1
|
Dong Z, Hou L, Luo W, Pan LH, Li X, Tan HP, Wu RD, Lu H, Yao K, Mu MD, Gao CS, Weng XY, Ge JB. Myocardial infarction drives trained immunity of monocytes, accelerating atherosclerosis. Eur Heart J 2024; 45:669-684. [PMID: 38085922 DOI: 10.1093/eurheartj/ehad787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 09/28/2023] [Accepted: 11/16/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND AND AIMS Survivors of acute coronary syndromes face an elevated risk of recurrent atherosclerosis-related vascular events despite advanced medical treatments. The underlying causes remain unclear. This study aims to investigate whether myocardial infarction (MI)-induced trained immunity in monocytes could sustain proatherogenic traits and expedite atherosclerosis. METHODS Apolipoprotein-E deficient (ApoE-/-) mice and adoptive bone marrow transfer chimeric mice underwent MI or myocardial ischaemia-reperfusion (IR). A subsequent 12-week high-fat diet (HFD) regimen was implemented to elucidate the mechanism behind monocyte trained immunity. In addition, classical monocytes were analysed by flow cytometry in the blood of enrolled patients. RESULTS In MI and IR mice, blood monocytes and bone marrow-derived macrophages exhibited elevated spleen tyrosine kinase (SYK), lysine methyltransferase 5A (KMT5A), and CCHC-type zinc finger nucleic acid-binding protein (CNBP) expression upon exposure to a HFD or oxidized LDL (oxLDL) stimulation. MI-induced trained immunity was transmissible by transplantation of bone marrow to accelerate atherosclerosis in naive recipients. KMT5A specifically recruited monomethylation of Lys20 of histone H4 (H4K20me) to the gene body of SYK and synergistically transactivated SYK with CNBP. In vivo small interfering RNA (siRNA) inhibition of KMT5A or CNBP potentially slowed post-MI atherosclerosis. Sympathetic denervation with 6-hydroxydopamine reduced atherosclerosis and inflammation after MI. Classical monocytes from ST-elevation MI (STEMI) patients with advanced coronary lesions expressed higher SYK and KMT5A gene levels. CONCLUSIONS The findings underscore the crucial role of monocyte trained immunity in accelerated atherosclerosis after MI, implying that SYK in blood classical monocytes may serve as a predictive factor for the progression of atherosclerosis in STEMI patients.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lei Hou
- Institute of Cardiovascular Diseases, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, China
- Department of Cardiology, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (Preparatory Stage), Shanghai 201600, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Li-Hong Pan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiao Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hai-Peng Tan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Run-Da Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Kang Yao
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Man-Di Mu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chen-Shan Gao
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, Guangxi, China
| | - Xin-Yu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Jun-Bo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Rattajak P, Aroonkesorn A, Smythe C, Wititsuwannakul R, Pitakpornpreecha T. 5'-Methylthioadenosine strongly suppresses RANKL-induced osteoclast differentiation and function via inhibition of RANK-NFATc1 signalling pathways. Heliyon 2023; 9:e22365. [PMID: 38099006 PMCID: PMC10720268 DOI: 10.1016/j.heliyon.2023.e22365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Excessive osteoclast-mediated bone resorption is a critical cause of osteoporosis affecting many aging people worldwide. 5'-Methylthioadenosine (MTA) is a natural sulfur-containing nucleoside normally produced in prokaryotes, plants, yeast, and higher eukaryotes via polyamine metabolism. MTA affects various physiological responses particularly the inflammatory pathway in both normal and cancerous cells and modulates the activation of nuclear factor-κB involved in the osteoclastogenesis signalling process. While several studies have reported that natural products possess anti-osteoclastogenesis phenolics and flavonoids, the effect of nucleoside derivatives on osteoclastogenesis remains limited. Therefore, this study aimed to explore the molecular mechanisms by which MTA affects pre-osteoclastic RAW 264.7 cells as a potential alleviation compound for inflammation-mediated bone loss. Osteoclasts were established by incubating RAW264.7 macrophage cells with receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor, the vital cytokines for activation of osteoclast differentiation. Cell viability was measured using MTT assays at 24, 48, and 72 h. The suppressive effect of MTA on RANKL-induced osteoclast differentiation and function was assessed using tartrate-resistant acid phosphatase (TRAP) analysis, qRT-PCR, and pit formation, Western blot, and immunofluorescence assays. MTA showed dose-dependent anti-osteoclastogenic activity by inhibiting TRAP-positive cell and pit formation and reducing essential digestive enzymes, including TRAP, cathepsin K, and matrix metallopeptidase 9. MTA was observed to suppress the osteoclast transduction pathway through (RANKL)-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NFƘB); it attenuated NFƘB-P65 expression and down-regulated cFos proto-oncogene and nuclear factor of activated T cell c1 (NFATc1), the main regulators of osteoclasts. Moreover, the suppression of RANK (the initial receptor triggering several osteoclastogenic transduction pathways) was observed. Thus, this study highlights the potential of MTA as an effective therapeutic compound for restoring bone metabolic disease by inhibiting the RANK-NFATc1 signal pathway.
Collapse
Affiliation(s)
- Purithat Rattajak
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| | - Aratee Aroonkesorn
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| | - Carl Smythe
- Department of Biomedical Science, University of Sheffield, Sheffield, England S10 2TN, UK
| | - Rapepun Wititsuwannakul
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| | - Thanawat Pitakpornpreecha
- Division of Health and Applied Science (Biochemistry), Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
- Center for Natural Rubber Latex Biotechnology Research and Innovation Development, Prince of Songkla University, Hat-Yai, Songkhla, 90110, Thailand
| |
Collapse
|
3
|
Verhagen N, Zieringer J, Takors R. Methylthioadenosine (MTA) boosts cell-specific productivities of Chinese hamster ovary cultures: dosage effects on proliferation, cell cycle and gene expression. FEBS Open Bio 2020; 10:2791-2804. [PMID: 33128321 PMCID: PMC7714083 DOI: 10.1002/2211-5463.13019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 12/16/2022] Open
Abstract
A major goal for process and cell engineering in the biopharmaceutical industry is enhancing production through increasing volumetric and cell‐specific productivities (CSP). Here, we present 5′‐deoxy‐5′‐(methylthio)adenosine (MTA), the degradation product of S‐(5′‐adenosyl)‐L‐methionine (SAM), as a highly attractive native additive which can boost CSP by 79% when added to exponentially growing cells at a concentration of 250–300 μm. Notably, cell viability and cell size remain higher than in non‐treated cultures. In addition, cell cycle arrests first in S‐, then in G2‐phase before levelling out compared to non‐treated cultivations. Intensive differential gene analysis reveals that expression of genes for cytoskeleton mediated proteins and vesicle transport is amplified by treatment. Furthermore, the interaction of MTA with cell proliferation additionally stimulated recombinant protein formation. The results may serve as a promising starting point for further developments in process and cell engineering to boost productivity.
Collapse
Affiliation(s)
- Natascha Verhagen
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Julia Zieringer
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
4
|
Verhagen N, Teleki A, Heinrich C, Schilling M, Unsöld A, Takors R. S-adenosylmethionine and methylthioadenosine boost cellular productivities of antibody forming Chinese hamster ovary cells. Biotechnol Bioeng 2020; 117:3239-3247. [PMID: 32644191 DOI: 10.1002/bit.27484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 01/28/2023]
Abstract
The improvement of cell specific productivities for the formation of therapeutic proteins is an important step towards intensified production processes. Among others, the induction of the desired production phenotype via proper media additives is a feasible solution provided that said compounds adequately trigger metabolic and regulatory programs inside the cells. In this study, S-(5'-adenosyl)- l-methionine (SAM) and 5'-deoxy-5'-(methylthio)adenosine (MTA) were found to stimulate cell specific productivities up to approx. 50% while keeping viable cell densities transiently high and partially arresting the cell cycle in an anti-IL-8-producing CHO-DP12 cell line. Noteworthy, MTA turned out to be the chemical degradation product of the methyl group donor SAM and is consumed by the cells.
Collapse
Affiliation(s)
- Natascha Verhagen
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring, Stuttgart, Germany
| | | | | | - Andreas Unsöld
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring, Stuttgart, Germany
| |
Collapse
|
5
|
Mavrakis KJ, McDonald ER, Schlabach MR, Billy E, Hoffman GR, deWeck A, Ruddy DA, Venkatesan K, Yu J, McAllister G, Stump M, deBeaumont R, Ho S, Yue Y, Liu Y, Yan-Neale Y, Yang G, Lin F, Yin H, Gao H, Kipp DR, Zhao S, McNamara JT, Sprague ER, Zheng B, Lin Y, Cho YS, Gu J, Crawford K, Ciccone D, Vitari AC, Lai A, Capka V, Hurov K, Porter JA, Tallarico J, Mickanin C, Lees E, Pagliarini R, Keen N, Schmelzle T, Hofmann F, Stegmeier F, Sellers WR. Disordered methionine metabolism in MTAP/CDKN2A-deleted cancers leads to dependence on PRMT5. Science 2016; 351:1208-13. [PMID: 26912361 DOI: 10.1126/science.aad5944] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/01/2016] [Indexed: 12/13/2022]
Abstract
5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP-deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.
Collapse
Affiliation(s)
| | - E Robert McDonald
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | - Eric Billy
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Gregory R Hoffman
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Antoine deWeck
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - David A Ruddy
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | - Jianjun Yu
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Gregg McAllister
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Mark Stump
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | - Samuel Ho
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Yingzi Yue
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Yue Liu
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Yan Yan-Neale
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Guizhi Yang
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Fallon Lin
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Hong Yin
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Hui Gao
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - D Randal Kipp
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Songping Zhao
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Joshua T McNamara
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | - Bing Zheng
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Ying Lin
- China Novartis Institutes for Biomedical Research, Shanghai 201203, China
| | - Young Shin Cho
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Justin Gu
- China Novartis Institutes for Biomedical Research, Shanghai 201203, China
| | - Kenneth Crawford
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - David Ciccone
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Alberto C Vitari
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Albert Lai
- Novartis Institutes for Biomedical Research, Emeryville, CA 94608, USA
| | - Vladimir Capka
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Kristen Hurov
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Jeffery A Porter
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - John Tallarico
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Craig Mickanin
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Emma Lees
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | | | - Nicholas Keen
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Tobias Schmelzle
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Francesco Hofmann
- Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Frank Stegmeier
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.
| | - William R Sellers
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.
| |
Collapse
|
6
|
Loss O, Wu CT, Riccio A, Saiardi A. Modulation of inositol polyphosphate levels regulates neuronal differentiation. Mol Biol Cell 2013; 24:2981-9. [PMID: 23864704 PMCID: PMC3771958 DOI: 10.1091/mbc.e13-04-0198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The modulation of inositol pentakisphosphate (IP5) and hexakisphosphate (IP6) intracellular levels controls the differentiation and survival of PC12 cells and primary neurons. These mechanisms are controlled by the levels of the protein kinase IP5-2K responsible for the conversion of IP5 into IP6. The binding of neurotrophins to tropomyosin receptor kinase receptors initiates several signaling pathways, including the activation of phospholipase C-γ, which promotes the release of diacylglycerol and inositol 1,4,5-trisphosphate (IP3). In addition to recycling back to inositol, IP3 serves as a precursor for the synthesis of higher phosphorylated inositols, such as inositol 1,3,4,5,6-pentakisphosphate (IP5) and inositol hexakisphosphate (IP6). Previous studies on the effect of neurotrophins on inositol signaling were limited to the analysis of IP3 and its dephosphorylation products. Here we demonstrate that nerve growth factor (NGF) regulates the levels of IP5 and IP6 during PC12 differentiation. Furthermore, both NGF and brain-derived neurotrophic factor alter IP5 and IP6 intracellular ratio in differentiated PC12 cells and primary neurons. Neurotrophins specifically regulate the expression of IP5-2 kinase (IP5-2K), which phosphorylates IP5 into IP6. IP5-2K is rapidly induced after NGF treatment, but its transcriptional levels sharply decrease in fully differentiated PC12 cells. Reduction of IP5-2K protein levels by small interfering RNA has an effect on the early stages of PC12 cell differentiation, whereas fully differentiated cells are not affected. Conversely, perturbation of IP5-2K levels by overexpression suggests that both differentiated PC12 cells and sympathetic neurons require low levels of the enzyme for survival. Therefore maintaining appropriate intracellular levels of inositol polyphosphates is necessary for neuronal survival and differentiation.
Collapse
Affiliation(s)
- Omar Loss
- Cell Biology Unit and Laboratory for Molecular Cell Biology, Medical Research Council, University College London, London WC1E 6BT, United Kingdom Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom Department of Neuroscience, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
7
|
Limm K, Ott C, Wallner S, Mueller DW, Oefner P, Hellerbrand C, Bosserhoff AK. Deregulation of protein methylation in melanoma. Eur J Cancer 2013; 49:1305-13. [DOI: 10.1016/j.ejca.2012.11.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/24/2012] [Accepted: 11/14/2012] [Indexed: 12/16/2022]
|
8
|
Kirovski G, Stevens AP, Czech B, Dettmer K, Weiss TS, Wild P, Hartmann A, Bosserhoff AK, Oefner PJ, Hellerbrand C. Down-regulation of methylthioadenosine phosphorylase (MTAP) induces progression of hepatocellular carcinoma via accumulation of 5'-deoxy-5'-methylthioadenosine (MTA). THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1145-52. [PMID: 21356366 DOI: 10.1016/j.ajpath.2010.11.059] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 11/06/2010] [Accepted: 11/23/2010] [Indexed: 01/17/2023]
Abstract
Recently, we have shown that down-regulation of methylthioadenosine phosphorylase (MTAP) in hepatocellular carcinoma (HCC) cells enhances the invasive potential and the resistance against cytokines. Here, we aimed at investigating the molecular mechanism underlying this tumor-promoting effect and expanded the analysis to a large series of human HCC tissues. Liquid chromatography tandem mass spectrometry revealed that reduced MTAP expression resulted in higher intra- and extracellular concentrations of 5'-deoxy-5'-methylthioadenosine (MTA) in cultivated HCC cells and, concordantly, higher levels of MTA in HCC tissue. MTA induced matrix metalloproteinase (MMP) and interleukin-8 transcription in HCC cells in vitro, accompanied by enhanced proliferation and activation of the transcription factor NFκB. In addition, MTA secreted by HCC cells induced expression of fibroblast growth factor-2 and MMP1 in stromal myofibroblasts. In human HCC tissues, MTAP mRNA correlated inversely with MTA levels, and immunohistochemical analysis of a tissue microarray of 140 human HCCs revealed that low MTAP protein expression correlated with advanced tumor stages. In conclusion, MTAP deficiency results in accumulation of MTA, which is associated with increased tumorigenicity. These data further indicate MTAP as a tumor suppressor in HCC, and MTA as a potential biomarker for HCC progression.
Collapse
Affiliation(s)
- Georgi Kirovski
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yamaji S, Droggiti A, Lu SC, Martinez-Chantar ML, Warner A, Varela-Rey M. S-Adenosylmethionine regulates connexins sub-types expressed by hepatocytes. Eur J Cell Biol 2010; 90:312-22. [PMID: 21093098 DOI: 10.1016/j.ejcb.2010.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 01/01/2023] Open
Abstract
Intercellular communication via GAP Junctions plays an important role in tissue homeostasis, apoptosis, carcinogenesis, cell proliferation and differentiation. Hepatocyte connexins (Cx) 26 and 32 levels are decreased during the de-differentiation process of primary hepatocytes in culture, a situation that is also characterized by a decrease in S-Adenosylmethionine (SAMe) levels. In this current study, we show that SAMe supplementation in cultured hepatocytes every 12h, leads to an up-regulation of Cx26 and 32 mRNA and protein levels and blocks culture-induced Cx43 expression, although it failed to increase Cx26 and 32 membrane localization and GAP junction intracellular communication. SAMe reduced nuclear β-catenin accumulation, which is known to stimulate the TCF/LEF-dependent gene transcription of Cx43. Moreover SAMe-induced reduction in Cx43 and β-catenin was prevented by the proteasome inhibitor MG132, and was not mediated by GSK3 activity. SAMe, and its metabolite 5'-methylthioadenosine (MTA) increased Cx26 mRNA in a process partially mediated by Adenosine A(2A) receptors but independent of PKA. Finally livers from MAT1A knockout mice, characterized by low hepatic SAMe levels, express higher Cx43 and lower Cx26 and 32 protein levels than control mice. These results suggest that SAMe maintains a characteristic expression pattern of the different Cxs in hepatocytes by differentially regulating their levels.
Collapse
Affiliation(s)
- Sachie Yamaji
- Department of Cell and Developmental Biology (formerly Anatomy and Developmental Biology), University College London, London, UK
| | | | | | | | | | | |
Collapse
|
10
|
Identification of a 2-cell stage specific inhibitor of the cleavage of preimplantation mouse embryos synthesized by rat hepatoma cells as 5′-deoxy-5′-methylthioadenosine. ZYGOTE 2010; 19:117-25. [DOI: 10.1017/s0967199410000158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryRat hepatoma Reuber H-35 cells produce a unique compound designated as Fr.B-25, a 2-cell stage-specific inhibitor of the cleavage of preimplantation mouse embryos culturedin vitro. Here, we identified Fr.B-25 as a purine nucleoside, 5′-deoxy-5′-methylthioadenosine (MTA), by mass spectroscopic analysis. All of the biological activities examined of authentic MTA on the development of mouse zygotes were indistinguishable from those of Fr.B-25. The mechanism of MTA action in the development of preimplantation mouse embryos was probably different from those of hypoxanthine and adenosine, which are well-characterized purine nucleosides that act as inhibitors of the cleavage of mouse 2-cell embryos. From the shared molecular and biological properties of Fr.B-25 and MTA, we concluded that Fr.B-25 is MTA. To the best of our knowledge, this is the first delineation of the effect of MTA on the development of preimplantation mammalian embryos culturedin vitro.
Collapse
|
11
|
Andreu-Pérez P, Hernandez-Losa J, Moliné T, Gil R, Grueso J, Pujol A, Cortés J, Avila MA, Recio JA. Methylthioadenosine (MTA) inhibits melanoma cell proliferation and in vivo tumor growth. BMC Cancer 2010; 10:265. [PMID: 20529342 PMCID: PMC2891639 DOI: 10.1186/1471-2407-10-265] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 06/08/2010] [Indexed: 12/13/2022] Open
Abstract
Background Melanoma is the most deadly form of skin cancer without effective treatment. Methylthioadenosine (MTA) is a naturally occurring nucleoside with differential effects on normal and transformed cells. MTA has been widely demonstrated to promote anti-proliferative and pro-apoptotic responses in different cell types. In this study we have assessed the therapeutic potential of MTA in melanoma treatment. Methods To investigate the therapeutic potential of MTA we performed in vitro proliferation and viability assays using six different mouse and human melanoma cell lines wild type for RAS and BRAF or harboring different mutations in RAS pathway. We also have tested its therapeutic capabilities in vivo in a xenograft mouse melanoma model and using variety of molecular techniques and tissue culture we investigated its anti-proliferative and pro-apoptotic properties. Results In vitro experiments showed that MTA treatment inhibited melanoma cell proliferation and viability in a dose dependent manner, where BRAF mutant melanoma cell lines appear to be more sensitive. Importantly, MTA was effective inhibiting in vivo tumor growth. The molecular analysis of tumor samples and in vitro experiments indicated that MTA induces cytostatic rather than pro-apoptotic effects inhibiting the phosphorylation of Akt and S6 ribosomal protein and inducing the down-regulation of cyclin D1. Conclusions MTA inhibits melanoma cell proliferation and in vivo tumor growth particularly in BRAF mutant melanoma cells. These data reveal a naturally occurring drug potentially useful for melanoma treatment.
Collapse
Affiliation(s)
- Pedro Andreu-Pérez
- Medical Oncology Research Program, Vall d'Hebron Research Institute, Vall d'Hebron Institute of Oncology Vall d'Hebron Hospital Barcelona 08035, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen F, Fulton DJR. An inhibitor of protein arginine methyltransferases, 7,7'-carbonylbis(azanediyl)bis(4-hydroxynaphthalene-2-sulfonic acid (AMI-1), is a potent scavenger of NADPH-oxidase-derived superoxide. Mol Pharmacol 2010; 77:280-7. [PMID: 19903831 PMCID: PMC3202478 DOI: 10.1124/mol.109.061077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 11/09/2009] [Indexed: 01/10/2023] Open
Abstract
The methylation of proteins is an important post-translational mechanism that has been established to influence the activity of nuclear and nucleic acid binding proteins. Much less is known about the importance of protein methylation in the regulation of cytosolic proteins. Increased methylation of proteins is observed in cardiovascular disease and occurs in conjunction with elevated production of reactive oxygen species. However, the nature of the relationship between reactive oxygen species and protein methylation is poorly understood. Therefore, the goal of the current study was to determine whether protein methylation influences the catalytic activity of the NADPH oxidases (Nox), which are a family of enzymes responsible for the generation of superoxide. We found that the selective inhibitor of protein arginine methyltransferases 7,7'-carbonylbis(azanediyl)bis(4-hydroxynaphthalene-2-sulfonic acid (AMI-1) was a potent antagonist of Nox-derived superoxide production. However, structurally and mechanistically dissimilar inhibitors of protein methylation and coexpression of protein arginine methyltransferase 1 did not influence Nox activity. Rather, the effect of AMI-1 was rapidly reversible and could be demonstrated in an assay using chemically synthesized superoxide. We conclude that protein methylation does not regulate the activity of NADPH-oxidases and that AMI-1 is a potent antioxidant with a greater potency than 4,5-dihydroxy-1,3-benzenedisulfonic acid (Tiron) and 4-hydroxy-2,2,6,6-tetramethylpiperydine-1-oxyl (Tempol).
Collapse
Affiliation(s)
- Feng Chen
- Vascular Biology Center and Department of Pharmacology, Medical College of Georgia, Augusta, Georgia (D.F., F.C.); and Department of Forensic Sciences, Xi’an Jiaotong University School of Medicine, Xi’an shaanxi, People’s Republic of China (F.C.)
| | - David J. R. Fulton
- Vascular Biology Center and Department of Pharmacology, Medical College of Georgia, Augusta, Georgia (D.F., F.C.); and Department of Forensic Sciences, Xi’an Jiaotong University School of Medicine, Xi’an shaanxi, People’s Republic of China (F.C.)
| |
Collapse
|
13
|
Stevens AP, Spangler B, Wallner S, Kreutz M, Dettmer K, Oefner PJ, Bosserhoff AK. Direct and tumor microenvironment mediated influences of 5'-deoxy-5'-(methylthio)adenosine on tumor progression of malignant melanoma. J Cell Biochem 2009; 106:210-9. [PMID: 19097084 DOI: 10.1002/jcb.21984] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have shown that a loss of methylthioadenosine phosphorylase (MTAP) gene expression exerts a tumor-promoting effect, including induction of invasiveness, enhanced cell proliferation, and resistance against cytokines. To date, the molecular mechanisms underlying these effects remain unknown. Since the loss of MTAP expression resulted in induced secretion of 5'-deoxy-5'-(methylthio)adenosine (MTA), we hypothesized that MTA might modulate the observed effects. We first determined MTA levels produced by tumor cells in vitro and in situ by means of stable isotope dilution liquid chromatography tandem mass spectrometry. Subsequently, we revealed induction of matrix metalloproteinase (MMP) and growth factor gene expression in melanoma cells accompanied by enhanced invasion and vasculogenic mimicry. In addition, MTA induced the secretion of basis fibroblast growth factor (bFGF) and MMP3 from fibroblasts and the upregulation of activator protein-1 (AP-1) activity in melanoma cells and fibroblasts. In summary, we demonstrated a tumor-supporting role of MTA.
Collapse
Affiliation(s)
- Axel P Stevens
- Institute of Functional Genomics, University of Regensburg Medical School, Josef-Engert-Str. 9, D-93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol Cell Biol 2009; 29:1959-71. [PMID: 19158276 DOI: 10.1128/mcb.01862-08] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epigenetic silencing of tumor necrosis factor alpha (TNF-alpha) and interleukin 1beta (IL-1beta) transcription occurs in blood leukocytes of animals and humans after the initiation of severe systemic inflammation (SSI). We previously reported that the epigenetic signature requires induction of NF-kappaB factor RelB, which directs histone H3K9 dimethylation, disrupts assembly of transcription activator NF-kappaB p65, and induces a sustained switch from the euchromatin to heterochromatin. Here, we report the novel findings that intracellular high mobility group box 1 protein (HMGB1) and nucleosome linker histone H1 protein are necessary components of endotoxin-mediated silencing of TNF-alpha in THP-1 human promonocytes. HMGB1 binds the TNF-alpha promoter during transcription silencing and promotes assembly of the repressor RelB. Depletion of HMGB1 by small interfering RNA results in dissociation of RelB from the promoter and partially restores TNF-alpha transcription. Histone H1, which typically displaces HMGB1 from nucleosomal DNA, also binds concomitantly with HMGB1 to the heterochromatin of the silenced TNF-alpha promoter. Combined knockdown of HMGB1 and H1 restores binding of the transcriptionally active NF-kappaB p65 and reestablishes TNF-alpha mRNA levels. Chromatin reimmunoprecipitation experiments demonstrate that HMGB1 and H1 are likely recruited to TNF-alpha sequences independently and that their binding correlates with histone H3K9 dimethylation, as inhibition of histone methylation blocks HMGB1 and H1 binding. Moreover, HMGB1- and H1-mediated chromatin modifications are gene specific during endotoxin silencing in that they also bind and repress acute proinflammatory IL-1beta, while no binding nor repression of antiinflammatory IkappaBalpha is observed. Finally, we find that H1 and HMGB1 bind to the TNF-alpha a promoter in human leukocytes obtained from patients with SSI. We conclude proinflammatory HMGB1 and structural nucleosome linker H1 couple as a component of the epigenetic complex that silences acute proinflammatory TNF-alpha during the assembly of heterochromatin in the SSI phenotype.
Collapse
|
15
|
Fernández-Irigoyen J, Santamaría M, Sánchez-Quiles V, Latasa MU, Santamaría E, Muñoz J, Sánchez Del Pino MM, Valero ML, Prieto J, Avila MA, Corrales FJ. Redox regulation of methylthioadenosine phosphorylase in liver cells: molecular mechanism and functional implications. Biochem J 2008; 411:457-465. [PMID: 18237276 DOI: 10.1042/bj20071569] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MTAP (5'-methylthioadenosine phosphorylase) catalyses the reversible phosphorolytic cleavage of methylthioadenosine leading to the production of methylthioribose-1-phosphate and adenine. Deficient MTAP activity has been correlated with human diseases including cirrhosis and hepatocellular carcinoma. In the present study we have investigated the regulation of MTAP by ROS (reactive oxygen species). The results of the present study support the inactivation of MTAP in the liver of bacterial LPS (lipopolysaccharide)-challenged mice as well as in HepG2 cells after exposure to t-butyl hydroperoxide. Reversible inactivation of purified MTAP by hydrogen peroxide results from a reduction of V(max) and involves the specific oxidation of Cys(136) and Cys(223) thiols to sulfenic acid that may be further stabilized to sulfenyl amide intermediates. Additionally, we found that Cys(145) and Cys(211) were disulfide bonded upon hydrogen peroxide exposure. However, this modification is not relevant to the mediation of the loss of MTAP activity as assessed by site-directed mutagenesis. Regulation of MTAP by ROS might participate in the redox regulation of the methionine catabolic pathway in the liver. Reduced MTA (5'-deoxy-5'-methylthioadenosine)-degrading activity may compensate for the deficient production of the precursor S-adenosylmethionine, allowing maintenance of intracellular MTA levels that may be critical to ensure cellular adaptation to physiopathological conditions such as inflammation.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
16 Inhibition of mammalian protein methyltransferases by 5'-methylthioadenosine (MTA): A mechanism of action of dietary same? Enzymes 2007; 24:467-93. [PMID: 26718050 DOI: 10.1016/s1874-6047(06)80018-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
5'-deoxy-5'-methylthioadenosine (5'-methylthioadenosine, MTA) is a naturally occurring metabolite. As an experimental reagent, it has proved useful in providing investigators a window onto the role of protein methylation reactions in intact cells, although its mode of action is poorly understood in most cases. This chapter reevaluates its utility as a reagent. It appears now that MTA is at best a poor direct inhibitor of methyltransferases and that its effectiveness in intact cells may depend on its ability to inhibit S-adenosyl-l-homocysteine hydrolase. This chapter reviews recent evidence that points to an important role for MTA as an intermediary in the beneficial pharmaceutical action of orally ingested S-adenosyl-l-methionine (AdoMet, SAMe). These new results suggest that oral AdoMet may function not by enhancing the activity of cellular methyltransferases, as has been previously surmised, but by inhibiting their action. Such inhibition, particularly of protein methyltransferases involved in intracellular communication, may attenuate signal transduction pathways otherwise leading to inflammatory damage to tissues.
Collapse
|
17
|
Abstract
Fluorescence resonance energy transfer (FRET) has been proven to be a powerful tool to visualize and quantify the signaling cascades in live cells with high spatiotemporal resolutions. Here we describe the development of the genetically encoded and FRET-based biosensors for imaging of integrin-related signaling cascades. The construction of a FRET biosensor for Src kinase, an important tyrosine kinase involved in integrin-related signaling pathways, is used as an example to illustrate the construction procedure and the pitfalls involved. The design strategies and considerations on improvements of sensitivity and specificity are also discussed. The FRET-based biosensors provide a complementary approach to traditional biochemical assays for the analysis of the functions of integrins and their associated signaling molecules. The dynamic and subcellular visualization enabled by FRET can shed new light on the molecular mechanisms regulating integrin signaling and advance our knowledge in the understanding of integrin-related pathophysiological processes.
Collapse
Affiliation(s)
- Yingxiao Wang
- Department of Bioengineering and Molecular & Integrative Physiology, Neuroscience Program, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, USA
| | | |
Collapse
|
18
|
Ansorena E, Berasain C, López Zabalza MJ, Avila MA, García-Trevijano ER, Iraburu MJ. Differential regulation of the JNK/AP-1 pathway by S-adenosylmethionine and methylthioadenosine in primary rat hepatocytes versus HuH7 hepatoma cells. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1186-93. [PMID: 16469827 DOI: 10.1152/ajpgi.00282.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
S-adenosylmethionine (AdoMet) and 5'-methylthioadenosine (MTA) exert a protective action on apoptosis induced by okadaic acid in primary rat hepatocytes but not in human transformed HuH7 cells. In the present work, we analyzed the role played by the JNK/activator protein (AP)-1 pathway in this differential effect. Okadaic acid induced the phosphorylation of JNK and c-Jun and the binding activity of AP-1 in primary hepatocytes, and pretreatment with either AdoMet or MTA prevented those effects. In HuH7 cells, pretreatment with either AdoMet or MTA did not affect JNK and c-Jun activation or AP-1 binding induced by okadaic acid. In both cell types, p38 was activated by okadaic acid, but neither AdoMet nor MTA presented a significant effect on its activity. Therefore, the differential effect of both AdoMet and MTA on the JNK/AP-1 pathway could explain their antiapoptotic effect on primary hepatocytes and the lack of protection they show against okadaic acid-induced apoptosis in hepatoma cells.
Collapse
Affiliation(s)
- Eduardo Ansorena
- Departamento de Bioquímica y Biología Molecular, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Schamberger CJ, Gerner C, Cerni C. Caspase-9 plays a marginal role in serum starvation-induced apoptosis. Exp Cell Res 2005; 302:115-28. [PMID: 15541731 DOI: 10.1016/j.yexcr.2004.08.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 08/04/2004] [Indexed: 11/22/2022]
Abstract
Serum withdrawal represents a potent trigger to induce caspase-dependent apoptosis in a series of cell culture models. In rat 423-cells, caspase-8 and caspase-3 were apparently sufficient to initiate and proceed apoptosis without involving the intrinsic amplification loop via caspase-9. To assess the reasons for this inactivity of an otherwise crucial initiator caspase, we examined the ability for apoptosome assembly in 423-cells. Caspase-9 and Apaf-1 were expressed and cytochrome c released from mitochondria upon serum withdrawal. Although functional apoptosomes were assembled successfully in vitro, caspase-9 processing was found essentially refrained during apoptosis in 423-cells. Cell fractionation experiments revealed that sequestration of caspase-9 to cytoskeletal structures in 423-cells contributed to the observed impairment of apoptosome formation. Altogether, these findings provide evidence that serum starvation-induced apoptosis may occur independently of the intrinsic pathway and that caspase-9 sequestration potentially represents a novel biological antiapoptotic strategy.
Collapse
|
20
|
Forsten-Williams K, Chua CC, Nugent MA. The kinetics of FGF-2 binding to heparan sulfate proteoglycans and MAP kinase signaling. J Theor Biol 2004; 233:483-99. [PMID: 15748910 DOI: 10.1016/j.jtbi.2004.10.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 10/04/2004] [Accepted: 10/14/2004] [Indexed: 11/20/2022]
Abstract
Binding of growth factors to specific cell surface receptors is the first step in initiating cell signaling cascades that ultimately result in diverse activities such as proliferation, differentiation, and apoptosis. Dimerization and phosphorylation of tyrosine kinase transmembrane receptors is the typical paradigm for this activation but, for many growth factors, cell surface interactions are not limited to a single receptor type. In particular, heparin-binding growth factors, such as fibroblast growth factor-2 (FGF-2), bind to heparan sulfate proteoglycans (HSPG) on the cell surface and within the extracellular matrix (ECM), and these molecules have been viewed as accessory co-receptors serving to facilitate tyrosine kinase receptor binding. Recent studies, however, have indicated that HSPG can directly participate in signal transduction in response to FGF-2 binding. Thus, in the present study, we used mathematical modeling to examine whether the kinetics of formation of the various FGF-2 bound complexes on the cell surface correlate with the activation of the downstream mediators of FGF-2 response, Erk1/2. We find that FGF-2 binding to its receptor correlates well with Erk1/2 activation and that HSPG can modulate this response through its ability to stabilize these ligand receptor complexes. Moreover, we also observed that FGF-2 binding to HSPG correlates strongly with Erk1/2 activation under conditions where there is a loss of receptor activity, and we demonstrate that the relative amounts of signaling and non-signaling HSPG on the cell surface, as well as the presence of competing HSPG in the ECM, can impact the signal potential via this pathway. Thus, the selective regulation of specific HSPG might provide a mechanism for fine tuned modulation of heparin-binding growth factor signaling in cells where signal intensity and duration could direct cellular response toward growth, migration or differentiation.
Collapse
Affiliation(s)
- Kimberly Forsten-Williams
- Department of Chemical Engineering and Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute & State University, 141 Randolph Hall, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|
21
|
Avila MA, García-Trevijano ER, Lu SC, Corrales FJ, Mato JM. Methylthioadenosine. Int J Biochem Cell Biol 2004; 36:2125-2130. [PMID: 15313459 DOI: 10.1016/j.biocel.2003.11.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Revised: 11/17/2003] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
5'-Methylthioadenosine (MTA) is a naturally occurring sulfur-containing nucleoside present in all mammalian tissues. MTA is produced from S-adenosylmethionine mainly through the polyamine biosynthetic pathway, where it behaves as a powerful inhibitory product. This compound is metabolized solely by MTA-phosphorylase, to yield 5-methylthioribose-1-phosphate and adenine, a crucial step in the methionine and purine salvage pathways, respectively. Abundant evidence has accumulated over time suggesting that MTA can affect cellular processes in many ways. MTA has been shown to influence numerous critical responses of the cell including regulation of gene expression, proliferation, differentiation and apoptosis. Although most of these responses have been observed at the pharmacological level, their specificity makes it tempting to speculate that endogenous MTA could play a regulatory role in the cell. Finally, observations carried out in models of liver damage and cancer demonstrate a therapeutic potential for MTA that deserves further consideration.
Collapse
Affiliation(s)
- Matías A Avila
- Division of Hepatology and Gene Therapy, F.I.M.A, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
22
|
Wang F, Zhang R, Beischlag TV, Muchardt C, Yaniv M, Hankinson O. Roles of Brahma and Brahma/SWI2-related gene 1 in hypoxic induction of the erythropoietin gene. J Biol Chem 2004; 279:46733-41. [PMID: 15347669 DOI: 10.1074/jbc.m409002200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Upon hypoxia, the human erythropoietin (EPO) gene is transactivated by the heterodimeric hypoxia-inducible factor 1 (HIF-1). Mammalian SWI/SNF is a chromatin-remodeling complex involved in the modulation of gene expression. We demonstrate that Brahma (Brm) and Brahma/SWI2-related gene 1 (Brg-1), alternative ATPase subunits of SWI/SNF, potentiate reporter gene activation mediated by HIF-1 in an ATPase-dependent manner. Brm was more potent than Brg-1 in the reporter gene assays. Simultaneous depletion of both Brm and Brg-1 by small interfering RNAs significantly compromised the transcription of the endogenous EPO gene triggered by hypoxia. Whereas knocking down Brm alone resulted in a moderate reduction in transcription of the EPO gene, depletion of Brg-1 resulted in an augmentation of transcription of both the EPO gene and the Brm gene, indicating that Brm can compensate for loss of Brg-1. Chromatin immunoprecipitation (ChIP) and sequential ChIP (re-ChIP) analysis showed that both Brm and Brg-1 associate with the enhancer region of the EPO gene in vivo in a hypoxia-dependent fashion and that each is present in a complex with HIF-1. Brm and Brg-1 were also recruited to the promoter of the vascular endothelial growth factor (VEGF) gene in a hypoxia-dependent fashion, although hypoxic induction of VEGF transcription was not affected by depletions of either or both Brm and Brg-1. Together these studies reveal a novel role for SWI/SNF in the activation of transcription of the EPO gene, indicate an important communication and compensation between Brm and Brg-1, and suggest that the requirement for SWI/SNF during hypoxic induction is gene-specific.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
23
|
Mowen KA, Schurter BT, Fathman JW, David M, Glimcher LH. Arginine Methylation of NIP45 Modulates Cytokine Gene Expression in Effector T Lymphocytes. Mol Cell 2004; 15:559-71. [PMID: 15327772 DOI: 10.1016/j.molcel.2004.06.042] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/27/2004] [Accepted: 06/09/2004] [Indexed: 10/26/2022]
Abstract
Posttranslational modification of proteins within T cell receptor signaling cascades allows T lymphocytes to rapidly initiate an appropriate immune response. Here we report a role for arginine methylation in regulating cytokine gene transcription in the T helper lymphocyte. Inhibition of arginine methylation impaired the expression of several cytokine genes, including the signature type 1 and type 2 helper cytokines, interferon gamma, and interleukin-4. T cell receptor signaling increased expression of the protein arginine methyltransferase PRMT1, which in turn methylated the nuclear factor of activated T cells (NFAT) cofactor protein, NIP45. Arginine methylation of the amino terminus of NIP45 modulated its interaction with NFAT and resulted in augmented cytokine production, while T cells from mice lacking NIP45 had impaired expression of IFNgamma and IL-4. Covalent modification of NIP45 by arginine methylation is an important mechanism of regulating the expression of NFAT-dependent cytokine genes.
Collapse
Affiliation(s)
- Kerri A Mowen
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Integrin engagement stimulates the activity of numerous signaling molecules, including the Rho family of GTPases, tyrosine phosphatases, cAMP-dependent protein kinase and protein kinase C, and stimulates production of PtdIns(4,5)P2. Integrins promote actin assembly via the recruitment of molecules that directly activate the actin polymerization machinery or physically link it to sites of cell adhesion.
Collapse
Affiliation(s)
- Kris A DeMali
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
25
|
Chua CC, Rahimi N, Forsten-Williams K, Nugent MA. Heparan Sulfate Proteoglycans Function as Receptors for Fibroblast Growth Factor-2 Activation of Extracellular Signal–Regulated Kinases 1 and 2. Circ Res 2004; 94:316-23. [PMID: 14684627 DOI: 10.1161/01.res.0000112965.70691.ac] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor-2 (FGF2) activates the extracellular signal-regulated kinases 1 and 2 (ERK1/2) through its specific receptors. Interaction of FGF2 with cell-surface heparan sulfate proteoglycans has also been suggested to induce intracellular signals. Thus, we investigated whether FGF2 can stimulate ERK1/2 activation through heparan sulfate proteoglycans using mechanisms that do not depend on receptor activation in vascular smooth muscle cells. The activation of FGF receptors was inhibited by treating cells with 5'-deoxy-5'methyl-thioadenosine and by expressing truncated dominant-negative FGF receptors. In both cases, FGF2 was able to stimulate the phosphorylation of ERK1/2 despite the absence of detectable FGF receptor tyrosine kinase activity. The FGF2 activation of ERK1/2 in the absence of receptor activity was completely dependent on heparan sulfate, because this activity was abolished by heparinase III digestion of the cells. In contrast, heparinase III treatment of control cells, with functional FGF receptors, showed only slight changes in FGF2-mediated ERK1/2 activation kinetics. Thus, in addition to serving as coreceptors for FGF receptor activation, heparan sulfate proteoglycans might also function directly as receptors for FGF2-induced ERK1/2 activation. Activation of ERK1/2 via cell-surface proteoglycans could have significant biological consequences, potentially directing cell response toward growth, migration, or differentiation.
Collapse
Affiliation(s)
- Ceres C Chua
- Department of Biochemistry, Boston University School of Medicine, Boston, Mass 02118, USA
| | | | | | | |
Collapse
|
26
|
Liang X, Lu Y, Wilkes M, Neubert TA, Resh MD. The N-terminal SH4 region of the Src family kinase Fyn is modified by methylation and heterogeneous fatty acylation: role in membrane targeting, cell adhesion, and spreading. J Biol Chem 2003; 279:8133-9. [PMID: 14660555 DOI: 10.1074/jbc.m311180200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The N-terminal SH4 domain of Src family kinases is responsible for promoting membrane binding and plasma membrane targeting. Most Src family kinases contain an N-terminal Met-Gly-Cys consensus sequence that undergoes dual acylation with myristate and palmitate after removal of methionine. Previous studies of Src family kinase fatty acylation have relied on radiolabeling of cells with radioactive fatty acids. Although this method is useful for verifying that a given fatty acid is attached to a protein, it does not reveal whether other fatty acids or other modifying groups are attached to the protein. Here we use matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry to identify fatty acylated species of the Src family kinase Fyn. Our results reveal that Fyn is efficiently myristoylated and that some of the myristoylated proteins are also heterogeneously S-acylated with palmitate, palmitoleate, stearate, or oleate. Furthermore, we show for the first time that Fyn is trimethylated at lysine residues 7 and/or 9 within its N-terminal region. Both myristoylation and palmitoylation were required for methylation of Fyn. However, a general methylation inhibitor had no inhibitory effect on myristoylation and palmitoylation of Fyn, suggesting that methylation occurs after myristoylation and palmitoylation. Lysine mutants of Fyn that could not be methylated failed to promote cell adhesion and spreading, suggesting that methylation is important for Fyn function.
Collapse
Affiliation(s)
- Xiquan Liang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | | | | | | | |
Collapse
|
27
|
Martens JHA, Verlaan M, Kalkhoven E, Zantema A. Cascade of distinct histone modifications during collagenase gene activation. Mol Cell Biol 2003; 23:1808-16. [PMID: 12588998 PMCID: PMC151710 DOI: 10.1128/mcb.23.5.1808-1816.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene activation in eukaryotes requires chromatin remodeling, in part via histone modifications. To study the events at the promoter of a mitogen-inducible gene, we examined the induction of expression of the collagenase gene. It has been established that the collagenase gene can be activated by c-Jun and c-Fos and that the transcriptional coactivator p300 is involved in the activation. As expected, we found histone acetyltransferase activity at the collagenase promoter during activation. Interestingly, we also found histone methyltransferase and kinase activity. Strikingly, the first modification observed is methylation of histone H3 lysine 4, which correlates with the binding of the SET9 methyltransferase and the assembly of a complex consisting of c-Jun, c-Fos, TATA binding protein, and RNA polymerase II. The assembly of the preinitiation complex also shows an ordered binding of the acetyltransferase p300, the RSK2 kinase, and the SWI/SNF component Brg-1. Our results suggest that collagenase gene activation involves a dynamic recruitment of different factors and that in addition to acetylation, histone H3 lysine 4 di- and trimethylation and histone H3 serine 10 phosphorylation are important steps in the activation of this gene.
Collapse
Affiliation(s)
- Joost H A Martens
- Molecular Cell Biology, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
28
|
Treumann A, Xidong F, McDonnell L, Derrick PJ, Ashcroft AE, Chatterjee D, Homans SW. 5-Methylthiopentose: a new substituent on lipoarabinomannan in Mycobacterium tuberculosis. J Mol Biol 2002; 316:89-100. [PMID: 11829505 DOI: 10.1006/jmbi.2001.5317] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have identified and characterised in several strains of Mycobacterium tuberculosis a new 5-methylthiopentose substituent on lipoarabinomannan (LAM). The 5-methylthiopentose was initially observed in heteronuclear (1)H-(13)C-NMR spectra of intact, (13)C-enriched LAM. Oligosaccharides carrying this substituent were released from (13)C-enriched LAM and from unlabelled LAM using an endo-arabinanase from Cellulomonas gellida. The presence of the methylthio group in these oligosaccharides was established using NMR, high-resolution Fourier-transform ion cyclotron resonance mass spectrometry and tandem mass spectrometry using a Q-TOF mass spectrometer. The 5-methylthiopentose is linked to a terminal mannose in the cap structures of these oligosaccharides as evidenced by tandem mass spectrometry and by NMR. We suggest interference with the signal transduction mechanisms of infected macrophages as a possible function for this newly discovered LAM substituent.
Collapse
Affiliation(s)
- Achim Treumann
- Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Mowen KA, Tang J, Zhu W, Schurter BT, Shuai K, Herschman HR, David M. Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell 2001; 104:731-41. [PMID: 11257227 DOI: 10.1016/s0092-8674(01)00269-0] [Citation(s) in RCA: 372] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transcriptional induction by interferons requires the tyrosine and serine phosphorylation of STAT transcription factors. The N-terminal region is highly homologous among the STAT proteins and surrounds a completely conserved arginine residue. Here we demonstrate arginine methylation of STAT1 by the protein arginine methyl-transferase PRMT1 as a novel requirement for IFNalpha/beta-induced transcription. Methyl-thioadenosine, a methyl-transferase inhibitor that accumulates in many transformed cells, inhibits STAT1-mediated IFN responses. This inhibition arises from impaired STAT1-DNA binding due to an increased association of the STAT inhibitor PIAS1 with phosphorylated STAT1 dimers in the absence of arginine methylation. Thus, arginine methylation of STAT1 is an additional posttranslational modification regulating transcription factor function, and alteration of arginine methylation might be responsible for the lack of interferon responsiveness observed in many malignancies.
Collapse
Affiliation(s)
- K A Mowen
- Division of Biology and UCSD Cancer Center, University of California, San Diego, Bonner Hall 3138, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Simile MM, Banni S, Angioni E, Carta G, De Miglio MR, Muroni MR, Calvisi DF, Carru A, Pascale RM, Feo F. 5'-Methylthioadenosine administration prevents lipid peroxidation and fibrogenesis induced in rat liver by carbon-tetrachloride intoxication. J Hepatol 2001; 34:386-94. [PMID: 11322199 DOI: 10.1016/s0168-8278(00)00078-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND 5'-Methylthioadenosine (MTA), a product of S-adenosylmethionine (SAM) catabolism, could undergo oxidation by mono-oxygenases and auto-oxidation. MTA and SAM effects on oxidative liver injury were evaluated in CCl4-treated rats. METHODS Male Wistar rats were killed 1-48 h after poisoning with a single intraperitoneal CCl4 dose (0.15 ml/100 g) or with the same dose twice a week for 14 weeks. Daily doses of MTA or SAM (384 micromol/kg), started 1 week before acute CCl4 administration or with chronic treatment, were continued up to the time of sacrifice. RESULTS Acute and chronic CCl4 intoxication decreased MTA and, to a lesser extent, SAM and reduced glutathione (GSH) liver levels. MTA administration increased liver MTA without affecting SAM and GSH. SAM treatment caused complete/partial recovery of these compounds. MTA and, to a lesser extent, SAM prevented an increase in liver phospholipid hydroperoxides in acutely and chronically intoxicated rats and in prolyl hydroxylase activity and trichrome-positive areas in chronically treated rats. MTA prevented upregulation of Tgf-beta1, Collagen-alpha1 (I) and Tgf-alpha genes in liver of chronically intoxicated rats, and TGF-beta1-induced transdifferentiation to myofibroblasts and growth stimulation by platelet-derived growth factor-b of stellate cells in vitro. CONCLUSIONS MTA and SAM protect against oxidative liver injury through partially different mechanisms.
Collapse
Affiliation(s)
- M M Simile
- Department of Biomedical Sciences, University of Sassari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Berger W, Setinek U, Mohr T, Kindas-Mügge I, Vetterlein M, Dekan G, Eckersberger F, Caldas C, Micksche M. Evidence for a role of FGF-2 and FGF receptors in the proliferation of non-small cell lung cancer cells. Int J Cancer 1999; 83:415-23. [PMID: 10495436 DOI: 10.1002/(sici)1097-0215(19991029)83:3<415::aid-ijc19>3.0.co;2-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Basic fibroblast growth factor (FGF-2) has been implicated in the progression of human tumours via both autocrine and paracrine (angiogenic) activities. We investigated the expression of FGF-2 and FGF receptors (FGFR-1 to -4) in NSCLC cell lines (N = 16), NSCLC surgical specimens (N = 21) and 2 control cell lines. Our data show that almost all NSCLC cells produce elevated levels of FGF-2 and FGFR in vitro and in vivo. FGF-2 expression did correlate with a short doubling time as well as with potent anchorage-independent growth of NSCLC cell lines. In contrast with control cells, NSCLC cells did not secrete considerable amounts of FGF-2 into the extracellular space. Expression levels of FGFR-1 and -2 in NSCLC cell lines correlated with FGF-2 production. FGFR were located at the plasma membranes in some low FGF-2-producing NSCLC and control cell lines. These cells were sensitive to the proliferative effect of recombinant FGF-2 (rFGF-2). In NSCLC cell lines with an enhanced FGF-2 production, representing the majority studied, FGFR localisation was predominantly intracellular. These cells were insensitive to both the proliferative effect of rFGF-2 and growth inhibition by FGF-2-neutralising antibodies. In contrast, several agents antagonised FGF-2 intracellularly impaired growth of almost all NSCLC cell lines. Our data suggest a role of FGF-2 and FGFR in the growth stimulation of NSCLC cells possibly via an intracrine mechanism.
Collapse
Affiliation(s)
- W Berger
- Institute for Tumour Biology/ Cancer Research, Department of Applied and Experimental Oncology, Vienna University, Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Presta M, Belleri M, Vecchi A, Hesselgesser J, Mantovani A, Horuk R. Noncompetitive, chemokine-mediated inhibition of basic fibroblast growth factor-induced endothelial cell proliferation. J Biol Chem 1998; 273:7911-9. [PMID: 9525887 DOI: 10.1074/jbc.273.14.7911] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proinflammatory and chemoattractant chemokine interleukin-8 (IL-8) inhibits cell proliferation induced by basic fibroblast growth factor (bFGF) in mouse endothelial cells isolated from subcutaneous sponge implant (sponge-induced mouse endothelial cells) and in bovine aortic endothelial GM 7373 cells. The mechanism of action of IL-8 was investigated in GM 7373 cells. IL-8 did not prevent the binding of bFGF to its tyrosine kinase FGF receptors (FGFRs) nor to cell surface heparan sulfate proteoglycans (HSPGs). A transient interaction of IL-8 with the cell before the addition of the growth factor was sufficient to prevent bFGF activity. The inhibitory activity of IL-8 was abolished by protein kinase C (PKC) inhibitors and was mimicked by the PKC activator 12-O-tetradecanoylphorbol-13-acetate. Accordingly, both IL-8 and 12-O-tetradecanoylphorbol-13-acetate caused a approximately 60% decrease of the binding capacity of GM 7373 cells due to the down-regulation of FGFRs. Several C-X-C and C-C chemokines exerted an inhibitory action on bFGF activity similar to IL-8. Soluble heparin, 6-O-desulfated heparin, N-desulfated heparin, and heparan sulfate but not 2-O-desulfated heparin, chondroitin-4-sulfate, hyaluronic acid, and K5 polysaccharide abrogated IL-8 inhibitory activity consistently with the presence of low affinity, high capacity HSPG-like chemokine-binding sites on GM 7373 cells. Finally, neovascularization induced by bFGF in murine subcutaneous sponge implants was reduced significantly by IL-8. In conclusion, IL-8 inhibits the mitogenic activity exerted by bFGF on cultured endothelial cells by a PKC-dependent, noncompetitive mechanism of action that causes FGFR down-regulation. This activity is shared by several chemokines and requires endothelial cell surface HSPGs. The endothelial cell line utilized in the present study may help to elucidate the complex interplay among chemokines, HSPGs, growth factors, and receptors in endothelial cells.
Collapse
Affiliation(s)
- M Presta
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia 25123, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Cimato TR, Ettinger MJ, Zhou X, Aletta JM. Nerve growth factor-specific regulation of protein methylation during neuronal differentiation of PC12 cells. J Biophys Biochem Cytol 1997; 138:1089-103. [PMID: 9281586 PMCID: PMC2136762 DOI: 10.1083/jcb.138.5.1089] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Protein methylation is a posttranslational modification that can potentially regulate signal transduction pathways in a similar manner as protein phosphorylation. The role of protein methylation in NGF signaling was examined by metabolic labeling of PC12 cell proteins with L-[methyl-3H]methionine and by in vitro labeling of cell proteins with L-[methyl-3H]S-adenosylmethionine. Effects of NGF were detected within 15 min. Methyl-labeled proteins were resolved by one and two dimensional SDS-PAGE. NGF affected the methylation of several 68-60-kD proteins (pI 5.8-6.4) and 50-kD proteins (isoelectric point pH 6.7-6.8 and 5.8-6.2). Several NGF-induced changes in methylation increased over several hours and through 4 d. Moreover, methyl labeling of several specific proteins was only detected after NGF treatment, but not in nontreated controls. The effects of NGF on protein methylation were NGF specific since they were not observed with EGF or insulin. A requirement for protein methylation for neurite outgrowth was substantiated with either of two methylation inhibitors: dihydroxycyclopentenyl adenine (DHCA) and homocysteine. DHCA, the more potent of the two, markedly inhibits protein methylation and neurite outgrowth without affecting cell growth, NGF-induced survival, cell flattening, or several protein phosphorylations that are associated with early signaling events. Removal of DHCA leads to rapid protein methylation of several proteins and concurrent neurite outgrowth. The results indicate that NGF regulates the methylation of several specific proteins and that protein methylation is involved in neurite outgrowth from PC12 cells.
Collapse
Affiliation(s)
- T R Cimato
- Department of Biochemistry, University at Buffalo School of Medicine and Biomedical Sciences, State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
34
|
Abstract
A novel, low molecular weight, intracellular isoform of FGF receptor-1 (FGFR-1) was identified in embryonic chicken tissues using several antibodies specific for different domains of FGF receptors. This low molecular weight isoform differs from the previously characterized isoforms of FGFR-1 in that it contains little or no carbohydrate. Furthermore, in contrast to the other isoforms of FGFR-1, this novel isoform is located exclusively intracellularly. However, it is capable of binding 125I-FGF-2 and it possesses intrinsic kinase activity. Pulse-chase experiments indicate that this isoform of FGFR-1 is not simply a precursor to glycosylated FGFR-1 since it can be detected long after the appearance of glycosylated FGFR-1 in the cells. These results suggest that the novel FGFR-1 isoform plays a role in regulating FGF activity distinct from cell surface, glycosylated FGFR-1. The possible roles of this FGFR-1 variant in FGF signaling are discussed.
Collapse
Affiliation(s)
- P A Maher
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
35
|
Groundwater PW, Solomons KR, Drewe JA, Munawar MA. Protein tyrosine kinase inhibitors. PROGRESS IN MEDICINAL CHEMISTRY 1996; 33:233-329. [PMID: 8776945 DOI: 10.1016/s0079-6468(08)70307-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Miyaji K, Tani E, Nakano A, Ikemoto H, Kaba K. Inhibition by 5'-methylthioadenosine of cell growth and tyrosine kinase activity stimulated by fibroblast growth factor receptor in human gliomas. J Neurosurg 1995; 83:690-7. [PMID: 7545743 DOI: 10.3171/jns.1995.83.4.0690] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Stimulation of three human glioma cell lines with basic fibroblast growth factor (bFGF) led to the enhancement of cell growth and the rapid tyrosine phosphorylation of cellular proteins, including major substrates of 90 kD. A methyltransferase inhibitor, 5'-methylthioadenosine (MTA), inhibited dose dependently the bFGF-stimulated cell growth and protein tyrosine phosphorylation in glioma cells by blocking both receptor autophosphorylation and substrate phosphorylation, as shown by immunoblotting with antiphosphotyrosine antibodies and cross-linking bFGF to receptors. The antiproliferative activity of MTA correlated quantitatively with its potency as an inhibitor of bFGF-stimulated protein tyrosine kinase activity. The methyltransferase inhibitor MTA had no effect on either epidermal growth factor- or platelet-derived growth factor-stimulated protein tyrosine phosphorylation in glioma cells, but inhibited specifically bFGF-stimulated protein tyrosine kinase activity. The concentration of MTA required for inhibition of protein methylation correlated well with the concentration required for inhibition of bFGF-stimulated cell growth and protein tyrosine phosphorylation. Because MTA had no effect on numbers and dissociation constants of high- and low-affinity bFGF receptors, the inhibition of bFGF-stimulated bFGF receptor tyrosine kinase activity is not likely to be the result of a reduction in bFGF receptor and bFGF binding capacity. In fact, MTA delayed and reduced the internalization and nuclear translocation of bFGF, and the internalized bFGF was submitted to a limited proteolysis that converted it to lower molecular peptides whose presence remained for at least 22 hours. The effect of MTA on bFGF-stimulated tyrosine phosphorylation was immediate and readily reversible.
Collapse
Affiliation(s)
- K Miyaji
- Department of Neurosurgery, Hyogo College of Medicine, Japan
| | | | | | | | | |
Collapse
|
37
|
Cheng B, Barger SW, Mattson MP. Staurosporine, K-252a, and K-252b stabilize calcium homeostasis and promote survival of CNS neurons in the absence of glucose. J Neurochem 1994; 62:1319-29. [PMID: 7510777 DOI: 10.1046/j.1471-4159.1994.62041319.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Staurosporine, K-252a, and the 9-carboxylic related compound K-252b are low-molecular-weight alkaloids from microbial origin that at high concentrations are kinase inhibitors and can antagonize the effects of neuronal growth factors. Paradoxically, we have found that very low concentrations of these agents (10 fM-10 nM) prolong the survival of hippocampal, septal, and cortical neurons deprived of glucose. These agents did not prevent the depletion of ATP caused by glucose deprivation. The large elevation of intracellular calcium levels that normally mediates glucose deprivation-induced damage was attenuated by staurosporine, K-252a, and K-252b. Western blot analysis using antiphosphotyrosine antibody showed that staurosporine and the K-252 compounds (10-100 pM) stimulated tyrosine phosphorylation of several different proteins. The tyrosine kinase inhibitor genistein significantly reduced the protective effect of staurosporine and the K-252 compounds, indicating that tyrosine phosphorylation was required for neuroprotection by these compounds. Taken together, the data demonstrate that low concentrations of staurosporine and the K-252 compounds can stabilize calcium homeostasis, possibly by a mechanism involving activation of receptor tyrosine kinase transduction pathways.
Collapse
Affiliation(s)
- B Cheng
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536-0230
| | | | | |
Collapse
|
38
|
Renaud F, Oliver L, Desset S, Tassin J, Romquin N, Courtois Y, Laurent M. Up-regulation of aFGF expression in quiescent cells is related to cell survival. J Cell Physiol 1994; 158:435-43. [PMID: 7510293 DOI: 10.1002/jcp.1041580307] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Exogenously administrated acidic FGF modulates the proliferation of several cell types, controls cell differentiation, and promotes cell survival. Most cells that are sensitive to exogenous aFGF are also capable of expressing it at very low levels. Thus in order to establish the role of endogenous aFGF as a mitogenic, differentiation, or survival factor, we studied the regulation of aFGF expression by evaluating the level of mRNA by PCR amplification and the concentration of protein by Enzyme Immuno Assay (EIA). In the lens, the amount of aFGF transcripts in nondividing cells of the central epithelium and in the differentiated fiber cells located at the periphery of the lens is similar, suggesting that endogenous aFGF is not involved with lens differentiation. In cultures, depending on the growth conditions, the endogenous aFGF expressed by Bovine Epithelial Lens (BEL) cells is subject to modulation. Cells arrested either by contact inhibition or by serum deprivation express more aFGF transcripts and protein than in exponentially growing cells, implying that endogenous aFGF has no mitogenic role under these conditions. In serum-deprived cells, the addition of specific aFGF antisense primers inhibits endogenous aFGF expression and leads to the death of these cells. These results associated with the higher expression of aFGF in nondividing BEL cells, suggesting that, contrary to exogenous aFGF, endogenous aFGF is not a mitogenic factor but a survival factor.
Collapse
Affiliation(s)
- F Renaud
- Unité de Recherches Gérontologiques, INSERM U.118, affiliée CNRS, Association Claude-Bernard, Paris, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Kujubu DA, Stimmel JB, Law RE, Herschman HR, Clarke S. Early responses of PC-12 cells to NGF and EGF: effect of K252a and 5'-methylthioadenosine on gene expression and membrane protein methylation. J Neurosci Res 1993; 36:58-65. [PMID: 8230321 DOI: 10.1002/jnr.490360107] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Although epidermal growth factor (EGF) and nerve growth factor (NGF) have markedly different biological effects on PC-12 cells, many of the signaling events following ligand binding are similar. Both EGF and NGF result in the induction of the primary response gene egr-1/TIS8 and increased methylation of a variety of membrane-associated proteins as early as 5 min after EGF or NGF treatment using a methylation assay that detects methyl esters as well as methylated arginine residues. At 20 min after stimulation with these factors, the stimulation of methylation by NGF is greater than that of EGF, especially in the polypeptides of 36-42 and 20-22 kDa. To help dissect the pathways involved in these cellular responses, the protein kinase inhibitor K252a and the methyltransferase inhibitor 5'-methylthioadenosine (MTA) were used. Both K252a and MTA inhibit NGF-, but not EGF-mediated, primary response gene expression. In contrast, MTA, but not K252a, can block NGF-induced membrane associated protein methylation. These data suggest a role for differential protein methylation reactions in EGF and NGF signal transduction.
Collapse
Affiliation(s)
- D A Kujubu
- Department of Medicine, University of California, Los Angeles
| | | | | | | | | |
Collapse
|