1
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
2
|
Werner H. The IGF1 Signaling Pathway: From Basic Concepts to Therapeutic Opportunities. Int J Mol Sci 2023; 24:14882. [PMID: 37834331 PMCID: PMC10573540 DOI: 10.3390/ijms241914882] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Insulin-like growth factor 1 (IGF1) is a peptide growth factor with important functions in multiple aspects of growth, development and metabolism. The biological actions of IGF1 are mediated by the IGF1 receptor (IGF1R), a cell-surface protein that is evolutionarily related to the insulin receptor (InsR). The effects of IGF1 are moderated by a group of binding proteins (IGFBPs) that bind and transport the ligand in the circulation and extracellular fluids. In mechanistic terms, IGF1R function is linked to the MAPK and PI3K signaling pathways. Furthermore, IGF1R has been shown to migrate to cell nucleus, where it functions as a transcriptional activator. The co-localization of IGF1R and MAPK in the nucleus is of major interest as it suggests novel mechanistic paradigms for the IGF1R-MAPK network. Given its potent anti-apoptotic and pro-survival roles, and in view of its almost universal pattern of expression in most types of cancer, IGF1R has emerged as a promising molecular target in oncology. The present review article provides a concise overview of key scientific developments in the research area of IGF and highlights a number of more recent findings, including its nuclear migration and its interaction with oncogenes and tumor suppressors.
Collapse
Affiliation(s)
- Haim Werner
- Department of Human Molecular Genetics and Biochemistry, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Viswambharan H, Yuldasheva NY, Imrie H, Bridge K, Haywood NJ, Skromna A, Hemmings KE, Clark ER, Gatenby VK, Cordell P, Simmons KJ, Makava N, Abudushalamu Y, Endesh N, Brown J, Walker AMN, Futers ST, Porter KE, Cubbon RM, Naseem K, Shah AM, Beech DJ, Wheatcroft SB, Kearney MT, Sukumar P. Novel Paracrine Action of Endothelium Enhances Glucose Uptake in Muscle and Fat. Circ Res 2021; 129:720-734. [PMID: 34420367 PMCID: PMC8448413 DOI: 10.1161/circresaha.121.319517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hema Viswambharan
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Nadira Y Yuldasheva
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Helen Imrie
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Katherine Bridge
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Natalie J Haywood
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Anna Skromna
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Karen E Hemmings
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Emily R Clark
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - V Kate Gatenby
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Paul Cordell
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Katie J Simmons
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Natallia Makava
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Yilizila Abudushalamu
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Naima Endesh
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Jane Brown
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Andrew M N Walker
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Simon T Futers
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Karen E Porter
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Richard M Cubbon
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Khalid Naseem
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Ajay M Shah
- British Heart Foundation Centre of Research Excellence, King's College London (A.M.S.)
| | - David J Beech
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Stephen B Wheatcroft
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Mark T Kearney
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| | - Piruthivi Sukumar
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, United Kingdom (H.V., N.Y.Y., H.I., K.B., N.J.H., A.S., K.E.H., E.R.C., V.K.G., P.C., K.J.S., N.M., Y.A., N.E., J.B., A.M.N.W., S.T.F., K.E.P., R.M.C., K.N., D.J.B., S.B.W., M.T.K., P.S.)
| |
Collapse
|
4
|
Otoukesh B, Abbasi M, Gorgani HOL, Farahini H, Moghtadaei M, Boddouhi B, Kaghazian P, Hosseinzadeh S, Alaee A. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int 2020; 20:254. [PMID: 32565738 PMCID: PMC7302353 DOI: 10.1186/s12935-020-01342-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) involved in key signaling pathways and aggressive phenotypes of osteosarcoma (OS) was discussed, including PI3K/AKT/MTOR, MTOR AND RAF-1 signaling, tumor suppressor P53- linked miRNAs, NOTCH- related miRNAs, miRNA -15/16 cluster, apoptosis related miRNAs, invasion-metastasis-related miRNAs, and 14Q32-associated miRNAs cluster. Herrin, we discussed insights into the targeted therapies including miRNAs (i.e., tumor-suppressive miRNAs and oncomiRNAs). Using bioinformatics tools, the interaction network of all OS-associated miRNAs and their targets was also depicted.
Collapse
Affiliation(s)
- Babak Otoukesh
- Orthopedic Surgery Fellowship in Département Hospitalo-Universitaire MAMUTH « Maladies musculo-squelettiques et innovations thérapeutiques » , Université Pierre et Marie-Curie, Sorbonne Université, Paris, France.,Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Abbasi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib-O-Lah Gorgani
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Hossein Farahini
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Moghtadaei
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Bahram Boddouhi
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Shayan Hosseinzadeh
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA USA
| | - Atefe Alaee
- Department of Information Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhang K, Wang W, Liu Y, Guo A, Yang D. Let-7b acts as a tumor suppressor in osteosarcoma via targeting IGF1R. Oncol Lett 2018; 17:1646-1654. [PMID: 30675224 PMCID: PMC6341898 DOI: 10.3892/ol.2018.9793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 08/16/2018] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs serve crucial functions in cancer progression by inhibiting the translation of target genes and causing mRNA degradation. However, the underlying regulatory mechanism of Let-7b in osteosarcoma (OS) has not, to the best of our knowledge, been comprehensively elucidated. The aim of the present study was to investigate the function of Let-7b in OS and clarify the regulation of insulin-like growth factor 1 receptor (IGF1R) by Let-7b. It was observed that Let-7b was significantly downregulated in OS tissues and cell lines compared with the matched adjacent non-tumorous tissues and human normal osteoblastic cell line hFOB 1.19. Overexpression of Let-7b significantly inhibited the proliferation and invasion of U2OS and SAOS-2 cells. A luciferase reporter assay validated that IGF1R was a downstream and functional target of Let-7b. Let-7b was also able to decrease the expression levels of IGF1R protein. Functional studies revealed that the antitumor effect of Let-7b was probably due to targeting and suppressing IGF1R expression. Furthermore, in OS tissues, IGF1R was identified to be significantly upregulated and negatively correlated with Let-7b levels. In conclusion, the results of the present study indicated that Let-7b suppresses OS cellular proliferation and invasion via targeting IGF1R. A novel candidate prognostic factor was identified and it is suggested that the Let-7b/IGF1R axis may represent a novel anti-metastasis therapeutic target in OS.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Orthopedics, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Weiwei Wang
- Department of Obstetrics, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Yi Liu
- Department of Orthopedics, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Aijun Guo
- Department of Orthopedics, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Donghui Yang
- Department of Orthopedics, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
6
|
Abstract
Insulin-like growth factors (IGFs) bind specifically to the IGF1 receptor on the cell surface of targeted tissues. Ligand binding to the α subunit of the receptor leads to a conformational change in the β subunit, resulting in the activation of receptor tyrosine kinase activity. Activated receptor phosphorylates several substrates, including insulin receptor substrates (IRSs) and Src homology collagen (SHC). Phosphotyrosine residues in these substrates are recognized by certain Src homology 2 (SH2) domain-containing signaling molecules. These include, for example, an 85 kDa regulatory subunit (p85) of phosphatidylinositol 3-kinase (PI 3-kinase), growth factor receptor-bound 2 (GRB2) and SH2-containing protein tyrosine phosphatase 2 (SHP2/Syp). These bindings lead to the activation of downstream signaling pathways, PI 3-kinase pathway and Ras-mitogen-activated protein kinase (MAP kinase) pathway. Activation of these signaling pathways is known to be required for the induction of various bioactivities of IGFs, including cell proliferation, cell differentiation and cell survival. In this review, the well-established IGF1 receptor signaling pathways required for the induction of various bioactivities of IGFs are introduced. In addition, we will discuss how IGF signals are modulated by the other extracellular stimuli or by themselves based on our studies.
Collapse
Affiliation(s)
- Fumihiko Hakuno
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichiro Takahashi
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Wu J, Yu E. Insulin-like growth factor receptor-1 (IGF-IR) as a target for prostate cancer therapy. Cancer Metastasis Rev 2015; 33:607-17. [PMID: 24414227 DOI: 10.1007/s10555-013-9482-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prostate cancer is the most commonly diagnosed cancer in men and is the second leading cause of cancer-related deaths in men each year. Androgen deprivation therapy is and has been the gold standard of care for advanced or metastatic prostate cancer for decades. While this treatment strategy initially shows benefit, eventually tumors recur as castration-resistant prostate cancer for which there are limited treatment options with only modest survival benefit. Upregulation of the insulin-like growth factor receptor type I (IGF-IR) signaling axis has been shown to drive the survival of prostate cancer cells in many studies. As many IGF-IR blockades have been developed, few have been tested preclinically and even fewer have entered clinical trials for prostate cancer therapy. In this review, we will update the most recent preclinical and clinical studies of IGF-IR therapy for prostate cancer. We will also discuss the challenges for IGF-IR targeted therapies to achieve clinical benefit for prostate cancer.
Collapse
Affiliation(s)
- Jennifer Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
8
|
Wang Z, Lu P, Liang Z, Zhang Z, Shi W, Cai X, Chen C. Increased insulin-like growth factor 1 receptor (IGF1R) expression in small cell lung cancer and the effect of inhibition of IGF1R expression by RNAi on growth of human small cell lung cancer NCI-H446 cell. Growth Factors 2015; 33:337-46. [PMID: 26430715 DOI: 10.3109/08977194.2015.1088533] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factor 1 receptor (IGF1R) is a tyrosine kinase receptor implicated in tumourigenesis that may be an attractive target for anti-cancer treatment. In this study, the expression and clinical significance of IGF1R were investigated in serum and lung cancer tissues from small cell lung cancinoma (SCLC). We also compared the effect of IGF1R up-regulation and IGF1R inhibition on viability and apoptosis of NCI-H446 cells. We found the concentration of IGF1R in blood serum was significantly increased and positive IGF1R protein in cancer tissue was more prevalent in SCLC. A statistically significant correlation among IGF1R-positve tumors, lymph node metastasis and local invasion was discussed. Furthermore, IGF1R overexpression lead to an increase of cell survival and suppressed cell apoptosis, IGF1R silencing mediated by RNAi abrogate this response of NCI-H446 cells. Our results further demonstrated that the effects of these treatments may be assigned to the effective inhibition of lung cancer cells from Akt/P27(Kip1) pathway in IGF-1R signaling. These features may have important implications for future anti-IGF1R therapeutic approaches.
Collapse
Affiliation(s)
- Zhigang Wang
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Pingfang Lu
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Zhu Liang
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Zhanfei Zhang
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Weicheng Shi
- b Guangdong General Hospital of Armed Police Forces , Guangzhou , Guangdong , China
| | - Xiaobi Cai
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| | - Chunyuan Chen
- a The Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , China and
| |
Collapse
|
9
|
Molecular and functional characterizations of the association and interactions between nucleophosmin-anaplastic lymphoma kinase and type I insulin-like growth factor receptor. Neoplasia 2014; 15:669-83. [PMID: 23730215 DOI: 10.1593/neo.122012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 01/08/2023] Open
Abstract
Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) is aberrantly expressed in a subset of T cell lymphoma that commonly affects children and young adults. NPM-ALK possesses significant oncogenic potential that was previously documented using in vitro and in vivo experimental models. The exact mechanisms by which NPM-ALK induces its effects are poorly understood. We have recently demonstrated that NPM-ALK is physically associated with type I insulin-like growth factor receptor (IGF-IR). A positive feedback loop appears to exist between NPM-ALK and IGF-IR through which these two kinases interact to potentiate their effects. We have also found that a single mutation of the Tyr(644) or Tyr(664) residue of the C terminus of NPM-ALK to phenylalanine decreases significantly, but does not completely abolish, the association between NPM-ALK and IGF-IR. The purpose of this study was to determine whether the dual mutation of Tyr(644) and Tyr(664) abrogates the association and interactions between NPM-ALK and IGF-IR. We also examined the impact of this dual mutation on the oncogenic potential of NPM-ALK. Our results show that NPM-ALK(Y644,664F) completely lacks association with IGF-IR. Importantly, we found that the dual mutation of Tyr(644) and Tyr(664) diminishes the oncogenic effects of NPM-ALK, including its ability to induce anchorage-independent colony formation and to sustain cellular transformation, proliferation, and migration. Furthermore, the association between NPM-ALK and IGF-IR through Tyr(644) and Tyr(664) appears to contribute to maintaining the stability of NPM-ALK protein. Our results provide novel insights into the mechanisms by which NPM-ALK induces its oncogenic effects through interactions with IGF-IR in this aggressive lymphoma.
Collapse
|
10
|
Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation. Cell Mol Life Sci 2013; 71:2403-27. [PMID: 24276851 PMCID: PMC4055838 DOI: 10.1007/s00018-013-1514-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/17/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and progression of cancer; however, therapeutics targeting it have had disappointing results in the clinic. As a receptor tyrosine kinase (RTK), IGF-1R is traditionally described as an ON/OFF system, with ligand stabilizing the ON state and exclusive kinase-dependent signaling activation. Newly added to the traditional model, ubiquitin-mediated receptor downregulation and degradation was originally described as a response to ligand/receptor interaction and thus inseparable from kinase signaling activation. Yet, the classical model has proven over-simplified and insufficient to explain experimental evidence accumulated over the last decade, including kinase-independent signaling, unbalanced signaling, or dissociation between signaling and receptor downregulation. Based on the recent findings that IGF-1R “borrows” components of G-protein coupled receptor (GPCR) signaling, including β-arrestins and G-protein-related kinases, we discuss the emerging paradigm for the IGF-1R as a functional RTK/GPCR hybrid, which integrates the kinase signaling with the IGF-1R canonical GPCR characteristics. The contradictions to the classical IGF-1R signaling concept as well as the design of anti-IGF-1R therapeutics treatment are considered in the light of this paradigm shift and we advocate recognition of IGF-1R as a valid target for cancer treatment.
Collapse
|
11
|
Yang SJ, Chen CY, Chang GD, Wen HC, Chen CY, Chang SC, Liao JF, Chang CH. Activation of Akt by advanced glycation end products (AGEs): involvement of IGF-1 receptor and caveolin-1. PLoS One 2013; 8:e58100. [PMID: 23472139 PMCID: PMC3589465 DOI: 10.1371/journal.pone.0058100] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 02/03/2013] [Indexed: 01/08/2023] Open
Abstract
Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs). AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor DPI, suggesting the involvement of Src and NAD(P)H oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(P)H oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R) kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptorβsubunit (IGF-1Rβ) on Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1 receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1) levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1Rβ and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(P)H oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1 receptor, PI3-Kinase and Akt are involved in the facilitation of adipogenesis by AGEs.
Collapse
Affiliation(s)
- Su-Jung Yang
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chen-Yu Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Hui-Chin Wen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
| | - Ching-Yu Chen
- Department of Family Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Geriatric Research, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
| | - Shi-Chuan Chang
- Chest Department, Taipei Veterans General Hospital, Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (SCC); (CHC)
| | - Jyh-Fei Liao
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chung-Ho Chang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China
- Ph.D. Program for Aging, College of Medicine, China Medical University, Taichung, Taiwan, Republic of China
- * E-mail: (SCC); (CHC)
| |
Collapse
|
12
|
Moteki H, Kimura M, Sunaga K, Tsuda T, Ogihara M. Signal transduction mechanism for potentiation by α1- and β2-adrenoceptor agonists of L-ascorbic acid-induced DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. Eur J Pharmacol 2012; 700:2-12. [PMID: 23270716 DOI: 10.1016/j.ejphar.2012.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/30/2012] [Accepted: 12/07/2012] [Indexed: 01/26/2023]
Abstract
We investigated the effects of α- and β-adrenoceptor agonists on L-ascorbic acid-induced hepatocyte DNA synthesis and proliferation in primary cultures of adult rat hepatocytes. The results showed that phenylephrine (10(-6) M) and metaproterenol (10(-6) M) alone did not induce hepatocyte DNA synthesis and proliferation. However, when combined with L-ascorbic acid (10(-6) M), these adrenoceptor agonists potentiated the hepatocyte DNA synthesis and proliferation induced by L-ascorbic acid. Then intracellular signal transduction mechanisms for the effects of phenylephrine and metaproterenol on L-ascorbic acid-induced hepatocyte mitogenesis were examined. Western blot analysis showed that phenylephrine and metaproterenol did not potentiate L-ascorbic acid-induced insulin-like growth factor I receptor tyrosine kinase phosphorylation. In contrast, they both significantly potentiated L-ascorbic acid-induced extracellular-signal regulated kinase-2 (ERK2) phosphorylation within 5 min. Moreover, cell-permeable second messenger analogs phorbol ester (10(-7) M) and 8-bromo cAMP (10(-7) M) mimicked the effects of phenylephrine and metaproterenol on L-ascorbic acid-induced ERK2 phosphorylation. The effects of these adrenoceptor agents were specifically antagonized by GF109203X and H-89, respectively. These results indicate that activation of ERK2 via protein kinas C and protein kinase A represents a mechanism for potentiation of L-ascorbic acid-induced hepatocyte DNA synthesis and proliferation in primary cultures of adult rat hepatocytes.
Collapse
Affiliation(s)
- Hajime Moteki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | | | | | | | | |
Collapse
|
13
|
Imrie H, Viswambharan H, Sukumar P, Abbas A, Cubbon RM, Yuldasheva N, Gage M, Smith J, Galloway S, Skromna A, Rashid ST, Futers TS, Xuan S, Gatenby VK, Grant PJ, Channon KM, Beech DJ, Wheatcroft SB, Kearney MT. Novel role of the IGF-1 receptor in endothelial function and repair: studies in endothelium-targeted IGF-1 receptor transgenic mice. Diabetes 2012; 61:2359-68. [PMID: 22733797 PMCID: PMC3425420 DOI: 10.2337/db11-1494] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
We recently demonstrated that reducing IGF-1 receptor (IGF-1R) numbers in the endothelium enhances nitric oxide (NO) bioavailability and endothelial cell insulin sensitivity. In the present report, we aimed to examine the effect of increasing IGF-1R on endothelial cell function and repair. To examine the effect of increasing IGF-1R in the endothelium, we generated mice overexpressing human IGF-1R in the endothelium (human IGF-1R endothelium-overexpressing mice [hIGFREO]) under direction of the Tie2 promoter enhancer. hIGFREO aorta had reduced basal NO bioavailability (percent constriction to N(G)-monomethyl-l-arginine [mean (SEM) wild type 106% (30%); hIGFREO 48% (10%)]; P < 0.05). Endothelial cells from hIGFREO had reduced insulin-stimulated endothelial NO synthase activation (mean [SEM] wild type 170% [25%], hIGFREO 58% [3%]; P = 0.04) and insulin-stimulated NO release (mean [SEM] wild type 4,500 AU [1,000], hIGFREO 1,500 AU [700]; P < 0.05). hIGFREO mice had enhanced endothelium regeneration after denuding arterial injury (mean [SEM] percent recovered area, wild type 57% [2%], hIGFREO 47% [5%]; P < 0.05) and enhanced endothelial cell migration in vitro. The IGF-1R, although reducing NO bioavailability, enhances in situ endothelium regeneration. Manipulating IGF-1R in the endothelium may be a useful strategy to treat disorders of vascular growth and repair.
Collapse
Affiliation(s)
- Helen Imrie
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Hema Viswambharan
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Piruthivi Sukumar
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Afroze Abbas
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Richard M. Cubbon
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Nadira Yuldasheva
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Matthew Gage
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Jessica Smith
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Stacey Galloway
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Anna Skromna
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Sheik Taqweer Rashid
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - T. Simon Futers
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Shouhong Xuan
- Department of Genetics and Development, Columbia University, New York, New York
| | - V. Kate Gatenby
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Peter J. Grant
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Keith M. Channon
- University of Oxford British Heart Foundation Centre of Research Excellence, Oxford, U.K
| | - David J. Beech
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Stephen B. Wheatcroft
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
| | - Mark T. Kearney
- Division of Cardiovascular and Diabetes Research, Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, U.K
- Corresponding author: Mark T. Kearney,
| |
Collapse
|
14
|
Fukushima T, Nakamura Y, Yamanaka D, Shibano T, Chida K, Minami S, Asano T, Hakuno F, Takahashi SI. Phosphatidylinositol 3-kinase (PI3K) activity bound to insulin-like growth factor-I (IGF-I) receptor, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation. J Biol Chem 2012; 287:29713-21. [PMID: 22767591 DOI: 10.1074/jbc.m112.393074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Continuous stimulation of cells with insulin-like growth factors (IGFs) in G(1) phase is a well established requirement for IGF-induced cell proliferation; however, the molecular components of this prolonged signaling pathway that is essential for cell cycle progression from G(1) to S phase are unclear. IGF-I activates IGF-I receptor (IGF-IR) tyrosine kinase, followed by phosphorylation of substrates such as insulin receptor substrates (IRS) leading to binding of signaling molecules containing SH2 domains, including phosphatidylinositol 3-kinase (PI3K) to IRS and activation of the downstream signaling pathways. In this study, we found prolonged (>9 h) association of PI3K with IGF-IR induced by IGF-I stimulation. PI3K activity was present in this complex in thyrocytes and fibroblasts, although tyrosine phosphorylation of IRS was not yet evident after 9 h of IGF-I stimulation. IGF-I withdrawal in mid-G(1) phase impaired the association of PI3K with IGF-IR and suppressed DNA synthesis the same as when PI3K inhibitor was added. Furthermore, we demonstrated that Tyr(1316)-X-X-Met of IGF-IR functioned as a PI3K binding sequence when this tyrosine is phosphorylated. We then analyzed IGF signaling and proliferation of IGF-IR(-/-) fibroblasts expressing exogenous mutant IGF-IR in which Tyr(1316) was substituted with Phe (Y1316F). In these cells, IGF-I stimulation induced tyrosine phosphorylation of IGF-IR and IRS-1/2, but mutated IGF-IR failed to bind PI3K and to induce maximal phosphorylation of GSK3β and cell proliferation in response to IGF-I. Based on these results, we concluded that PI3K activity bound to IGF-IR, which is continuously sustained by IGF-I stimulation, is required for IGF-I-induced cell proliferation.
Collapse
Affiliation(s)
- Toshiaki Fukushima
- Department of Animal Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Moteki H, Shimamura Y, Kimura M, Ogihara M. Signal transduction pathway for l-ascorbic acid- and l-ascorbic acid 2-glucoside-induced DNA synthesis and cell proliferation in primary cultures of adult rat hepatocytes. Eur J Pharmacol 2012; 683:276-84. [DOI: 10.1016/j.ejphar.2012.02.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/27/2012] [Accepted: 02/27/2012] [Indexed: 12/22/2022]
|
16
|
Mao Y, Shang Y, Pham VC, Ernst JA, Lill JR, Scales SJ, Zha J. Polyubiquitination of insulin-like growth factor I receptor (IGF-IR) activation loop promotes antibody-induced receptor internalization and down-regulation. J Biol Chem 2011; 286:41852-41861. [PMID: 21994939 DOI: 10.1074/jbc.m111.288514] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitination has been implicated in negatively regulating insulin-like growth factor I receptor (IGF-IR) activity. Because of the relative stability of IGF-IR in the presence of ligand stimulation, IGF-IR ubiquitination sites have yet to be mapped and characterized, thus preventing a direct demonstration of how the receptor ubiquitination contributes to downstream molecular cascades. We took advantage of an anti-IGF-IR antibody (h10H5) that induces more efficient receptor down-regulation to show that IGF-IR is promptly and robustly ubiquitinated. The ubiquitination sites were mapped to the two lysine residues in the IGF-IR activation loop (Lys-1138 and Lys-1141) and consisted of polyubiquitin chains formed through both Lys-48 and Lys-29 linkages. Mutation of these ubiquitinated lysine residues resulted in decreased h10H5-induced IGF-IR internalization and down-regulation as well as a reduced cellular response to h10H5 treatment. We have therefore demonstrated that IGF-IR ubiquitination contributes critically to the down-regulating and antiproliferative activity of h10H5. This finding is physiologically relevant because insulin-like growth factor I appears to mediate ubiquitination of the same major sites as h10H5 (albeit to a lesser extent), and ubiquitination is facilitated by pre-existing phosphorylation of the receptor in both cases. Furthermore, identification of a breast cancer cell line with a defect in IGF-IR ubiquitination suggests that this could be an important tumor resistance mechanism to evade down-regulation-mediated negative regulation of IGF-IR activity in cancer.
Collapse
Affiliation(s)
- Yifan Mao
- Department of Research Pathology, Genentech, South San Francisco, California 94080
| | - Yonglei Shang
- Department of Research Pathology, Genentech, South San Francisco, California 94080
| | - Victoria C Pham
- Department of Protein Chemistry, Genentech, South San Francisco, California 94080
| | - James A Ernst
- Department of Protein Chemistry, Genentech, South San Francisco, California 94080
| | - Jennie R Lill
- Department of Protein Chemistry, Genentech, South San Francisco, California 94080
| | - Suzie J Scales
- Department of Molecular Biology, Genentech, South San Francisco, California 94080.
| | - Jiping Zha
- Department of Research Pathology, Genentech, South San Francisco, California 94080.
| |
Collapse
|
17
|
Jiang Q, Han BM, Zhao FJ, Hong Y, Xia SJ. The differential effects of prostate stromal cells derived from different zones on prostate cancer epithelial cells under the action of sex hormones. Asian J Androl 2011; 13:798-805. [PMID: 21765438 DOI: 10.1038/aja.2011.22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It is well known that prostate cancer (PCa) occurs predominantly in the peripheral zone (PZ), whereas benign prostatic hyperplasia (BPH) typically develops in the transition zone. To identify possible mechanisms underlying zonal differences, we compared the effects of prostate stromal cells derived from the peripheral zone (PZsc) and the transition zone (TZsc) on a PCa epithelial cell line (PC3) in the presence of sex hormones. First, we observed that androgen receptor (AR) mRNA was more highly expressed in PZsc than TZsc when the cells were treated with dihydrotestosterone (DHT) and β-oestradiol (E2) (P<0.05). By ELISA, we looked for differences in the secretion of peptide growth factors from PZsc and TZsc. We found that keratinocyte growth factor (KGF) secretion increased with increasing concentrations of DHT (P<0.01) and was higher in PZsc than TZsc. Under treatment with DHT plus E2, PZsc secreted more transforming growth factor-β1 (TGF-β1) than TZsc, but this pattern was reversed when the cells were treated with E2 only. With increasing concentrations of DHT, insulin-like growth factor-1 (IGF-1) secretion increased in PZsc but decreased in TZsc. To further characterize the effects of PZsc and TZsc on PC3 cells, we developed a coculture model and performed MTT assays, Western blot analysis and real-time RT-PCR. We found that PZsc promoted PC3 cell proliferation and progression better than TZsc, particularly when treated with 10 nmol l(-1) DHT plus 10 nmol l(-1) E2. In conclusion, our data suggest that PZsc may have a greater capacity to induce PCa development and progression than TZsc via growth factors regulated by sex hormones. These findings provide possible mechanisms underlying zonal differences in prostate diseases, which may aid the search for novel therapeutic targets for PCa.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Urology, Shanghai First People's Hospital, Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China
| | | | | | | | | |
Collapse
|
18
|
Perrault R, Wright B, Storie B, Hatherell A, Zahradka P. Tyrosine kinase-independent activation of extracellular-regulated kinase (ERK) 1/2 by the insulin-like growth factor-1 receptor. Cell Signal 2011; 23:739-46. [DOI: 10.1016/j.cellsig.2010.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
|
19
|
Ozbay T, Nahta R. A novel unidirectional cross-talk from the insulin-like growth factor-I receptor to leptin receptor in human breast cancer cells. Mol Cancer Res 2008; 6:1052-8. [PMID: 18515755 PMCID: PMC2440577 DOI: 10.1158/1541-7786.mcr-07-2126] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obesity is a major risk factor for the development and progression of breast cancer. Increased circulating levels of the obesity-associated hormones leptin and insulin-like growth factor-I (IGF-I) and overexpression of the leptin receptor (Ob-R) and IGF-I receptor (IGF-IR) have been detected in a majority of breast cancer cases and during obesity. Due to correlations between increased leptin, Ob-R, IGF-I, and IGF-IR in breast cancer, we hypothesized that molecular interactions may exist between these two signaling pathways. Coimmunoprecipitation and immunoblotting showed that IGF-IR and Ob-R interact in the breast cancer cell lines MDA-MB-231, MCF7, BT474, and SKBR3. Stimulation of cells with IGF-I promoted Ob-R phosphorylation, which was blocked by IGF-IR kinase inhibition. In addition, IGF-I activated downstream signaling molecules in the leptin receptor and IGF-IR pathways. In contrast to IGF-I, leptin did not induce phosphorylation of IGF-IR, indicating that receptor cross-signaling is unidirectional, occurring from IGF-IR to Ob-R. Our results show, for the first time, a novel interaction and cross-talk between the IGF-I and leptin receptors in human breast cancer cells.
Collapse
Affiliation(s)
- Tuba Ozbay
- Department of Pharmacology, Emory University, Atlanta, GA 30322-1013
- Winship Cancer Institute, Emory University, Atlanta, GA 30322-1013
| | - Rita Nahta
- Department of Pharmacology, Emory University, Atlanta, GA 30322-1013
- Department of Hematology/Oncology, School of Medicine, Emory University, Atlanta, GA 30322-1013
- Winship Cancer Institute, Emory University, Atlanta, GA 30322-1013
- Molecular & Systems Pharmacology Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322-1013
| |
Collapse
|
20
|
Allard D, Figg N, Bennett MR, Littlewood TD. Akt regulates the survival of vascular smooth muscle cells via inhibition of FoxO3a and GSK3. J Biol Chem 2008; 283:19739-47. [PMID: 18458087 DOI: 10.1074/jbc.m710098200] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis of vascular smooth muscle cells (VSMCs) may lead to atherosclerotic plaque instability and rupture, resulting in myocardial infarction, stroke, and sudden death. However, the molecular mechanisms mediating survival of VSMCs in atherosclerotic plaques remain unknown. Although plaque VSMCs exhibit increased susceptibility to apoptosis and reduced expression of the IGF1 receptor (IGF1R) when compared with normal VSMCs, a causative effect has not been established. Here we show that increased expression of the IGF1R can rescue plaque VSMCs from oxidative stress-induced apoptosis, demonstrating that IGF-1 signaling is a critical regulator of VSMC survival. Akt mediates the majority of the IGF1R survival signaling, and ectopic activation of Akt was sufficient to protect VSMCs in vitro. Both IGF1R and phospho-Akt expression were reduced in human plaque (intimal) VSMCs when compared with medial VSMCs, suggesting that Akt mediates survival signaling in atherosclerosis. Importantly, downstream targets of Akt were identified that mediate its protective effect as inhibition of FoxO3a or GSK3 by Akt-dependent phosphorylation protected VSMCs in vitro. We conclude that Akt and its downstream targets FoxO3a and GSK3 regulate a survival pathway in VSMCs and that their deregulation due to a reduction of IGF1R signaling may promote apoptosis in atherosclerosis.
Collapse
Affiliation(s)
- David Allard
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| | | | | | | |
Collapse
|
21
|
Liu X, Allen JD, Arnold JT, Blackman MR. Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells. Carcinogenesis 2008; 29:816-23. [PMID: 18283040 DOI: 10.1093/carcin/bgn011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prostate stromal and epithelial cell communication is important in prostate functioning and cancer development. Primary human stromal cells from normal prostate stromal cells (PRSC) maintain a smooth muscle phenotype, whereas those from prostate cancer (6S) display reactive and fibroblastic characteristics. Dihydrotestosterone (DHT) stimulates insulin-like growth factor-I (IGF-I) production by 6S but not PSRC cells. Effects of reactive versus normal stroma on normal human prostate epithelial (NPE or PREC) cells are poorly understood. We co-cultured NPE plus 6S or PRSC cells to compare influences of different stromal cells on normal epithelium. Because NPE and PREC cells lose androgen receptor (AR) expression in culture, DHT effects must be modulated by associated stromal cells. When treated with camptothecin (CM), NPE cells, alone and in stromal co-cultures, displayed a dose-dependent increase in DNA fragmentation. NPE/6S co-cultures exhibited reduced CM-induced cell death with exposure to DHT, whereas NPE/PRSC co-cultures exhibited CM-induced cell death regardless of DHT treatment. DHT blocked CM-induced, IGF-I-mediated, NPE death in co-cultured NPE/6S cells without, but not with, added anti-IGF-I and anti-IGF-R antibodies. Lycopene consumption is inversely related to human prostate cancer risk and inhibits IGF-I and androgen signaling in rat prostate cancer. In this study, lycopene, in dietary concentrations, reversed DHT effects of 6S cells on NPE cell death, decreased 6S cell IGF-I production by reducing AR and beta-catenin nuclear localization and inhibited IGF-I-stimulated NPE and PREC growth, perhaps by attenuating IGF-I's effects on serine phosphorylation of Akt and GSK3beta and tyrosine phosphorylation of GSK3. This study expands the understanding of the preventive mechanisms of lycopene in prostate cancer.
Collapse
Affiliation(s)
- Xunxian Liu
- Endocrine Section, Laboratory of Clinical Investigation, Division of Intramural Research, National Center for Complementary and Alternative Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Excess body weight (overweight and obesity) is characterized by chronic hyperinsulinaemia and insulin resistance, and is implicated both in cancer risk and cancer mortality. The list of cancers at increased risk of development in an "obesogenic" environment include common adult cancers such as endometrium, post-menopausal breast, colon and kidney, but also less common malignancies such as leukaemia, multiple myeloma, and non-Hodgkin's lymphoma. The pathophysiological and biological mechanisms underpinning these associations are only starting to be understood. Insulin resistance is at the heart of many, but there are several other candidate systems including insulin-like growth factors, sex steroids, adipokines, obesity-related inflammatory markers, the nuclear factor kappa beta (NF-kappa B) system and oxidative stresses. With such as diversity of obesity-related cancers, it is unlikely that there is a "one system fits all" mechanism. While public health strategies to curb the spread of the obesity epidemic appear ineffective, there is a need to better understand the processes linking obesity and cancer as a pre-requisite to the development of new approaches to the prevention and treatment of obesity-related cancers.
Collapse
Affiliation(s)
- Andrew G Renehan
- Department of Surgery, School of Cancer and Imaging Sciences, University of Manchester, Christie Hospital NHS Foundation Trust, Wilmslow Road, Manchester, UK.
| | | | | |
Collapse
|
23
|
Kavurma MM, Schoppet M, Bobryshev YV, Khachigian LM, Bennett MR. TRAIL stimulates proliferation of vascular smooth muscle cells via activation of NF-kappaB and induction of insulin-like growth factor-1 receptor. J Biol Chem 2008; 283:7754-62. [PMID: 18178561 DOI: 10.1074/jbc.m706927200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRAIL/Apo2L (tumor necrosis factor-related apoptosis-inducing ligand) is a multifunctional protein regulating homeostasis of the immune system, infection, autoimmune diseases, and apoptosis. However, its function in normal, nontransformed tissues is not clear. Here we show that TRAIL increases vascular smooth muscle cell (VSMC) proliferation in vitro, effects that can be blocked with neutralizing antibodies to TRAIL receptors DR4 and DcR1. In aortocoronary saphenous vein bypass grafts in vivo, TRAIL co-localizes with VSMC, proliferating cell nuclear antigen, and insulin-like growth factor type 1 receptor (IGF1R) expression but not active caspase-3. TRAIL is required for serum-inducible IGF1R expression, and antisense IGF1R inhibits TRAIL-induced VSMC proliferation. At 1 ng/ml, TRAIL stimulates IGF1R mRNA expression greater than insulin-like growth factor-1 and also activates the IGF1R promoter 7-fold. TRAIL-inducible IGF1R expression requires NF-kappaB activation. Consistent with this, ammonium pyrrolidine dithiocarbamate, a pharmacological inhibitor of NF-kappaB, blocks TRAIL-induced IGF1R expression, and p65 overexpression increases IGF1R protein levels. In addition, NF-kappaB binds a novel TRAIL-responsive element on the IGF1R promoter. Our findings suggest that the biological functions of TRAIL in VSMC extend beyond its role in promoting apoptosis. Thus, TRAIL may play an important role in atherosclerosis by regulating IGF1R expression in VSMC in an NF-kappaB-dependent manner.
Collapse
Affiliation(s)
- Mary M Kavurma
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Cambridge CB2 2QQ, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Zhang H, Wang J, Pang B, Liang RX, Li S, Huang PT, Wang R, Chung LWK, Zhau HE, Huang C, Zhou JG. PC-1/PrLZ contributes to malignant progression in prostate cancer. Cancer Res 2007; 67:8906-13. [PMID: 17875733 DOI: 10.1158/0008-5472.can-06-4214] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PC-1/PrLZ gene overexpression has been identified to be associated with prostate cancer progression. Previous studies have revealed that PC-1 possesses transforming activity and confers malignant phenotypes to mouse NIH3T3 cells. However, the functional relevance of PC-1 expression changes during prostate cancer development and progression remains to be evaluated. In this study, gain-of-function and loss-of-function analyses in LNCaP and C4-2 cells, respectively, were implemented. Experimental data showed that PC-1 expression was in positive correlation with prostate cancer cell growth and anchor-independent colony formation in vitro, as well as tumorigenicity in athymic BALB/c mice. Moreover, PC-1 expression was also found to promote androgen-independent progression and androgen antagonist Casodex resistance in prostate cancer cells. These results indicate that PC-1 contributes to androgen-independent progression and malignant phenotypes in prostate cancer cells. Furthermore, molecular evidence revealed that PC-1 expression stimulated Akt/protein kinase B signaling pathway, which has been implicated to play important roles in promoting androgen refractory progression in prostate cancer. Increased PC-1 levels in C4-2 cells may represent an adaptive response in prostate cancer, mediating androgen-independent growth and malignant progression. Inhibiting PC-1 expression may represent a novel therapeutic strategy to delay prostate cancer progression.
Collapse
Affiliation(s)
- Hui Zhang
- Laboratory of Molecular Oncology, Institute of Biotechnology, Beijing, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kavurma M, Figg N, Bennett M, Mercer J, Khachigian L, Littlewood T. Oxidative stress regulates IGF1R expression in vascular smooth-muscle cells via p53 and HDAC recruitment. Biochem J 2007; 407:79-87. [PMID: 17600529 PMCID: PMC2267398 DOI: 10.1042/bj20070380] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptosis of VSMCs (vascular smooth-muscle cells) leads to features of atherosclerotic plaque instability. We have demonstrated previously that plaque-derived VSMCs have reduced IGF1 (insulin-like growth factor 1) signalling, resulting from a decrease in the expression of IGF1R (IGF1 receptor) compared with normal aortic VSMCs [Patel, Zhang, Siddle, Soos, Goddard, Weissberg and Bennett (2001) Circ. Res. 88, 895-902]. In the present study, we show that apoptosis induced by oxidative stress is inhibited by ectopic expression of IGF1R. Oxidative stress repressed IGF1R expression at multiple levels, and this was also blocked by mutant p53. Oxidative stress also induced p53 phosphorylation and apoptosis in VSMCs. p53 negatively regulated IGF1R promoter activity and expression and, consistent with this, p53-/- VSMCs demonstrated increased IGF1R expression, both in vitro and in advanced atherosclerotic plaques in vivo. Oxidative-stress-induced interaction of endogenous p53 with TBP (TATA-box-binding protein) was dependent on p53 phosphorylation. Oxidative stress also increased the association of p53 with HDAC1 (histone deacetylase 1). Trichostatin A, a specific HDAC inhibitor, or p300 overexpression relieved the repression of IGF1R following oxidative stress. Furthermore, acetylated histone-4 association with the IGF1R promoter was reduced in cells subjected to oxidative stress. These results suggest that oxidative-stress-induced repression of IGF1R is mediated by the association of phosphorylated p53 with the IGF1R promoter via TBP, and by the subsequent recruitment of chromatin-modifying proteins, such as HDAC1, to the IGF1R promoter-TBP-p53 complex.
Collapse
Key Words
- apoptosis
- atherosclerosis
- histone deacetylase (hdac)
- insulin-like growth factor 1 receptor (igf1r)
- p53
- vascular smooth-muscle cell (vsmc)
- apoe, apolipoprotein e
- chip, chromatin immunoprecipitation
- dmem, dulbecco's modified eagle's medium
- fcs, foetal calf serum
- hdac, histone deacetylase
- igf, insulin-like growth factor
- igfbp, igf binding protein
- igf1r, igf1 receptor
- igf1r-yf, kinase-dead mutant of igf1r
- ros, reactive oxygen species
- sma, smooth-muscle actin
- tbp, tata-box-binding protein
- t-(buooh), t-butyl hydroperoxide
- tfiid, transcription factor iid
- tsa, trichostatin a
- vsmc, vascular smooth-muscle cell
Collapse
Affiliation(s)
- Mary M. Kavurma
- *Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Cambridge CB2 2QQ, U.K
| | - Nichola Figg
- *Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Cambridge CB2 2QQ, U.K
| | - Martin R. Bennett
- *Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Cambridge CB2 2QQ, U.K
| | - John Mercer
- *Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Cambridge CB2 2QQ, U.K
| | - Levon M. Khachigian
- †Centre for Vascular Research, The University of New South Wales, Kensington 2052, NSW, Australia
| | - Trevor D. Littlewood
- *Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Cambridge CB2 2QQ, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
26
|
Li M, He Z, Ermakova S, Zheng D, Tang F, Cho YY, Zhu F, Ma WY, Sham Y, Rogozin EA, Bode AM, Cao Y, Dong Z. Direct inhibition of insulin-like growth factor-I receptor kinase activity by (-)-epigallocatechin-3-gallate regulates cell transformation. Cancer Epidemiol Biomarkers Prev 2007; 16:598-605. [PMID: 17372258 DOI: 10.1158/1055-9965.epi-06-0892] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Insulin-like growth factor-I receptor (IGF-IR) has been implicated in cancer pathophysiology. Furthermore, impairment of IGF-IR signaling in various cancer cell lines caused inhibition of the transformed phenotype as determined by the inhibition of colony formation in soft agar and the inhibition of tumor formation in athymic nude mice. Thus, the IGF-IR might be an attractive target for cancer prevention. We showed that the tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), is a small-molecule inhibitor of IGF-IR activity (IC50 of 14 micromol/L). EGCG abrogated anchorage-independent growth induced by IGF-IR overexpression and also prevented human breast and cervical cancer cell phenotype expression through inhibition of IGF-IR downstream signaling. Our findings are the first to show that the IGF-IR is a novel binding protein of EGCG and thus may help explain the chemopreventive effect of EGCG on cancer development.
Collapse
Affiliation(s)
- Ming Li
- Hormel Institute, University of Minnesota, 801 16th Avenue Northeast, Austin, MN 55912, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sehat B, Andersson S, Vasilcanu R, Girnita L, Larsson O. Role of ubiquitination in IGF-1 receptor signaling and degradation. PLoS One 2007; 2:e340. [PMID: 17406664 PMCID: PMC1838569 DOI: 10.1371/journal.pone.0000340] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Accepted: 03/12/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The insulin-like growth factor 1 receptor (IGF-1R) plays numerous crucial roles in cancer biology. The majority of knowledge on IGF-1R signaling is concerned with its role in the activation of the canonical phosphatidyl inositol-3 kinase (PI3K)/Akt and MAPK/ERK pathways. However, the role of IGF-1R ubiquitination in modulating IGF-1R function is an area of current research. In light of this we sought to determine the relationship between IGF-1R phosphorylation, ubiquitination, and modulation of growth signals. METHODOLOGY Wild type and mutant constructs of IGF-1R were transfected into IGF-1R null fibroblasts. IGF-1R autophosphorylation and ubiquitination were determined by immunoprecipitation and western blotting. IGF-1R degradation and stability was determined by cyclohexamide-chase assay in combination with lysosome and proteasome inhibitors. PRINCIPAL FINDINGS IGF-1R autophosphorylation was found to be an absolute requirement for receptor ubiquitination. Deletion of C-terminal domain had minimal effect on IGF-1 induced receptor autophosphorylation, however, ubiquitination and ERK activation were completely abolished. Cells expressing kinase impaired IGF-1R, exhibited both receptor ubiquitination and ERK phosphorylation, however failed to activate Akt. While IGF-1R mutants with impaired PI3K/Akt signaling were degraded mainly by the proteasomes, the C-terminal truncated one was exclusively degraded through the lysosomal pathway. CONCLUSIONS Our data suggest important roles of ubiquitination in mediating IGF-1R signaling and degradation. Ubiquitination of IGF-1R requires receptor tyrosine kinase activity, but is not involved in Akt activation. In addition we show that the C-terminal domain of IGF-1R is a necessary requisite for ubiquitination and ERK phosphorylation as well as for proteasomal degradation of the receptor.
Collapse
Affiliation(s)
- Bita Sehat
- Department of Oncology and Pathology, Cancer Centre Karolinska (CCK), Karolinska Institutet and Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Sandra Andersson
- Department of Oncology and Pathology, Cancer Centre Karolinska (CCK), Karolinska Institutet and Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Radu Vasilcanu
- Department of Oncology and Pathology, Cancer Centre Karolinska (CCK), Karolinska Institutet and Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Leonard Girnita
- Department of Oncology and Pathology, Cancer Centre Karolinska (CCK), Karolinska Institutet and Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Olle Larsson
- Department of Oncology and Pathology, Cancer Centre Karolinska (CCK), Karolinska Institutet and Karolinska University Hospital-Solna, Stockholm, Sweden
| |
Collapse
|
28
|
Li W, Miller WT. Role of the activation loop tyrosines in regulation of the insulin-like growth factor I receptor-tyrosine kinase. J Biol Chem 2006; 281:23785-91. [PMID: 16793764 DOI: 10.1074/jbc.m605269200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tyrosine kinase activity of insulin-like growth factor I receptor (IGF1R) is under tight control. Ligand binding to the extracellular portion of IGF1R stimulates autophosphorylation at three sites (Tyr1131, Tyr1135, and Tyr1136) in the activation loop within the tyrosine kinase catalytic domain. Autophosphorylation at all three sites is required for maximum enzyme activity, and for IGF1-stimulated cellular activity of the receptor. Previous studies have not clarified the contributions of the individual tyrosines to enzymatic activation. Here, we produced single Tyr-to-Phe mutations at these positions, and compared activities of the purified kinase domains (unphosphorylated and phosphorylated) with wild-type IGF1R. Rates of autophosphorylation of the three mutants were more rapid than for wild-type IGF1R; this was most apparent for the Y1135F mutant. Substrate phosphorylation studies on the unphosphorylated forms of IGF1R confirmed that the value of Vmax for Y1135F was elevated relative to wild-type IGF1R, consistent with a disruption of an autoinhibitory interaction. In contrast, activity measurements on the fully phosphorylated enzymes indicated that kcat/Km values were lowered relative to wild-type IGF1R; this effect was most dramatic for Y1136F. We confirmed these findings using limited proteolysis and tryptophan fluorescence experiments. The results demonstrate that Tyr1135 plays a particularly important role in stabilizing the autoinhibited conformation of the activation loop, while Tyr1136 plays the key role in stabilizing the open, activated conformation of IGF1R.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Physiology and Biophysics, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | |
Collapse
|
29
|
Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 2005; 26:916-43. [PMID: 16131630 DOI: 10.1210/er.2004-0024] [Citation(s) in RCA: 366] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, much interest has been devoted to defining the role of the IGF system in the nervous system. The ubiquitous IGFs, their cell membrane receptors, and their carrier binding proteins, the IGFBPs, are expressed early in the development of the nervous system and are therefore considered to play a key role in these processes. In vitro studies have demonstrated that the IGF system promotes differentiation and proliferation and sustains survival, preventing apoptosis of neuronal and brain derived cells. Furthermore, studies of transgenic mice overexpressing components of the IGF system or mice with disruptions of the same genes have clearly shown that the IGF system plays a key role in vivo.
Collapse
Affiliation(s)
- V C Russo
- Centre for Hormone Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
30
|
Meyer RD, Mohammadi M, Rahimi N. A single amino acid substitution in the activation loop defines the decoy characteristic of VEGFR-1/FLT-1. J Biol Chem 2005; 281:867-75. [PMID: 16286478 PMCID: PMC1360223 DOI: 10.1074/jbc.m506454200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
VEGFR-1 is a kinase-defective receptor tyrosine kinase (RTK) and negatively modulates angiogenesis by acting as a decoy receptor. The decoy characteristic of VEGFR-1 is required for normal development and angiogenesis. To date, there is no molecular explanation for this unusual characteristic of VEGFR-1. Here we show that the molecular mechanisms underlying the decoy characteristic of VEGFR-1 is linked to the replacement of a highly conserved amino acid residue in the activation loop. This amino acid is highly conserved among all the type III RTKs and corresponds to aspartic acid, but in VEGFR-1 it is substituted to asparagine. Mutation of asparagine (Asn(1050)) within the activation loop to aspartic acid promoted enhanced ligand-dependent tyrosine autophosphorylation and kinase activation in vivo and in vitro. The mutant VEGFR-1 (Asp(1050)) promoted endothelial cell proliferation but not tubulogenesis. It also displayed an oncogenic phenotype as its expression in fibroblast cells elicited transformation and colony growth. Furthermore, mutation of the invariable aspartic acid to asparagine in VEGFR-2 lowered the autophosphorylation of activation loop tyrosines 1052 and 1057. We propose that the conserved aspartic acid in the activation loop favors the transphosphorylation of the activation loop tyrosines, and its absence renders RTK to a less potent enzyme by disfavoring transphosphorylation of activation loop tyrosines.
Collapse
Affiliation(s)
- Rosana D. Meyer
- From the Departments of Ophthalmology and Biochemistry, School of Medicine, Boston University, Boston, Massachusetts 02118 and the
| | - Moosa Mohammadi
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Nader Rahimi
- From the Departments of Ophthalmology and Biochemistry, School of Medicine, Boston University, Boston, Massachusetts 02118 and the
- To whom correspondence should be addressed: School of Medicine, Boston University, 715 Albany St., Rm. 921L, Boston, MA 02118. Tel.: 617-638-5011; Fax: 617-638-5337; E-mail:
| |
Collapse
|
31
|
Kuemmerle JF. Endogenous IGF-I protects human intestinal smooth muscle cells from apoptosis by regulation of GSK-3 beta activity. Am J Physiol Gastrointest Liver Physiol 2005; 288:G101-10. [PMID: 15297258 DOI: 10.1152/ajpgi.00032.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown that endogenous IGF-I regulates human intestinal smooth muscle cell proliferation by activation of phosphatidylinositol 3 (PI3)-kinase- and Erk1/2-dependent pathways that jointly regulate cell cycle progression and cell division. Whereas insulin-like growth factor-I (IGF-I) stimulates PI3-kinase-dependent activation of Akt, expression of a kinase-inactive Akt did not alter IGF-I-stimulated proliferation. In other cell types, Akt-dependent phosphorylation of glycogen synthase kinase-3 beta (GSK-3 beta) inhibits its activity and its ability to stimulate apoptosis. The aim of the present study was to determine whether endogenous IGF-I regulates Akt-dependent GSK-3 beta phosphorylation and activity and whether it regulates apoptosis in human intestinal muscle cells. IGF-I elicited time- and concentration-dependent GSK-3 beta phosphorylation (inactivation) that was measured by Western blot analysis using a phospho-specific GSK-3beta antibody. Endogenous IGF-I stimulated GSK-3 beta phosphorylation and inhibited GSK-3 beta activity (measured by in vitro kinase assay) in these cells. IGF-I-dependent GSK-3 beta phosphorylation and the resulting GSK-3 beta inactivation were mediated by activation of a PI3-kinase-dependent, phosphoinositide-dependent kinase-1 (PDK-1)-dependent, and Akt-dependent mechanism. Deprivation of serum induced beta-catenin phosphorylation, increased in caspase 3 activity, and induced apoptosis of muscle cells, which was inhibited by either IGF-I or a GSK-3 beta inhibitor. Endogenous IGF-I inhibited beta-catenin phosphorylation, caspase 3 activation, and apoptosis induced by serum deprivation. IGF-I-dependent inhibition of apoptosis, similar to GSK-3 beta activity, was mediated by a PI3-kinase-, PDK-1-, and Akt-dependent mechanism. We conclude that endogenous IGF-I exerts two distinct but complementary effects on intestinal smooth muscle cell growth: it stimulates proliferation and inhibits apoptosis. The growth of intestinal smooth muscle cells is regulated jointly by the net effect of these two processes.
Collapse
Affiliation(s)
- John F Kuemmerle
- Division of Gastroenterology, Medical College of Virginia Campus, Virginia Commonwealth University, PO Box 980711, Richmond, VA 23298-0711, USA.
| |
Collapse
|
32
|
Vasilcanu D, Girnita A, Girnita L, Vasilcanu R, Axelson M, Larsson O. The cyclolignan PPP induces activation loop-specific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor. Link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway. Oncogene 2004; 23:7854-62. [PMID: 15334055 DOI: 10.1038/sj.onc.1208065] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The insulin-like growth factor-1 receptor (IGF-1R) is crucial for many functions in neoplastic cells, for example, antiapoptosis. Recently, we demonstrated that the cyclolignan PPP efficiently inhibited phosphorylation of IGF-1R without interfering with insulin receptor activity. PPP preferentially reduced phosphorylated Akt, as compared to phosphorylated Erk1/2, and caused apoptosis. Now, we aimed to investigate how PPP inhibits the IGF-1R tyrosine kinase (IGF-1RTK) and the PI3K/Akt apoptotic pathway. Using a baculovirus driven IGF-1RTK we found that PPP interfered with tyrosine phosphorylation in the activation loop of the kinase domain. Specifically, it blocked phosphorylation of tyrosine (Y) 1136, while sparing the two others (Y1131 and Y1135). To explore the impact of inhibition of Y1136 on Akt phosphorylation we transfected P6 cells (overexpressing IGF-1R) and malignant melanoma cells with different IGF-1R mutants, including Y1136F (tyrosine replaced by phenylalanine). Y1136F was found to strongly decrease IGF-1 stimulated phosphorylation of Akt. Conversely, Akt phosphorylation was weakly affected in the Y1131F transfectant. Taken together, our data suggest that the preferential inhibition of phosphorylated Akt, after PPP treatment, may be due to specific inhibition of Y1136. PPP was proven not to interfere directly with Akt or any of its downstream molecules in the apoptotic pathway.
Collapse
Affiliation(s)
- Daiana Vasilcanu
- Department of Oncology and Pathology, Division of Cellular and Molecular Tumor Pathology, CCK, R8:04, Karolinska Hospital, SE-17176 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Leinninger GM, Russell JW, van Golen CM, Berent A, Feldman EL. Insulin-like growth factor-I regulates glucose-induced mitochondrial depolarization and apoptosis in human neuroblastoma. Cell Death Differ 2004; 11:885-96. [PMID: 15105834 DOI: 10.1038/sj.cdd.4401429] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Neuroblastoma, a pediatric peripheral nervous system tumor, frequently contains alterations in apoptotic pathways, producing chemoresistant disease. Insulin-like growth factor (IGF) system components are highly expressed in neuroblastoma, further protecting these cells from apoptosis. This study investigates IGF-I regulation of apoptosis at the mitochondrial level. Elevated extracellular glucose causes rapid mitochondrial enlargement coupled with an increase in the mitochondrial membrane potential (Delta Psi(M)) followed by mitochondrial membrane depolarization (MMD), uncoupling protein 3 (UCP3) downregulation, caspase-3 activation and decreased Bcl-2. MMD inhibition by Bongkrekic acid prevents high-glucose-induced loss of UCP3 and apoptosis. Glucose exposure induces caspase-9 cleavage within 30 min, and caspase-9 inhibition prevents glucose-mediated apoptosis. IGF-I prevents caspase activation and mitochondrial events leading to apoptosis. These results suggest that elevated glucose produces early initiator caspase activation, followed by Delta Psi(M) changes, in neuroblastoma cells; in turn, IGF-I prevents apoptosis by preventing downstream caspase activation, maintaining Delta Psi(M) and regulating Bcl proteins.
Collapse
Affiliation(s)
- G M Leinninger
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
34
|
Sun H, Tu X, Prisco M, Wu A, Casiburi I, Baserga R. Insulin-like growth factor I receptor signaling and nuclear translocation of insulin receptor substrates 1 and 2. Mol Endocrinol 2003; 17:472-86. [PMID: 12554758 DOI: 10.1210/me.2002-0276] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The insulin receptor substrate 1 (IRS-1) can translocate to the nuclei and nucleoli of several types of cells. Nuclear translocation can be induced by an activated insulin-like growth factor 1 receptor (IGF-IR), and by certain oncogenes, such as the Simian virus 40 T antigen and v-src. We have asked whether IRS-2 could also translocate to the nuclei. In addition, we have studied the effects of functional mutations in the IGF-IR on nuclear translocation of IRS proteins. IRS-2 translocates to the nuclei of mouse embryo fibroblasts expressing the IGF-IR, but, at variance with IRS-1, does not translocate in cells expressing the Simian virus 40 T antigen. Mutations in the tyrosine kinase domain of the IGF-IR abrogate translocation of the IRS proteins. Other mutations in the IGF-IR, which do not interfere with its mitogenicity but inhibit its transforming capacity, result in a decrease in translocation, especially to the nucleoli. Nuclear IRS-1 and IRS-2 interact with the upstream binding factor, which is a key regulator of RNA polymerase I activity and, therefore, rRNA synthesis. In 32D cells, wild-type, but not mutant, IRS-1 causes a significant activation of the ribosomal DNA promoter. The interaction of nuclear IRS proteins with upstream binding factor 1 constitutes the first direct link of these proteins with the ribosomal DNA transcription machinery.
Collapse
Affiliation(s)
- HongZhi Sun
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
35
|
Belletti B, Drakas R, Morrione A, Tu X, Prisco M, Yuan T, Casaburi I, Baserga R. Regulation of Id1 protein expression in mouse embryo fibroblasts by the type 1 insulin-like growth factor receptor. Exp Cell Res 2002; 277:107-18. [PMID: 12061821 DOI: 10.1006/excr.2002.5542] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The activated type 1 insulin-like growth factor (IGF-IR) increases the expression of Id1 proteins in mouse embryo fibroblasts (MEF). Up-regulation depends on a functional receptor and on multiple pathways originating from different domains of the receptor. In MEF, Id1 protein expression is also up-regulated by serum and certain oncogenes. Signaling through Stat3 plays an important, but not exclusive, role in the up-regulation of Id1 protein levels. In all instances, the increase in Id1 protein expression is paralleled by a corresponding increase in Id1 promoter activity, as measured with a reporter gene.
Collapse
Affiliation(s)
- Barbara Belletti
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Brodt P, Fallavollita L, Khatib AM, Samani AA, Zhang D. Cooperative regulation of the invasive and metastatic phenotypes by different domains of the type I insulin-like growth factor receptor beta subunit. J Biol Chem 2001; 276:33608-15. [PMID: 11445567 DOI: 10.1074/jbc.m102754200] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor for the type 1 insulin-like growth factor (IGF-I) regulates multiple cellular functions impacting on the metastatic phenotype of tumor cells, including cellular proliferation, anchorage-independent growth, survival, migration, synthesis of the 72-kDa type IV collagenase and invasion. We have used site-directed mutagenesis to generate domain-specific mutants of the receptor beta subunit to analyze the role of specific tyrosines in the regulation of the invasive/metastatic phenotype. Poorly invasive M-27 carcinoma cells expressing low receptor numbers were transfected with a plasmid vector expressing IGF-I receptor cDNA in which single or multiple tyrosine codons in the kinase domain, namely Tyr-1131, Tyr-1135, and Tyr-1136 or the C-terminal tyrosines 1250 and 1251 were substituted with phenylalanine. Changes in the invasive and metastatic properties were analyzed relative to M-27 cells expressing the wild type receptor. We found that cells expressing the Y1131F,Y1135F,Y1136F or Y1135F receptor mutants lost all IGF-IR-dependent functions and their phenotypes were indistinguishable from, or suppressed relative to, the parent line. The Y1250F,Y1251F substitution abolished anchorage-independent growth, cell spreading, and the anti-apoptotic effect of IGF-I whereas all other IGF-IR-dependent phenotypes were either unperturbed (i.e. mitogenicity) or only partially reduced (migration and invasion). The results identify three types of receptor-dependent functions in this model: those dependent only on an intact kinase domain (DNA synthesis), those dependent equally on kinase domain and Tyr-1250/1251 signaling (e.g. apoptosis, soft agar cloning) and those dependent on kinase domain and enhanced through Tyr-1250/1251 signaling (migration, invasion). They suggest that signals derived from both regions of the receptor cooperate to enhance tumor metastasis.
Collapse
MESH Headings
- Cell Movement
- Cloning, Molecular
- DNA Mutational Analysis
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Neoplastic
- Genes, Dominant
- Humans
- Insulin-Like Growth Factor I/metabolism
- Kinetics
- Matrix Metalloproteinase 2/metabolism
- Mutagenesis, Site-Directed
- Mutation
- Neoplasm Invasiveness
- Neoplasm Metastasis
- Phenotype
- Protein Structure, Tertiary
- Receptor, IGF Type 1/chemistry
- Receptor, IGF Type 1/metabolism
- Signal Transduction
- Time Factors
- Transfection
- Tumor Cells, Cultured
- Tyrosine/chemistry
Collapse
Affiliation(s)
- P Brodt
- Department of Surgery, McGill University Health Center, Royal Victoria Hospital, 687 Pine Ave W., Montreal, Quebec H3A 1A1, Canada.
| | | | | | | | | |
Collapse
|
37
|
Himmelmann B, Terry C, Dey BR, Lopaczynski W, Nissley P. Anchorage-independent growth of fibroblasts that express a truncated IGF-I receptor. Biochem Biophys Res Commun 2001; 286:472-7. [PMID: 11511082 DOI: 10.1006/bbrc.2001.5417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this investigation was to study signaling by an insulin-like growth factor I receptor (IGF-I R) that lacks the extracellular portion of the receptor. We transfected IGF-I R-negative mouse embryo fibroblasts with a truncated IGF-I R consisting of only the transmembrane and cytoplasmic part of the beta subunit. Proliferation as assessed by counting cells was the same for vector only transfectants and the truncated receptor transfectants in defined medium containing EGF and PDGF. In contrast, anchorage-independent growth as measured by colony formation in soft agar was markedly increased for the truncated IGF-I R transfectants compared to the vector transfectants. MAP-kinase activity in the truncated IGF-I R transfectants was not higher than in the vector transfectants; however, PI 3-kinase activity was significantly higher in the IGF-I R transfectants. These results provide evidence that an IGF-I receptor consisting of only the transmembrane and cytoplasmic domain of the beta subunit can signal pathways leading to anchorage-independent growth.
Collapse
Affiliation(s)
- B Himmelmann
- Endocrinology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
38
|
Sachdev P, Jiang YX, Li W, Miki T, Maruta H, Nur-E-Kamal MS, Wang LH. Differential requirement for Rho family GTPases in an oncogenic insulin-like growth factor-I receptor-induced cell transformation. J Biol Chem 2001; 276:26461-71. [PMID: 11346642 DOI: 10.1074/jbc.m010995200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Insulin-like growth factor I receptor (IGFR) plays an important role in cell growth and transformation. We dissected the downstream signaling pathways of an oncogenic variant of IGFR, Gag-IGFR, called NM1. Loss of function mutants of NM1, Phe-1136 and dS2, that retain kinase activity but are attenuated in their transforming ability were used to identify signaling pathways that are important for transformation of NIH 3T3 cells. MAPK, phospholipase C gamma, and Stat3 were activated to the same extent by NM1 and its two mutants, suggesting that activation of these pathways, individually or in combination, was not sufficient for NM1-induced cell transformation. The mutant dS2 has decreased IRS-1 phosphorylation levels and IRS-1-associated phosphatidylinositol 3'-kinase activity, suggesting that this impairment may be in part responsible for the defectiveness of dS2. We show that Rho family members, RhoA, Rac1, and Cdc42 are activated by NM1, and this activation, particularly RhoA and Cdc42, is attenuated in both mutants of NM1. Dominant negative mutants of Rho, Rac, and Cdc42 inhibited NM1-induced cell transformation, as measured by focus and colony forming ability. Dominant negative Rho most potently inhibited the focus forming activity, whereas Cdc42 was most effective in inhibiting the colony forming ability of NM1-expressing cells. Conversely, constitutively activated (ca) Rho is more effective than ca Rac or ca Cdc42 in rescuing the focus forming ability of the mutants. By contrast, ca Cdc42 is most effective in rescuing the colony forming ability of both mutants.
Collapse
Affiliation(s)
- P Sachdev
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Yam A, Hyun T, Li W. Characterization of insulin-like growth factor I (IGF-I) receptor mutants for their effects on IGF-I- and interleukin 4-mediated DNA synthesis of 32D cells. J Biol Chem 2001; 276:24409-13. [PMID: 11323432 DOI: 10.1074/jbc.m102358200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently we demonstrated that overexpression of the wild type insulin-like growth factor I receptor (IGF-IRWT) in 32D myeloid progenitor cells led to cell proliferation in response to interleukin 4 (IL-4) as well as insulin-like growth factor I (IGF-I) in the absence of insulin receptor substrate expression (Soon, L., Flechner, L., Gutkind, J. S., Wang, L. H., Baserga, R., Pierce, J. H., and Li, W. (1999) Mol. Cell. Biol. 19, 3816-3828). To understand the structural importance of insulin-like growth factor I receptor (IGF-IR) in mediating IL-4- and IGF-I-induced DNA synthesis, we transfected various mutants of IGF-IR to 32D cells. Our results show that most mutants, including Y1250F, Y1251F, Y1250F/Y1251F, S1280A/S1281A/S1282A/S1283A, Y1316F, and 1245d, still retained mitogenic response toward IGF-I or IL-4. However, the Y950F, Y1131F, and Y1135F mutants were not able to respond to either ligand. The H1293F/K1294R and 1293d mutants reduced response toward IGF-I but not to IL-4. Phosphorylation of Shc was greatly reduced in those three mutants that lost mitogenic response. The MAPK activity was much lower in Y1131F and Y1135F mutants, indicating the importance of the Shc/MAPK pathway in IGF-I-induced mitogenesis. Importantly, the synergistic effect of these two factors on DNA synthesis was not affected in cells expressing most of the mutants, even in those three that had lower mitogenic response toward a single ligand. These results suggest that an unidentified pathway(s) may be induced upon co-addition of IGF-I and IL-4 that sustains the intact mitogenesis.
Collapse
Affiliation(s)
- A Yam
- Georgetown University Medical Center, Washington, D. C. 20007, USA
| | | | | |
Collapse
|
40
|
Affiliation(s)
- D T Simmons
- Department of Biological Sciences, University of Delaware, Newark 19716, USA
| |
Collapse
|
41
|
Samani AA, Brodt P. The Receptor for the Type I Insulin-like Growth Factor and its Ligands Regulate Multiple Cellular Functions That Impact on Metastasis. Surg Oncol Clin N Am 2001. [DOI: 10.1016/s1055-3207(18)30066-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Navarro M, Baserga R. Limited redundancy of survival signals from the type 1 insulin-like growth factor receptor. Endocrinology 2001; 142:1073-81. [PMID: 11181521 DOI: 10.1210/endo.142.3.7991] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The type 1 insulin-like growth factor receptor (IGF-IR) is effective in protecting cells from a variety of apoptotic injuries. In 32D murine hemopoietic cells, the IGF-IR sends three separate survival signals, through insulin receptor substrate-1, Shc, and mitochondrial Raf translocation. We report here that these three pathways for survival have a limited redundancy. If one of these pathways is blocked, the IGF-IR can still protect 32D cells from apoptosis induced by interleukin-3 withdrawal. However, when two of the three pathways are inactivated, the receptor is no longer capable to protect cells from apoptosis. The survival signal can use any two pathway combinations.
Collapse
Affiliation(s)
- M Navarro
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
43
|
Seiler AE, Ross BN, Rubin R. Inhibition of insulin-like growth factor-1 receptor and IRS-2 signaling by ethanol in SH-SY5Y neuroblastoma cells. J Neurochem 2001; 76:573-81. [PMID: 11208920 DOI: 10.1046/j.1471-4159.2001.00025.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of ethanol on insulin-like growth factor-1 (IGF-I)-mediated signal transduction and functional activation in neuronal cells was examined. In human SH-SY5Y neuroblastoma cells, ethanol inhibited tyrosine autophosphorylation of the IGF-I receptor. This corresponded to the inhibition of IGF-I-induced phosphorylation of p42/p44 mitogen-activated/extracellular signal-regulated protein kinase (MAPK) by ethanol. Insulin-related substrate-2 (IRS-2) and focal adhesion kinase phosphorylation were reduced in the presence of ethanol, which corresponded to the prevention of lamellipodia formation (30 min). By contrast, ethanol had no effect on Shc phosphorylation when measured up to 1 h, and did not affect the association of Grb-2 with Shc. Neurite formation at 24 h was similarly unaffected by ethanol. The data indicate that the IGF-I receptor is a target for ethanol in SH-SY5Y cells However, there is diversity in the sensitivity of signaling elements within the IGF-I receptor tyrosine kinase signaling cascades to ethanol, which can be related to the inhibition of specific functional events in neuronal activation.
Collapse
Affiliation(s)
- A E Seiler
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia 19107, USA
| | | | | |
Collapse
|
44
|
Abstract
In recent years, the type 1 insulin-like growth factor receptor (IGF-IR) has emerged as a receptor that plays a very important role in the growth of cells, both in vivo and in vitro. The ability of the IGF-IR to induce mitogenesis and to promote survival of cells against a variety of apoptotic agents is well documented. Somewhat less known are other functions of the IGF-IR, like its ability to induce differentiation, to regulate cell size and to affect the organization of the cytoskeleton of cells. This review will focus on these lesser known functions of the IGF-IR. At the same time, we will emphasize how the IGF-IR can send contradictory signals, which depend on different domains of the receptor and the availability of downstream transducing molecules.
Collapse
Affiliation(s)
- R Baserga
- Kimmel Cancer Center, Thomas Jefferson University, 233 S. 10th Street, 624 BLSB, Philadelphia, Pennsylvania, PA 19107, USA
| |
Collapse
|
45
|
Brodt P, Samani A, Navab R. Inhibition of the type I insulin-like growth factor receptor expression and signaling: novel strategies for antimetastatic therapy. Biochem Pharmacol 2000; 60:1101-7. [PMID: 11007947 DOI: 10.1016/s0006-2952(00)00422-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The receptor for the type 1 insulin-like growth factor (IGF-1R) plays a critical role in the acquisition of the malignant phenotype. Using a highly metastatic murine lung carcinoma model, it was demonstrated that this receptor regulates several cellular functions that can impact on the metastatic potential of the cells, including cellular proliferation, anchorage-independent growth, cell migration, and invasion. The tumor model was used to develop several strategies for altering receptor expression and function as means of abrogating the metastatic potential of the cells. They include stable expression in the tumor cells of IGF-1R antisense RNA and dominant negative receptor mutants in which tyrosines in the kinase domain were substituted with phenylalanine. In addition, a novel strategy was used based on altering post ligand-binding receptor turnover. This led to inhibition of receptor re-expression and signaling and resulted in increased tumor cell apoptosis. When combined with the development of viral vectors designed to deliver genetic information with high efficiency, these strategies could form the basis for development of highly specific, antimetastatic therapy in tumors with known IGF-IR involvement.
Collapse
Affiliation(s)
- P Brodt
- Department of Surgery, McGill University Health Center, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
46
|
van Golen CM, Castle VP, Feldman EL. IGF-I receptor activation and BCL-2 overexpression prevent early apoptotic events in human neuroblastoma. Cell Death Differ 2000; 7:654-65. [PMID: 10889510 DOI: 10.1038/sj.cdd.4400693] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The type I insulin-like growth factor receptor (IGF-IR) is important for mitogenesis, transformation, and survival of tumor cells. The current study examines the effect of IGF-IR expression and activation on apoptosis in SHEP human neuroblastoma cells. SHEP cells undergo apoptosis which is prevented by IGF-I addition or overexpression of the IGF-IR (SHEP/IGF-IR cells). High mannitol treatment activates caspase-3 by 1 h in SHEP cells while caspase-3 activation is delayed by 3 h in SHEP/IGF-IR cells. Transfection with Bcl-2 (SHEP/Bcl-2 cells) prevents serum withdrawal and mannitol induced apoptosis and caspase-3 activation. Mannitol induces mitochondrial membrane depolarization in both SHEP and SHEP/IGF-IR cells. IGF-IR activation or overexpression of Bcl-2 in SHEP cells prevents mitochondrial membrane depolarization. Collectively, these results suggest that IGF-IR or Bcl-2 overexpression in neuroblastoma cells promotes cell survival by preventing mitochondrial membrane depolarization and caspase-3 activation, ultimately leading to increased tumor growth.
Collapse
Affiliation(s)
- C M van Golen
- Department of Neurology and Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-0588, USA
| | | | | |
Collapse
|
47
|
Dews M, Prisco M, Peruzzi F, Romano G, Morrione A, Baserga R. Domains of the insulin-like growth factor I receptor required for the activation of extracellular signal-regulated kinases. Endocrinology 2000; 141:1289-300. [PMID: 10746631 DOI: 10.1210/endo.141.4.7414] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The type 1 insulin-like growth factor receptor (IGF-IR) activates the extracellular signal-regulated kinases (ERK1 and -2). The two major substrates of the IGF-IR, insulin receptor substrate-1 (IRS-1) and the Shc proteins, are known to contribute to this activation. We investigated the domains of the IGF-IR required for the activation of the ERK proteins. To facilitate this study, we used a cell line (32D cells) that lacks IRS-1. In the absence of IRS-1, ERK activation is inhibited if the IGF-IR is mutated at two domains: tyrosine Y950 and a serine quartet at 1280-1283. Expression of IRS-1 in 32D cells expressing the double mutant IGF-IR restores ERK activation. The importance of the C-terminus of the IGF-IR in ERK activation (in the absence of IRS-1) is confirmed by the failure of the insulin receptor to give a sustained activation of ERK. In this model system, there is a good, but not exact, correlation between ERK activation and cell survival after withdrawal of growth factors.
Collapse
Affiliation(s)
- M Dews
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
48
|
Seiler AE, Ross BN, Green JS, Rubin R. Differential Effects of Ethanol on Insulin-Like Growth Factor-I Receptor Signaling. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb04583.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Baker NL, Carlo Russo V, Bernard O, D'Ercole AJ, Werther GA. Interactions between bcl-2 and the IGF system control apoptosis in the developing mouse brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 118:109-18. [PMID: 10611509 DOI: 10.1016/s0165-3806(99)00136-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The IGF system and the pro-survival Bcl-2 proteins protect cells from apoptosis and play a key role in brain development. In order to examine a possible relationship between these two potent anti-apoptotic systems, we utilised two transgenic mice models overexpressing either Bcl-2 or IGF-I proteins in olfactory bulb (OB) or cerebellar neurons, respectively. We have demonstrated that while the organization of the defined layers of the OB from the bcl-2 transgenic and wildtype mice cultured in serum free medium (SF) was similarly poor, the mitral cell layer from the transgenic mice was expanded and their neurons were well preserved. Addition of IGF-I improved the definition of the layers normally present within the OB, in both wildtype and bcl-2 transgenic mice, and restored wildtype mitral cell layer structure and neuronal survival similar to that in bcl-2 mice, whose mitral cell survival was not further enhanced by IGF-I. Immunoreactivity for IGF-I and IGFBP-2 was markedly increased in these Bcl-2-expressing mitral cells compared to wildtype mice. In newborn IGF-I transgenic mice, cerebellar Purkinje cells overexpressing IGF-I showed markedly increased immunoreactivity for Bcl-2 and IGFBP-2. These studies indicate that in the developing brain IGF-I modulates expression of its major binding protein IGFBP-2, as well as the Bcl-2 protein. In addition apoptosis caused by culturing OBs in SF medium, is inhibited by expression of Bcl-2 in the mitral neurons and is associated with enhanced expression of the IGF system, including IGF-I and IGFBP-2. The later may thus play a role in IGF targeting. This complex interaction between the two potent anti-apoptotic systems is likely to provide a robust system of cell protection during brain development and repair.
Collapse
Affiliation(s)
- N L Baker
- Centre for Hormone Research, Royal Children's Hospital, Flemington Road, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
50
|
Leroith D, Blakesley VA, Werner H. Molecular Mechanisms of Insulin‐like Growth Factor I Receptor Function: Implications for Normal Physiology and Pathological States. Compr Physiol 1999. [DOI: 10.1002/cphy.cp070520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|