Open
Abstract
Gaucher disease is caused by mutations in GBA1 encoding acid β-glucosidase (GCase). Saposin C enhances GCase activity and protects GCase from intracellular proteolysis. Structure simulations indicated that the mutant GCases, N370S (0 S), V394L (4L) and D409V(9V)/H(9H), had altered function. To investigate the in vivo function of Gba1 mutants, mouse models were generated by backcrossing the above homozygous mutant GCase mice into Saposin C deficient (C*) mice. Without saposin C, the mutant GCase activities in the resultant mouse tissues were reduced by ~50% compared with those in the presence of Saposin C. In contrast to 9H and 4L mice that have normal histology and life span, the 9H;C* and 4L;C* mice had shorter life spans. 9H;C* mice developed significant visceral glucosylceramide (GC) and glucosylsphingosine (GS) accumulation (GC»GS) and storage macrophages, but lesser GC in the brain, compared to 4L;C* mice that presents with a severe neuronopathic phenotype and accumulated GC and GS primarily in the brain. Unlike 9V mice that developed normally for over a year, 9V;C* pups had a lethal skin defect as did 0S;C* mice resembled that of 0S mice. These variant Gaucher disease mouse models presented a mutation specific phenotype and underscored the in vivo role of Saposin C in the modulation of Gaucher disease.
Collapse
Affiliation(s)
- Benjamin Liou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wujuan Zhang
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Venette Fannin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian Quinn
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Huimin Ran
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kui Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D R Setchell
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David Witte
- Department of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
11
|
Sheth J, Bhavsar R, Mistri M, Pancholi D, Bavdekar A, Dalal A, Ranganath P, Girisha KM, Shukla A, Phadke S, Puri R, Panigrahi I, Kaur A, Muranjan M, Goyal M, Ramadevi R, Shah R, Nampoothiri S, Danda S, Datar C, Kapoor S, Bhatwadekar S, Sheth F. Gaucher disease: single gene molecular characterization of one-hundred Indian patients reveals novel variants and the most prevalent mutation. BMC MEDICAL GENETICS 2019; 20:31. [PMID: 30764785 PMCID: PMC6376752 DOI: 10.1186/s12881-019-0759-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Gaucher disease is a rare pan-ethnic, lysosomal storage disorder resulting due to beta-Glucosidase (GBA1) gene defect. This leads to the glucocerebrosidase enzyme deficiency and an increased accumulation of undegraded glycolipid glucocerebroside inside the cells' lysosomes. To date, nearly 460 mutations have been described in the GBA1 gene. With the aim to determine mutations spectrum and molecular pathology of Gaucher disease in India, the present study investigated one hundred unrelated patients (age range: 1 day to 31 years) having splenomegaly, with or without hepatomegaly, cytopenia and bone abnormality in some of the patients. METHODS The biochemical investigation for the plasma chitotriosidase enzyme activity and β-Glucosidase enzyme activity confirmed the Gaucher disease. The mutations were identified by screening the patients' whole GBA gene coding region using bidirectional Sanger sequencing. RESULTS The biochemical analysis revealed a significant reduction in the β-Glucosidase activity in all patients. Sanger sequencing established 71 patients with homozygous mutation and 22 patients with compound heterozygous mutation in GBA1 gene. Lack of identification of mutations in three patients suggests the possibility of either large deletion/duplication or deep intronic variations in the GBA1 gene. In four cases, where the proband died due to confirmed Gaucher disease, the parents were found to be a carrier. Overall, the study identified 33 mutations in 100 patients that also covers four missense mutations (p.Ser136Leu, p.Leu279Val, p.Gly383Asp, p.Gly399Arg) not previously reported in Gaucher disease patients. The mutation p.Leu483Pro was identified as the most commonly occurring Gaucher disease mutation in the study (62% patients). The second common mutations identified were p.Arg535Cys (7% patients) and RecNcil (7% patients). Another complex mutation Complex C was identified in a compound heterozygous status (3% patients). The homology modeling of the novel mutations suggested the destabilization of the GBA protein structure due to conformational changes. CONCLUSIONS The study reports four novel and 29 known mutations identified in the GBA1 gene in one-hundred Gaucher patients. The given study establishes p.Leu483Pro as the most prevalent mutation in the Indian patients with type 1 Gaucher disease that provide new insight into the molecular basis of Gaucher Disease in India.
Collapse
Affiliation(s)
- Jayesh Sheth
- FRIGE’s Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat 380015 India
| | - Riddhi Bhavsar
- FRIGE’s Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat 380015 India
| | - Mehul Mistri
- FRIGE’s Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat 380015 India
| | - Dhairya Pancholi
- FRIGE’s Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat 380015 India
| | | | - Ashwin Dalal
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039 India
| | - Prajnya Ranganath
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039 India
| | - Katta M Girisha
- Kasturba Medical College, Tiger Cir Rd, Madhav Nagar, Manipal, 576104 Karnataka India
| | - Anju Shukla
- Kasturba Medical College, Tiger Cir Rd, Madhav Nagar, Manipal, 576104 Karnataka India
| | - Shubha Phadke
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014 India
| | - Ratna Puri
- Sir Ganga Ram Hospital, New Delhi, 110060 India
| | - Inusha Panigrahi
- The Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | - Anupriya Kaur
- The Postgraduate Institute of Medical Education and Research, Chandigarh, 160012 India
| | | | - Manisha Goyal
- J.K. Lone Mother and Child Hospital, Jaipur, 302004 India
| | | | - Raju Shah
- Ankur Institute of Child Health, Ahmedabad, 380009 India
| | - Sheela Nampoothiri
- Amrita Institute of Medical Sciences & Research Centre, Cochin, 682041 India
| | - Sumita Danda
- Christian Medical College & Hospital, Vellore, 632004 India
| | - Chaitanya Datar
- Sahyadri Medical Genetics & Tissue Engineering Facility, Pune, 411038 India
| | - Seema Kapoor
- Maulana Azad medical College and Associated Loknayak Hospital, New Delhi, 110002 India
| | | | - Frenny Sheth
- FRIGE’s Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, Ahmedabad, Gujarat 380015 India
| |
Collapse
|
12
|
Malekkou A, Samarani M, Drousiotou A, Votsi C, Sonnino S, Pantzaris M, Chiricozzi E, Zamba-Papanicolaou E, Aureli M, Loberto N, Christodoulou K. Biochemical Characterization of the GBA2 c.1780G>C Missense Mutation in Lymphoblastoid Cells from Patients with Spastic Ataxia. Int J Mol Sci 2018; 19:ijms19103099. [PMID: 30308956 PMCID: PMC6213336 DOI: 10.3390/ijms19103099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022] Open
Abstract
The GBA2 gene encodes the non-lysosomal glucosylceramidase (NLGase), an enzyme that catalyzes the conversion of glucosylceramide (GlcCer) to ceramide and glucose. Mutations in GBA2 have been associated with the development of neurological disorders such as autosomal recessive cerebellar ataxia, hereditary spastic paraplegia, and Marinesco-Sjogren-Like Syndrome. Our group has previously identified the GBA2 c.1780G>C [p.Asp594His] missense mutation, in a Cypriot consanguineous family with spastic ataxia. In this study, we carried out a biochemical characterization of lymphoblastoid cell lines (LCLs) derived from three patients of this family. We found that the mutation strongly reduce NLGase activity both intracellularly and at the plasma membrane level. Additionally, we observed a two-fold increase of GlcCer content in LCLs derived from patients compared to controls, with the C16 lipid being the most abundant GlcCer species. Moreover, we showed that there is an apparent compensatory effect between NLGase and the lysosomal glucosylceramidase (GCase), since we found that the activity of GCase was three-fold higher in LCLs derived from patients compared to controls. We conclude that the c.1780G>C mutation results in NLGase loss of function with abolishment of the enzymatic activity and accumulation of GlcCer accompanied by a compensatory increase in GCase.
Collapse
Affiliation(s)
- Anna Malekkou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
| | - Maura Samarani
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Anthi Drousiotou
- Biochemical Genetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
| | - Christina Votsi
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Marios Pantzaris
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
- Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Eleni Zamba-Papanicolaou
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
- Neurology Clinic D, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, 20122 Milano, Italy.
| | - Kyproula Christodoulou
- Cyprus School of Molecular Medicine, Nicosia 1683, Cyprus.
- Neurogenetics Department, The Cyprus Institute of Neurology and Genetics, Nicosia 1683, Cyprus.
| |
Collapse
|
13
|
Senkevich KA, Miliukhina IV, Beletskaia MV, Gracheva EV, Kudrevatykh AV, Nikolaev MA, Emelyanov AK, Kopytova AE, Timofeeva AA, Yakimovskii AF, Pchelina SN. [The clinical features of Parkinson's disease in patients with mutations and polymorphic variants of GBA gene]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:81-86. [PMID: 29171494 DOI: 10.17116/jnevro201711710181-86] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mutations in the glucocerebrosidase gene (GBA) increase the risk of Parkinson's disease (PD) by 6-10 times in all populations and are associated with the early-onset of PD, development of cognitive impairment and presence of psychotic disorders. At the same time, polymorphic variants associated with the twofold increase in the risk of PD were also described in the GBA gene. AIM To estimate the clinical features of PD in patients with mutations and polymorphic variants of the GBA gene. MATERIAL AND METHODS Evaluation of motor, cognitive, emotional, psychotic and autonomic dysfunctions in patients with mutations (N370S, L444P) and polymorphic variants (E326K, T369M) in the GBA gene was performed using clinical scales. RESULTS Patients with mutations (mGBA-PD), and with polymorphic variants (pGBA-PD) in the GBA gene were compared with the group of patients with sporadic PD (sPD). Compared to sPD, affective disorders (depression and anxiety) were more expressed in the mGBA-PD group (p=0.001) and the general GBA-PD group (p=0.001) assessed with Sheehan anxiety rating scale, in the pGBA-PD group (p=0.012) and the general GBA-PD group (p=0.05) assessed with the NPI, in the mGBA-PD (p=0.003), pGBA-PD (p=0.022), and general GBA-PD groups (p=0.001) assessed with the Hospital Anxiety and Depression scale (HADS 'A'), and in the pGBA-PD group (p=0.005) assessed with the HADS 'D'. Non-motor symptoms assessed with the PD-NMS were more expressed in the pGBA-PD patients (p=0.007) and in the total group with GBA-PD (p=0,014) compared to sPD. Cognitive impairment measured with MMSE was more marked in mGBA-PD patients (p=0.022). Differences in motor and non-motor clinical symptoms between pGBA-PD and mGBA-PD groups were not found. CONCLUSION Thus, clinical features of non-motor symptoms were described both in carriers of GBA mutations and polymorphisms. Identification of the specific clinical phenotype of PD in carriers of GBA polymorphic variants is important due to their relatively high prevalence in PD patients.
Collapse
Affiliation(s)
- K A Senkevich
- Institute of Experimental Medicine, St. Petersburg, Russia; Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; National Research Center 'Kurchatov Institute' Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - I V Miliukhina
- Institute of Experimental Medicine, St. Petersburg, Russia; Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - M V Beletskaia
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - E V Gracheva
- Institute of Experimental Medicine, St. Petersburg, Russia
| | | | - M A Nikolaev
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; National Research Center 'Kurchatov Institute' Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - A K Emelyanov
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; National Research Center 'Kurchatov Institute' Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - A E Kopytova
- National Research Center 'Kurchatov Institute' Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| | - A A Timofeeva
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - A F Yakimovskii
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - S N Pchelina
- Institute of Experimental Medicine, St. Petersburg, Russia; Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia; National Research Center 'Kurchatov Institute' Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
| |
Collapse
|
14
|
Woeste MA, Wachten D. The Enigmatic Role of GBA2 in Controlling Locomotor Function. Front Mol Neurosci 2017; 10:386. [PMID: 29234271 PMCID: PMC5712312 DOI: 10.3389/fnmol.2017.00386] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023] Open
Abstract
The non-lysosomal glucosylceramidase GBA2 catalyzes the hydrolysis of glucosylceramide to glucose and ceramide. Loss of GBA2 function results in accumulation of glucosylceramide. Mutations in the human GBA2 gene have been associated with hereditary spastic paraplegia (HSP) and autosomal-recessive cerebellar ataxia (ARCA). Patients suffering from these disorders exhibit impaired locomotion and neurological abnormalities. GBA2 mutations found in these patients have been proposed to impair GBA2 function. However, the molecular mechanism underlying the occurrence of mutations in the GBA2 gene and the development of locomotor dysfunction is not well-understood. In this review, we aim to summarize recent findings regarding mutations in the GBA2 gene and their impact on GBA2 function in health and disease.
Collapse
Affiliation(s)
- Marina A Woeste
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Dagmar Wachten
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany.,Molecular Physiology, Center of Advanced European Studies and Research, Minerva Max Planck Research Group, Bonn, Germany
| |
Collapse
|
15
|
Stojkovska I, Krainc D, Mazzulli JR. Molecular mechanisms of α-synuclein and GBA1 in Parkinson's disease. Cell Tissue Res 2017; 373:51-60. [PMID: 29064079 DOI: 10.1007/s00441-017-2704-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/16/2017] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative movement disorder characterized pathologically by the presence of Lewy bodies comprised of insoluble alpha (α)-synuclein. Pathological, clinical and genetic studies demonstrate that mutations in the GBA1 gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase) that is deficient in Gaucher's disease, are important risk factors for the development of PD. The molecular mechanism for the association between these two diseases is not completely understood. We discuss several possible mechanisms that may lead to GBA1-related neuronal death and α-synuclein accumulation including disruptions in lipid metabolism, protein trafficking and impaired protein quality control mechanisms. Elucidating the mechanism between GCase and α-synuclein may provide insight into potential therapeutic pathways for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Iva Stojkovska
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Ward 12-369, Chicago, IL, 60611, USA
| | - Dimitri Krainc
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Ward 12-369, Chicago, IL, 60611, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave, Ward 12-369, Chicago, IL, 60611, USA.
| |
Collapse
|
16
|
Smith L, Mullin S, Schapira AHV. Insights into the structural biology of Gaucher disease. Exp Neurol 2017; 298:180-190. [PMID: 28923368 DOI: 10.1016/j.expneurol.2017.09.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023]
Abstract
Gaucher disease, the most common lysosomal storage disorder, is caused by mutations in the gene encoding the acid-β-glucosidase lysosomal hydrolase enzyme that cleaves glucocerebroside into glucose and ceramide. Reduced enzyme activity and impaired structural stability arise due to >300 known disease-causing mutations. Several of these mutations have also been associated with an increased risk of Parkinson disease (PD). Since the discovery of the acid-β-glucosidase X-ray structure, there have been major advances in our understanding of the structural properties of the protein. Analysis of specific residues has provided insight into their functional and structural importance and provided insight into the pathogenesis of Gaucher disease and the contribution to PD. Disease-causing mutations are positioned throughout the acid-β-glucosidase structure, with many located far from the active site and thus retaining some enzymatic activity however, thus far no clear relationship between mutation location and disease severity has been established. Here, we review the crystal structure of acid-β-glucosidase, while highlighting important structural aspects of the protein in detail. This review discusses the structural stability of acid-β-glucosidase, which can be altered by pH and glycosylation, and explores the relationship between known Gaucher disease and PD mutations, structural stability and disease severity.
Collapse
Affiliation(s)
- Laura Smith
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - Stephen Mullin
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - Anthony H V Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK.
| |
Collapse
|
17
|
Parnetti L, Paciotti S, Eusebi P, Dardis A, Zampieri S, Chiasserini D, Tasegian A, Tambasco N, Bembi B, Calabresi P, Beccari T. Cerebrospinal fluid β-glucocerebrosidase activity is reduced in parkinson's disease patients. Mov Disord 2017; 32:1423-1431. [PMID: 28843015 DOI: 10.1002/mds.27136] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Reduced β-glucocerebrosidase activity was observed in postmortem brains of both GBA1 mutation carrier and noncarrier Parkinson's disease patients, suggesting that lower β-glucocerebrosidase activity is a key feature in the pathogenesis of PD. The objectives of this study were to confirm whether there is reduced β-glucocerebrosidase activity in the CSF of GBA1 mutation carrier and noncarrier PD patients and verify if other lysosomal enzymes show altered activity in the CSF. METHODS CSF β-glucocerebrosidase, cathepsin D, and β-hexosaminidase activities were measured in 79 PD and 61 healthy controls from the BioFIND cohort. The whole GBA1 gene was sequenced. RESULTS Enzyme activities were normalized according to CSF protein content (specific activity). β-glucocerebrosidase specific activity was significantly decreased in PD versus controls (-28%, P < 0.001). GBA1 mutations were found in 10 of 79 PD patients (12.7%) and 3 of 61 controls (4.9%). GBA1 mutation carrier PD patients showed significantly lower β-glucocerebrosidase specific activity versus noncarriers. β-glucocerebrosidase specific activity was also decreased in noncarrier PD patients versus controls (-25%, P < 0.001). Cathepsin D specific activity was lower in PD versus controls (-21%, P < 0.001). β-Hexosaminidase showed a similar trend. β-Glucocerebrosidase specific activity fairly discriminated PD from controls (area under the curve, 0.72; sensitivity, 0.67; specificity, 0.77). A combination of β-glucocerebrosidase, cathepsin D, and β-hexosaminidase improved diagnostic accuracy (area under the curve, 0.77; sensitivity, 0.71; specificity, 0.85). Lower β-glucocerebrosidase and β-hexosaminidase specific activities were associated with worse cognitive performance. CONCLUSIONS CSF β-glucocerebrosidase activity is reduced in PD patients independent of their GBA1 mutation carrier status. Cathepsin D and β-hexosaminidase were also decreased. The possible link between altered CSF lysosomal enzyme activities and cognitive decline deserves further investigation. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Silvia Paciotti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Paolo Eusebi
- Neurology Clinic, University of Perugia, Perugia, Italy
| | - Andrea Dardis
- Regional Coordinating Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | - Stefania Zampieri
- Regional Coordinating Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | | | - Anna Tasegian
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Bruno Bembi
- Regional Coordinating Centre for Rare Diseases, University Hospital Santa Maria della Misericordia, Udine, Italy
| | | | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
Gramlich PA, Westbroek W, Feldman RA, Awad O, Mello N, Remington MP, Sun Y, Zhang W, Sidransky E, Betenbaugh MJ, Fishman PS. A peptide-linked recombinant glucocerebrosidase for targeted neuronal delivery: Design, production, and assessment. J Biotechnol 2016; 221:1-12. [PMID: 26795355 DOI: 10.1016/j.jbiotec.2016.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/10/2016] [Accepted: 01/14/2016] [Indexed: 11/29/2022]
Abstract
Although recombinant glucocerebrosidase (GCase) is the standard therapy for the inherited lysosomal storage disease Gaucher's disease (GD), enzyme replacement is not effective when the central nervous system is affected. We created a series of recombinant genes/proteins where GCase was linked to different membrane binding peptides including the Tat peptide, the rabies glycoprotein derived peptide (RDP), the binding domain from tetanus toxin (TTC), and a tetanus like peptide (Tet1). The majority of these proteins were well-expressed in a mammalian producer cell line (HEK 293F). Purified recombinant Tat-GCase and RDP-GCase showed similar GCase protein delivery to a neuronal cell line that genetically lacks the functional enzyme, and greater delivery than control GCase, Cerezyme (Genzyme). This initial result was unexpected based on observations of superior protein delivery to neurons with RDP as a vector. A recombinant protein where a fragment of the flexible hinge region from IgA (IgAh) was introduced between RDP and GCase showed substantially enhanced GCase neuronal delivery (2.5 times over Tat-GCase), suggesting that the original construct resulted in interference with the capacity of RDP to bind neuronal membranes. Extended treatment of these knockout neuronal cells with either Tat-GCase or RDP-IgAh-GCase resulted in an >90% reduction in the lipid substrate glucosylsphingosine, approaching normal levels. Further in vivo studies of RDP-IgAh-GCase as well as Tat-GCase are warranted to assess their potential as treatments for neuronopathic forms of GD. These peptide vectors are especially attractive as they have the potential to carry a protein across the blood-brain barrier, avoiding invasive direct brain delivery.
Collapse
Affiliation(s)
- Paul A Gramlich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA.
| | - Wendy Westbroek
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, MD, USA
| | - Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, MD, USA
| | - Nicholas Mello
- Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA; Department of Molecular Medicine, University of Maryland School of Medicine, MD, USA
| | - Mary P Remington
- Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ellen Sidransky
- Section on Molecular Neurogenetics, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Paul S Fishman
- Research Service, Veterans Affairs Maryland Health Care Service, Baltimore, MD, USA; Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
ERdj3 is an endoplasmic reticulum degradation factor for mutant glucocerebrosidase variants linked to Gaucher's disease. ACTA ACUST UNITED AC 2015; 21:967-76. [PMID: 25126989 DOI: 10.1016/j.chembiol.2014.06.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 01/13/2023]
Abstract
Gaucher's disease (GD) is caused by mutations that compromise β-glucocerebrosidase (GCase) folding in the endoplasmic reticulum (ER), leading to excessive degradation instead of trafficking, which results in insufficient lysosomal function. We hypothesized that ER GCase interacting proteins play critical roles in making quality control decisions, i.e., facilitating ER-associated degradation (ERAD) instead of folding and trafficking. Utilizing GCase immunoprecipitation followed by mass-spectrometry-based proteomics, we identified endogenous HeLa cell GCase protein interactors, including ERdj3, an ER resident Hsp40 not previously established to interact with GCase. Depleting ERdj3 reduced the rate of mutant GCase degradation in patient-derived fibroblasts, while increasing folding, trafficking, and function by directing GCase to the profolding ER calnexin pathway. Inhibiting ERdj3-mediated mutant GCase degradation while simultaneously enhancing calnexin-associated folding, by way of a diltiazem-mediated increase in ER Ca(2+) levels, yields a synergistic rescue of L444P GCase lysosomal function. Our findings suggest a combination therapeutic strategy for ameliorating GD.
Collapse
|
20
|
Segatori L. Impairment of homeostasis in lysosomal storage disorders. IUBMB Life 2014; 66:472-7. [PMID: 25044960 DOI: 10.1002/iub.1288] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 06/23/2014] [Indexed: 12/27/2022]
Abstract
Lysosomal storage disorders (LSDs) are inherited metabolic diseases caused by deficiencies in lysosomal proteins, which result in accumulation of undegraded metabolites and disruption of lysosomal proteostasis. Despite significant progress in the molecular genetics and biochemistry underlying the cellular pathogenesis of LSDs, the mechanisms that link accumulation of storage material to development and progression of these diseases are still unclear. At the crossroad of degradative pathways, lysosomes play a fundamental role in the maintenance of cellular homeostasis. Through a series of examples, this review illustrates how defects in lysosomal biogenesis and function impact a number of cellular pathways that are involved in the pathogenic cascade.
Collapse
Affiliation(s)
- Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA; Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| |
Collapse
|
21
|
Grabowski GA, Golembo M, Shaaltiel Y. Taliglucerase alfa: an enzyme replacement therapy using plant cell expression technology. Mol Genet Metab 2014; 112:1-8. [PMID: 24630271 DOI: 10.1016/j.ymgme.2014.02.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/21/2014] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
Abstract
Gaucher disease (GD) is a rare, genetic lysosomal storage disorder caused by functional defects of acid β-glucosidase that results in multiple organ dysfunction. Glycosylation of recombinant acid human β-glucosidase and exposure of terminal mannose residues are critical to the success of enzyme replacement therapy (ERT) for the treatment of visceral and hematologic manifestations in GD. Three commercially available ERT products for treatment of GD type 1 (GD1) include imiglucerase, velaglucerase alfa, and taliglucerase alfa. Imiglucerase and velaglucerase alfa are produced in different mammalian cell systems and require production glycosylation modifications to expose terminal α-mannose residues, which are needed for mannose receptor-mediated uptake by target macrophages. Such modifications add to production costs. Taliglucerase alfa is a plant cell-expressed acid β-glucosidase approved in the United States and other countries for ERT in adults with GD1. A plant-based expression system, using carrot root cell cultures, was developed for production of taliglucerase alfa and does not require additional processing for postproduction glycosidic modifications. Clinical trials have demonstrated that taliglucerase alfa is efficacious, with a well-established safety profile in adult, ERT-naïve patients with symptomatic GD1, and for such patients previously treated with imiglucerase. These included significant improvements in organomegaly and hematologic parameters as early as 6months, and maintenance of achieved therapeutic values in previously treated patients. Ongoing clinical trials will further characterize the long-term efficacy and safety of taliglucerase alfa in more diverse patient populations, and may help to guide clinical decisions for achieving optimal outcomes for patients with GD1.
Collapse
Affiliation(s)
- Gregory A Grabowski
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | |
Collapse
|
22
|
Cassinerio E, Graziadei G, Poggiali E. Gaucher disease: a diagnostic challenge for internists. Eur J Intern Med 2014; 25:117-24. [PMID: 24090739 DOI: 10.1016/j.ejim.2013.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 11/16/2022]
Abstract
Gaucher disease (GD), the most common inherited lysosomal storage disorder, is a multiorgan disease due to an autosomal recessive defect of the gene encoding glucocerebrosidase enzyme, responsible for the accumulation of glucosylceramide (glucocerebroside) into reticuloendothelial cells, particularly in the liver, spleen and bone marrow. GD is a clinically heterogeneous disorder and it is conventionally classified in type 1 (non-neuronopathic disease), types 2 and 3 (acute and chronic neuronopathic disease, respectively). Features of clinical presentation and organ involvement as well as age, at presentation are highly variable among affected patients. Splenomegaly and/or thrombocytopenia are the most common presenting features either as incidental findings during routine blood count or physical examination. Other possible clinical manifestations can be hepatomegaly with abnormal liver function tests, bone pain often associated with skeletal complications (pathological fractures, avascular necrosis, osteopenia), pulmonary hypertension and, in neuronopathic forms, neurological manifestations (dysfunction of eye motility, mild mental retardation, behavioural difficulties, choreoathetosis and cramp attacks). For all these reasons GD diagnosis is often a real challenge for internists. In the presence of clinical suspicion of GD, the diagnosis has to be confirmed measuring the betaglucocerebrosidase activity in the peripheral leukocytes and by molecular analysis. Each patient needs an accurate initial multisystemic assessment, staging the damage of all the possible organs involved, and the burden of the disease, followed by regular followup. The correct and early diagnosis permits to treat patients properly, avoiding the complications of the disease.
Collapse
Affiliation(s)
- Elena Cassinerio
- Rare Diseases Center, Department of Medicine and Medical Specialities, "Ca' Granda" Foundation IRCCS Ospedale Maggiore Policlinico, University of Milan, Italy.
| | - Giovanna Graziadei
- Rare Diseases Center, Department of Medicine and Medical Specialities, "Ca' Granda" Foundation IRCCS Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Erika Poggiali
- Department of Clinical Sciences and Community Health, University of Milan, Italy
| |
Collapse
|
23
|
Sorting out the trash: the spatial nature of eukaryotic protein quality control. Curr Opin Cell Biol 2014; 26:139-146. [PMID: 24463332 DOI: 10.1016/j.ceb.2013.12.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 01/24/2023]
Abstract
Failure to maintain protein homeostasis is associated with aggregation and cell death, and underies a growing list of pathologies including neurodegenerative diseases, aging, and cancer. Misfolded proteins can be toxic and interfere with normal cellular functions, particularly during proteotoxic stress. Accordingly, molecular chaperones, the ubiquitin-proteasome system (UPS) and autophagy together promote refolding or clearance of misfolded proteins. Here we discuss emerging evidence that the pathways of protein quality control (PQC) are intimately linked to cell architecture, and sequester proteins into spatially and functionally distinct PQC compartments. This sequestration serves a number of functions, including enhancing the efficiency of quality control; clearing the cellular milieu of potentially toxic species and facilitating asymmetric inheritance of damaged proteins to promote rejuvenation of daughter cells.
Collapse
|
24
|
Wang F, Segatori L. Remodeling the proteostasis network to rescue glucocerebrosidase variants by inhibiting ER-associated degradation and enhancing ER folding. PLoS One 2013; 8:e61418. [PMID: 23620750 PMCID: PMC3631227 DOI: 10.1371/journal.pone.0061418] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/12/2013] [Indexed: 11/20/2022] Open
Abstract
Gaucher’s disease (GD) is characterized by loss of lysosomal glucocerebrosidase (GC) activity. Mutations in the gene encoding GC destabilize the protein’s native folding leading to ER-associated degradation (ERAD) of the misfolded enzyme. Enhancing the cellular folding capacity by remodeling the proteostasis network promotes native folding and lysosomal activity of mutated GC variants. However, proteostasis modulators reported so far, including ERAD inhibitors, trigger cellular stress and lead to induction of apoptosis. We show herein that lacidipine, an L-type Ca2+ channel blocker that also inhibits ryanodine receptors on the ER membrane, enhances folding, trafficking and lysosomal activity of the most severely destabilized GC variant achieved via ERAD inhibition in fibroblasts derived from patients with GD. Interestingly, reprogramming the proteostasis network by combining modulation of Ca2+ homeostasis and ERAD inhibition remodels the unfolded protein response and dramatically lowers apoptosis induction typically associated with ERAD inhibition.
Collapse
Affiliation(s)
- Fan Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, United States of America
| | - Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, United States of America
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Song W, Wang F, Savini M, Ake A, di Ronza A, Sardiello M, Segatori L. TFEB regulates lysosomal proteostasis. Hum Mol Genet 2013; 22:1994-2009. [PMID: 23393155 DOI: 10.1093/hmg/ddt052] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a β-hexosaminidase mutant associated with the development of another LSD, Tay-Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs.
Collapse
Affiliation(s)
- Wensi Song
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Denny RA, Gavrin LK, Saiah E. Recent developments in targeting protein misfolding diseases. Bioorg Med Chem Lett 2013; 23:1935-44. [PMID: 23454013 DOI: 10.1016/j.bmcl.2013.01.089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 01/18/2013] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
Abstract
Protein misfolding is an emerging field that crosses multiple therapeutic areas and causes many serious diseases. As the biological pathways of protein misfolding become more clearly elucidated, small molecule approaches in this arena are gaining increased attention. This manuscript will survey current small molecules from the literature that are known to modulate misfolding, stabilization or proteostasis. Specifically, the following targets and approaches will be discussed: CFTR, glucocerebrosidase, modulation of toxic oligomers, serum amyloid P (SAP) sections and HSF1 activators.
Collapse
Affiliation(s)
- Rajiah Aldrin Denny
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 CambridgePark Drive, Cambridge, MA 02140, USA
| | | | | |
Collapse
|
27
|
Maor G, Filocamo M, Horowitz M. ITCH regulates degradation of mutant glucocerebrosidase: implications to Gaucher disease. Hum Mol Genet 2012; 22:1316-27. [PMID: 23255161 DOI: 10.1093/hmg/dds535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inability to properly degrade unfolded or misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and unfolded protein response. This is particularly important in cases of diseases in which the mutant proteins undergo ER-associated degradation (ERAD), as in Gaucher disease (GD). GD is a genetic, autosomal recessive disease that results from mutations in the GBA1 gene, encoding the lysosomal enzyme acid β-glucocerebrosidase (GCase). We have shown that mutant GCase variants undergo ERAD, the degree of which is a major determinant of disease severity. Most ERAD substrates undergo polyubiquitination and proteasomal degradation. Therefore, one expects that mutant GCase variants are substrates for several E3 ubiquitin ligases in different cells. We tested the possibility that ITCH, a known E3 ubiquitin ligase, with a pivotal role in proliferation and differentiation of the skin, recognizes mutant GCase variants and mediates their polyubiquitination and degradation. Our results strongly suggest that ITCH interacts with mutant GCase variants and mediates their lysine 48 polyubiquitination and degradation.
Collapse
Affiliation(s)
- Gali Maor
- Department of Cell Research and Immunology, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
28
|
Babajani G, Tropak MB, Mahuran DJ, Kermode AR. Pharmacological chaperones facilitate the post-ER transport of recombinant N370S mutant β-glucocerebrosidase in plant cells: evidence that N370S is a folding mutant. Mol Genet Metab 2012; 106:323-9. [PMID: 22592100 PMCID: PMC3425598 DOI: 10.1016/j.ymgme.2012.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 12/22/2022]
Abstract
Gaucher disease is a prevalent lysosomal storage disease in which affected individuals inherit mutations in the gene (GBA1) encoding lysosomal acid β-glucosidase (glucocerebrosidase, GCase, EC 3.2.1.45). One of the most prevalent disease-causing mutations in humans is a N370S missense mutation in the GCase protein. As part of a larger endeavor to study the fate of mutant human proteins expressed in plant cells, the N370S mutant protein along with the wild-type- (WT)-GCase, both equipped with a signal peptide, were synthesized in transgenic tobacco BY2 cells, which do not possess lysosomes. The enzymatic activity of plant-recombinant N370S GCase lines was significantly lower (by 81-95%) than that of the WT-GCase lines. In contrast to the WT-GCase protein, which was efficiently secreted from tobacco BY2 cells, and detected in large amounts in the culture medium, only a small proportion of the N370S GCase was secreted. Pharmacological chaperones such as N-(n-nonyl) deoxynojirimycin and ambroxol increased the steady-state mutant protein levels both inside the plant cells and in the culture medium. These findings contradict the assertion that small molecule chaperones increase N370S GCase activity (as assayed in treated patient cell lysates) by stabilizing the enzyme in the lysosome, and suggest that the mutant protein is impaired in its ability to obtain its functional folded conformation, which is a requirement for exiting the lumen of the ER.
Collapse
Affiliation(s)
- Gholamreza Babajani
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, BC, Canada V5A 1S6
| | | | | | | |
Collapse
|
29
|
Decroocq C, Rodríguez-Lucena D, Ikeda K, Asano N, Compain P. Cyclodextrin-Based Iminosugar Click Clusters: The First Examples of Multivalent Pharmacological Chaperones for the Treatment of Lysosomal Storage Disorders. Chembiochem 2012; 13:661-4. [DOI: 10.1002/cbic.201200005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 12/31/2022]
|
30
|
Lieberman RL. A Guided Tour of the Structural Biology of Gaucher Disease: Acid-β-Glucosidase and Saposin C. Enzyme Res 2011; 2011:973231. [PMID: 22145077 PMCID: PMC3226326 DOI: 10.4061/2011/973231] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/07/2011] [Indexed: 01/27/2023] Open
Abstract
Mutations in both acid-β-glucosidase (GCase) and saposin C lead to Gaucher disease, the most common lysosomal storage disorder. The past several years have seen an explosion of structural and biochemical information for these proteins, which have provided new insight into the biology and pathogenesis of Gaucher disease, as well as opportunities for new therapeutic directions. Nearly 20 crystal structures of GCase are now available, from different heterologous sources, complexed with different ligands in the active site, in different glycosylation states, as well as one that harbors a prevalent disease-causing mutation, N370S. For saposin C, two NMR and 3 crystal structures have been solved, each with its unique snapshot. This review focuses on the details of these structures to highlight salient common and disparate features that contribute to our current state of knowledge of this complex orphan disease.
Collapse
Affiliation(s)
- Raquel L. Lieberman
- School of Chemistry & Biochemistry, Institute for Bioscience and Bioengineering, Georgia Institute of Technology, 901 Atlantic Drive NW Atlanta, GA 30332-0400, USA
| |
Collapse
|
31
|
Orwig SD, Tan YL, Grimster NP, Yu Z, Powers ET, Kelly JW, Lieberman RL. Binding of 3,4,5,6-tetrahydroxyazepanes to the acid-β-glucosidase active site: implications for pharmacological chaperone design for Gaucher disease. Biochemistry 2011; 50:10647-57. [PMID: 22047104 DOI: 10.1021/bi201619z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-β-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.
Collapse
Affiliation(s)
- Susan D Orwig
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | | | | | | | | | | |
Collapse
|
32
|
Wang F, Song W, Brancati G, Segatori L. Inhibition of endoplasmic reticulum-associated degradation rescues native folding in loss of function protein misfolding diseases. J Biol Chem 2011; 286:43454-64. [PMID: 22006919 DOI: 10.1074/jbc.m111.274332] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysosomal storage disorders are often caused by mutations that destabilize native folding and impair trafficking of secretory proteins. We demonstrate that endoplasmic reticulum (ER)-associated degradation (ERAD) prevents native folding of mutated lysosomal enzymes in patient-derived fibroblasts from two clinically distinct lysosomal storage disorders, namely Gaucher and Tay-Sachs disease. Prolonging ER retention via ERAD inhibition enhanced folding, trafficking, and activity of these unstable enzyme variants. Furthermore, combining ERAD inhibition with enhancement of the cellular folding capacity via proteostasis modulation resulted in synergistic rescue of mutated enzymes. ERAD inhibition was achieved by cell treatment with small molecules that interfere with recognition (kifunensine) or retrotranslocation (eeyarestatin I) of misfolded substrates. These different mechanisms of ERAD inhibition were shown to enhance ER retention of mutated proteins but were associated with dramatically different levels of ER stress, unfolded protein response activation, and unfolded protein response-induced apoptosis.
Collapse
Affiliation(s)
- Fan Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | | | | | | |
Collapse
|
33
|
Yap TL, Gruschus JM, Velayati A, Westbroek W, Goldin E, Moaven N, Sidransky E, Lee JC. Alpha-synuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases. J Biol Chem 2011; 286:28080-8. [PMID: 21653695 PMCID: PMC3151053 DOI: 10.1074/jbc.m111.237859] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/03/2011] [Indexed: 01/26/2023] Open
Abstract
The presynaptic protein α-synuclein (α-syn), particularly in its amyloid form, is widely recognized for its involvement in Parkinson disease (PD). Recent genetic studies reveal that mutations in the gene GBA are the most widespread genetic risk factor for parkinsonism identified to date. GBA encodes for glucocerebrosidase (GCase), the enzyme deficient in the lysosomal storage disorder, Gaucher disease (GD). In this work, we investigated the possibility of a physical linkage between α-syn and GCase, examining both wild type and the GD-related N370S mutant enzyme. Using fluorescence and nuclear magnetic resonance spectroscopy, we determined that α-syn and GCase interact selectively under lysosomal solution conditions (pH 5.5) and mapped the interaction site to the α-syn C-terminal residues, 118-137. This α-syn-GCase complex does not form at pH 7.4 and is stabilized by electrostatics, with dissociation constants ranging from 1.2 to 22 μm in the presence of 25 to 100 mm NaCl. Intriguingly, the N370S mutant form of GCase has a reduced affinity for α-syn, as does the inhibitor conduritol-β-epoxide-bound enzyme. Immunoprecipitation and immunofluorescence studies verified this interaction in human tissue and neuronal cell culture, respectively. Although our data do not preclude protein-protein interactions in other cellular milieux, we suggest that the α-syn-GCase association is favored in the lysosome, and that this noncovalent interaction provides the groundwork to explore molecular mechanisms linking PD with mutant GBA alleles.
Collapse
Affiliation(s)
- Thai Leong Yap
- Laboratory of Molecular Biophysics, National Heart Lung and Blood Institute, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Burns JN, Turnage KC, Walker CA, Lieberman RL. The stability of myocilin olfactomedin domain variants provides new insight into glaucoma as a protein misfolding disorder. Biochemistry 2011; 50:5824-33. [PMID: 21612213 PMCID: PMC3128542 DOI: 10.1021/bi200231x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myocilin variants, localized to the olfactomedin (OLF) domain, are linked to early-onset, inherited forms of open-angle glaucoma. Disease-causing myocilin variants accumulate within trabecular meshwork cells instead of being secreted to the trabecular extracellular matrix of the eye. We hypothesize that, like in other diseases of protein misfolding, aggregation and downstream pathogenesis originate from the compromised thermal stability of mutant myocilins. In an expansion of our pilot study of four mutants, we compare 21 additional purified OLF variants by using a fluorescence stability assay and investigate the secondary structure of the most stable variants by circular dichroism. Variants with lower melting temperatures are correlated with earlier glaucoma diagnoses. The chemical chaperone trimethylamine N-oxide is capable of restoring the stability of most, but not all, variants to wild-type (WT) levels. Interestingly, three reported OLF disease variants, A427T, G246R, and A445V, exhibited properties indistinguishable from those of WT OLF, but an increased apparent aggregation propensity in vitro relative to that of WT OLF suggests that biophysical factors other than thermal stability, such as kinetics and unfolding pathways, may also be involved in myocilin glaucoma pathogenesis. Similarly, no changes from WT OLF stability and secondary structure were detected for three annotated single-nucleotide polymorphism variants. Our work provides the first quantitative demonstration of compromised stability among many identified OLF variants and places myocilin glaucoma in the context of other diseases of protein misfolding.
Collapse
Affiliation(s)
- J. Nicole Burns
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400 USA
| | - Katherine C. Turnage
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400 USA
| | - Chandler A. Walker
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400 USA
| | - Raquel L. Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400 USA
| |
Collapse
|
35
|
Chang SW, Li CF, Lee GC, Yeh T, Shaw JF. Engineering the expression and biochemical characteristics of recombinant Candida rugosa LIP2 lipase by removing the additional N-terminal peptide and regional codon optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:6710-6719. [PMID: 21561168 DOI: 10.1021/jf200537w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Candida rugosa lipase (CRL), an important industrial enzyme, has been established, containing several different isoforms which were encoded by the high-identity lip gene family (lip1 to lip7). In this study, we compared the expression and biochemical characterization with three different engineered lip2 constructions in the yeast Pichia pastoris. Our results showed that lip2 (lip2) has an overall improvement of 50% higher production yield (1.446 U/mL) relative to that of nflip2 (0.964 U/mL) at 7 days of cultivation time. Codon-optimized lip2 (colip2) has a 2.3-fold higher production yield (2.182 U/mL) compared to that of lip2 (noncodon-optimized; 1.446 U/mL) and nflip2 (0.964 U/mL), with a cultivation time of 5 days. This finding demonstrated that the removal of the N-terminus and the regional codon optimization of the lip2 gene fragment at the 5' end can greatly increase the expression level of recombinant LIP2 in the P. pastoris system. The distinct biochemical properties of our purified recombinant nfLIP2 and LIP2 suggested that they are potentially useful for various industrial applications.
Collapse
Affiliation(s)
- Shu-Wei Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.
| | | | | | | | | |
Collapse
|
36
|
Bobst CE, Thomas JJ, Salinas PA, Savickas P, Kaltashov IA. Impact of oxidation on protein therapeutics: conformational dynamics of intact and oxidized acid-β-glucocerebrosidase at near-physiological pH. Protein Sci 2011; 19:2366-78. [PMID: 20945356 DOI: 10.1002/pro.517] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The solution dynamics of an enzyme acid-β-glucocerebrosidase (GCase) probed at a physiologically relevant (lysosomal) pH by hydrogen/deuterium exchange mass spectrometry (HDX-MS) reveals very uneven distribution of backbone amide protection across the polypeptide chain. Highly mobile segments are observed even within the catalytic cavity alongside highly protective segments, highlighting the importance of the balance between conformational stability and flexibility for enzymatic activity. Forced oxidation of GCase that resulted in a 40-60% reduction in in vitro biological activity affects the stability of some key structural elements within the catalytic site. These changes in dynamics occur on a longer time scale that is irrelevant for catalysis, effectively ruling out loss of structure in the catalytic site as a major factor contributing to the reduction of the catalytic activity. Oxidation also leads to noticeable destabilization of conformation in remote protein segments on a much larger scale, which is likely to increase the aggregation propensity of GCase and affect its bioavailability. Therefore, it appears that oxidation exerts its negative impact on the biological activity of GCase indirectly, primarily through accelerated aggregation and impaired trafficking.
Collapse
Affiliation(s)
- Cedric E Bobst
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
37
|
Wang F, Agnello G, Sotolongo N, Segatori L. Ca2+ homeostasis modulation enhances the amenability of L444P glucosylcerebrosidase to proteostasis regulation in patient-derived fibroblasts. ACS Chem Biol 2011; 6:158-68. [PMID: 21043486 DOI: 10.1021/cb100321m] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gaucher's disease is caused by deficiency of lysosomal glucocerebrosidase (GC) activity and accumulation of GC substrate, glucosylceramide. A number of point mutations in GC encoding gene have been reported to destabilize the enzyme native structure, resulting in protein misfolding and degradation. Particularly, the L444P GC variant, often associated with neuropathic manifestations of the disease, is severely destabilized and immediately degraded, resulting in complete loss of enzymatic activity. In addition, glucosylceramide accumulation causes Ca(2+) efflux from the endoplasmic reticulum (ER) through ryanodine receptors (RyRs) in the neurons of Gaucher's disease patients. We hypothesized that excessive [Ca(2+)](ER) efflux impairs ER folding and studied how modulation of [Ca(2+)](ER) affects folding of L444P GC in patient-derived fibroblasts. We report that RyRs blockers mediated [Ca(2+)] modulation, recreating a "wild type-like" folding environment in the ER, more amenable to rescuing the folding of mutated L444P GC through proteostasis regulation. Treating patient-derived fibroblasts with a RyRs blocker and a proteostasis modulator, MG-132, results in enhanced folding, trafficking, and activity of the severely destabilized L444P GC variant. Global gene expression profiling and mechanistic studies were conducted to investigate the folding quality control expression pattern conducive to native folding of mutated L444P GC and revealed that the ER-lumenal BiP/GRP78 plays a key role in the biogenesis of this GC variant.
Collapse
Affiliation(s)
- Fan Wang
- Department of Chemical and Biomolecular Engineering and ‡Department of Biochemistry and Cell Biology, Rice University, CHBE-MS 362, 6100 Main St., Houston, Texas 77005, United States
| | - Giulia Agnello
- Department of Chemical and Biomolecular Engineering and ‡Department of Biochemistry and Cell Biology, Rice University, CHBE-MS 362, 6100 Main St., Houston, Texas 77005, United States
| | - Natasha Sotolongo
- Department of Chemical and Biomolecular Engineering and ‡Department of Biochemistry and Cell Biology, Rice University, CHBE-MS 362, 6100 Main St., Houston, Texas 77005, United States
| | - Laura Segatori
- Department of Chemical and Biomolecular Engineering and ‡Department of Biochemistry and Cell Biology, Rice University, CHBE-MS 362, 6100 Main St., Houston, Texas 77005, United States
| |
Collapse
|
38
|
Novo JB, Oliveira MLS, Magalhães GS, Morganti L, Raw I, Ho PL. Generation of polyclonal antibodies against recombinant human glucocerebrosidase produced in Escherichia coli. Mol Biotechnol 2011; 46:279-86. [PMID: 20574770 DOI: 10.1007/s12033-010-9303-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher's disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59-66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.
Collapse
Affiliation(s)
- Juliana Branco Novo
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, 05503-900, Brazil.
| | | | | | | | | | | |
Collapse
|
39
|
Gupta N, Oppenheim IM, Kauvar EF, Tayebi N, Sidransky E. Type 2 Gaucher disease: phenotypic variation and genotypic heterogeneity. Blood Cells Mol Dis 2011; 46:75-84. [PMID: 20880730 PMCID: PMC3018671 DOI: 10.1016/j.bcmd.2010.08.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/24/2010] [Indexed: 11/21/2022]
Abstract
Gaucher disease (GD), the most common lysosomal storage disease, results from a deficiency of the lysosomal enzyme glucocerebrosidase. GD has been classified into 3 types, of which type 2 (the acute neuronopathic form) is the most severe, presenting pre- or perinatally, or in the first few months of life. Traditionally, type 2 GD was considered to have the most uniform clinical phenotype when compared to other GD subtypes. However, case studies over time have demonstrated that type 2 GD, like types 1 and 3, manifests with a spectrum of phenotypes. This review includes case reports that illustrate the broad range of clinical presentations encountered in type 2 GD, as well as a discussion of associated manifestations, pathological findings, diagnostic techniques, and a review of current therapies. While type 2 GD is generally associated with severe mutations in the glucocerebrosidase gene, there is also significant genotypic heterogeneity.
Collapse
Affiliation(s)
- N Gupta
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3708, USA
| | | | | | | | | |
Collapse
|
40
|
Wei RR, Hughes H, Boucher S, Bird JJ, Guziewicz N, Van Patten SM, Qiu H, Pan CQ, Edmunds T. X-ray and biochemical analysis of N370S mutant human acid β-glucosidase. J Biol Chem 2010; 286:299-308. [PMID: 20980263 DOI: 10.1074/jbc.m110.150433] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gaucher disease is caused by mutations in the enzyme acid β-glucosidase (GCase), the most common of which is the substitution of serine for asparagine at residue 370 (N370S). To characterize the nature of this mutation, we expressed human N370S GCase in insect cells and compared the x-ray structure and biochemical properties of the purified protein with that of the recombinant human GCase (imiglucerase, Cerezyme®). The x-ray structure of N370S mutant acid β-glucosidase at acidic and neutral pH values indicates that the overall folding of the N370S mutant is identical to that of recombinant GCase. Subtle differences were observed in the conformation of a flexible loop at the active site and in the hydrogen bonding ability of aromatic residues on this loop with residue 370 and the catalytic residues Glu-235 and Glu-340. Circular dichroism spectroscopy showed a pH-dependent change in the environment of tryptophan residues in imiglucerase that is absent in N370S GCase. The mutant protein was catalytically deficient with reduced V(max) and increased K(m) values for the substrate p-nitrophenyl-β-D-glucopyranoside and reduced sensitivity to competitive inhibitors. N370S GCase was more stable to thermal denaturation and had an increased lysosomal half-life compared with imiglucerase following uptake into macrophages. The competitive inhibitor N-(n-nonyl)deoxynojirimycin increased lysosomal levels of both N370S and imiglucerase 2-3-fold by reducing lysosomal degradation. Overall, these data indicate that the N370S mutation results in a normally folded but less flexible protein with reduced catalytic activity compared with imiglucerase.
Collapse
Affiliation(s)
- Ronnie R Wei
- Genzyme Corp., Framingham, Massachusetts 01701, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Comparative therapeutic effects of velaglucerase alfa and imiglucerase in a Gaucher disease mouse model. PLoS One 2010; 5:e10750. [PMID: 20505772 PMCID: PMC2873993 DOI: 10.1371/journal.pone.0010750] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/29/2010] [Indexed: 12/27/2022] Open
Abstract
Gaucher disease type 1 is caused by the defective activity of the lysosomal enzyme, acid β-glucosidase (GCase). Regular infusions of purified recombinant GCase are the standard of care for reversing hematologic, hepatic, splenic, and bony manifestations. Here, similar in vitro enzymatic properties, and in vivo pharmacokinetics and pharmacodynamics (PK/PD) and therapeutic efficacy of GCase were found with two human GCases, recombinant GCase (CHO cell, imiglucerase, Imig) and gene-activated GCase (human fibrosarcoma cells, velaglucerase alfa, Vela), in a Gaucher mouse, D409V/null. About 80+% of either enzyme localized to the liver interstitial cells and <5% was recovered in spleens and lungs after bolus i.v. injections. Glucosylceramide (GC) levels and storage cell numbers were reduced in a dose (5, 15 or 60 U/kg/wk) dependent manner in livers (60–95%) and in spleens (∼10–30%). Compared to Vela, Imig (60 U/kg/wk) had lesser effects at reducing hepatic GC (p = 0.0199) by 4 wks; this difference disappeared by 8 wks when nearly WT levels were achieved by Imig. Anti-GCase IgG was detected in GCase treated mice at 60 U/kg/wk, and IgE mediated acute hypersensitivity and death occurred after several injections of 60 U/kg/wk (21% with Vela and 34% with Imig). The responses of GC levels and storage cell numbers in Vela- and Imig-treated Gaucher mice at various doses provide a backdrop for clinical applications and decisions.
Collapse
|
42
|
Kang TS, Stevens RC. Structural aspects of therapeutic enzymes to treat metabolic disorders. Hum Mutat 2010; 30:1591-610. [PMID: 19790257 DOI: 10.1002/humu.21111] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein therapeutics represents a niche subset of pharmacological agents that is rapidly gaining importance in medicine. In addition to the exceptional specificity that is characteristic of protein therapeutics, several classes of proteins have also been effectively utilized for treatment of conditions that would otherwise lack effective pharmacotherapeutic options. A particularly striking class of protein therapeutics is exogenous enzymes administered for replacement therapy in patients afflicted with metabolic disorders. To date, at least 11 enzymes have either been approved for use, or are in clinical trials for the treatment of selected inherited metabolic disorders. With the recent advancement in structural biology, a significantly larger amount of structural information for several of these enzymes is now available. This article is an overview of the correlation between structural perturbations of these enzymes with the clinical presentation of the respective metabolic conditions, as well as a discussion of the relevant structural modification strategies engaged in improving these enzymes for replacement therapies.
Collapse
Affiliation(s)
- Tse Siang Kang
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
43
|
Landon MR, Lieberman RL, Hoang QQ, Ju S, Caaveiro JMM, Orwig SD, Kozakov D, Brenke R, Chuang GY, Beglov D, Vajda S, Petsko GA, Ringe D. Detection of ligand binding hot spots on protein surfaces via fragment-based methods: application to DJ-1 and glucocerebrosidase. J Comput Aided Mol Des 2009; 23:491-500. [PMID: 19521672 PMCID: PMC2889209 DOI: 10.1007/s10822-009-9283-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 05/13/2009] [Indexed: 12/28/2022]
Abstract
The identification of hot spots, i.e., binding regions that contribute substantially to the free energy of ligand binding, is a critical step for structure-based drug design. Here we present the application of two fragment-based methods to the detection of hot spots for DJ-1 and glucocerebrosidase (GCase), targets for the development of therapeutics for Parkinson's and Gaucher's diseases, respectively. While the structures of these two proteins are known, binding information is lacking. In this study we employ the experimental multiple solvent crystal structures (MSCS) method and computational fragment mapping (FTMap) to identify regions suitable for the development of pharmacological chaperones for DJ-1 and GCase. Comparison of data derived via MSCS and FTMap also shows that FTMap, a computational method for the identification of fragment binding hot spots, is an accurate and robust alternative to the performance of expensive and difficult crystallographic experiments.
Collapse
Affiliation(s)
- Melissa R Landon
- Department of Biochemistry, Rosenstiel Basic Medical Sciences Center, Brandeis University, 415 South Street MS 029, Waltham, MA 02454, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lieberman RL, D'aquino JA, Ringe D, Petsko GA. Effects of pH and iminosugar pharmacological chaperones on lysosomal glycosidase structure and stability. Biochemistry 2009; 48:4816-27. [PMID: 19374450 PMCID: PMC2699628 DOI: 10.1021/bi9002265] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human lysosomal enzymes acid-beta-glucosidase (GCase) and acid-alpha-galactosidase (alpha-Gal A) hydrolyze the sphingolipids glucosyl- and globotriaosylceramide, respectively, and mutations in these enzymes lead to the lipid metabolism disorders Gaucher and Fabry disease, respectively. We have investigated the structure and stability of GCase and alpha-Gal A in a neutral-pH environment reflective of the endoplasmic reticulum and an acidic-pH environment reflective of the lysosome. These details are important for the development of pharmacological chaperone therapy for Gaucher and Fabry disease, in which small molecules bind mutant enzymes in the ER to enable the mutant enzyme to meet quality control requirements for lysosomal trafficking. We report crystal structures of apo GCase at pH 4.5, at pH 5.5, and in complex with the pharmacological chaperone isofagomine (IFG) at pH 7.5. We also present thermostability analysis of GCase at pH 7.4 and 5.2 using differential scanning calorimetry. We compare our results with analogous experiments using alpha-Gal A and the chaperone 1-deoxygalactonijirimycin (DGJ), including the first structure of alpha-Gal A with DGJ. Both GCase and alpha-Gal A are more stable at lysosomal pH with and without their respective iminosugars bound, and notably, the stability of the GCase-IFG complex is pH sensitive. We show that the conformations of the active site loops in GCase are sensitive to ligand binding but not pH, whereas analogous galactose- or DGJ-dependent conformational changes in alpha-Gal A are not seen. Thermodynamic parameters obtained from alpha-Gal A unfolding indicate two-state, van't Hoff unfolding in the absence of the iminosugar at neutral and lysosomal pH, and non-two-state unfolding in the presence of DGJ. Taken together, these results provide insight into how GCase and alpha-Gal A are thermodynamically stabilized by iminosugars and suggest strategies for the development of new pharmacological chaperones for lysosomal storage disorders.
Collapse
Affiliation(s)
- Raquel L Lieberman
- Structural Neurology Lab at the Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
45
|
Liou B, Grabowski GA. Participation of asparagine 370 and glutamine 235 in the catalysis by acid beta-glucosidase: the enzyme deficient in Gaucher disease. Mol Genet Metab 2009; 97:65-74. [PMID: 19217815 PMCID: PMC2699545 DOI: 10.1016/j.ymgme.2009.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 01/07/2009] [Indexed: 11/26/2022]
Abstract
The hydrolysis of glucosylceramide by acid beta-glucosidase proceeds via a two-step, double displacement mechanism that includes cleavage of the O-beta-glucosidic bond, enzyme-glucosylation and, then, enzyme-deglucosylation. Two residues that may impact this cycle are N370 and E235. The N370S mutant enzyme is very common in Gaucher disease type 1 patients. Homology and crystal data predictions suggested that E235 is the acid/base catalyst in the hydrolytic reaction. Here, the roles of N370 and E235 in hydrolysis were explored using mutant proteins with selected amino acid substitutions. Heterologously expressed enzymes were characterized using inhibitors, activators, and alternative substrates to gain insight into the effects on the glucosylation (single turnover) and deglucosylation (transglucosylation) steps in catalysis. Specific substitutions at N370 selectively altered only the glucosylation step whereas N370S altered this and the deglucosylation steps. To provide functional data to support E235 as the acid/base catalyst, progress curves with poor substrates with more acidic leaving groups were used in the presence and absence of azide as an exogenous nucleophile. The restoration of E235G activity to nearly wild-type levels was achieved using azide with 2,4-dinitrophenyl-beta-glucoside as substrate. The loss of the acidic arm of the pH optimum activity curve of E235G provided additional functional support for E235 as the acid/base in catalysis. This study provides insight into the function of these residues in acid beta-glucosidase active site function.
Collapse
Affiliation(s)
- Benjamin Liou
- The Children’s Hospital Research Foundation of Cincinnati Children’s Hospital Medical Center, Division and Program in Human Genetics, 3333 Burnet Avenue, ML 4006, Cincinnati, OH 45229-3039
| | - Gregory A. Grabowski
- The Children’s Hospital Research Foundation of Cincinnati Children’s Hospital Medical Center, Division and Program in Human Genetics, 3333 Burnet Avenue, ML 4006, Cincinnati, OH 45229-3039
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
46
|
Rigat B, Mahuran D. Diltiazem, a L-type Ca(2+) channel blocker, also acts as a pharmacological chaperone in Gaucher patient cells. Mol Genet Metab 2009; 96:225-32. [PMID: 19167257 PMCID: PMC2910750 DOI: 10.1016/j.ymgme.2008.12.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/11/2008] [Accepted: 12/11/2008] [Indexed: 12/27/2022]
Abstract
Recently, inhibition of L-type Ca(2+) channels, using either Diltiazem or Verapamil, has been reported to partially restore mutant glucocerebrosidase activity in cells from patients with Gaucher disease homozygous for the N370S or L444P alleles, as well as cells from patients with two other lysosomal storage diseases. It was hypothesized that these drugs act on the endoplasmic reticulum, increasing its folding efficiency, inhibited due to altered calcium homeostasis. Several other laboratories have reported that cells carrying either the N370S or the F213I alleles are amenable to enzyme enhancement therapy with pharmacological chaperones, whereas cells homozygous for L444P respond poorly. We found that Verapamil treatment does not enhance mutant enzyme activity in any of the cell lines tested, while Diltiazem moderately increases activity in normal cells, and in N370S/N370S and F213I/L444P, but not in L444P/L444P Gaucher cells, or in either of two adult Tay-Sachs disease cell lines. Since the mode of action of pharmacological chaperones and Diltiazem are believed to be different, we examined the possibility that they could act in concert. Diltiazem co-administered with known chaperones failed to increase enzyme activities above that reached by chaperone-treatment alone in any of the patient cell lines. Thus, we re-examined the possibility that Diltiazem acts as a pharmacological chaperone. We found that, at the acidic pH of lysosomes, Diltiazem was not an inhibitor, nor did its presence increase the heat stability of glucocerebrosidase. However, at neutral pH, found in the endoplasmic reticulum, Diltiazem exhibited both of these properties. Thus Diltiazem exhibits the biochemical characteristics of a glucocerebrosidase pharmacological chaperone.
Collapse
Affiliation(s)
- Brigitte Rigat
- Genetics & Genome Biology Program, Research Institute, The Hospital for Sick Children, 555 University Ave, Toronto, Ont., Canada M5G 1X8
| | - Don Mahuran
- Genetics & Genome Biology Program, Research Institute, The Hospital for Sick Children, 555 University Ave, Toronto, Ont., Canada M5G 1X8
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Banting Institute, 100 College St., Toronto, Ont., Canada M5G 1L5
| |
Collapse
|
47
|
A sensitive and reproducible fluorescent-based HPLC assay to measure the activity of acid as well as neutral β-glucocerebrosidases. Anal Biochem 2008; 383:122-9. [DOI: 10.1016/j.ab.2008.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 07/24/2008] [Accepted: 07/24/2008] [Indexed: 11/19/2022]
|
48
|
Xu YH, Reboulet R, Quinn B, Huelsken J, Witte D, Grabowski GA. Dependence of reversibility and progression of mouse neuronopathic Gaucher disease on acid beta-glucosidase residual activity levels. Mol Genet Metab 2008; 94:190-203. [PMID: 18346921 PMCID: PMC2577881 DOI: 10.1016/j.ymgme.2008.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
Genetic and chemically induced neuronopathic mouse models of Gaucher disease were developed to facilitate understanding of the reversibility and/or progression of CNS involvement. The lethality of the skin permeability barrier defect of the complete gene knock out [gba, (glucocerebrosidase) GCase] was avoided by conditional reactivation of a low activity allele (D409H) in keratinocytes (kn-9H). In kn-9H mice, progressive CNS disease and massive glucosylceramide storage in tissues led to death from CNS involvement by the age of 14 days. Conduritol B epoxide (CBE, a covalent inhibitor of GCase) treatment (for 8-12 days) of wild type, D409H, D409V or V394L homozygotes recapitulated the CNS phenotype of the kn-9H mice with seizures, tail arching, shaking, tremor, quadriparesis, extensive neuronal degeneration loss and apoptosis, and death by the age of 14 days. Minor CNS abnormalities occurred after daily CBE injections of 100 mg/kg/day for 6 doses, but neuronal degeneration was progressive and glucosylceramide storage persisted in D409V homozygotes in the 2 to 5 months after CBE cessation; wild type and D409H mice had persistent neurological damage without progression. The persistent CNS deterioration, histologic abnormalities, and glucosylceramide storage in the CBE-treated D409V mice revealed a threshold level of GCase activity necessary for the prevention of progression of CNS involvement.
Collapse
Affiliation(s)
- You-Hai Xu
- The Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039
| | - Rachel Reboulet
- The Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039
| | - Brian Quinn
- The Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039
| | - Joerg Huelsken
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), Switzerland
| | - David Witte
- The Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039
| | - Gregory A. Grabowski
- The Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039
| |
Collapse
|
49
|
Abstract
BACKGROUND The therapy of the lysosomal storage diseases (LSDs) was developed by supplying adequate amounts of the needed enzyme to affected individuals. This approach in Gaucher disease provided a prototype for the basic and clinical sciences, and the economic foundation for other ultra-orphan diseases. OBJECTIVE Using the success of enzyme therapy for Gaucher disease, the challenges are highlighted for alternative bioproduction systems, and substrate reduction and molecular chaperone approaches for treatment of Gaucher disease and other ultra-orphan diseases. METHODS Literature review provided insight into the current status of enzyme therapies for LSDs, the proposed mechanisms of alternative approaches to therapy, and the obstacles in a competitive marketplace for treatment of ultra-rare diseases. RESULTS/CONCLUSIONS These developments are placed in the contexts of finding rare patients with LSDs, their marked phenotypic spectrum, potential markets, and new orphan drug costs. The confluence of these challenges has led to a competitive environment with the potential for multiple, alternative, expensive treatments for orphan diseases.
Collapse
Affiliation(s)
- Gregory A Grabowski
- University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, The Division of Human Genetics, Department of Pediatrics, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|
50
|
Hruska KS, LaMarca ME, Scott CR, Sidransky E. Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). Hum Mutat 2008; 29:567-83. [DOI: 10.1002/humu.20676] [Citation(s) in RCA: 463] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|