1
|
Chylek LA, Akimov V, Dengjel J, Rigbolt KTG, Hu B, Hlavacek WS, Blagoev B. Phosphorylation site dynamics of early T-cell receptor signaling. PLoS One 2014; 9:e104240. [PMID: 25147952 PMCID: PMC4141737 DOI: 10.1371/journal.pone.0104240] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022] Open
Abstract
In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel, generalizable framework for solidifying quantitative understanding of a signaling network and for elucidating missing links.
Collapse
Affiliation(s)
- Lily A. Chylek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Jörn Dengjel
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Kristoffer T. G. Rigbolt
- Department of Dermatology, Medical Center; Freiburg Institute for Advanced Studies (FRIAS); BIOSS Centre for Biological Signalling Studies; ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Bin Hu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - William S. Hlavacek
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
2
|
Fuller DM, Zhang W. Regulation of lymphocyte development and activation by the LAT family of adapter proteins. Immunol Rev 2010; 232:72-83. [PMID: 19909357 DOI: 10.1111/j.1600-065x.2009.00828.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transmembrane adapter proteins (TRAPs) are critical components of signaling pathways in lymphocytes, linking antigen receptor engagement to downstream cellular processes. While these proteins lack intrinsic enzymatic activity, their phosphorylation following receptor ligation allows them to function as scaffolds for the assembly of multi-molecular signaling complexes. Many TRAPs have recently been discovered, and numerous studies demonstrate their roles in the positive and negative regulation of lymphocyte maturation, activation, and differentiation. One such example is the linker for activation of T cells (LAT) family of adapter proteins. While LAT has been shown to play an indispensable role in T-cell and mast cell function, the other family members, linker for activation of B cells (LAB) and linker for activation of X cells (LAX), are necessary to fine-tune immune responses. In addition to its well-established role in the positive regulation of lymphocyte activation, LAT exerts an inhibitory effect on T-cell receptor-mediated signaling. Furthermore, LAT, along with LAB and LAX, plays a crucial role in establishing and maintaining tolerance. Here, we review recent data concerning the regulation of lymphocyte development and activation by the LAT family of proteins.
Collapse
Affiliation(s)
- Deirdre M Fuller
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
3
|
Cytoskeletal protein 4.1R negatively regulates T-cell activation by inhibiting the phosphorylation of LAT. Blood 2009; 113:6128-37. [PMID: 19190245 DOI: 10.1182/blood-2008-10-182329] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein 4.1R (4.1R) was first identified in red cells where it plays an important role in maintaining mechanical stability of red cell membrane. 4.1R has also been shown to be expressed in T cells, but its function has been unclear. In the present study, we use 4.1R-deficient mice to explore the role of 4.1R in T cells. We show that 4.1R is recruited to the immunologic synapse after T cell-antigen receptor (TCR) stimulation. We show further that CD4+ T cells of 4.1R-/- mice are hyperactivated and that they displayed hyperproliferation and increased production of interleukin-2 (IL-2) and interferon gamma (IFNgamma). The hyperactivation results from enhanced phosphorylation of LAT and its downstream signaling molecule ERK. The 4.1R exerts its effect by binding directly to LAT, and thereby inhibiting its phosphorylation by ZAP-70. Moreover, mice deficient in 4.1R display an elevated humoral response to immunization with T cell-dependent antigen. Thus, we have defined a hitherto unrecognized role for 4.1R in negatively regulating T-cell activation by modulating intracellular signal transduction.
Collapse
|
4
|
Jiang Y, Cheng H. Evidence of LAT as a dual substrate for Lck and Syk in T lymphocytes. Leuk Res 2007; 31:541-5. [PMID: 16938345 DOI: 10.1016/j.leukres.2006.07.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 06/08/2006] [Accepted: 07/01/2006] [Indexed: 11/29/2022]
Abstract
LAT is a linker protein essential for activation of T lymphocytes. Its rapid tyrosine-phosphorylation upon T cell receptor (TCR) stimulation recruits downstream signaling molecules for membrane targeting and activation. LAT is physically concentrated in cholesterol-enriched membrane microdomains and is known a substrate for Syk/Zap70 kinase. In this study, we demonstrate that LAT serves as a dual substrate for both Lck and Syk kinases. LAT phosphorylation is absent in Lck-deficient J.CaM1.6 cells and Lck is co-precipitated with LAT in pervanadate-activated Jurkat cells. Further, the in vitro kinase assay using purified Lck and LAT shows that Lck directly phosphorylates LAT. Both Lck and Syk, phosphorylate the ITAM-like motifs on LAT at Y171Y191, which is essential for induction of the interaction of LAT with downstream signaling molecules such as Grb2, PLC-gamma1 and c-Cbl, and for activation of MAPK-ERK. Collectively, our data indicate that LAT is an immediate substrate for Lck in one of the earliest events of T cell activation.
Collapse
Affiliation(s)
- Yixing Jiang
- Department of Medicine and Pennstate Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, United States
| | | |
Collapse
|
5
|
Liu CP, Kuo YC, Shen CC, Wu MH, Liao JF, Lin YL, Chen CF, Tsai WJ. (S)-Armepavine inhibits human peripheral blood mononuclear cell activation by regulating Itk and PLCγ activation in a PI-3K-dependent manner. J Leukoc Biol 2007; 81:1276-86. [PMID: 17284681 DOI: 10.1189/jlb.0106056] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chinese herbs are useful edible and medicinal plants for their immune modulatory functions. We have proven that (S)-armepavine (C19H23O3N; MW313) from Nelumbo nucifera inhibits the proliferation of human PBMCs activated with PHA and improves autoimmune diseases in MRL/MpJ-lpr/lpr mice. In the present study, the pharmacological activities of (S)-armepavine were evaluated in PHA-activated PBMCs. The results showed that (S)-armepavine suppressed PHA-induced PBMC proliferation and genes expression of IL-2 and IFN-gamma without direct cytotoxicity. Inhibition of NF-AT and NF-kappaB activation suggested phospholipase Cgamma (PLCgamma)-mediated Ca2+ mobilization and protein kinase C activation were blocked by (S)-armepavine. Phosphorylation of PLCgamma is regulated by lymphocyte-specific kinase (Lck), ZAP-70, and IL-2-inducible T cell kinase (Itk). We found (S)-armepavine inhibited PHA-induced phosphorylation of Itk and PLCgamma efficiently but did not influence Lck or ZAP-70 phosphorylation. In addition, ZAP-70-mediated pathways, such as the association of linker for activation of T cells with PLCgamma and activation of ERK, were also intact in the presence of (S)-armepavine. Finally, reduction of phosphoinositide 3,4,5-trisphosphate formation and Akt phosphorylation suggested that (S)-armepavine inhibited Itk, and PLCgamma phosphorylation might be a result of the influence of PI-3K activation. Addition of exogenous IL-2 or PMA/A23187 rescued PBMC proliferation in the presence of (S)-armepavine. Therefore, we concluded that (S)-armepavine inhibited PHA-induced cell proliferation and cytokine production in a major way by blocking membrane-proximal effectors such as Itk and PLCgamma in a PI-3K-dependent manner.
Collapse
Affiliation(s)
- Chih-Peng Liu
- Institute of Pharmacology, National Yang-Ming University, Laboratory of Biochemistry, National Research Institute of Chinese Medicine, No. 155-1, Sec. 2, Li-Nung St., Shih-Pai, 112, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Watson AR, Lee WT. Defective T cell receptor-mediated signal transduction in memory CD4 T lymphocytes exposed to superantigen or anti-T cell receptor antibodies. Cell Immunol 2006; 242:80-90. [PMID: 17083922 PMCID: PMC1829409 DOI: 10.1016/j.cellimm.2006.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/22/2006] [Accepted: 09/25/2006] [Indexed: 11/28/2022]
Abstract
Lymphocytes must promote protective immune responses while still maintaining self-tolerance. Stimulation through the T cell receptor (TCR) can lead to distinct responses in naive and memory CD4 T cells. Whereas peptide antigen stimulates both naive and memory T cells, soluble anti-CD3 antibodies and bacterial superantigens stimulate only naive T cells to proliferate and secrete cytokines. Further, superantigens, like staphylococcal enterotoxin B (SEB), cause memory T cells to become anergic while soluble anti-CD3 does not. In the present report, we show that signal transduction through the TCR is impaired in memory cells exposed to either anti-CD3 or SEB. A block in signaling leads to impaired activation of the kinase ZAP-70 so that downstream signals and cell proliferation do not occur. We further show that the signaling defect is unique to each agent. In anti-CD3-treated memory T cells, the src kinase Lck is only transiently activated and does not phosphorylate and activate ZAP-70. In SEB-treated memory T cells, ZAP-70 does not interact with the TCR/CD3 complex to become accessible to Lck. Finally, we provide evidence that alternative signaling pathways are initiated in SEB-treated memory cells. Altered signaling, indicated by an elevation in activity of the src kinase Fyn, may be responsible for memory cell anergy caused by SEB. Thus, differentiation of naive T cells into memory cells is accompanied by alterations in TCR-mediated signaling that can promote heightened recall immunity or specific tolerance.
Collapse
Affiliation(s)
- Andrew R.O. Watson
- The Department of Biomedical Sciences, The School of Public Health, The University at Albany, Albany, New York 12201-0509
| | - William T. Lee
- The Department of Biomedical Sciences, The School of Public Health, The University at Albany, Albany, New York 12201-0509
- The Laboratory of Clinical and Experimental Immunology and Endocrinology, The Wadsworth Center, Albany, New York 12201-2002
- * Corresponding author. Fax: 1-518-474-8366, Email Address: (W.T. Lee)
| |
Collapse
|
7
|
Abstract
Dynamic protein-protein interactions are involved in most physiological processes and, in particular, for the formation of multiprotein signaling complexes at transmembrane receptors, adapter proteins and effector molecules. Because the unregulated induction of signaling complexes has substantial clinical relevance, the investigation of these complexes is an active area of research. These studies strive to answer questions about the composition and function of multiprotein signaling complexes, along with the molecular mechanisms of their formation. In this review, the adapter protein, linker for activation of T cells (LAT), will be employed as a model to exemplify how signaling complexes are characterized using a range of techniques. The intensive investigation of LAT highlights how the systematic use of complementary techniques leads to an integrated understanding of the formation, composition and function of multiprotein signaling complexes that occur at receptors, adapter proteins and effector molecules.
Collapse
Affiliation(s)
- Jon C D Houtman
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
8
|
Brooks SR, Kirkham PM, Freeberg L, Carter RH. Binding of Cytoplasmic Proteins to the CD19 Intracellular Domain Is High Affinity, Competitive, and Multimeric. THE JOURNAL OF IMMUNOLOGY 2004; 172:7556-64. [PMID: 15187135 DOI: 10.4049/jimmunol.172.12.7556] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD19 is required for the development of B1 and marginal zone B cells, for Ab responses, and for B cell memory. CD19 immunoprecipitates contain a complex of cytoplasmic proteins, including Lyn, Vav, phospholipase Cgamma2 (PLCgamma2), Grb2, and the p85 subunit of phosphatidylinositol 3-kinase. Which of these bind directly to CD19 and the strengths of the interactions are unknown. These issues are important in understanding the signaling functions of CD19, which are crucial for normal B cell physiology. Using purified, recombinant proteins, we now show that each of these signaling proteins contains at least one Src homology 2 (SH2) domain that interacts directly with the phosphorylated CD19 cytoplasmic domain. The affinities of binding of the SH2 domains of Vav, p85, and Grb2 to CD19 are each in the nanomolar range by surface plasmon resonance (Biacore) analysis. Binding of Lyn and PLCgamma2 do not fit 1:1 modeling. However, analyses of binding data (Lyn) and competition experiments (PLCgamma2) suggest that these bind with comparable affinity. Competition experiments demonstrate that SH2 domains whose binding is dependent on the same CD19 tyrosine(s) compete for binding, but these SH2 domains do not impede binding of different SH2 domains to other CD19 tyrosines. We conclude that binding to the CD19 cytoplasmic domain is multimeric, high affinity, and competitive. The high affinity of the interactions also suggests that tyrosines that were nonessential in vivo are nevertheless functional. A preliminary structural model suggests that CD19 forms a signaling complex containing multiple cytoplasmic proteins in close proximity to each other and to the plasma membrane.
Collapse
Affiliation(s)
- Stephen R Brooks
- Department of Microbiology, University of Alabama, 701 South 19th Street, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
9
|
Nolan KF, Strong V, Soler D, Fairchild PJ, Cobbold SP, Croxton R, Gonzalo JA, Rubio A, Wells M, Waldmann H. IL-10-Conditioned Dendritic Cells, Decommissioned for Recruitment of Adaptive Immunity, Elicit Innate Inflammatory Gene Products in Response to Danger Signals. THE JOURNAL OF IMMUNOLOGY 2004; 172:2201-9. [PMID: 14764687 DOI: 10.4049/jimmunol.172.4.2201] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are the professional APCs of the immune system, enabling T cells to perceive and respond appropriately to potentially dangerous microbes, while also being able to maintain T cell tolerance toward self. In part, such tolerance can be determined by IL-10 released from certain types of regulatory T cells. IL-10 has previously been shown to render DCs unable to activate T cells and it has been assumed that this process represents a general block in maturation. Using serial analysis of gene expression, we show that IL-10 pretreatment of murine bone marrow-derived DCs alone causes significant changes in gene expression. Furthermore, these cells retain the ability to respond to Toll-like receptor agonists, but in a manner skewed toward the selective induction of mediators known to enhance local inflammation and innate immunity, among which we highlight a novel CXCR2 ligand, DC inflammatory protein-1. These data suggest that, while the presence of a protolerogenic and purportedly anti-inflammatory agent such as IL-10 precludes DCs from acquiring their potential as initiators of adaptive immunity, their ability to act as initiators of innate immunity in response to Toll-like receptor signaling is enhanced.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Bone Marrow Cells/immunology
- Bone Marrow Cells/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Movement/immunology
- Cells, Cultured
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Chemokines, CXC/physiology
- Chemotaxis, Leukocyte/immunology
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Gene Expression Regulation/immunology
- Gene Library
- Humans
- Immunity, Innate/genetics
- Inflammation Mediators/metabolism
- Interleukin-10/physiology
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Molecular Sequence Data
- Monomeric GTP-Binding Proteins/antagonists & inhibitors
- Monomeric GTP-Binding Proteins/biosynthesis
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/physiology
- Neutrophil Infiltration/immunology
- Nucleic Acid Amplification Techniques
- RNA, Messenger/biosynthesis
- Receptors, Interleukin-8B/physiology
Collapse
Affiliation(s)
- Kathleen F Nolan
- Sir William Dunn School of Pathology, Oxford University, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kang MA, Yun SY, Won J. Rosmarinic acid inhibits Ca2+-dependent pathways of T-cell antigen receptor-mediated signaling by inhibiting the PLC-gamma 1 and Itk activity. Blood 2003; 101:3534-42. [PMID: 12511421 DOI: 10.1182/blood-2002-07-1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rosmarinic acid (RosA) is a hydroxylated compound frequently found in herbal plants and is mostly responsible for anti-inflammatory and antioxidative activity. Previously, we observed that RosA inhibited T-cell antigen receptor (TCR)- induced interleukin 2 (IL-2) expression and subsequent T-cell proliferation in vitro. In this study, we investigated in detail inhibitory mechanism of RosA on TCR signaling, which ultimately activates IL-2 promoter by activating transcription factors, such as nuclear factor of activated T cells (NF-AT) and activating protein-1 (AP-1). Interestingly, RosA inhibited NF-AT activation but not AP-1, suggesting that RosA inhibits Ca(2+)-dependent signaling pathways only. Signaling events upstream of NF-AT activation, such as the generation of inositol 1,4,5-triphosphate and Ca(2+) mobilization, and tyrosine phosphorylation of phospholipase C-gamma 1 (PLC-gamma 1) were strongly inhibited by RosA. Tyrosine phosphorylation of PLC-gamma 1 is largely dependent on 3 kinds of protein tyrosine kinases (PTKs), ie, Lck, ZAP-70, and Itk. We found that RosA efficiently inhibited TCR-induced tyrosine phosphorylation and subsequent activation of Itk but did not inhibit Lck or ZAP-70. ZAP-70-dependent signaling pathways such as the tyrosine phosphorylation of LAT and SLP-76 and serine/threonine phosphorylation of mitogen-activated protein kinases (MAPKs) were intact in the presence of RosA, confirming that RosA suppresses TCR signaling in a ZAP-70-independent manner. Therefore, we conclude that RosA inhibits TCR signaling leading to Ca(2+) mobilization and NF-AT activation by blocking membrane-proximal events, specifically, the tyrosine phosphorylation of inducible T cells kinase (Itk) and PLC-gamma 1.
Collapse
Affiliation(s)
- Mi-Ae Kang
- Signal Transduction Laboratory, Mogam Biotechnology Research Institute, Gyunggido, Korea
| | | | | |
Collapse
|
11
|
Perez-Villar JJ, Whitney GS, Sitnick MT, Dunn RJ, Venkatesan S, O'Day K, Schieven GL, Lin TA, Kanner SB. Phosphorylation of the linker for activation of T-cells by Itk promotes recruitment of Vav. Biochemistry 2002; 41:10732-40. [PMID: 12186560 DOI: 10.1021/bi025554o] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The linker for activation of T-cells (LAT) is a palmitoylated integral membrane adaptor protein that resides in lipid membrane rafts and contains nine consensus putative tyrosine phosphorylation sites, several of which have been shown to serve as SH2 binding sites. Upon T-cell antigen receptor (TCR/CD3) engagement, LAT is phosphorylated by protein tyrosine kinases (PTK) and binds to the adaptors Gads and Grb2, as well as to phospholipase Cgamma1 (PLCgamma1), thereby facilitating the recruitment of key signal transduction components to drive T-cell activation. The LAT tyrosine residues Y(132), Y(171), Y(191), and Y(226) have been shown previously to be critical for binding to Gads, Grb2, and PLCgamma1. In this report, we show by generation of LAT truncation mutants that the Syk-family kinase ZAP-70 and the Tec-family kinase Itk favor phosphorylation of carboxy-terminal tyrosines in LAT. By direct binding studies using purified recombinant proteins or phosphopeptides and by mutagenesis of individual tyrosines in LAT to phenylalanine residues, we demonstrate that Y(171) and potentially Y(226) are docking sites for the Vav guanine nucleotide exchange factor. Further, overexpression of a kinase-deficient mutant of Itk in T-cells reduced both the tyrosine phosphorylation of endogenous LAT and the recruitment of Vav to LAT complexes. These data indicate that kinases from distinct PTK families are likely responsible for LAT phosphorylation following T-cell activation and that Itk kinase activity promotes recruitment of Vav to LAT.
Collapse
Affiliation(s)
- Juan J Perez-Villar
- Department of Immunology, Inflammation, and Pulmonology Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Engagement of the T cell antigen receptor (TCR) leads to a complex series of molecular changes at the plasma membrane, in the cytoplasm, and at the nucleus that lead ultimately to T cell effector function. Activation at the TCR of a set of protein tyrosine kinases (PTKs) is an early event in this process. This chapter reviews some of the critical substrates of these PTKs, the adapter proteins that, following phosphorylation on tyrosine residues, serve as binding sites for many of the critical effector enzymes and other adapter proteins required for T cell activation. The role of these adapters in binding various proteins, the interaction of adapters with plasma membrane microdomains, and the function of adapter proteins in control of the cytoskeleton are discussed.
Collapse
Affiliation(s)
- Lawrence E Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 1E24, Bethesda, Maryland, 20892-4255, USA.
| |
Collapse
|
13
|
Iwashima M, Takamatsu M, Yamagishi H, Hatanaka Y, Huang YY, McGinty C, Yamasaki S, Koike T. Genetic evidence for Shc requirement in TCR-induced c-Rel nuclear translocation and IL-2 expression. Proc Natl Acad Sci U S A 2002; 99:4544-9. [PMID: 11917142 PMCID: PMC123684 DOI: 10.1073/pnas.082647499] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Indexed: 01/20/2023] Open
Abstract
Shc, a prototypic adapter molecule, has been implicated in T cell receptor (TCR) signal transduction, but its role has not been identified clearly. Here we report that Shc is essential for TCR-induced IL-2 production but is dispensable for CD69 or CD25 expression. Engagement of TCR in mutant Jurkat T cells lacking Shc fails to produce IL-2 because of impaired mitogen-activated protein kinase activation. Activation of c-Rel, a transcription factor essential for IL-2 expression, was impaired also. In contrast, activation of nuclear factor of activated T cell and expression of CD69/CD25 were comparable between the mutant and wild-type Jurkat cells. These defects were rescued by expression of exogenous Shc. Activation of c-Rel using the estrogen receptor fusion protein restored the activation of the IL-2 promoter in an estrogen-dependent manner. These results show that Shc plays an essential role in the TCR-induced activation of c-Rel and the IL-2 promoter.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Antigens, CD/genetics
- Antigens, Differentiation, T-Lymphocyte/genetics
- Biological Transport
- Cell Nucleus/metabolism
- DNA-Binding Proteins/metabolism
- Humans
- Interleukin-2/biosynthesis
- Interleukin-2/genetics
- Jurkat Cells
- Lectins, C-Type
- Mitogen-Activated Protein Kinases/physiology
- NF-kappa B/metabolism
- NFATC Transcription Factors
- Nuclear Proteins
- Promoter Regions, Genetic
- Proteins/physiology
- Proto-Oncogene Proteins c-rel/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Interleukin-2/genetics
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Transcription Factor AP-1/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Makio Iwashima
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2600, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wonerow P, Watson SP. The transmembrane adapter LAT plays a central role in immune receptor signalling. Oncogene 2001; 20:6273-83. [PMID: 11607829 DOI: 10.1038/sj.onc.1204770] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The transmembrane adapter LAT (linker for activation of T cells) plays a central role in signalling by ITAM bearing receptors expressed on T cells, natural killer cells, mast cells and platelets. Receptor engagement leads to the phosphorylation of tyrosine residues present in the intracellular domain of LAT and formation of a multiprotein complex with other adapter molecules and enzymes including Grb2, Gads/SLP-76 and PLCgamma isoforms. These signalling events predominantly take place in glycolipid-enriched membrane domains. The constitutive presence of LAT in GEMs enables its function as the main scaffolding protein for the organization of GEM-localized signalling. The study of LAT-deficient mice and LAT-deficient cell lines further emphasizes the importance of LAT for these signalling cascades but also defines the existence of LAT-independent events downstream of the Syk-family kinase-ITAM complex.
Collapse
Affiliation(s)
- P Wonerow
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | | |
Collapse
|
15
|
Finco TS, Yablonski D, Lin J, Weiss A. The adapter proteins LAT and SLP-76 are required for T-cell activation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2001; 64:265-74. [PMID: 11232295 DOI: 10.1101/sqb.1999.64.265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T S Finco
- Department of Biology, Agnes Scott College, Decatur, Georgia 30030, USA
| | | | | | | |
Collapse
|
16
|
Wange RL. LAT, the Linker for Activation of T Cells: A Bridge Between T Cell-Specific and General Signaling Pathways. Sci Signal 2000. [DOI: 10.1126/scisignal.632000re1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Wange RL. LAT, the linker for activation of T cells: a bridge between T cell-specific and general signaling pathways. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:re1. [PMID: 11752630 DOI: 10.1126/stke.2000.63.re1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A key event in the regulation of the adaptive immune response is the binding of major histocompatibility complex-bound foreign peptides to T cell antigen receptors (TCRs) that are present on the cell surface of T lymphocytes. Recognition of the presence of cognate antigen in the host animal induces a series of biochemical changes within the T cell; these changes, in the context of additional signals from other surface receptors, ultimately result in massive proliferation of receptor-engaged T cells and the acquisition of effector and memory functions. Early studies established the importance of the activation of the enzymes phospholipase C-gamma1 (PLC-gamma1) and phosphatidylinositol 3-kinase (PI3K), as well as the small molecular weight heterotrimeric guanine nucleotide binding protein (G protein) Ras, in this process. These biochemical events are dependent on the activity of several protein tyrosine kinases that become activated immediately upon TCR engagement. An unresolved question in the field has been which molecules and what sequence of events tie together the early tyrosine phosphorylation events with the activation of these downstream signaling molecules. A likely candidate for linking the proximal and distal portions of the TCR signaling pathway is the recently described protein, LAT. LAT is a 36-kD transmembrane protein that becomes rapidly tyrosine-phosphorylated after TCR engagement. Phosphorylation of LAT creates binding sites for the Src homology 2 (SH2) domains of other proteins, including PLC-gamma1, Grb2, Gads, Grap, 3BP2, and Shb, and indirectly binds SOS, c-Cbl, Vav, SLP-76, and Itk. LAT is localized to the glycolipid-enriched membrane (GEM) subdomains of the plasma membrane by virtue of palmitoylation of two cysteine residues positioned near the endofacial side of the plasma membrane. Notably, in the absence of LAT, TCR engagement does not lead to activation of distal signaling events. This review examines the circumstances surrounding the discovery of LAT and our current understanding of its properties, and discusses current models for how LAT may be functioning to support the transduction of TCR-initiated, T cell-specific signaling events to the distal, general signaling machinery.
Collapse
Affiliation(s)
- R L Wange
- Laboratory of Biological Chemistry, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
18
|
Sundvold V, Torgersen KM, Post NH, Marti F, King PD, Røttingen JA, Spurkland A, Lea T. T cell-specific adapter protein inhibits T cell activation by modulating Lck activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2927-31. [PMID: 10975797 DOI: 10.4049/jimmunol.165.6.2927] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported the isolation of a cDNA encoding a T cell-specific adapter protein (TSAd). Its amino acid sequence contains an SH2 domain, tyrosines in protein binding motifs, and proline-rich regions. In this report we show that expression of TSAd is induced in normal peripheral blood T cells stimulated with anti-CD3 mAbs or anti-CD3 plus anti-CD28 mAbs. Overexpression of TSAd in Jurkat T cells interfered with TCR-mediated signaling by down-modulating anti-CD3/PMA-induced IL-2 promoter activity and anti-CD3 induced Ca2+ mobilization. The TCR-induced tyrosine phosphorylation of phospholipase C-gamma1, SH2-domain-containing leukocyte-specific phosphoprotein of 76kDa, and linker for activation of T cells was also reduced. Furthermore, TSAd inhibited Zap-70 recruitment to the CD3zeta-chains in a dose-dependent manner. Consistent with this, Lck kinase activity was reduced 3- to 4-fold in COS-7 cells transfected with both TSAd and Lck, indicating a regulatory effect of TSAd on Lck. In conclusion, our data strongly suggest an inhibitory role for TSAd in proximal T cell activation.
Collapse
Affiliation(s)
- V Sundvold
- Institute of Immunology, The National Hospital, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang W, Trible RP, Zhu M, Liu SK, McGlade CJ, Samelson LE. Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J Biol Chem 2000; 275:23355-61. [PMID: 10811803 DOI: 10.1074/jbc.m000404200] [Citation(s) in RCA: 321] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The linker for activation of T cells (LAT) is a critical adaptor molecule required for T cell antigen receptor (TCR)-mediated signaling and thymocyte development. Upon T cell activation, LAT becomes highly phosphorylated on tyrosine residues, and Grb2, Gads, and phospholipase C (PLC)-gamma1 bind LAT via Src homology-2 domains. In LAT-deficient mutant Jurkat cells, TCR engagement fails to induce ERK activation, Ca(2+) flux, and activation of AP-1 and NF-AT. We mapped the tyrosine residues in LAT responsible for interaction with these specific signaling molecules by expressing LAT mutants with tyrosine to phenylalanine mutations in LAT-deficient cells. Our results showed that three distal tyrosines, Tyr(171), Tyr(191), and Tyr(226), are responsible for Grb2-binding; Tyr(171), and Tyr(191), but not Tyr(226), are necessary for Gads binding. Mutation of Tyr(132) alone abolished PLC-gamma1 binding. Mutation of all three distal tyrosines also abolished PLC-gamma1 binding, suggesting there might be multiple binding sites for PLC-gamma1. Mutation of Tyr(132) affected calcium flux and blocked Erk and NF-AT activation. Since Grb2 binding is not affected by this mutation, these results strongly suggest that PLC-gamma activation regulates Ras activation in these cells. Mutation of individual Grb2 binding sites had no functional effect, but mutation of two or three of these sites, in combination, also affected Erk and NF-AT activation.
Collapse
Affiliation(s)
- W Zhang
- Laboratory of Cellular and Molecular Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
20
|
Lin J, Weiss A, Finco TS. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J Biol Chem 1999; 274:28861-4. [PMID: 10506128 DOI: 10.1074/jbc.274.41.28861] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LAT, a transmembrane adapter protein found in glycolipid-enriched microdomains (GEMs), is essential for T cell activation. In this study, we have utilized a LAT-deficient mutant of the Jurkat T cell line, J.CaM2, to explore various requirements for LAT function. First, we demonstrate that LAT must be present in GEMs for coupling T cell receptor (TCR) engagement to activation of the Ras signaling pathway, increases in intracellular Ca(2+), and induction of the transcription factor nuclear factor of activated T cells (NF-AT). Second, we show that the extracellular and transmembrane domains of LAT are dispensable for these TCR-mediated events once LAT has localized to GEMs. These results provide important insights into both the structural domains of LAT and its subcellular localization that are required for effective TCR signaling.
Collapse
Affiliation(s)
- J Lin
- Department of Medicine, Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
21
|
Lindholm CK, Gylfe E, Zhang W, Samelson LE, Welsh M. Requirement of the Src homology 2 domain protein Shb for T cell receptor-dependent activation of the interleukin-2 gene nuclear factor for activation of T cells element in Jurkat T cells. J Biol Chem 1999; 274:28050-7. [PMID: 10488157 DOI: 10.1074/jbc.274.39.28050] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of the T cell antigen receptor (TCR) induces tyrosine phosphorylation of numerous intracellular proteins. We have recently investigated the role of the adaptor protein Shb in the early events of T cell signaling and observed that Shb associates with Grb2, linker for activation of T cells (LAT) and the TCR zeta-chain in Jurkat cells. We now report that Shb also associates with phospholipase C-gamma1 (PLC-gamma1) in these cells. Overexpression of Src homology 2 domain defective Shb caused diminished phosphorylation of LAT and consequently the activation of mitogen-activated protein kinases was decreased upon TCR stimulation. In addition, the Shb mutant also blocked phosphorylation of PLC-gamma1 and the increase in cytoplasmic Ca(2+) following TCR stimulation. Nuclear factor for activation of T cells is a major target for Ras and calcium signaling pathways in T cells following TCR stimulation, and the overexpression of the mutant Shb prevented TCR-dependent activation of the nuclear factor for activation of T cells. Consequently, endogenous interleukin-2 production was decreased under these conditions. The results indicate a role for Shb as a link between the TCR and downstream signaling events involving LAT and PLC-gamma1 and resulting in the activation of transcription of the interleukin-2 gene.
Collapse
Affiliation(s)
- C K Lindholm
- Department of Medical Cell Biology, Box 571, Biomedicum, Uppsala University, S-75123 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
22
|
Cho HI, Park CG, Kim J. Reconstitution of killer cell inhibitory receptor-mediated signal transduction machinery in a cell-free model system. Arch Biochem Biophys 1999; 368:221-31. [PMID: 10441372 DOI: 10.1006/abbi.1999.1334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recognition of class I MHC molecules on target cells by killer cell inhibitory receptors (KIRs) blocks natural cytotoxicity and antibody-dependent cell cytotoxicity of NK cells and CD3/TCR dependent cytotoxicity of T cells. The inhibitory effect of KIR ligation requires phosphorylation of the cytoplasmic tail of KIR and subsequent recruitment of an SH2-containing protein tyrosine phosphatase, SHP-1. To better understand the molecular mechanism of the KIR-mediated inhibitory signal transduction, we developed an in vitro assay system using a purified His-tag fusion protein of KIR cytoplasmic tail (His-CytKIR) and Jurkat T cell lysates. We identified a target molecule of SHP-1 by comparing the phosphorylation of major cellular substrates following in vitro phosphorylation of Jurkat cell lysates in the presence and absence of the His-CytKIR in this cell-free model system. The His-CytKIR was tyrosine phosphorylated by Lck in vitro, and the phosphorylated His-CytKIR recruited SHP-1. Interestingly, we observed that among major substrates phosphorylated in vitro, PLC-gamma exhibited a dramatic decrease in phosphorylation when the His-CytKIR was mixed with Jurkat T cell lysates. However, PLC-gamma exhibited no decrease in phosphorylation when SHP-1 or Lck was depleted or deficient in this reaction mixture, suggesting that the SHP-1 recruited by the phosphorylated His-CytKIR directly mediate the dephosphorylation of PLC-gamma. The cell-free model system could be used to reveal the detailed molecular interactions in the KIR-mediated signal transduction.
Collapse
Affiliation(s)
- H I Cho
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul, 120-752, Korea
| | | | | |
Collapse
|
23
|
Zhang W, Irvin BJ, Trible RP, Abraham RT, Samelson LE. Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int Immunol 1999; 11:943-50. [PMID: 10360968 DOI: 10.1093/intimm/11.6.943] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The adaptor molecule LAT (linker for activation of T cells) is a palmitoylated integral membrane protein that localizes to the glycolipid-enriched microdomains in the plasma membrane. Upon TCR engagement, LAT becomes phosphorylated on multiple tyrosine residues and then binds several critical signaling molecules. Here, we describe the generation and characterization of a LAT-deficient cell line. Using this cell line, we demonstrate that LAT is required for TCR-mediated Ca2+ mobilization and optimal tyrosine phosphorylation of phospholipase C-gamma1, Vav and SLP-76. LAT is also required for Erk activation, CD69 up-regulation, and AP- and NFAT-mediated gene transcription. We also demonstrate, by reconstituting this cell line with LAT mutants, that the LAT transmembrane domain and palmitoylation at Cys26, but not Cys29, are required for LAT function and TCR signaling. These studies provide further evidence for the crucial role of the LAT molecule, and demonstrate the use of a LAT-deficient cell line for the analysis of LAT structure and function.
Collapse
Affiliation(s)
- W Zhang
- Section on Lymphocyte Signaling, Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5430, USA
| | | | | | | | | |
Collapse
|
24
|
Law CL, Ewings MK, Chaudhary PM, Solow SA, Yun TJ, Marshall AJ, Hood L, Clark EA. GrpL, a Grb2-related adaptor protein, interacts with SLP-76 to regulate nuclear factor of activated T cell activation. J Exp Med 1999; 189:1243-53. [PMID: 10209041 PMCID: PMC2193019 DOI: 10.1084/jem.189.8.1243] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Propagation of signals from the T cell antigen receptor (TCR) involves a number of adaptor molecules. SH2 domain-containing protein 76 (SLP-76) interacts with the guanine nucleotide exchange factor Vav to activate the nuclear factor of activated cells (NF-AT), and its expression is required for normal T cell development. We report the cloning and characterization of a novel Grb2-like adaptor molecule designated as Grb2-related protein of the lymphoid system (GrpL). Expression of GrpL is restricted to hematopoietic tissues, and it is distinguished from Grb2 by having a proline-rich region. GrpL can be coimmunoprecipitated with SLP-76 but not with Sos1 or Sos2 from Jurkat cell lysates. In contrast, Grb2 can be coimmunoprecipitated with Sos1 and Sos2 but not with SLP-76. Moreover, tyrosine-phosphorylated LAT/pp36/38 in detergent lysates prepared from anti-CD3 stimulated T cells associated with Grb2 but not GrpL. These data reveal the presence of distinct complexes involving GrpL and Grb2 in T cells. A functional role of the GrpL-SLP-76 complex is suggested by the ability of GrpL to act alone or in concert with SLP-76 to augment NF-AT activation in Jurkat T cells.
Collapse
Affiliation(s)
- C L Law
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Facchetti F, Chan JK, Zhang W, Tironi A, Chilosi M, Parolini S, Notarangelo LD, Samelson LE. Linker for activation of T cells (LAT), a novel immunohistochemical marker for T cells, NK cells, mast cells, and megakaryocytes: evaluation in normal and pathological conditions. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1037-46. [PMID: 10233842 PMCID: PMC1866564 DOI: 10.1016/s0002-9440(10)65356-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/1999] [Indexed: 11/25/2022]
Abstract
LAT (linker for activation of T cells) is an integral membrane protein of 36-38 kd that plays an important role in T cell activation. Using a rabbit polyclonal antibody generated against the cytosolic portion of LAT, we investigated the immunohistochemical expression of LAT in normal and pathological hematolymphoid tissues. LAT reacts with human T cells in paraffin sections, including decalcified bone marrow trephines. LAT appears early in T cells at the thymocyte stage and before TdT expression in embryos, and is expressed in peripheral lymphoid tissues, without restriction to any T cell subpopulations. In addition to T cells, natural killer (NK) cells (evaluated with flow cytometry), megakaryocytes and mast cells are also LAT-positive, whereas B cells and other myeloid and monocytic derived cells are negative. Tested on a total of 264 paraffin-embedded tissue biopsies, LAT reacted with the great majority (96.8%) of T/NK-cell neoplasms, covering the full range of T cell maturation. Although antibodies to both LAT and CD3 had a similarly high sensitivity in the staining of T/NK-cell lymphomas, when used in conjunction, they successfully identified a higher number of cases (98.4%). Atypical megakaryocytes from different hematological disorders, as well as mast cells in mastocytosis were also LAT-positive, but all neoplasms of B cell origin, Hodgkin's lymphomas, and several nonlymphoid malignancies were negative. These data indicate that the anti-LAT antibody may be of value to diagnostic histopathologists for the identification of T cell neoplasms.
Collapse
Affiliation(s)
- F Facchetti
- Department of Pathology, University of Brescia, Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Finco TS, Kadlecek T, Zhang W, Samelson LE, Weiss A. LAT is required for TCR-mediated activation of PLCgamma1 and the Ras pathway. Immunity 1998; 9:617-26. [PMID: 9846483 DOI: 10.1016/s1074-7613(00)80659-7] [Citation(s) in RCA: 422] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we present the further characterization of a mutant Jurkat T cell line, J.CaM2, that is defective in TCR-mediated signal transduction. Although initial TCR-mediated signaling events such as the inducible tyrosine phosphorylation of the TCR-zeta chain and ZAP-70 are intact in J.CaM2, subsequent events, including increases in intracellular calcium, Ras activation, and IL-2 gene expression are defective. Subsequent analysis of J.CaM2 demonstrated a severe deficiency in pp36/LAT expression, a recently cloned adaptor protein implicated in TCR signaling. Importantly, reexpression of LAT in J.CaM2 restored all aspects of TCR signaling. These results demonstrate a necessary and exclusive role for LAT in T cell activation.
Collapse
Affiliation(s)
- T S Finco
- Department of Medicine, The Howard Hughes Medical Institute, University of California at San Francisco, 94143, USA
| | | | | | | | | |
Collapse
|
27
|
Sanderson P, Calder PC. Dietary fish oil appears to prevent the activation of phospholipase C-gamma in lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1392:300-8. [PMID: 9630688 DOI: 10.1016/s0005-2760(98)00044-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rats were fed on a low fat diet or on high fat diets which included coconut oil, olive oil, safflower oil, evening primrose oil or fish oil as the principal fat source. The level of phosphatidylinositol-4, 5-bisphosphate in spleen lymphocytes was unaffected by diet. However, the fish oil diet significantly decreased the concentration of inositol-1,4,5-trisphosphate in stimulated lymphocytes; this concentration was also reduced following olive oil feeding. Diet did not significantly affect the level of phospholipase C-gamma1 in spleen lymphocytes but the tyrosine phosphorylation state of this enzyme in stimulated lymphocytes, as well as that of a range of other proteins, was decreased following feeding the fish oil and, to a lesser extent, the olive oil diets. It is concluded that fish oil feeding appears to result in inhibition of one or more tyrosine kinases.
Collapse
Affiliation(s)
- P Sanderson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|
28
|
Abstract
Antigen receptors initiate T-cell activation and determine the specificity of the immune response by activating membrane-localized protein tyrosine kinases. Signalling pathways initiated by these kinases control expression of the genes that mediate T-cell effector function. A major challenge in immunology is to work out the route taken by membrane-generated signals as they transit to the nucleus. Substrates for the ZAP70/Syk tyrosine kinases are important, but 'missing', links in this process. There has finally been some progress in characterizing one of these important linkers: LAT, an integral membrane protein that acts as an adaptor to couple antigen receptors to intracellular signalling cascades.
Collapse
|
29
|
Purbhoo MA, Sewell AK, Klenerman P, Goulder PJ, Hilyard KL, Bell JI, Jakobsen BK, Phillips RE. Copresentation of natural HIV-1 agonist and antagonist ligands fails to induce the T cell receptor signaling cascade. Proc Natl Acad Sci U S A 1998; 95:4527-32. [PMID: 9539771 PMCID: PMC22523 DOI: 10.1073/pnas.95.8.4527] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/1997] [Indexed: 02/07/2023] Open
Abstract
It is not known how human immunodeficiency virus type 1 (HIV-1)-derived antagonist peptides interfere with intracellular activation of cytotoxic T lymphocytes (CTL). We identified Gag epitope variants in HIV-1-infected patients that act as antagonists of CTL responses to unmutated epitopes. We then investigated the effect that presentation of each variant has on the early events of T cell receptor (TCR) signal transduction. We found that altered peptide ligands (APL) failed to induce phosphorylation of pp36, a crucial adaptor protein involved in TCR signal transduction. We further investigated the effect that simultaneous presentation of APL and native antigen at low, physiological, peptide concentrations (1 nM) has on TCR signal transduction, and we found that the presence of APL can completely inhibit induction of the protein tyrosine phosphorylation events of the TCR signal transduction cascade.
Collapse
Affiliation(s)
- M A Purbhoo
- University of Oxford, Nuffield Department of Medicine and Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Weber JR, Orstavik S, Torgersen KM, Danbolt NC, Berg SF, Ryan JC, Taskén K, Imboden JB, Vaage JT. Molecular cloning of the cDNA encoding pp36, a tyrosine-phosphorylated adaptor protein selectively expressed by T cells and natural killer cells. J Exp Med 1998; 187:1157-61. [PMID: 9529333 PMCID: PMC2212210 DOI: 10.1084/jem.187.7.1157] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of T and natural killer (NK) cells leads to the tyrosine phosphorylation of pp36 and to its association with several signaling molecules, including phospholipase Cgamma-1 and Grb2. Microsequencing of peptides derived from purified rat pp36 protein led to the cloning, in rat and man, of cDNA encoding a T- and NK cell-specific protein with several putative Src homology 2 domain-binding motifs. A rabbit antiserum directed against a peptide sequence from the cloned rat molecule recognized tyrosine phosphorylated pp36 from pervanadate-treated rat thymocytes. When expressed in 293T human fibroblast cells and tyrosine-phosphorylated, pp36 associated with phospholipase Cgamma-1 and Grb2. Studies with GST-Grb2 fusion proteins demonstrated that the association was specific for the Src homology 2 domain of Grb-2. Molecular cloning of the gene encoding pp36 should facilitate studies examining the role of this adaptor protein in proximal signaling events during T and NK cell activation.
Collapse
Affiliation(s)
- J R Weber
- Department of Medicine and Rosalind Russell Arthritis Center, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 1998; 92:83-92. [PMID: 9489702 DOI: 10.1016/s0092-8674(00)80901-0] [Citation(s) in RCA: 1019] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite extensive study, several of the major components involved in T cell receptor-mediated signaling remain unidentified. Here we report the cloning of the cDNA for a highly tyrosine-phosphorylated 36-38 kDa protein, previously characterized by its association with Grb2, phospholipase C-gamma1, and the p85 subunit of phosphoinositide 3-kinase. Deduced amino acid sequence identifies a novel integral membrane protein containing multiple potential tyrosine phosphorylation sites. We show that this protein is phosphorylated by ZAP-70/Syk protein tyrosine kinases leading to recruitment of multiple signaling molecules. Its function is demonstrated by inhibition of T cell activation following overexpression of a mutant form lacking critical tyrosine residues. Therefore, we propose to name the molecule LAT-linker for activation of T cells.
Collapse
Affiliation(s)
- W Zhang
- Section on Lymphocyte Signaling, Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5430, USA
| | | | | | | | | |
Collapse
|
32
|
Galron D, Ansotegui IJ, Isakov N. Posttranslational regulation of Lck and a p36-38 protein by activators of protein kinase C: differential effects of the tumor promoter, PMA, and the non-tumor-promoter, bryostatin. Cell Immunol 1997; 178:141-51. [PMID: 9225005 DOI: 10.1006/cimm.1997.1120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cell activation via the antigen receptor or by PKC-activating drugs results in phosphorylation of Lck and alteration of its electrophoretic mobility. Although tyrosine phosphorylation appears to regulate Lck enzymatic activity, the significance of phosphorylation of serine residues and its relevance to the cell proliferation process are yet unclear. We found that the PKC activator, bryostatin, like PMA, induced the conversion of p56lck to a slower migrating form with an apparent molecular mass of 60 kDa. The effect of PMA lasted over 48 hr but that of bryostatin was transient and correlated in time kinetics with that of the bryostatin-induced degradation of PKC. The effects of bryostatin were dominant over those of PMA. In addition, PKC was found to affect both serine and tyrosine phosphorylation of Lck but had no significant effect on the in vitro catalytic activity of Lck. To test whether serine phosphorylation of Lck may affect its ability to bind tyrosine phosphoproteins, we compared Lck immunoprecipitates from PMA- and bryostatin-treated T cells. We found that a 36- to 38-kDa tyrosine phosphoprotein co-immunoprecipitated with Lck from cells that were treated for 24 hr with PMA, but not bryostatin. A p36-38 from PMA- but not bryostatin-treated cells also interacted with an Lck-SH2 fusion protein, suggesting differential regulation of p36-38 by PMA and bryostatin. Furthermore, in vitro phosphorylation of p36-38 occurred in lysates of cells that were treated for 24 hr with PMA, but not in lysates of bryostatin-treated cells. The results show that tyrosine phosphorylation and the association of p36-38 with Lck are differentially affected by bryostatin and PMA and suggest that PKC regulates the interaction of potential signaling molecules with Lck, thereby regulating biochemical events that are relevant to T cell mitogenesis and/or transformation.
Collapse
Affiliation(s)
- D Galron
- Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | |
Collapse
|
33
|
Jensen WA, Pleiman CM, Beaufils P, Wegener AM, Malissen B, Cambier JC. Qualitatively distinct signaling through T cell antigen receptor subunits. Eur J Immunol 1997; 27:707-16. [PMID: 9079813 DOI: 10.1002/eji.1830270320] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
T cell antigen receptors (TCR) contain several subunits including CD3gamma, delta, and epsilon, and TCRzeta and eta which are capable of mediating signal transduction. It is unclear whether the signaling function of these subunits is completely redundant. To assess the relative signaling capabilities of TCR subunits, we compared proximal events in signal transduction by wild-type TCR complexes and TCR devoid of functional zeta subunits, as well as chimeric receptors containing the cytoplasmic domains of TCRzeta or CD3epsilon. Results demonstrate that in BW5147 wild-type TCR, tail-less zeta TCR, CD3epsilon, and TCRzeta transduce signals leading to tyrosine phosphorylation of similar sets of cellular substrates, including the receptor subunits, Fyn, ZAP-70, and phospholipase Cgamma1 (PLCgamma1). Surprisingly, unlike wild-type TCR, tail-less zeta TCR, and CD3epsilon, TCRzeta was incapable of transducing signals resulting in inositol triphosphate (IP3) generation or intracellular free calcium ([Ca2+]i) mobilization. These data indicate that tyrosine phosphorylation of PLCgamma1 is not sufficient to drive IP3 production and [Ca2+]i mobilization. Most importantly, data presented indicate that TCRzeta and CD3epsilon engage partially distinct signaling pathways.
Collapse
Affiliation(s)
- W A Jensen
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206, USA
| | | | | | | | | | | |
Collapse
|
34
|
Trüb T, Frantz JD, Miyazaki M, Band H, Shoelson SE. The role of a lymphoid-restricted, Grb2-like SH3-SH2-SH3 protein in T cell receptor signaling. J Biol Chem 1997; 272:894-902. [PMID: 8995379 DOI: 10.1074/jbc.272.2.894] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have characterized an SH3-SH2-SH3 linker protein that is prominently expressed in lymphoid tissues. This protein has 58% sequence identity to Grb2. An identical protein called Grap has been found in hematopoietic cells. In Jurkat cells, T cell receptor activation leads to the association of Grap with phosphoproteins p36/38 and, to a lesser degree, Shc. This interaction is mediated by the Grap SH2 domain, which has similar binding specificity to the Grb2 SH2 domain. Grap also associates via its SH3 domains with Sos, the Ras guanine nucleotide exchange factor; with dynamin, a GTPase involved in membrane protein trafficking; and with Sam68, a nuclear RNA-binding protein that serves as a substrate of Src kinases during mitosis. T cell activation effects an increase in Grap association with p36/38, Shc, Sos, and dynamin. Sam68 binding is constitutive. Phospholipase C-gamma1 and Fyn are also found in activated Grap signaling complexes, although these interactions may not be direct. We conclude that Grap is a prominent component of lymphocyte receptor signaling. Based on the known functions of bound effector molecules, Grap-mediated responses to antigen challenge may include endocytosis of the T cell receptor, cellular proliferation, and regulated entry into the cell cycle.
Collapse
Affiliation(s)
- T Trüb
- Research Division, Joslin Diabetes Center, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
35
|
Sidorenko SP, Law CL, Klaus SJ, Chandran KA, Takata M, Kurosaki T, Clark EA. Protein kinase C mu (PKC mu) associates with the B cell antigen receptor complex and regulates lymphocyte signaling. Immunity 1996; 5:353-63. [PMID: 8885868 DOI: 10.1016/s1074-7613(00)80261-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have identified a Ser/Thr kinase associated with the B cell receptor (BCR) complex as protein kinase C mu (PKC mu). PKC mu activity is up-regulated after cross-linking the BCR and CD19 on B cells, and PKC mu co-precipitates with Syk and phospholipase C-gamma 1/2 (PLC gamma 1/2). In vitro phosphorylation of fusion proteins showed that both Syk and PLC gamma 1 are potential substrates of PKC mu in vivo. Analysis of mutants of the chicken B cell line DT40 deficient in either Syk, Lyn, Btk, or PLC gamma 2 revealed that BCR-induced activation of PKC mu, like activation of PLC gamma 2, requires Syk and is partially regulated by Btk, but is Lyn independent. PKC mu can down-regulate the ability of Syk to phosphorylate PLC gamma 1 in vitro. Thus, PKC mu may function in a negative feedback loop regulating BCR-initiated signaling cascades.
Collapse
Affiliation(s)
- S P Sidorenko
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Chalupny NJ, Aruffo A, Esselstyn JM, Chan PY, Bajorath J, Blake J, Gilliland LK, Ledbetter JA, Tepper MA. Specific binding of Fyn and phosphatidylinositol 3-kinase to the B cell surface glycoprotein CD19 through their src homology 2 domains. Eur J Immunol 1995; 25:2978-84. [PMID: 7589101 DOI: 10.1002/eji.1830251040] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CD19 is a B cell surface protein capable of forming non-covalent molecular complexes with a number of other B cell surface proteins including the CD21/CD81/Leu-13 complex as well as with surface immunoglobulin. CD19 tyrosine phosphorylation increases after B cell activation, and is proposed to play a role in signal transduction through its cytoplasmic domain, which contains nine tyrosine residues. Several second messenger proteins have been shown to immunoprecipitate with CD19, including p59 Fyn (Fyn), p59 Lyn (Lyn) and phosphatidylinositol-3 kinase (PI-3 kinase). These associations are predicted to occur via the src-homology 2 (SH2) domains of the second messenger proteins. Two of the cytoplasmic tyrosines in the CD19 cytoplasmic region contain the consensus binding sequence for the PI-3 kinase SH2 domain (YPO4-X-X-M). However, the reported consensus binding sequence for the Fyn and Lyn SH2 domains (YPO4-X-X-I/L) is not found in CD19. We investigated the capacity of CD19 cytoplasmic tyrosines to bind both Fyn and PI-3 kinase SH2-domain fusion proteins. In activated B cells, both Fyn and PI-3 kinase SH2-domain fusion proteins precipitate CD19. Using synthetic tyrosine-phosphorylated peptides comprising each of the CD19 cytoplasmic tyrosines and surrounding amino acids, we investigated the ability of the Fyn SH2 and PI-3 kinase SH2 fusion proteins to bind to the different CD19 cytoplasmic phosphotyrosine peptides. ELISA revealed that the two CD19 cytoplasmic tyrosine residues contained within the Y-X-X-M sequences (Y484 and Y515) bound preferentially to the PI-3 kinase SH2-domain fusion proteins. Two different tyrosines (Y405 and Y445) bound preferentially to the Fyn SH2-domain fusion protein via a novel sequence, Y-E-N-D/E, different from that previously reported for the Fyn SH2 domain. In precipitation studies, peptide Y484 was able to compete with tyrosine phosphorylated CD19 specifically for binding to the PI-3 kinase SH2 domain fusion proteins, while peptides Y405 and Y445 were able to compete specifically for binding to the Fyn SH2 domain fusion proteins. These results indicate that CD19 may be capable of binding both Fyn and PI-3 kinase concurrently, suggesting a mechanism for CD19 signal transduction, in which binding of PI-3 kinase to the Fyn SH3 domain results in activation of PI-3 kinase.
Collapse
Affiliation(s)
- N J Chalupny
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fukazawa T, Reedquist KA, Panchamoorthy G, Soltoff S, Trub T, Druker B, Cantley L, Shoelson SE, Band H. T cell activation-dependent association between the p85 subunit of the phosphatidylinositol 3-kinase and Grb2/phospholipase C-gamma 1-binding phosphotyrosyl protein pp36/38. J Biol Chem 1995; 270:20177-82. [PMID: 7544353 DOI: 10.1074/jbc.270.34.20177] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tyrosine phosphorylation of cellular proteins is an early and an essential step in T cell receptor-mediated lymphocyte activation. Tyrosine phosphorylation of transmembrane receptor chains (such as zeta and CD3 chains) and membrane-associated proteins provides docking sites for SH2 domains of adaptor proteins and signaling enzymes, resulting in their recruitment in the vicinity of activated receptors. pp36/38 is a prominent substrate of early tyrosine phosphorylation upon stimulation through the T cell receptor. The tyrosine-phosphorylated form of pp36/38 is membrane-associated and directly interacts with phospholipase C-gamma 1 and Grb2, providing one mechanism to recruit downstream effectors to the cell membrane. Here, we demonstrate that in Jurkat T cells, pp36/38 associates with the p85 subunit of phosphatidylinositol 3-kinase (PI-3-K p85) in an activation-dependent manner. Association of pp36/38 with PI-3-K p85 was confirmed by transfection of a hemagglutinin-tagged p85 alpha cDNA into Jurkat cells followed by anti-hemagglutinin immunoprecipitation. In vitro binding experiments with glutathione S-transferase fusion proteins of PI-3-K p85 demonstrated that the SH2 domains, but not the SH3 domain, mediated binding to pp36/38. This binding was selectively abrogated by phosphopeptides that bind to p85 SH2 domains with high affinity. Filter binding assays demonstrated that association between pp36/38 and PI-3-K p85 SH2 domains was due to direct binding. These results strongly suggest the role of pp36/38 in recruiting PI-3-K to the cell membrane and further support the idea that pp36/38 is a multifunctional docking protein for SH2 domain-containing signaling proteins in T cells.
Collapse
Affiliation(s)
- T Fukazawa
- Department of Rheumatology and Immunology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hartley D, Meisner H, Corvera S. Specific association of the beta isoform of the p85 subunit of phosphatidylinositol-3 kinase with the proto-oncogene c-cbl. J Biol Chem 1995; 270:18260-3. [PMID: 7629144 DOI: 10.1074/jbc.270.31.18260] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Phosphatidylinositol-3 kinase (PI-3 kinase) has been implicated in cellular events such as mitogenic signaling, actin organization, and receptor sorting. The p85 subunit of PI-3 kinase contains multiple domains capable of protein-protein interactions that may contribute to mediate the multiple physiological functions of this enzyme. Here, we demonstrate that antibodies raised against the p85 subunit of PI-3 kinase immunoprecipitate a single tyrosine-phosphorylated protein of 120 kDa (pp120) from lysates of activated Jurkat T cells and A20 B cells. This protein is the only significant phosphotyrosine-containing protein in p85 immunoprecipitates from these cells, and it cannot be detected in immunoprecipitates of other signaling proteins such as PLC gamma. Furthermore, antibodies specific for the beta isoform of p85 but not antibodies specific for the alpha isoform immunoprecipitate this tyrosine-phosphorylated protein. pp120 completely comigrates with the proto-oncogene c-cbl, which is a 120 kDa protein product abundant in lymphoid cells. Furthermore, immunoblots of p85 immunoprecipitates using antibodies raised against c-cbl detect a band at exactly the position of pp120. In addition, p85 can be detected in immunoblots of c-cbl immunoprecipitates. Thus, pp120 appears to correspond to c-cbl. A direct association between c-cbl and p85 can be observed in vitro using a fusion protein comprising the Src homology 2 (SH2) domains of p85, and this binding is abolished by phenyl phosphate, suggesting that the interaction is mediated through phosphotyrosine-SH2 domain interactions. Thus, these results show important functional differences between the alpha and beta isoforms of p85 in vivo and point to c-cbl as a potentially important mediator of some of the functions of PI-3 kinase in intact cells.
Collapse
Affiliation(s)
- D Hartley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | |
Collapse
|
39
|
Nel AE, Gupta S, Lee L, Ledbetter JA, Kanner SB. Ligation of the T-cell antigen receptor (TCR) induces association of hSos1, ZAP-70, phospholipase C-gamma 1, and other phosphoproteins with Grb2 and the zeta-chain of the TCR. J Biol Chem 1995; 270:18428-36. [PMID: 7629168 DOI: 10.1074/jbc.270.31.18428] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Signaling by the T-cell antigen receptor (TCR) involves both phospholipase C (PLC)-gamma 1 and p21ras activation. While failing to induce Shc/Grb2 association, ligation of the TCR/CD3 receptor in Jurkat T-cells induced hSos1-Grb2 complexes. In addition to hSos1, Grb2 participates in the formation of a tyrosine phosphoprotein complex that includes 145-, 95-, 70-, 54-, and 36-38-kDa proteins. p145 was identified as PLC-gamma 1 and p70 as the protein tyrosine kinase, ZAP-70. Although of the same molecular weight, p95 was not recognized by an anti-serum to p95 Vav. The SH2 domains of Grb2 and PLC-gamma 1 were required for the formation of this protein complex. In anti-CD3-treated cells, Grb2 redistributed from the cytosol to a particulate cell compartment along with p36/p38, ZAP-70, and PLC-gamma 1. Part of the Grb2 complex associated with the particulate compartment could be extracted with Nonidet P-40, while the rest was Nonidet P-40 insoluble. In both the detergent-soluble and -insoluble fractions, Grb2 coimmunoprecipitated with the zeta-chain of the TCR. Taken together, these results indicate that anti-CD3 induces Grb2-hSos1-PLC-gamma 1-p36/p38-ZAP70 complexes, which localize in the vicinity of TCR-zeta.
Collapse
Affiliation(s)
- A E Nel
- Department of Medicine, UCLA School of Medicine 90024, USA
| | | | | | | | | |
Collapse
|
40
|
Jackman JK, Motto DG, Sun Q, Tanemoto M, Turck CW, Peltz GA, Koretzky GA, Findell PR. Molecular cloning of SLP-76, a 76-kDa tyrosine phosphoprotein associated with Grb2 in T cells. J Biol Chem 1995; 270:7029-32. [PMID: 7706237 DOI: 10.1074/jbc.270.13.7029] [Citation(s) in RCA: 281] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The activation of protein tyrosine kinases is a critical event in T cell antigen receptor (TCR)-mediated signaling. One substrate of the TCR-activated protein tyrosine kinase pathway is a 76-kDa protein (pp76) that associates with the adaptor protein Grb2. In this report we describe the purification of pp76 and the molecular cloning of its cDNA, which encodes a novel 533-amino acid protein with a single carboxyl-terminal Src homology 2 (SH2) domain. Although no recognizable motifs related to tyrosine, serine/threonine, or lipid kinase domains are present in the predicted amino acid sequence, it contains several potential motifs recognized by SH2 and SH3 domains. A cDNA encoding the murine homologue of pp76 was also isolated and predicts a protein with 84% amino acid identity to human pp76. Northern analysis demonstrates that pp76 mRNA is expressed solely in peripheral blood leukocytes, thymus, and spleen; and in human T cell, B cell and monocytic cell lines. In vitro translation of pp76 cDNA gives rise to a single product of 76 kDa that associates with a GST/Grb2 fusion protein, demonstrating a direct association between these two molecules. Additionally, a GST fusion protein consisting of the predicted SH2 domain of pp76 precipitates two tyrosine phosphoproteins from Jurkat cell lysates, and antiserum directed against phospholipase C-gamma 1 coprecipitates a tyrosine phosphoprotein with an electrophoretic mobility identical to that of pp76. These results demonstrate that this novel protein, which we term SLP-76 (SH2 domain-containing Leukocyte Protein of 76 kDa), is likely to play an important role in TCR-mediated intracellular signal transduction.
Collapse
Affiliation(s)
- J K Jackman
- Institute of Biochemistry and Cell Biology, Syntex Discovery Research, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Szamel M, Resch K. T-cell antigen receptor-induced signal-transduction pathways--activation and function of protein kinases C in T lymphocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:1-15. [PMID: 7882988 DOI: 10.1111/j.1432-1033.1995.tb20221.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CONTENTS. T-cell activation--Structure of the T-cell antigen receptor--Modular organisation of the T-cell antigen receptor--T-cell antigen receptor-coupled signaling pathways: Activation of protein-tyrosine kinase by the T-cell antigen receptor; Signal transduction in lymphoid cells involves several protein-tyrosine kinases in parallel; Regulation of T-cell antigen receptor signaling by the phosphoprotein phosphatase CD45--Consequences of T-cell antigen receptor-induced tyrosine phosphorylation: Activation of phosphoinositol-lipid-turnover pathways--Activation of phospholipase C-gamma-1: p59fyn or p56lck?--G-protein motif of CD3-gamma: relevance for signal transduction--Association of lipid kinase with the T-cell antigen receptor--Intracellular signaling by phospholipid metabolites and calcium: activation of protein kinase C--Protein kinase C isoenzymes--Heterogenity of protein kinase C and mode of activation--Phospholipid-derived mediators in activation of protein kinase C in T-cells--Role of phospholipase D metabolites in activation of protein kinase C--Polyunsaturated fatty acids and lysophosphatidylcholine as activators of protein kinase C--Potein kinase C and p21ras function in interdependent and distinct signaling pathways during T-cell activation--Raf-1 kinase: regulator or target of protein kinase C?--Summary and perspectives.
Collapse
Affiliation(s)
- M Szamel
- Institute of Molecular Pharmacology, Medical School Hannover, Germany
| | | |
Collapse
|
42
|
Flescher E, Ledbetter JA, Ogawa N, Vela-Roch N, Fossum D, Dang H, Talal N. Induction of transcription factors in human T lymphocytes by aspirin-like drugs. Cell Immunol 1995; 160:232-9. [PMID: 7720085 DOI: 10.1016/0008-8749(95)80033-f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aspirin-like drugs (ALD) induce calcium mobilization, an essential component of T cell activation, but do not induce the biosynthesis of IL-2. To understand the extent to which ALD may mimic mitogenic stimulation, we studied cytoplasmic and nuclear signaling steps in ALD-treated T cells. We found that ALD induce a transient activation of protein kinase (PKC) but have no effect (in comparison to anti-CD3 antibodies) on protein tyrosine phosphorylation nor on PCL gamma 1 tyrosine phosphorylation. ALD-induced calcium mobilization and PKC activation are independent of tyrosine protein kinase activity as shown by the lack of effect of herbimycin, a tyrosine-protein kinase-specific inhibitor. Although we detected no IL-2 mRNA in ALD-treated cells, the nuclei of these cells contain proteins capable of binding to three regulatory sequences in the IL-2 promoter region: NFAT, NF kappa B, and AP-1. These binding activities are expressed only in activated T cells. The expression of AP-1 depended on calcium mobilization and PKC activation. These data suggest that ALD cause transient but significant changes in T cell transmembrane signaling, although some events induced by stimulation with anti-CD3 antibodies are not induced by ALD. The signal is transmitted to the nucleus and induces DNA-binding activity by several transcription factors. However, the ALD stimulus is not capable of causing complete T cell activation.
Collapse
Affiliation(s)
- E Flescher
- Department of Medicine, University of Texas Health Science Center at San Antonio 78284, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Blake RA, Schieven GL, Watson SP. Collagen stimulates tyrosine phosphorylation of phospholipase C-gamma 2 but not phospholipase C-gamma 1 in human platelets. FEBS Lett 1994; 353:212-6. [PMID: 7523195 DOI: 10.1016/0014-5793(94)01037-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Collagen is an important primary stimulus of platelets during the process of hemostasis. As with many other platelet stimuli, collagen signal transduction involves the hydrolysis of inositol phospholipids; however, the mechanisms which underlies this event is not well understood. Neither the collagen receptor nor the isoform of phospholipase C that is activated have been identified. We report that collagen-activation of platelets induces tyrosine phosphorylation of phospholipase C-gamma 2 but not phospholipase C-gamma 1. We also show that the platelet low affinity Fc receptor (Fc gamma RII), which mediates activation of platelets by immune complexes, and wheat germ agglutinin, which binds non-specifically to glycoprotein, stimulate phospholipase C-gamma 2 tyrosine phosphorylation. In contrast, we could not detect phospholipase C-gamma 2 tyrosine phosphorylation in platelets stimulated by either thrombin or a stable thromboxane A2 analogue, U46619.
Collapse
Affiliation(s)
- R A Blake
- Department of Pharmacology, Oxford, UK
| | | | | |
Collapse
|
44
|
Buday L, Egan S, Rodriguez Viciana P, Cantrell D, Downward J. A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37070-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Dubois PM, Andris F, Shapiro RA, Gilliland LK, Kaufman M, Urbain J, Ledbetter JA, Leo O. T cell long-term hyporesponsiveness follows antigen receptor engagement and results from defective signal transduction. Eur J Immunol 1994; 24:348-54. [PMID: 7905417 DOI: 10.1002/eji.1830240212] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
T cell receptor (TCR)-mediated stimulation of T hybridomas leads to cell activation and lymphokine production that is followed by a long-term hyporesponsiveness. To investigate the biochemical events involved in the induction and maintenance of this antigen receptor hyporesponsiveness or anergy, we have expressed a G protein/PLC beta 1-coupled muscarinic subtype 1 acetylcholine receptor in a murine T cell hybrid. Transfected cells were capable of responding to both muscarinic agonists and TCR ligands by inducing interleukin-2 secretion that was sensitive to cyclosporin A and dexamethasone. Both receptors induced tyrosine kinase (TK) activity, but muscarinic stimulation did not affect tyrosine phosphorylation of PLC gamma 1, nor did the TK inhibitor, herbimycin, block muscarinic receptor-mediated calcium mobilization. These data indicate that in T cells, the muscarinic receptor mediates T cell effector functions by regulating a TK-independent proximal pathway which later converges with the TCR pathway. Using these cells, we have explored the long-term consequences of T cell stimulation via antigen or muscarinic receptors. Our results show that hyporesponsiveness specifically follows TCR engagement and appears to result from a defect in the early signal transduction initiated by TCR cross-linking. A study of TCR-mediated signaling supports this model by showing that tyrosine phosphorylation and calcium mobilization are deficient in hyporesponsive T cells.
Collapse
Affiliation(s)
- P M Dubois
- Laboratoire de Physiologie Animale, Universite Libre de Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Despite the differences in the antigens that they recognize and in the effector functions they carry out, B and T lymphocytes utilize remarkably similar signal transduction components to initiate responses. They both use oligomeric receptors that contain distinct recognition and signal transduction subunits. Antigen receptors on both cells interact with at least two distinct families of PTKs via common sequence motifs, ARAMs, in the cytoplasmic tails of their invariant chains, which have likely evolved from a common evolutionary precursor. Coreceptors appear to serve to increase the sensitivity of both of these receptor systems through events that influence ligand binding and signal transduction. The critical role of tyrosine phosphorylation of downstream signaling components, such as phospholipase C, is the net result of changes in the balance of the action of antigen receptor-regulated PTKs and PTPases. The identification of downstream effectors, including calcineurin and Ras, that regulate cellular responses, such as lymphokine gene expression, promises the future possibility of connecting the complex pathway from the plasma membrane to the nucleus in lymphocytes. Insight gained from studies of the signaling pathways downstream of TCR and BCR stimulation is likely to contribute significantly to future understanding of mechanisms responsible for lymphocyte differentiation and for the discrimination of self from nonself in developing and mature cells.
Collapse
Affiliation(s)
- A Weiss
- Howard Hughes Medical Institute, Department of Medicine, University of California, San Francisco 94143
| | | |
Collapse
|
47
|
Malek S, Desiderio S. SH2 domains of the protein-tyrosine kinases Blk, Lyn, and Fyn(T) bind distinct sets of phosphoproteins from B lymphocytes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)41566-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Uckun F, Burkhardt A, Jarvis L, Jun X, Stealey B, Dibirdik I, Myers D, Tuel-Ahlgren L, Bolen J. Signal transduction through the CD19 receptor during discrete developmental stages of human B-cell ontogeny. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36907-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
Malissen B, Schmitt-Verhulst AM. Transmembrane signalling through the T-cell-receptor-CD3 complex. Curr Opin Immunol 1993; 5:324-33. [PMID: 8347295 DOI: 10.1016/0952-7915(93)90049-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent data support the existence of activation motifs within different subunits of the T-cell-receptor-CD3 complex. This architecture generates a receptor composed of discrete modules, each capable of being coupled to an effector pathway. Although new T-cell specific protein tyrosine kinases have recently been identified, the nature of the proximal non-receptor protein tyrosine kinase linking the T-cell receptor complex to essential signalling effectors remains unknown. Developmentally regulated differences in T-cell-receptor-CD3 assembly or stability may lead to the expression of isoforms displaying different sets of activation motifs. Whether this may be the basis of differential signalling during T-cell development is still a matter of speculation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation
- Consensus Sequence
- Gene Expression Regulation
- Lymphocyte Activation/physiology
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)
- Macromolecular Substances
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Phosphorylation
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-fyn
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Receptors, Antigen/genetics
- Receptors, Antigen/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Fc/genetics
- Receptors, Fc/metabolism
- Signal Transduction/physiology
- T-Lymphocytes/physiology
Collapse
Affiliation(s)
- B Malissen
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, France
| | | |
Collapse
|
50
|
Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53403-7] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|