1
|
Damasceno JD, Briggs EM, Krasilnikova M, Marques CA, Lapsley C, McCulloch R. R-loops acted on by RNase H1 influence DNA replication timing and genome stability in Leishmania. Nat Commun 2025; 16:1470. [PMID: 39922816 PMCID: PMC11807225 DOI: 10.1038/s41467-025-56785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
Genomes in eukaryotes normally undergo DNA replication in a choreographed temporal order, resulting in early and late replicating chromosome compartments. Leishmania, a human protozoan parasite, displays an unconventional DNA replication program in which the timing of DNA replication completion is chromosome size-dependent: larger chromosomes complete replication later then smaller ones. Here we show that both R-loops and RNase H1, a ribonuclease that resolves RNA-DNA hybrids, accumulate in Leishmania major chromosomes in a pattern that reflects their replication timing. Furthermore, we demonstrate that such differential organisation of R-loops, RNase H1 and DNA replication timing across the parasite's chromosomes correlates with size-dependent differences in chromatin accessibility, G quadruplex distribution and sequence content. Using conditional gene excision, we show that loss of RNase H1 leads to transient growth perturbation and permanently abrogates the differences in DNA replication timing across chromosomes, as well as altering levels of aneuploidy and increasing chromosome instability in a size-dependent manner. This work provides a link between R-loop homeostasis and DNA replication timing in a eukaryotic parasite and demonstrates that orchestration of DNA replication dictates levels of genome plasticity in Leishmania.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| | - Emma M Briggs
- University of Edinburgh, Institute for Immunology and Infection Research, School of Biological Sciences, Edinburgh, UK
- Biosciences Institute, Cookson Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Marija Krasilnikova
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Catarina A Marques
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Craig Lapsley
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard McCulloch
- The University of Glasgow Centre for Parasitology, The Wellcome Centre for Integrative Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
2
|
Jaksik R, Wheeler DA, Kimmel M. Detection and characterization of constitutive replication origins defined by DNA polymerase epsilon. BMC Biol 2023; 21:41. [PMID: 36829160 PMCID: PMC9960419 DOI: 10.1186/s12915-023-01527-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 01/24/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Despite the process of DNA replication being mechanistically highly conserved, the location of origins of replication (ORI) may vary from one tissue to the next, or between rounds of replication in eukaryotes, suggesting flexibility in the choice of locations to initiate replication. Lists of human ORI therefore vary widely in number and location, and there are currently no methods available to compare them. Here, we propose a method of detection of ORI based on somatic mutation patterns generated by the mutator phenotype of damaged DNA polymerase epsilon (POLE). RESULTS We report the genome-wide localization of constitutive ORI in POLE-mutated human tumors using whole genome sequencing data. Mutations accumulated after many rounds of replication of unsynchronized dividing cell populations in tumors allow to identify constitutive origins, which we show are shared with high fidelity between individuals and tumor types. Using a Smith-Waterman-like dynamic programming approach, we compared replication origin positions obtained from multiple different methods. The comparison allowed us to define a consensus set of replication origins, identified consistently by multiple ORI detection methods. Many DNA features co-localized with the consensus set of ORI, including chromatin loop anchors, G-quadruplexes, S/MARs, and CpGs. Among all features, the H2A.Z histone exhibited the most significant association. CONCLUSIONS Our results show that mutation-based detection of replication origins is a viable approach to determining their location and associated sequence features.
Collapse
Affiliation(s)
- Roman Jaksik
- Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| | - David A. Wheeler
- grid.39382.330000 0001 2160 926XHuman Genome Sequencing Centre, Baylor College of Medicine, Houston, TX USA ,grid.240871.80000 0001 0224 711XPresent Address: Clinical Genomics Group, Department of Computational Biology, St Jude Children’s Research Hospital, Memphis, TN 38103 USA
| | - Marek Kimmel
- grid.6979.10000 0001 2335 3149Department of Systems Biology and Engineering and Biotechnology Centre, Silesian University of Technology, Gliwice, Poland ,grid.21940.3e0000 0004 1936 8278Department of Statistics, Rice University, Houston, TX USA ,grid.21940.3e0000 0004 1936 8278Department of Bioengineering, Rice University, Houston, TX USA
| |
Collapse
|
3
|
Thakur BL, Ray A, Redon CE, Aladjem MI. Preventing excess replication origin activation to ensure genome stability. Trends Genet 2022; 38:169-181. [PMID: 34625299 PMCID: PMC8752500 DOI: 10.1016/j.tig.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/03/2023]
Abstract
Cells activate distinctive regulatory pathways that prevent excessive initiation of DNA replication to achieve timely and accurate genome duplication. Excess DNA synthesis is constrained by protein-DNA interactions that inhibit initiation at dormant origins. In parallel, specific modifications of pre-replication complexes prohibit post-replicative origin relicensing. Replication stress ensues when the controls that prevent excess replication are missing in cancer cells, which often harbor extrachromosomal DNA that can be further amplified by recombination-mediated processes to generate chromosomal translocations. The genomic instability that accompanies excess replication origin activation can provide a promising target for therapeutic intervention. Here we review molecular pathways that modulate replication origin dormancy, prevent excess origin activation, and detect, encapsulate, and eliminate persistent excess DNA.
Collapse
Affiliation(s)
- Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anagh Ray
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
4
|
Abstract
The mechanism that duplicates the nuclear genome during the trillions of cell divisions required to develop from zygote to adult is the same throughout the eukarya, but the mechanisms that determine where, when and how much nuclear genome duplication occur regulate development and differ among the eukarya. They allow organisms to change the rate of cell proliferation during development, to activate zygotic gene expression independently of DNA replication, and to restrict nuclear DNA replication to once per cell division. They allow specialized cells to exit their mitotic cell cycle and differentiate into polyploid cells, and in some cases, to amplify the number of copies of specific genes. It is genome duplication that drives evolution, by virtue of the errors that inevitably occur when the same process is repeated trillions of times. It is, unfortunately, the same errors that produce age-related genetic disorders such as cancer.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
5
|
|
6
|
Abstract
DNA replication begins with the assembly of pre-replication complexes (pre-RCs) at thousands of DNA replication origins during the G1 phase of the cell cycle. At the G1-S-phase transition, pre-RCs are converted into pre-initiation complexes, in which the replicative helicase is activated, leading to DNA unwinding and initiation of DNA synthesis. However, only a subset of origins are activated during any S phase. Recent insights into the mechanisms underlying this choice reveal how flexibility in origin usage and temporal activation are linked to chromosome structure and organization, cell growth and differentiation, and replication stress.
Collapse
|
7
|
Bartholdy B, Mukhopadhyay R, Lajugie J, Aladjem MI, Bouhassira EE. Allele-specific analysis of DNA replication origins in mammalian cells. Nat Commun 2015; 6:7051. [PMID: 25987481 PMCID: PMC4479011 DOI: 10.1038/ncomms8051] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/26/2015] [Indexed: 01/01/2023] Open
Abstract
The mechanisms that control the location and timing of firing of replication origins are poorly understood. Using a novel functional genomic approach based on the analysis of SNPs and indels in phased human genomes, we observe that replication asynchrony is associated with small cumulative variations in the initiation efficiency of multiple origins between the chromosome homologues, rather than with the activation of dormant origins. Allele-specific measurements demonstrate that the presence of G-quadruplex-forming sequences does not correlate with the efficiency of initiation. Sequence analysis reveals that the origins are highly enriched in sequences with profoundly asymmetric G/C and A/T nucleotide distributions and are almost completely depleted of antiparallel triplex-forming sequences. We therefore propose that although G4-forming sequences are abundant in replication origins, an asymmetry in nucleotide distribution, which increases the propensity of origins to unwind and adopt non-B DNA structure, rather than the ability to form G4, is directly associated with origin activity.
Collapse
Affiliation(s)
- Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Rituparna Mukhopadhyay
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Julien Lajugie
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | - Mirit I. Aladjem
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Eric E. Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| |
Collapse
|
8
|
Abe KI, Yamamoto R, Franke V, Cao M, Suzuki Y, Suzuki MG, Vlahovicek K, Svoboda P, Schultz RM, Aoki F. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3' processing. EMBO J 2015; 34:1523-37. [PMID: 25896510 DOI: 10.15252/embj.201490648] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/19/2015] [Indexed: 12/18/2022] Open
Abstract
Initiation of zygotic transcription in mammals is poorly understood. In mice, zygotic transcription is first detected shortly after pronucleus formation in 1-cell embryos, but the identity of the transcribed loci and mechanisms regulating their expression are not known. Using total RNA-Seq, we have found that transcription in 1-cell embryos is highly promiscuous, such that intergenic regions are extensively expressed and thousands of genes are transcribed at comparably low levels. Striking is that transcription can occur in the absence of defined core-promoter elements. Furthermore, accumulation of translatable zygotic mRNAs is minimal in 1-cell embryos because of inefficient splicing and 3' processing of nascent transcripts. These findings provide novel insights into regulation of gene expression in 1-cell mouse embryos that may confer a protective mechanism against precocious gene expression that is the product of a relaxed chromatin structure present in 1-cell embryos. The results also suggest that the first zygotic transcription itself is an active component of chromatin remodeling in 1-cell embryos.
Collapse
Affiliation(s)
- Ken-Ichiro Abe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Ryoma Yamamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Vedran Franke
- Bioinformatics Group, Division of Biology, Faculty of Science, Zagreb University, Zagreb, Croatia
| | - Minjun Cao
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan The University of Tokyo, Tokyo, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kristian Vlahovicek
- Bioinformatics Group, Division of Biology, Faculty of Science, Zagreb University, Zagreb, Croatia Department of Informatics, University of Oslo, Oslo, Norway
| | - Petr Svoboda
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
9
|
Besnard E, Desprat R, Ryan M, Kahli M, Aladjem MI, Lemaitre JM. Best practices for mapping replication origins in eukaryotic chromosomes. ACTA ACUST UNITED AC 2014; 64:22.18.1-13. [PMID: 25181303 DOI: 10.1002/0471143030.cb2218s64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Understanding the regulatory principles ensuring complete DNA replication in each cell division is critical for deciphering the mechanisms that maintain genomic stability. Recent advances in genome sequencing technology facilitated complete mapping of DNA replication sites and helped move the field from observing replication patterns at a handful of single loci to analyzing replication patterns genome-wide. These advances address issues, such as the relationship between replication initiation events, transcription, and chromatin modifications, and identify potential replication origin consensus sequences. This unit summarizes the technological and fundamental aspects of replication profiling and briefly discusses novel insights emerging from mining large datasets, published in the last 3 years, and also describes DNA replication dynamics on a whole-genome scale.
Collapse
Affiliation(s)
- Emilie Besnard
- Laboratory of Genome Plasticity and Aging, Institute of Functional Genomics, CNRS UMR5203, INSERM U661, UMI, Montpellier, France
| | | | | | | | | | | |
Collapse
|
10
|
Smith OK, Aladjem MI. Chromatin structure and replication origins: determinants of chromosome replication and nuclear organization. J Mol Biol 2014; 426:3330-41. [PMID: 24905010 DOI: 10.1016/j.jmb.2014.05.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/22/2014] [Accepted: 05/24/2014] [Indexed: 12/29/2022]
Abstract
The DNA replication program is, in part, determined by the epigenetic landscape that governs local chromosome architecture and directs chromosome duplication. Replication must coordinate with other biochemical processes occurring concomitantly on chromatin, such as transcription and remodeling, to insure accurate duplication of both genetic and epigenetic features and to preserve genomic stability. The importance of genome architecture and chromatin looping in coordinating cellular processes on chromatin is illustrated by two recent sets of discoveries. First, chromatin-associated proteins that are not part of the core replication machinery were shown to affect the timing of DNA replication. These chromatin-associated proteins could be working in concert, or perhaps in competition, with the transcriptional machinery and with chromatin modifiers to determine the spatial and temporal organization of replication initiation events. Second, epigenetic interactions are mediated by DNA sequences that determine chromosomal replication. In this review, we summarize recent findings and current models linking spatial and temporal regulation of the replication program with epigenetic signaling. We discuss these issues in the context of the genome's three-dimensional structure with an emphasis on events occurring during the initiation of DNA replication.
Collapse
Affiliation(s)
- Owen K Smith
- DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mirit I Aladjem
- DNA Replication Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
The chromatin backdrop of DNA replication: lessons from genetics and genome-scale analyses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:794-801. [PMID: 22342530 DOI: 10.1016/j.bbagrm.2012.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 01/04/2023]
Abstract
The entire cellular genome must replicate during each cell cycle, but it is yet unclear how replication proceeds along with chromatin condensation and remodeling while ensuring the fidelity of the replicated genome. Mapping replication initiation sites can provide clues for the coordination of DNA replication and transcription on a whole-genome scale. Here we discuss recent insights obtained from genome-scale analyses of replication initiation sites and transcription in mammalian cells and ask how transcription and chromatin modifications affect the frequency of replication initiation events. We also discuss DNA sequences, such as insulators and replicators, which modulate replication and transcription of target genes, and use genome-wide maps of replication initiation sites to evaluate possible commonalities between replicators and chromatin insulators. This article is part of a Special Issue entitled: Chromatin in time and space.
Collapse
|
12
|
Ramanathan S, Mazzalupo S, Boitano S, Montfort WR. Thrombospondin-1 and angiotensin II inhibit soluble guanylyl cyclase through an increase in intracellular calcium concentration. Biochemistry 2011; 50:7787-99. [PMID: 21823650 DOI: 10.1021/bi201060c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nitric oxide (NO) regulates cardiovascular hemostasis by binding to soluble guanylyl cyclase (sGC), leading to cGMP production, reduced cytosolic calcium concentration ([Ca(2+)](i)), and vasorelaxation. Thrombospondin-1 (TSP-1), a secreted matricellular protein, was recently discovered to inhibit NO signaling and sGC activity. Inhibition of sGC requires binding to cell-surface receptor CD47. Here, we show that a TSP-1 C-terminal fragment (E3CaG1) readily inhibits sGC in Jurkat T cells and that inhibition requires an increase in [Ca(2+)](i). Using flow cytometry, we show that E3CaG1 binds directly to CD47 on the surface of Jurkat T cells. Using digital imaging microscopy on live cells, we further show that E3CaG1 binding results in a substantial increase in [Ca(2+)](i), up to 300 nM. Addition of angiotensin II, a potent vasoconstrictor known to increase [Ca(2+)](i), also strongly inhibits sGC activity. sGC isolated from calcium-treated cells or from cell-free lysates supplemented with Ca(2+) remains inhibited, while addition of kinase inhibitor staurosporine prevents inhibition, indicating inhibition is likely due to phosphorylation. Inhibition is through an increase in K(m) for GTP, which rises to 834 μM for the NO-stimulated protein, a 13-fold increase over the uninhibited protein. Compounds YC-1 and BAY 41-2272, allosteric stimulators of sGC that are of interest for treating hypertension, overcome E3CaG1-mediated inhibition of NO-ligated sGC. Taken together, these data suggest that sGC not only lowers [Ca(2+)](i) in response to NO, inducing vasodilation, but also is inhibited by high [Ca(2+)](i), providing a fine balance between signals for vasodilation and vasoconstriction.
Collapse
Affiliation(s)
- Saumya Ramanathan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, United States
| | | | | | | |
Collapse
|
13
|
|
14
|
Karnani N, Taylor CM, Malhotra A, Dutta A. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol Biol Cell 2009; 21:393-404. [PMID: 19955211 PMCID: PMC2814785 DOI: 10.1091/mbc.e09-08-0707] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
DNA replication in metazoans initiates from multiple chromosomal loci called origins. This study identifies 150 new origins of replication that were confirmed by two methods of nascent strand purification. We discern the role of transcription initiation and regulation, as well as chromatin signatures in determining origin selection in human genome. DNA replication in metazoans initiates from multiple chromosomal loci called origins. Currently, there are two methods to purify origin-centered nascent strands: lambda exonuclease digestion and anti-bromodeoxyuridine immunoprecipitation. Because both methods have unique strengths and limitations, we purified nascent strands by both methods, hybridized them independently to tiling arrays (1% genome) and compared the data to have an accurate view of genome-wide origin distribution. By this criterion, we identified 150 new origins that were reproducible across the methods. Examination of a subset of these origins by chromatin immunoprecipitation against origin recognition complex (ORC) subunits 2 and 3 showed 93% of initiation peaks to localize at/within 1 kb of ORC binding sites. Correlation of origins with functional elements of the genome revealed origin activity to be significantly enriched around transcription start sites (TSSs). Consistent with proximity to TSSs, we found a third of initiation events to occur at or near the RNA polymerase II binding sites. Interestingly, ∼50% of the early origin activity was localized within 5 kb of transcription regulatory factor binding region clusters. The chromatin signatures around the origins were enriched in H3K4-(di- and tri)-methylation and H3 acetylation modifications on histones. Affinity of origins for open chromatin was also reiterated by their proximity to DNAse I-hypersensitive sites. Replication initiation peaks were AT rich, and >50% of the origins mapped to evolutionarily conserved regions of the genome. In summary, these findings indicate that replication initiation is influenced by transcription initiation and regulation as well as chromatin structure.
Collapse
Affiliation(s)
- Neerja Karnani
- Departments of *Biochemistry and Molecular Genetics and Computer Science, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
15
|
Abstract
In higher eukaryotes there is a link between time of replication and transcription. It is generally accepted that genes that are actively transcribed are replicated in the first half of S phase while inactive genes replicate in the second half of S phase. We have recently reported that in normal human fibroblasts there are some functionally related genes that replicate at the same time in S phase. This had been previously reported for functionally related genes that are located in clusters, for example the alpha- and beta-globin complexes. We have shown, however, that this also occurs with some functionally related genes that are not organized in a cluster, but rather are distributed throughout the genome. For example, using GOstat analysis of data from our and other groups, we found an overrepresentation of genes involved in the apoptotic process among sequences that are replicated very early (approximately in the first hour of S phase) in both fibroblasts and lymphoblastoid cells. This finding leads us to question how and why the replication of genes in the apoptotic pathway is temporally organized in this manner. Here we discuss the possible explanations and implications of this observation.
Collapse
Affiliation(s)
- Stephanie M Cohen
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7525, USA
| | | | | |
Collapse
|
16
|
Kageyama S, Gunji W, Nakasato M, Murakami Y, Nagata M, Aoki F. Analysis of transcription factor expression during oogenesis and preimplantation development in mice. ZYGOTE 2007; 15:117-28. [PMID: 17462104 DOI: 10.1017/s096719940700411x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryThe transition from a differentiated germ cell into a totipotent zygote during oogenesis and preimplantation development is critical to the creation of a new organism. During this period, cell characteristics change dynamically, suggesting that a global alteration of gene expression patterns occurs, which is regulated by global changes in various epigenetic factors. Among these, transcription factors (TFs) are essential in the direct regulation of transcription and also play important roles in determining cell characteristics. However, no comprehensive analysis of TFs from germ cells to embryos had been undertaken. We used mRNA amplification systems and microarrays to conduct a genomewide analysis of TFs at various stages of oogenesis and preimplantation development. The greatest alteration in TFs occurred between the 1- and 2-cell stages, at which time zygotic genome activation (ZGA) occurs. Our analysis of TFs classified by structure and function revealed several specific patterns of change. Basic transcription factors, which are the general components of transcription, increased transiently at the 2-cell stage, while homeodomain (HD) TFs were expressed specifically in the oocyte. TFs containing the Rel homology region (RHR) and Ets domains were expressed at a high level in 2-cell and blastocyst embryos. Thus, the global TF dynamics that occur during oogenesis and preimplantation development seem to regulate the transition from germ-cell-type to embryo-type gene expression.
Collapse
Affiliation(s)
- S Kageyama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | | | | | | | | | | |
Collapse
|
17
|
A new molecular model of cellular aging based on Werner syndrome. Med Hypotheses 2007; 68:770-80. [DOI: 10.1016/j.mehy.2006.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 09/08/2006] [Indexed: 01/20/2023]
|
18
|
Grégoire D, Brodolin K, Méchali M. HoxB domain induction silences DNA replication origins in the locus and specifies a single origin at its boundary. EMBO Rep 2006; 7:812-6. [PMID: 16845368 PMCID: PMC1525151 DOI: 10.1038/sj.embor.7400758] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/23/2006] [Accepted: 06/23/2006] [Indexed: 11/09/2022] Open
Abstract
In multicellular organisms, changes in the DNA replication programme could act to integrate differentiation with cell division in various developmental and transcriptional contexts. Here, we have addressed the use of DNA replication origins during differentiation in the HoxB domain-a cluster of nine genes developmentally regulated in a collinear manner. In undifferentiated mouse P19 cells, we detected several DNA replication origins in the 100 kb HoxB locus, indicating a relaxed origin use when the locus is transcriptionally silent. By contrast, in retinoic-acid-induced differentiated cells, when HoxB transcription is activated, a general silencing of DNA replication origins occurs in the locus except one located downstream of Hoxb1, at the 3' boundary of the HoxB domain. Silencing of the replication origins is associated with histone hyperacetylation, whereas the active Hoxb1 origin persists as a hypoacetylated island. These findings provide direct evidence for the differentiated use of origins in HoxB genes, and we suggest that this regulation might contribute to the regulated expression of HoxB genes during development.
Collapse
Affiliation(s)
- Damien Grégoire
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Konstantin Brodolin
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Marcel Méchali
- Institute of Human Genetics, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
- Tel: +33 499 619 917; Fax: +33 499 619 920; E-mail:
| |
Collapse
|
19
|
Aladjem MI, Fanning E. The replicon revisited: an old model learns new tricks in metazoan chromosomes. EMBO Rep 2005; 5:686-91. [PMID: 15229645 PMCID: PMC1299096 DOI: 10.1038/sj.embor.7400185] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 05/12/2004] [Indexed: 01/09/2023] Open
Abstract
The origins of DNA replication were proposed in the replicon model to be specified genetically by replicator elements that coordinate the initiation of DNA synthesis with gene expression and cell growth. Recent studies have identified DNA sequences in mammalian cells that fulfil the genetic criteria for replicators and are beginning to uncover the sequence requirements for the initiation of DNA replication. Mammalian replicators are com- posed of non-redundant modules that cooperate to direct initiation to specific chromosomal sites. Conversely, replicators do not show strong sequence similarity, and their ability to initiate replication depends on the chromosomal context and epigenetic factors, as well as their primary sequence. Here, we review the properties of metazoan replicators, and discuss the genetic and epigenetic factors that determine where and when DNA replication is initiated.
Collapse
Affiliation(s)
- Mirit I. Aladjem
- Laboratory of Molecular Pharmacology, DSB, National Cancer Institute, National Institutes of Health, Building 37, Room 5056, 37 Convent Drive, Bethesda, Maryland 20892-4255, USA
- Tel: +1 301 435 4255; Fax: +1 301 402 9752;
| | - Ellen Fanning
- Department of Biological Sciences and Vanderbilt–Ingram Cancer Center, Vanderbilt University Station B-351634, Vanderbilt University, Nashville, Tennessee 327232-1634, USA
- Tel: +1 615 343 5677; Fax: +1 615 343 6707;
| |
Collapse
|
20
|
DePamphili ML. How transcription factors regulate origins of DNA replication in eukaryotic cells. Trends Cell Biol 2004; 3:161-7. [PMID: 14731611 DOI: 10.1016/0962-8924(93)90137-p] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic chromosomes contain a few thousand origins of DNA replication, which are activated in a temporal and spatial order during S phase. One parameter that is strongly implicated in determining the order of replication is transcription. This review focuses on the role of transcription factors in activating origins of replication in eukaryotic cells. Studies of viral and mitochondrial replication origins have revealed several mechanisms by which transcription factors activate origins, but it remains to be seen whether any of these are used to regulate cellular chromosome replication.
Collapse
Affiliation(s)
- M L DePamphili
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110, USA
| |
Collapse
|
21
|
Abstract
The paper considers the statistical problem of estimating the origin of DNA replication within the human ribosomal DNA (rDNA) locus and the issue of assessing the standard error of the estimate. Based on mapping the cumulative replication index (CRI), two different modelling schemes are suggested and investigated. The statistical problem of constructing a confidence interval for the origin of DNA replication is related to Fieller's problem of obtaining a confidence interval for the ratio of two normal means. Standard normal theory, the delta and bootstrap methods are used to estimate the standard error of the estimate of the origin of DNA replication, as well as the variation of the replication rate.
Collapse
Affiliation(s)
- Young K Truong
- Department of Biostatistics, CB#7400, University of North Carolina, Chapel Hill, NC 27599-7400, USA.
| | | | | |
Collapse
|
22
|
Stubbs MC, Hall DJ. The amino-terminus of the E2F-1 transcription factor inhibits DNA replication of autonomously replicating plasmids in mammalian cells. Oncogene 2002; 21:3715-26. [PMID: 12032840 DOI: 10.1038/sj.onc.1205473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2001] [Revised: 03/07/2002] [Accepted: 03/11/2002] [Indexed: 11/10/2022]
Abstract
The E2F1 transcription factor plays a pivotal role in driving cells out of a quiescent state and into the S phase of the cell cycle, in part by transactivating genes needed for DNA replication including DHFR, thymidine kinase, and DNA Polymerase alpha. E2F1 has also been implicated in regulating an S phase checkpoint, however its role in this checkpoint is not well defined. To determine how E2F1 affects such a checkpoint, we utilized an in vivo replication assay employing a plasmid based SV40 origin of replication, transfected into cells expressing SV40 large T antigen. Here we show that expression of full length E2F1, or only its N terminus, represses replication from plasmids containing the SV40 origin, while N terminal deletions of E2F1 do not. E2F1 appears to inhibit the elongation phase of replication and not the initiation phase since it does not affect the replication of other cotransfected plasmids containing only the SV40 origin. Further, inhibition of replication is dependent on both the amino-terminus of the E2F1 protein and on a DNA sequence that is contained within the 3' end of the E2F1 cDNA. Additionally, both full-length E2F1, or just its N-terminus, form protein complexes with two portions of the 3' end of the E2F1 cDNA. These data provide a clue to the mechanism by which E2F1 regulates transit through the S phase checkpoint, by acting on a specific DNA sequence via its amino-terminal region, to inhibit elongation of DNA replication.
Collapse
Affiliation(s)
- Matthew C Stubbs
- Cartilage and Orthopaedic Branch, National Institutes of Arthritis and Musculoskeletal and Skin Diseases, NIH, MSC 5755, 9000 Rockville Pike, Bethesda, Maryland, MD 20892, USA
| | | |
Collapse
|
23
|
Korb J, Stokrová J, Ríman J. Ori-somes, nucleoprotein complexes descending from origin regions of animal chromosomal DNA replication. A micromorphological study. J Biomol Struct Dyn 2001; 19:343-50. [PMID: 11697738 DOI: 10.1080/07391102.2001.10506744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Micromorphology of nucleoprotein (NP) complexes designated according to their descent and shape as Ori-somes is presented. These NP complexes of three different types harbor molecules of cytoplasmic "small" polydisperse DNA, which descend from origin regions of chromosomal DNA replication and are equipped, as shown previously, with early DNA-synthesizing activities. By negative staining the Ori-somes are visualized as particles of irregular shape, sometimes of a subunit-like structure. Micromorphological differences in size and structural compactness noted among individual Ori-somes are dependent on their type similarly as earlier shown physico-chemically and biochemically. Such differences were also confirmed by two different spreading techniques. The most unravelled structures with electron diffuse centers belong to Ori-somes of component B associated with most active DNA synthesis. In contrast, the Ori-somes of components A and C, associated with pronounced RNA synthesis, revealed large electron-dense centers. The incidence of replicative structures present in Ori-somes corresponds with the level of their DNA-synthesizing activities.
Collapse
Affiliation(s)
- J Korb
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague.
| | | | | |
Collapse
|
24
|
Chen CY, Graham J, Yan H. Evidence for a replication function of FFA-1, the Xenopus orthologue of Werner syndrome protein. J Cell Biol 2001; 152:985-96. [PMID: 11238454 PMCID: PMC2198806 DOI: 10.1083/jcb.152.5.985] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2000] [Accepted: 01/04/2001] [Indexed: 12/15/2022] Open
Abstract
DNA replication in higher eukaryotic cells occurs at a large number of discrete sites called replication foci. We have previously purified a protein, focus-forming activity 1 (FFA-1), which is involved in the assembly of putative prereplication foci in Xenopus egg extracts. FFA-1 is the orthologue of the Werner syndrome gene product (WRN), a member of the RecQ helicase family. In this paper we show that FFA-1 colocalizes with sites of DNA synthesis and the single-stranded DNA binding protein, replication protein A (RPA), in nuclei reconstituted in the egg extract. In addition, we show that two glutathione S-transferase FFA-1 fusion proteins can inhibit DNA replication in a dominant negative manner. The dominant negative effect correlates with the incorporation of the fusion proteins into replication foci to form "hybrid foci," which are unable to engage in DNA replication. At the biochemical level, RPA can interact with FFA-1 and specifically stimulates its DNA helicase activity. However, in the presence of the dominant negative mutant proteins, the stimulation is prevented. These results provide the first direct biochemical evidence of an important role for FFA-1 in DNA replication.
Collapse
Affiliation(s)
- Chin-Yi Chen
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Jeanine Graham
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Hong Yan
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
25
|
Organization, Replication, Transposition, and Repair of DNA. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50030-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Choi JY, Shah M, Lee MG, Schultheis PJ, Shull GE, Muallem S, Baum M. Novel amiloride-sensitive sodium-dependent proton secretion in the mouse proximal convoluted tubule. J Clin Invest 2000; 105:1141-6. [PMID: 10772659 PMCID: PMC300838 DOI: 10.1172/jci9260] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The proximal convoluted tubule (PCT) reabsorbs most of the filtered bicarbonate. Proton secretion is believed to be mediated predominantly by an apical membrane Na(+)/H(+) exchanger (NHE). Several NHE isoforms have been cloned, but only NHE3 and NHE2 are known to be present on the apical membrane of the PCT. Here we examined apical membrane PCT sodium-dependent proton secretion of wild-type (NHE3(+/+)/NHE2(+/+)), NHE3(-/-), NHE2(-/-), and double-knockout NHE3(-/-)/NHE2(-/-) mice to determine their relative contribution to luminal proton secretion. NHE2(-/-) and wild-type mice had comparable rates of sodium-dependent proton secretion. Sodium-dependent proton secretion in NHE3(-/-) mice was approximately 50% that of wild-type mice. The residual sodium-dependent proton secretion was inhibited by 100 microM 5-(N-ethyl-N-isopropyl) amiloride (EIPA). Luminal sodium-dependent proton secretion was the same in NHE3(-/-)/NHE2(-/-) as in NHE3(-/-) mice. These data point to a previously unrecognized Na(+)-dependent EIPA-sensitive proton secretory mechanism in the proximal tubule that may play an important role in acid-base homeostasis.
Collapse
Affiliation(s)
- J Y Choi
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Li CJ, Bogan JA, Natale DA, DePamphilis ML. Selective activation of pre-replication complexes in vitro at specific sites in mammalian nuclei. J Cell Sci 2000; 113 ( Pt 5):887-98. [PMID: 10671378 DOI: 10.1242/jcs.113.5.887] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As the first step in determining whether or not pre-replication complexes are assembled at specific sites along mammalian chromosomes, nuclei from G(1)-phase hamster cells were incubated briefly in Xenopus egg extract in order to initiate DNA replication. Most of the nascent DNA consisted of RNA-primed DNA chains 0.5 to 2 kb in length, and its origins in the DHFR gene region were mapped using both the early labeled fragment assay and the nascent strand abundance assay. The results revealed three important features of mammalian replication origins. First, Xenopus egg extract can selectively activate the same origins of bi-directional replication (e.g. ori-beta) and (beta') that are used by hamster cells in vivo. Previous reports of a broad peak of nascent DNA centered at ori-(beta/(beta)' appeared to result from the use of aphidicolin to synchronize nuclei and from prolonged exposure of nuclei to egg extracts. Second, these sites were not present until late G(1)-phase of the cell division cycle, and their appearance did not depend on the presence of Xenopus Orc proteins. Therefore, hamster pre-replication complexes appear to be assembled at specific chromosomal sites during G(1)-phase. Third, selective activation of ori-(beta) in late G(1)-nuclei depended on the ratio of Xenopus egg extract to nuclei, revealing that epigenetic parameters such as the ratio of initiation factors to DNA substrate could determine the number of origins activated.
Collapse
Affiliation(s)
- C J Li
- National Institute of Child Health and Human Development, Building 6, Room 416, National Institutes of Health, Bethesda, MD 20892-2753, USA
| | | | | | | |
Collapse
|
28
|
Abstract
One of the fundamental characteristics of life is the ability of an entity to reproduce itself, which stems from the ability of the DNA molecule to replicate itself. The initiation step of DNA replication, where control over the timing and frequency of replication is exerted, is poorly understood in eukaryotes in general, and in mammalian cells in particular. The cis-acting DNA element defining the position and providing control over initiation is the replication origin. The activation of replication origins seems to be dependent on the presence of both a particular sequence and of structural determinants. In the past few years, the development of new methods for identification and mapping of origins of DNA replication has allowed some understanding of the fundamental elements that control the replication process. This review summarizes some of the major findings of this century, regarding the mechanism of DNA replication, emphasizing what is known about the replication of mammalian DNA. J. Cell. Biochem. Suppls. 32/33:1-14, 1999.
Collapse
|
29
|
Pelletier R, Price GB, Zannis-Hadjopoulos M. Functional genomic mapping of an early-activated centromeric mammalian origin of DNA replication. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990915)74:4<562::aid-jcb6>3.0.co;2-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Rein T, Kobayashi T, Malott M, Leffak M, DePamphilis ML. DNA methylation at mammalian replication origins. J Biol Chem 1999; 274:25792-800. [PMID: 10464318 DOI: 10.1074/jbc.274.36.25792] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, DNA methylation regulates both origin usage and the time required to reassemble prereplication complexes at replication origins. In mammals, at least three replication origins are associated with a high density cluster of methylated CpG dinucleotides, and others whose methylation status has not yet been characterized have the potential to exhibit a similar DNA methylation pattern. One of these origins is found within the approximately 2-kilobase pair region upstream of the human c-myc gene that contains 86 CpGs. Application of the bisulfite method for detecting 5-methylcytosines at specific DNA sequences revealed that this region was not methylated in either total genomic DNA or newly synthesized DNA. Therefore, DNA methylation is not a universal component of mammalian replication origins. To determine whether or not DNA methylation plays a role in regulating the activity of origins that are methylated, the rate of remethylation and the effect of hypomethylation were determined at origin beta (ori-beta), downstream of the hamster DHFR gene. Remethylation at ori-beta did not begin until approximately 500 base pairs of DNA was synthesized, but it was then completed by the time that 4 kilobase pairs of DNA was synthesized (<3 min after release into S phase). Thus, DNA methylation cannot play a significant role in regulating reassembly of prereplication complexes in mammalian cells, as it does in E. coli. To determine whether or not DNA methylation plays any role in origin activity, hypomethylated hamster cells were examined for ori-beta activity. Cells that were >50% reduced in methylation at ori-beta no longer selectively activated ori-beta. Therefore, at some loci, DNA methylation either directly or indirectly determines where replication begins.
Collapse
Affiliation(s)
- T Rein
- NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | | | |
Collapse
|
31
|
Smith ZE, Higgs DR. The pattern of replication at a human telomeric region (16p13.3): its relationship to chromosome structure and gene expression. Hum Mol Genet 1999; 8:1373-86. [PMID: 10400984 DOI: 10.1093/hmg/8.8.1373] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have studied replication throughout 325 kb of the telomeric region of a human chromosome (16p13.3) and related the findings to various aspects of chromosome structure and function (DNA sequence organization, nuclease-hypersensitive sites, nuclear matrix attachment sites, patterns of methylation and gene expression). The GC-rich isochore lying adjacent to the telomere, which contains the alpha-globin locus and many widely expressed genes, replicates early in the cell cycle regardless of the pattern of gene expression. In subtelomeric DNA, replication occurs later in the cell cycle and the most telomeric region (20 kb) is late replicating. Juxtaposition of early replicating DNA next to the telomere causes it to replicate later in S-phase. Analysis of the timing of replication in chromosomes with deletions, or in transgenes containing various segments of this telomeric region, suggests that there are no critical origins or zones that initiate replication, rather the pattern of replication appears to be related to the underlying chromatin structure which may restrict or facilitate access to multiple, redundant origins. These results contrast with the pattern of replication at the human beta-globin locus and this may similarly reflect the different chromosomal environments containing these gene clusters.
Collapse
Affiliation(s)
- Z E Smith
- MRC Molecular Haematology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | | |
Collapse
|
32
|
van Brabant AJ, Fangman WL, Brewer BJ. Active role of a human genomic insert in replication of a yeast artificial chromosome. Mol Cell Biol 1999; 19:4231-40. [PMID: 10330163 PMCID: PMC104382 DOI: 10.1128/mcb.19.6.4231] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Yeast artificial chromosomes (YACs) are a common tool for cloning eukaryotic DNA. The manner by which large pieces of foreign DNA are assimilated by yeast cells into a functional chromosome is poorly understood, as is the reason why some of them are stably maintained and some are not. We examined the replication of a stable YAC containing a 240-kb insert of DNA from the human T-cell receptor beta locus. The human insert contains multiple sites that serve as origins of replication. The activity of these origins appears to require the yeast ARS consensus sequence and, as with yeast origins, additional flanking sequences. In addition, the origins in the human insert exhibit a spacing, a range of activation efficiencies, and a variation in times of activation during S phase similar to those found for normal yeast chromosomes. We propose that an appropriate combination of replication origin density, activation times, and initiation efficiencies is necessary for the successful maintenance of YAC inserts.
Collapse
Affiliation(s)
- A J van Brabant
- Department of Genetics, University of Washington, Seattle, Washington 98195-7360, USA
| | | | | |
Collapse
|
33
|
Lawinger P, Rastelli L, Zhao Z, Majumder S. Lack of enhancer function in mammals is unique to oocytes and fertilized eggs. J Biol Chem 1999; 274:8002-11. [PMID: 10075699 DOI: 10.1074/jbc.274.12.8002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that the lack of novel coactivator activity in mouse oocytes and one-cell embryos (fertilized eggs) renders them incapable of utilizing Gal4:VP16-dependent enhancers (distal elements) but not promoters (proximal elements) in regulating transcription. This coactivator activity first appears in two- to four-cell embryos coincident with the major activation of zygotic gene expression. Here we show that whereas oocytes and fertilized eggs could utilize Sp1-dependent promoters, they could not utilize Sp1-dependent enhancers, although they showed promoter repression, which is a requirement for delineating enhancer function. In contrast, both Sp1-dependent promoters and enhancers were functional in two- to four-cell embryos. Furthermore, the same embryonic stem cell mRNA that provided the coactivator activity for Gal4:VP16-dependent enhancer function also provided Sp1-dependent enhancer function in oocytes. Therefore, the coactivator activity appears to be a requirement for general enhancer function. To determine whether the absence of enhancer function is a unique property of oocytes or a general property of other terminally differentiated cells, transcription was examined in terminally differentiated hNT neurons and their precursors, undifferentiated NT2 stem cells. The results showed that both cell types could utilize enhancers and promoters. Thus, in mammals, the lack of enhancer function appears to be unique to oocytes and fertilized eggs, suggesting that it provides a safeguard against premature activation of genes prior to zygotic gene expression during development.
Collapse
Affiliation(s)
- P Lawinger
- University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
34
|
Wang ZH, Fallon AM. Early-replicating DNA from mosquito cells is associated with a distinct EcoRI fragment. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1999; 29:53-61. [PMID: 10070745 DOI: 10.1016/s0965-1748(98)00104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In an effort to define an origin of bi-directional DNA replication (OBR) in mosquito genomic DNA, we applied methods that take advantage of characteristic features of single-stranded DNA to methotrexate-resistant Aedes albopictus cells. The Mtx-5011-256 cells contained approximately 1000 copies of a 200 kb amplicon containing the dihydrofolate reductase locus, which likely contained one or more replication origins. When Mtx-5011-256 cells were synchronized by treatment with hydroxyurea, released into the S phase of the cell cycle, and labeled in vivo with tritiated DNA precursors, a 1.9 kb EcoRI fragment was preferentially labeled in EcoRI-digested genomic DNA. Similarly, we detected a 1.9 kb EcoRI fragment in DNA from wild type cells after cell cycle synchronization and in vivo labeling. In a complementary method, unlabeled single-stranded DNA was isolated from Mtx-5011-256 cells, labeled in vitro, and hybridized to EcoRI-digested genomic DNA from mosquito cells. The labeled probe hybridized preferentially to a 1.9 kb fragment. Finally, a 1.9 kb EcoRI fragment was detected when nascent DNA was recovered from unsynchronized cells, made double-stranded by in vitro labeling, and digested with EcoRI. Taken together, these results suggest that in Aedes albopictus mosquito cells, many replication origins used at different times during S are flanked by EcoRI sites that define a 1.9 kb fragment, which has become more abundant in Mtx-5011-256 cells because it occurs in the dhfr amplicon. Tentative mapping of this origin to amplicon DNA remains ambiguous, further suggesting that a repeated sequence element occurs at or near the origin of replication.
Collapse
Affiliation(s)
- Z H Wang
- Department of Entomology, University of Minnesota, St Paul 55108, USA
| | | |
Collapse
|
35
|
Cohen SM, Cobb ER, Cordeiro-Stone M, Kaufman DG. Identification of chromosomal bands replicating early in the S phase of normal human fibroblasts. Exp Cell Res 1998; 245:321-9. [PMID: 9851873 DOI: 10.1006/excr.1998.4258] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal human fibroblasts (NHF1) were released from confluence arrest (G0) and replated in medium containing bromodeoxyuridine (BrdU) and aphidicolin. Despite severe reduction in the rate of DNA synthesis by aphidicolin, cells reentering the cell cycle incorporated BrdU at regions of the human genome that replicated very early in S phase. After removal of aphidicolin and BrdU from the tissue culture medium, cells were collected in mitosis. Q-banding with 4', 6-diamidino-2-phenylindole/actinomycin D was used to identify metaphase chromosomes. A monoclonal anti-BrdU antibody and a fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse antibody were used to identify the BrdU-labeled sites. The criterion for scoring DNA replication sites was the detection of FITC fluorescence at homologous regions of both sister chromatids. Early replicating regions mapped within R-bands, but not all R-bands incorporated BrdU. Chromosomal bands 1p36.1, 8q24.1, 12q13, 15q15, 15q22, and 22q13 were labeled in 53% or more of the copies of these chromosomes in the data set, suggesting that these sites replicated very early in S phase. Chromosomal band 15q22 was the most frequently labeled site (64%), which indicates that it contains some of the earliest replicating sequences in normal human fibroblasts.
Collapse
Affiliation(s)
- S M Cohen
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7525, USA
| | | | | | | |
Collapse
|
36
|
de Recondo AM. [Is the replicon model applicable to higher eukaryotes?]. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1998; 321:961-78. [PMID: 9929779 DOI: 10.1016/s0764-4469(99)80052-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thirty-five years ago, the Replicon model was proposed by Jacob, Brenner and Cuzin to explain the regulation of the Escherichia coli DNA replication. In this model, a genetic element, the replicator, would function as a target for a positive-acting initiator protein to drive the initiation of replication. This simple idea has been extremely useful in providing a framework to explain how the initiation of DNA replication occurs in all organisms. The identification of autonomously replicating sequences (ARSs) in budding yeast was the first extension of the Replicon model to eukaryotic chromosomes. In the higher eukaryotes, many biochemically defined replication start sites have been identified; nevertheless there is little genetic data indicating that these sites contain DNA sequences that are essential for replication. Moreover, in early Xenopus or Drosophila embryos, specific DNA sequences are not required either for initiating DNA replication or for preventing rereplication within a single cell cycle. This apparently fundamental difference between replicators in yeast and metazoan embryos may be more superficial than initially thought. In fact, during the past several years, an eukaryotic initiator conserved from yeast to man and also present in embryonic cells, the origin recognition complex (ORC), has been characterized, suggesting that the initiation mechanism should be essentially the same in prokaryotes and eukaryotes. In addition, the efficient once-per-cell-cycle replication of DNA is ensured in eukaryotes by a simple two-step mechanism in which the assembly of stable prereplicative complexes (PreRCs) at origins precedes and is temporally separated from the firing of these origins. Regulation of this process by cyclin-dependent kinases ensures that when origins fire, the cell is no longer competent to form new PreRCs. Now, it is important to understand how these complexes are remodeled or disassembled during replication initiation to trigger the transition from a stable origin-bound complex to a mobile replication machine.
Collapse
Affiliation(s)
- A M de Recondo
- UPR 9044 du CNRS Génétique et biologie moléculaire de la réplication, Institut de recherches sur le cancer, Villejuif, France
| |
Collapse
|
37
|
Abstract
Accurate replication and segregation of chromosomal DNA is essential for high-fidelity transmission of genetic information from generation to generation. Eukaryotic cells typically replicate by first duplicating their chromosomes during the S phase followed by their segregation between two daughter cells during the M phase. Over recent years, advances in our understanding of this process at the molecular level have been incredibly rapid. The present review will focus on molecular control of DNA replication and the mechanisms which operate to ensure that once replicated, chromosomes are not rereplicated in the same cell cycle.
Collapse
Affiliation(s)
- S Dalton
- Department of Biochemistry, University of Adelaide, South Australia, Australia
| |
Collapse
|
38
|
Moore TM, Chetham PM, Kelly JJ, Stevens T. Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L203-22. [PMID: 9700080 DOI: 10.1152/ajplung.1998.275.2.l203] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pulmonary endothelium forms a semiselective barrier that regulates fluid balance and leukocyte trafficking. During the course of lung inflammation, neurohumoral mediators and oxidants act on endothelial cells to induce intercellular gaps permissive for transudation of proteinaceous fluid from blood into the interstitium. Intracellular signals activated by neurohumoral mediators and oxidants that evoke intercellular gap formation are incompletely understood. Cytosolic Ca2+ concentration ([Ca2+]i) and cAMP are two signals that importantly dictate cell-cell apposition. Although increased [Ca2+]i promotes disruption of the macrovascular endothelial cell barrier, increased cAMP enhances endothelial barrier function. Furthermore, during the course of inflammation, elevated endothelial cell [Ca2+]i decreases cAMP to facilitate intercellular gap formation. Given the significance of both [Ca2+]i and cAMP in mediating cell-cell apposition, this review addresses potential sites of cross talk between these two intracellular signaling pathways. Emerging data also indicate that endothelial cells derived from different vascular sites within the pulmonary circulation exhibit distinct sensitivities to permeability-inducing stimuli; that is, elevated [Ca2+]i promotes macrovascular but not microvascular barrier disruption. Thus this review also considers the roles of [Ca2+]i and cAMP in mediating site-specific alterations in endothelial permeability.
Collapse
Affiliation(s)
- T M Moore
- Department of Pharmacology and Lung Biology and Pathology Research Laboratory, University of South Alabama College of Medicine, Mobile, Alabama 36688, USA
| | | | | | | |
Collapse
|
39
|
van Brabant AJ, Hunt SY, Fangman WL, Brewer BJ. Identifying sites of replication initiation in yeast chromosomes: looking for origins in all the right places. Electrophoresis 1998; 19:1239-46. [PMID: 9694258 DOI: 10.1002/elps.1150190803] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
DNA fragments that contain an active origin of replication generate bubble-shaped replication intermediates with diverging forks. We describe two methods that use two-dimensional (2-D) agarose gel electrophoresis along with DNA sequence information to identify replication origins in natural and artificial Saccharomyces cerevisiae chromosomes. The first method uses 2-D gels of overlapping DNA fragments to locate an active chromosomal replication origin within a region known to confer autonomous replication on a plasmid. A variant form of 2-D gels can be used to determine the direction of fork movement, and the second method uses this technique to find restriction fragments that are replicated by diverging forks, indicating that a bidirectional replication origin is located between the two fragments. Either of these two methods can be applied to the analysis of any genomic region for which there is DNA sequence information or an adequate restriction map.
Collapse
Affiliation(s)
- A J van Brabant
- Department of Genetics, University of Washington, Seattle 98195-7360, USA
| | | | | | | |
Collapse
|
40
|
Borde V, Duguet M. The mapping of DNA topoisomerase sites in vivo: a tool to enlight the functions of topoisomerases. Biochimie 1998; 80:223-33. [PMID: 9615862 DOI: 10.1016/s0300-9084(98)80005-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possibility to record a trace of the precise sites of topoisomerase action has been exploited for almost 12 years in many laboratories. The large majority of the studies were performed in vitro, giving a good picture of sequence specificities of topoisomerases, and of the preference of various drugs for some sequences. Only a relatively small number of reports concern in vivo studies. Their main conclusions are the following: i) topoisomerase II sites are often found near replication origins and termini, where they are supposed to play a role in the decatenation of daughter DNA molecules, and possibly in the initiation of replication; ii) topoisomerase II sites are found in the promoter region of many genes, but they seem related to the condensation state of chromatin in this region, rather than to transcription per se; iii) some topoisomerase II sites, resistant to high salt, are found in or near matrix associated regions (MARs), suggesting a role in loop anchorage or (and) in the control of topology of individual chromatin loops; iv) topoisomerase I sites appear less localized, acting all along the transcription units, where they seem directly involved in transcription; and v) topoisomerase I sites are possibly connected with replication fork progression and (or) with the termination of replication. Despite these advances, the precise role of topoisomerases in vivo is still poorly understood, especially in recombination and chromatin condensation and decondensation during the cell cycle. Future attempts should take into account the possible specialization of the multiple topoisomerases found in a given cell, and the use of highly synchronized systems.
Collapse
Affiliation(s)
- V Borde
- Laboratoire d'Enzymologie des Acides Nucléiques, URA 2225 CNRS, Université de Paris Sud, Centre d'Orsay, France
| | | |
Collapse
|
41
|
Morozova T, Naegeli H. DNA damage-dependent inactivation of complementary strand synthesis in Xenopus laevis egg or HeLa cell lysates. Biochemistry 1998; 37:1880-9. [PMID: 9485313 DOI: 10.1021/bi972213f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genotoxic lesions frequently arrest DNA synthesis and, as a consequence, result in the accumulation of incompletely replicated chromosomal segments containing long single-stranded regions of parental DNA. Here, we exploited complementary strand synthesis in Xenopus laevis egg or HeLa cell lysates to test how the eukaryotic replication machinery responds to such damaged single-stranded intermediates. Although both cell lysates promoted efficient conversion of M13 or phi X174 single-stranded templates to double-stranded products, their replication activity was inhibited by DNA damage arising from ultraviolet (UV) radiation or exposure to the alkylating agent N-methyl-N-nitrosourea (MNU). When M13 single-stranded DNA containing UV-or MNU-induced lesions was coincubated with single-stranded substrates containing no lesions, we observed suppression of DNA synthesis on both damaged and undamaged templates. In contrast, complementary strand synthesis remained unaffected in coincubation reactions containing damaged DNA in the double-stranded form. Effective inhibition of complementary strand synthesis on undamaged templates required the presence of at least stoichiometric amounts of UV-or MNU-treated single-stranded DNA, indicating that a DNA polymerase or accessory protein is excluded from DNA synthesis by immobilization at or near the lesion sites. In support of this competitive mode of inhibition, we found that inactivation of DNA synthesis by coincubation with damaged single-stranded DNA was relieved by the addition of an exogenous DNA polymerase that catalyzes processive strand elongation. In summary, this study reveals sequestration of critical components of the eukaryotic replication machinery in a DNA damage-dependent and single-strand-specific manner, thereby providing a potential mechanism to sense arrested replication intermediates during an early recognition step of S phase checkpoint responses.
Collapse
Affiliation(s)
- T Morozova
- Institute of Pharmacology and Toxicology, University of Zürich-Tierspital, Switzerland
| | | |
Collapse
|
42
|
Morris DJ, Lo YH, Lichtfield WR, Williams GH. Impact of dietary Na+ on glycyrrhetinic acid-like factors (kidney 11beta-(HSD2)-GALFs) in human essential hypertension. Hypertension 1998; 31:469-72. [PMID: 9453347 DOI: 10.1161/01.hyp.31.1.469] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Our previous studies have shown that human urine contains glycyrrhetinic acid-like factors (GALFs) that possess inhibitory activity against kidney 11beta-hydroxysteroid dehydrogenase isoform 2 (HSD2). The present studies were undertaken to determine the impact of dietary Na+ intake on the levels of kidney 11beta(HSD2)-GALFs. The excretion of kidney 11beta(HSD2)-GALFs in 24-hour urine samples of 30 unmedicated subjects (10 normotensive and 10 high/normal-renin and 10 low-renin essential hypertensive subjects) on both 200- and 10-mmol Na+ diets was studied. No differences in the urinary levels of kidney 11beta(HSD2)-GALFs were observed among the three groups on the high-Na+ diet. However, with a low-Na+ diet, the levels of kidney 11beta(HSD2)-GALFs were significantly increased in hypertensive subjects but not in normal subjects. Levels increased from 8.3+/-1.4 to 17.3+/-2.9 and 6.7+/-1.3 to 10.6+/-1.4 carbenoxolone sodium units/d in high/normal-renin (P=.01) and low-renin hypertensive subjects (P=.07), respectively; normal subjects changed from 8.0+/-1.9 to 10.6+/-2.4. The levels of kidney 11beta(HSD2)-GALFs were significantly higher in the high/normal-renin hypertensive subjects than in either the control normotensive subjects or the low-renin hypertensive subjects when challenged with the low-Na+ diet (P<.05 by Wilcoxon rank-sum test). The greater response of the high/normal-renin essential hypertensive subjects indicated that they may utilize kidney 11beta(HSD2)-GALFs when challenged with a low-Na+ diet, whereas the low-renin essential hypertensive subjects do not.
Collapse
Affiliation(s)
- D J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Brown University School of Medicine, Providence, RI 02906, USA.
| | | | | | | |
Collapse
|
43
|
|
44
|
Cossons N, Nielsen TO, Dini C, Tomilin N, Young DB, Riabowol KT, Rattner JB, Johnston RN, Zannis-Hadjopoulos M, Price GB. Circular YAC vectors containing a small mammalian origin sequence can associate with the nuclear matrix. J Cell Biochem 1997; 67:439-50. [PMID: 9383704 DOI: 10.1002/(sici)1097-4644(19971215)67:4<439::aid-jcb3>3.0.co;2-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three different mammalian origins of DNA replication, 343, S3, and X24, have been cloned into a 15.8 kb circular yeast vector pYACneo. Subsequent transfection into HeLa cells resulted in the isolation of several stably maintained clones. Two cell lines, C343e2 and CS3e1, were found to have sequences maintained as episomes in long-term culture with a stability per generation of approximately 80%. Both episomes also contain matrix attachment region (MAR) sequences which mediate the binding of DNA to the nuclear skeleton and are thought to play a role in DNA replication. Using high salt extraction of the nucleus and fluorescent in situ hybridization, we were able to demonstrate an association of the 343 episome with the nuclear matrix, most probably through functional MAR sequences that allow an association with the nuclear matrix and associated regions containing essential replication proteins. The presence of functional MARs in small episomal sequences may facilitate the replication and maintenance of transfected DNA as an episome and improve their utility as small episomal constructs, potential microchromosomes.
Collapse
Affiliation(s)
- N Cossons
- McGill Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shimoda-Matsubayashi S, Hattori T, Matsumine H, Shinohara A, Yoritaka A, Mori H, Kondo T, Chiba M, Mizuno Y. Mn SOD activity and protein in a patient with chromosome 6-linked autosomal recessive parkinsonism in comparison with Parkinson's disease and control. Neurology 1997; 49:1257-62. [PMID: 9371904 DOI: 10.1212/wnl.49.5.1257] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report Mn superoxide dismutase (SOD) protein and activity in a patient with familial autosomal recessive Lewy body-negative parkinsonism in comparison with patients with sporadic Parkinson's disease (PD) and controls. We recently proved linkage of this family with markers of chromosome 6 at 6q25.2-27, which included the Mn SOD gene. We used a novel polymorphic mutation at -9 position of the signal peptide of the Mn SOD precursor protein, which caused valine to alanine substitution. All the affected members of this family showed homozygosity for alanine, whereas nonaffected members, sporadic PD patients, and the control subjects studied showed either heterozygosity of alanine and valine or homozygosity of valine. The Mn SOD activity of this familial patient was the highest among the PD patients and the control subjects studied, and an abundant expression of Mn SOD was found in the substantia nigra. The molecular weight of Mn SOD protein by Western blotting of this patient was essentially similar to that of PD patients and the control subjects. High Mn SOD activity may constitute a genetic risk factor in this familial patient. The difference in the signal peptide sequence may affect the expression of Mn SOD within mitochondria; however, it is unlikely that loss of function type Mn SOD mutation is the cause of this familial parkinsonism. Mn SOD in sporadic PD patients was similar to that in controls.
Collapse
|
46
|
Abstract
The past decade has witnessed an explosion of new information about the nature of DNA replication in eukaryotic cells. Much of this information has resulted from the advent of novel methods for identifying and characterizing origins of DNA replication in the genomes of viruses, plasmids, and cells. These methods can map with remarkable precision sites where replication begins. In addition, they provide assays for origin activity that can be used to identify the sequence of events leading to the formation and activation of prereplication complexes at specific sites in chromosomal DNA. I summarize briefly the current view of eukaryotic replication origins and the methods that have been used to identify and characterize them. Selected methods that show promise for future applications are then described in detail in subsequent articles.
Collapse
Affiliation(s)
- M L DePamphilis
- National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2753, USA
| |
Collapse
|
47
|
Abstract
Fluorescence in situ hybridization (FISH) has been shown to discriminate between unreplicated and replicated regions of the genome in interphase nuclei, based on the number of specific fluorescent signals that can be detected. By examining the replication status of hybridizing sequences in large numbers of individual cells from an asynchronously growing population, it is possible to deduce a relative order of replication of different sequences. The availability of well-mapped genomic probes and the ability to compare results from different cell lines make this a convenient approach with which to map domains of replication timing control at any chromosomal position and to relate this to various patterns of gene expression. Since there appear to be important but poorly understood correlations among replication timing, chromatin structure, and transcriptional competence in mammalian cells, this provides a valuable approach to understanding these interrelationships at the molecular level. The procedures for using FISH to examine replication timing in mammalian nuclei are described here in detail, and the advantages and limitations of the approach are discussed. Some other strategies for using high-resolution FISH on chromatin fibers to examine replication properties of specific sequences in situ are also described.
Collapse
Affiliation(s)
- B A Boggs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
48
|
Abstract
The mapping of replication origins by nascent DNA strand length determination is a very sensitive generally applicable method that identifies even single-copy origins in mammalian chromosomes. A major advantage of this procedure is that there is no need for synchronization of cells or treatment with metabolic agents, which allows the origin to be studied under physiological conditions. This technique is based upon the amplification of specific sequence markers on nascent DNA strands that initiated replication within the region of the putative origin. Therefore, this method requires detailed sequence information of the locus to be analyzed. As a first step, nascent DNA of proliferating cells is pulse-labeled with BrdU followed by size fractionation and purification with anti-BrdU antibodies. The position of putative origins can then be determined via identification of the shortest nascent strands that can be amplified by PCR and hybridized to probes homologous to the amplified segments. Here, we give a detailed description of the theory behind the method and a full recipe for its application. Advantages and limitations of the procedure are discussed.
Collapse
Affiliation(s)
- C Staib
- Institute of Biochemistry, University of Würzburg, Germany.
| | | |
Collapse
|
49
|
Lo YH, Sheff MF, Latif SA, Ribeiro C, Silver H, Brem AS, Morris DJ. Kidney 11 beta-HSD2 is inhibited by glycyrrhetinic acid-like factors in human urine. Hypertension 1997; 29:500-5. [PMID: 9039149 DOI: 10.1161/01.hyp.29.1.500] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously shown that human urine contains substances that, like glycyrrhetinic acid, inhibit 11 beta-HSD1. We have named these substances "glycyrrhetinic acid-like factors" or GALFs. We now have found that human urine contains measurable quantities of both 11 beta(HSD1)- and 11 beta(HSD2)-GALF inhibitory substances. Both are markedly elevated in pregnancy. Their chemical and high-performance liquid chromatography (HPLC) characteristics suggest that several of the GALFs are steroidal. Large quantities of neutral 11 beta(HSD1)- and 11 beta(HSD2)-GALFs can be extracted directly from urine into ethyl acetate, yielding fraction EA1. Hydrolysis of the GALFs remaining in the aqueous phase by beta-glucuronidase markedly increases the total amounts of GALFs, with the majority now being ethyl acetate extractable (fraction EA2). These EA2 post-hydrolysis GALFs can be separated by HPLC resulting in at least six components with inhibitory activity against each isoenzyme. Only two GALF peaks are active against both 11 beta-HSD1 and 11 beta-HSD2. The others are peaks with specific 11 beta(HSD1)- and 11 beta(HSD2)-GALF inhibitory activity. The GALFs in the same posthydrolysis EA2 extract are also inhibitory toward the 11 beta-HSD1 that is present in vascular smooth muscle where they may play a role in the mechanisms controlling blood pressure. We have also found that 11 beta-HSD2 is selectively inhibited by 5 alpha- (but not by 5 beta-) reduced steroids. GC-MS analysis of the 11 beta(HSD2)-GALFs in EA2 is now being performed to determine whether this group includes 3 alpha,5 alpha-ring A-tetrahydro-reduced derivatives of steroids.
Collapse
Affiliation(s)
- Y H Lo
- Department of Pathology and Laboratory Medicine, Miriam Hospital, Providence, RI 02906, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Wang ZH, Fallon AM. Structural mapping of the dihydrofolate reductase amplicon in mosquito cells resistant to methotrexate. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1997; 27:79-92. [PMID: 9061931 DOI: 10.1016/s0965-1748(96)00073-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A cosmid library containing genomic DNA from mosquito cells in which the dihydrofolate reductase gene had become amplified in response to methotrexate selection was used to define the structure of the amplified DNA region (amplicon). A series of overlapping cosmids identified more than 200 kb of amplicon DNA, which was mapped relative to BssHII fragments from genomic DNA separated by transverse alternating field electrophoresis. These analyses indicated that, in Mtx-5011-256 mosquito cells, dhfr genes occur in at least two types of amplicon. The predominant Type I amplicon measures at least 215 kb and contains most of the dhfr genes. In addition, a small proportion of dhfr genes reside in a Type II amplicon, which is arranged in head-to-tail tandem repeats measuring 162 kb. Both amplicons share at least 70 kb of DNA sequence at their 5' ends. Approximately 20 fragments containing repeated sequence elements have been identified in the cloned amplicon DNA. Hybridization of amplicon DNA fragments containing repeated sequences to genomic DNA detected polymorphisms between wild type and methotrexate-resistant cells, suggesting that recombination may generate the divergence observed at the 3'-ends of Type I and Type II amplicons. This first detailed analysis of an insect dhfr amplicon provides an essential basis for ongoing investigation of repeated sequences, transcribed units and replication origins within the amplicon DNA.
Collapse
Affiliation(s)
- Z H Wang
- Department of Entomology, University of Minnesota, St. Paul 55108, USA.
| | | |
Collapse
|