1
|
Puzzo D, Gulisano W, Palmeri A, Arancio O. Rodent models for Alzheimer's disease drug discovery. Expert Opin Drug Discov 2015; 10:703-11. [PMID: 25927677 DOI: 10.1517/17460441.2015.1041913] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and personality changes, leading to dementia. Histopathological hallmarks are represented by aggregates of beta-amyloid peptide (Aβ) in senile plaques and deposition of hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Rare forms of early onset familial Alzheimer's disease are due to gene mutations. This has prompted researchers to develop genetically modified animals that could recapitulate the main features of the disease. The use of these models is complemented by non-genetically modified animals. AREAS COVERED This review summarizes the characteristics of the most used transgenic (Tg) and non-Tg models of AD. The authors have focused on models mainly used in their laboratories including amyloid precursor protein (APP) Tg2576, APP/presenilin 1, 3xAD, single h-Tau, non-Tg mice treated with acute injections of Aβ or tau, and models of physiological aging. EXPERT OPINION Animal models of disease might be very useful for studying the pathophysiology of the disease and for testing new therapeutics in preclinical studies but they do not reproduce the entire clinical features of human AD. When selecting a model, researchers should consider the various factors that might influence the phenotype. They should also consider the timing of testing/treating animals since the age at which each model develops certain aspects of the AD pathology varies.
Collapse
Affiliation(s)
- Daniela Puzzo
- University of Catania, Department of Biomedical and Biotechnological Sciences, Section of Physiology , Catania 95100 , Italy
| | | | | | | |
Collapse
|
2
|
Epis R, Gardoni F, Marcello E, Genazzani A, Canonico PL, Di Luca M. Searching for new animal models of Alzheimer's disease. Eur J Pharmacol 2009; 626:57-63. [PMID: 19836370 DOI: 10.1016/j.ejphar.2009.10.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
Abstract
The pathophysiology of chronic neurodegenerative diseases, as Alzheimer's diseases, has remained inaccessible till recently. But this situation is changing quickly. In the past decades, genes causing familiar forms of the disease have been identified and provided the genetic framework for the emerging amyloid hypothesis. On the basis of these findings, engineered mouse models have been developed and have allowed the understanding of crucial information about the pathogenic process. Certain observations obtained by transgenic mice, however, do not easily fit with the simplest version of the amyloid hypothesis. Even if there are transgenic lines that offer robust and relatively faithful reproductions of a subset of Alzheimer's disease's features, a mouse model that recapitulates all aspects of the disease has not yet been produced. Several still not completely known factors combine to produce highly variability across transgenic mouse models. Discrepancies in neuropathology and behaviour between transgenic mouse models and human Alzheimer's disease, and among different transgenic-lines, suggest caution in the interpretation of the results. Here we try to analyze critically some of the information provided by transgenic mice but ascertaining which elements of the neuropathological and behavioural phenotype of these various strains of transgenic mice are relevant to that observed in Alzheimer's disease continues to be a challenge.
Collapse
Affiliation(s)
- Roberta Epis
- Department of Pharmacological Sciences and Centre of Excellence on Neurodegenerative Diseases. University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | | | | | |
Collapse
|
3
|
Klein RL, Wang DB, King MA. Versatile somatic gene transfer for modeling neurodegenerative diseases. Neurotox Res 2009; 16:329-42. [PMID: 19669852 PMCID: PMC2975331 DOI: 10.1007/s12640-009-9080-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/26/2009] [Accepted: 06/29/2009] [Indexed: 12/20/2022]
Abstract
A growing variety of technical approaches allow control over the expression of selected genes in living organisms. The ability to deliver functional exogenous genes involved in neurodegenerative diseases has opened pathological processes to experimental analysis and targeted therapeutic development in rodent and primate preclinical models. Biological adaptability, economic animal use, and reduced model development costs complement improved control over spatial and temporal gene expression compared with conventional transgenic models. A review of viral vector studies, typically adeno-associated virus or lentivirus, for expression of three proteins that are central to major neurodegenerative diseases, will illustrate how this approach has powered new advances and opportunities in CNS disease research.
Collapse
Affiliation(s)
- Ronald L. Klein
- Department of Pharmacology, Toxicology & Neuroscience, and Gene Therapy Program, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - David B. Wang
- Department of Pharmacology, Toxicology & Neuroscience, and Gene Therapy Program, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Michael A. King
- Department of Pharmacology & Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA. NF/SG VA Medical Center, Gainesville, FL 32608, USA
| |
Collapse
|
4
|
Abstract
In Alzheimer's disease (AD), characteristic lesions develop in brain regions that subserve cognitive functions, ultimately leading to dementia. There are now several lesioned or transgenic small-animal models of the disease that model select aspects of cognitive deficits and/or recapitulate many, but not all, of the characteristic pathologic lesions observed in AD. This overview describes the most common approaches used to model AD in rodents, highlights their utility, and discusses some of their deficiencies.
Collapse
|
5
|
Lee KW, Im JY, Song JS, Lee SH, Lee HJ, Ha HY, Koh JY, Gwag BJ, Yang SD, Paik SG, Han PL. Progressive neuronal loss and behavioral impairments of transgenic C57BL/6 inbred mice expressing the carboxy terminus of amyloid precursor protein. Neurobiol Dis 2005; 22:10-24. [PMID: 16289866 DOI: 10.1016/j.nbd.2005.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 09/23/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022] Open
Abstract
The beta-secretase cleaved Abeta-bearing carboxy-terminal fragments (betaCTFs) of amyloid precursor protein (APP) in neural cells have been suggested to be cytotoxic. However, the functional significance of betaCTFs in vivo remains elusive. We created a transgenic mouse line Tg-betaCTF99/B6 expressing the human betaCTF99 in the brain of inbred C57BL/6 strain. Tg-betaCTF99/B6 mouse brain at 12-16 months showed severely down-regulated calbindin, phospho-CREB, and Bcl-xL expression and up-regulated phospho-JNK, Bcl-2, and Bax expression. Neuronal cell density in the Tg-betaCTF99/B6 cerebral cortex at 16-18 months was lower than that of the non-transgenic control, but not at 5 months. At 11-14 months, Tg-betaCTF99/B6 mice displayed cognitive impairments and increased anxiety, which were not observed at 5 months. These results suggest that increased betaCTF99 expression is highly detrimental to the aging brain and that it produces a progressive and age-dependent AD-like pathogenesis.
Collapse
Affiliation(s)
- Kang-Woo Lee
- Department of Neuroscience, Neuroscience Research Center and Medical Research Institute, Ewha Womans University School of Medicine, 911-1 Mok-6-Dong, Yangchun-Gu, Seoul 158-710, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Strazielle C, Dumont M, Fukuchi K, Lalonde R. Transgenic mice expressing the human C99 terminal fragment of betaAPP: effects on cytochrome oxidase activity in skeletal muscle and brain. J Chem Neuroanat 2004; 27:237-46. [PMID: 15261330 DOI: 10.1016/j.jchemneu.2004.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Revised: 09/09/2003] [Accepted: 03/28/2004] [Indexed: 11/15/2022]
Abstract
In order to furnish a combined model of relevance to human inclusion-body myopathy and Alzheimer's disease, transgenic mice expressing human betaAPP-C99 in skeletal muscle and brain under the control of the cytomegalovirus/beta-actin promoter were produced (Tg13592). These transgenic mice develop Abeta deposits in muscles but not in brain. Cell metabolic activity was analyzed in brain regions and muscle by cytochrome oxidase (CO) histochemistry, the terminal enzyme of the electron transport chain. By comparison to age-matched controls of the C57BL/6 strain, CO activity was selectively increased in dark skeletal muscle fibers of Tg13592 mice. In addition, only increases in CO activity were obtained in those brain regions where a significant difference appeared. The CO activity of Tg13592 mice was elevated in several thalamic nuclei, including laterodorsal, ventromedial, and midline as well as submedial, intralaminar, and reticular. In contrast, the groups did not differ in most cortical regions, except for prefrontal, secondary motor, and auditory cortices, and in most brainstem regions, except for cerebellar (fastigial and interpositus) nuclei and related areas (red and lateral vestibular nuclei). No variation in cell density and surface area appeared in conjunction with these enzymatic alterations. The overproduction of betaAPP-C99 fragments in brain without (amyloidosis did not appear to affect the metabolic activity of structures particularly vulnerable in Alzheimer's disease.
Collapse
Affiliation(s)
- C Strazielle
- Laboratoire de Pathologie Moléculaire et Cellulaire en Nutrition (EMI-INSERM 0014) and Service de Microscopie Electronique, Faculté de Médecine, Université Henri Poincaré, Nancy I, France.
| | | | | | | |
Collapse
|
7
|
Lalonde R, Dumont M, Fukuchi K, Strazielle C. Transgenic mice expressing the human C99 terminal fragment of betaAPP: effects on spatial learning, exploration, anxiety, and motor coordination. Exp Gerontol 2002; 37:1401-12. [PMID: 12559409 DOI: 10.1016/s0531-5565(02)00123-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The functional consequence of beta-amyloid precursor protein (betaAPP) manipulation on behavior was assessed in Tg13592 mice, characterized by transgene expression of the 99 amino acid C-terminal sequence of human betaAPP in brain and skeletal muscle but with plaque formation only in muscle. By comparison to the C57BL/6 background strain controlled for age and gender, Tg13592 transgenic mice had fewer movements in an automated chamber and fewer enclosed arm entries in the elevated plus-maze. This hypoactivity was probably due to a loss in the motivation to explore novel environmental stimuli rather than motor weakness or anxiety. In addition, the acquisition of place learning in the Morris water maze task was impaired in Tg13592 mice. The transgenic mice were not impaired in a probe trial or while swimming toward a visible platform. These results are concordant with the hypothesis that transgene expression of the C-terminal sequence of human betaAPP in brain is sufficient for causing behavioral abnormalities. The hypoactivity and the spatial learning deficit were associated with higher cytochrome oxidase activity seen in thalamic nuclei, indicating that altered regional brain metabolism caused by betaAPP transgene expression may be responsible for the behavioral changes.
Collapse
Affiliation(s)
- R Lalonde
- Université de Rouen, Faculté de Médecine et de Pharmacie, 22 blvd Gambetta, INSERM EPI 9906, Bâtiment de Recherche, Salle 1D18, 76183 Rouen Cedex, France.
| | | | | | | |
Collapse
|
8
|
Dodart JC, Mathis C, Bales KR, Paul SM. Does my mouse have Alzheimer's disease? GENES, BRAIN, AND BEHAVIOR 2002; 1:142-55. [PMID: 12884970 DOI: 10.1034/j.1601-183x.2002.10302.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Small animal models that manifest many of the characteristic neuropathological and behavioral features of Alzheimer's disease (AD) have been developed and have proven of great value for studying the pathogenesis of this disorder at the molecular, cellular and behavioral levels. The great progress made in our understanding of the genetic factors that either cause or contribute to the risk of developing AD has prompted many laboratories to create transgenic (tg) mice that overexpress specific genes which cause familial forms of the disease. Several of these tg mice display neuropathological and behavioral features of AD including amyloid beta-peptide (A beta) and amyloid deposits, neuritic plaques, gliosis, synaptic alterations and signs of neurodegeneration as well as memory impairment. Despite these similarities, important differences in neuropathology and behavior between these tg mouse models and AD have also been observed, and to date no perfect animal model has emerged. Moreover, ascertaining which elements of the neuropathological and behavioral phenotype of these various strains of tg mice are relevant to that observed in AD continues to be a challenge. Here we provide a critical review of the AD-like neuropathology and behavioral phenotypes of several well-known and utilized tg mice that express human APP transgenes.
Collapse
Affiliation(s)
- J C Dodart
- Neuroscience Discovery Research, Eli Lilly and Company, Indianapolis, IN 46285, USA.
| | | | | | | |
Collapse
|
9
|
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of the brain accounting for about 50-70% of the typical late onset cases of dementia. The pathological and diagnostic hallmarks of the disease are principally the presence of extracellular deposits called neuritic amyloid plaques and the intracellular aggregation of neurofibrillary tangles. In addition selective neuronal cell loss accompanied by cerebrovascular amyloidosis is detectable. In the case of familial AD, defects in at least three different genes (APP, PS1, PS2) leading to indistinguishable pathology are now well defined. There is as yet no real treatment for AD. Therefore the availability of an easily manipulable animal model is crucial for the development of new drugs, which could slow down or, even better, stop the progression of the disease. The development and originality of such experimental models that could greatly facilitate the investigation of the aetiology and pathogenesis of AD are described and discussed in this review. They are based mainly on the attempt to reproduce the neurofibrillary tangles or the amyloid deposits and plaque formation.
Collapse
|
10
|
Allain H, Bentué-Ferrer D, Zekri O, Schück S, Lebreton S, Reymann JM. Experimental and clinical methods in the development of anti-Alzheimer drugs. Fundam Clin Pharmacol 1998; 12:13-29. [PMID: 9523180 DOI: 10.1111/j.1472-8206.1998.tb00919.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methodology used for the development of anti-Alzheimer's disease (AD) drugs raises specific problems which are rarely examined in the literature. While the general development scheme is similar to that required for most drugs, some specific aspects must be analyzed, highly dominated by the dual goal of pharmacology, i.e., to obtain both symptomatic and etiopathogenic drugs. During preclinical studies, aged or lesioned animals are mainly useful for symptomatic drugs, whereas transgenic models or neurodegeneration-induced techniques would probably lead to etiopathogenic drugs potentially slowing down the process of AD. The first administrations of a new compound to human beings raise the question of the activity measurement techniques. Psychometry remains the most informative procedure to detect and analyze the activity of the drugs on the different components of cognition. Electrophysiology and neuroimaging need some complementary studies before they can be proposed as surrogate criteria in phase III trials. At this stage of development, American and the recently published European guidelines are of great help while insisting on long-term (6 months) placebo controlled trials with the use of the triple efficacy criterion: an objective cognition scale, a global assessment, and the opinion of the caregiver. In the long term, pharmacoepidemiology and pharmacoeconomy will have to confirm the rationale of this recent progress in the methodology of anti-AD drug development.
Collapse
Affiliation(s)
- H Allain
- Laboratoire de Pharmacologie Expérimentale et Clinique, Faculté de Médecine, Rennes, France
| | | | | | | | | | | |
Collapse
|
11
|
McDonald MP, Overmier JB. Present imperfect: a critical review of animal models of the mnemonic impairments in Alzheimer's disease. Neurosci Biobehav Rev 1998; 22:99-120. [PMID: 9491942 DOI: 10.1016/s0149-7634(97)00024-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This paper reviews the current literature on animal models of the memory impairments of Alzheimer's disease (AD). The authors suggest that modeling of the mnemonic deficits in AD be limited to the amnesia observed early in the course of the disease, to eliminate the influence of impairments in non-mnemonic processes. Tasks should be chosen for their specificity and selectivity to the behavioral phenomena observed in early-stage AD and not for their relevance to hypothetical mnemonic processes. Tasks that manipulate the delay between learning and remembering are better able to differentiate Alzheimer patients from persons with other disorders, and better able to differentiate effects of manipulations in animals. The most commonly used manipulations that attempt to model the amnesia of AD are reviewed within these constraints. The authors conclude that of the models examined, lesions of the medial septal nucleus produce behavioral deficits that are most similar to the mnemonic impairments in the earliest stage of AD. However, the parallel is not definitive and more work is needed to clarify the relationship between neurobiology and behavior in AD.
Collapse
Affiliation(s)
- M P McDonald
- Department of Psychology, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
12
|
Mielke JG, Murphy MP, Maritz J, Bengualid KM, Ivy GO. Chloroquine administration in mice increases beta-amyloid immunoreactivity and attenuates kainate-induced blood-brain barrier dysfunction. Neurosci Lett 1997; 227:169-72. [PMID: 9185677 DOI: 10.1016/s0304-3940(97)00340-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The anti-malarial drug chloroquine (CHL) has been reported to cause the accumulation of beta-amyloid peptide containing fragments (fA beta) of the amyloid precursor protein within lysosomes in vitro. However, the significance of this finding with regards to the development of Alzheimer's disease (AD) pathology in vivo is not known. Hence, we investigated the effects of chronic CHL administration in the mouse. Systemically administered CHL caused an astrocytic response and an increase in intracellular A beta immunoreactivity throughout the brain, but no plaque-like pathology. Pharmacological challenge with the excitotoxin kainic acid (KA) revealed a mild proconvulsant effect of CHL pretreatment (P < 0.06). Interestingly, CHL protected the blood-brain barrier from characteristic KA-induced dysfunction. Given the hypothesized involvement of both excitotoxic processes and the vascular system in AD, the observed interactions may assist in elucidating the pathogenesis of AD.
Collapse
Affiliation(s)
- J G Mielke
- Department of Psychology, University of Toronto, Scarborough, ONT, Canada
| | | | | | | | | |
Collapse
|
13
|
Abstract
In the past, structural changes in the brain with aging have been studied using a variety of animal models, with rats and nonhuman primates being the most popular. With the rapid evolution of mouse genetics, murine models have gained increased attention in the neurobiology of aging. The genetic contribution of age-related traits as well as specific mechanistic hypotheses underlying brain aging and age-related neurodegenerative diseases can now be assessed by using genetically-selected and genetically-manipulated mice. Against this background of increased demand for aging research in mouse models, relatively few studies have examined structural alterations with aging in the normal mouse brain, and the data available are almost exclusively restricted to the C57BL/6 strain. Moreover, many older studies have used quantitative techniques which today can be questioned regarding their accuracy. Here we review the state of knowledge about structural changes with aging in outbred, inbred, genetically-selected, and genetically-engineered murine models. Moreover, we suggest several new opportunities that are emerging to study brain aging and age-related neurodegenerative diseases using genetically-defined mouse models. By reviewing the literature, it has become clear to us that in light of the rapid progress in genetically-engineered and selected mouse models for brain aging and age-related neurodegenerative diseases, there is a great and urgent need to study and define morphological changes in the aging brain of normal inbred mice and to analyze the structural changes in genetically-engineered mice more carefully and completely than accomplished to date. Such investigations will broaden knowledge in the neurobiology of aging, particularly regarding the genetics of aging, and possibly identify the most useful murine models.
Collapse
Affiliation(s)
- M Jucker
- Gerontology Research Centre, Nathan W. Shock Laboratories, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
14
|
Volloch V. Possible mechanism for resistance to Alzheimer's disease (AD) in mice suggests a new approach to generate a mouse model for sporadic AD and may explain familial resistance to AD in man. Exp Neurol 1997; 144:214-8. [PMID: 9126173 DOI: 10.1006/exnr.1997.6420] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An overproduction of beta-amyloid (A beta) is associated with Alzheimer's disease (AD) and appears to be its primary cause. A model has been recently described which accounts for the overproduction of A beta in sporadic AD, this constituting the majority of all cases of AD. The proposed mechanism suggests the antisense RNA-Mediated generation of a 5'-truncated beta-amyloid precursor protein (beta APP) mRNA encoding a 12-kDa C-terminal fragment of beta APP, the immediate precursor of A beta. In the truncated mRNA, the first AUG codon, which contiguously precedes the A beta-coding segment, becomes the site of translation initiation of a polypeptide that can be further processed to generate A beta, this subsequently being secreted. Among the predictions of the proposed model is that mice and rats do not and indeed cannot develop sporadic AD because they lack the crucial component of the proposed mechanism, namely the ability of the beta APP antisense RNA to self-prime the synthesis of a new sense strand. According to the proposed model, however, mice could be rendered susceptible to AD by mutating the beta APP gene so as to confer self-priming ability on the antisense strand. In contrast to existing mouse models which by design are fundamentally unsuitable for study of the mechanism underlying sporadic AD, the AD pathology of the proposed model would be expected to faithfully reflect the human condition. The availability of such an acutely needed, experimental model would allow investigators to study not only the manifestation of the disease but, most significantly, also the factors triggering it. The proposed mouse model may explain familial resistance to AD in man, provide extremely valuable insights into the etiology of AD, and suggest means for its prevention.
Collapse
Affiliation(s)
- V Volloch
- Boston Biomedical Research Institute, Massachusetts 02114, USA
| |
Collapse
|
15
|
Hsiao KK. From prion diseases to Alzheimer's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1997; 49:135-44. [PMID: 9266423 DOI: 10.1007/978-3-7091-6844-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent advances in the transgenetics of prion diseases and Alzheimer's disease have led to a clearer understanding of the relationship between these two diseases and the pathogenic mechanisms underlying the two disorders. Earlier studies of transgenic mice expressing prion protein (PrP) underscored the importance of PrP levels and PrP primary structure on the resultant phenotype. Three major parameters influencing the phenotypes of mice expressing the Alzheimer amyloid precursor protein (APP) have also been identified: 1) APP levels; 2) APP primary structure; and 3) mouse host strain. The effects and implications of these parameters in transgenic mice expressing APP are discussed.
Collapse
Affiliation(s)
- K K Hsiao
- Department of Neurology, University of Minnesota, USA
| |
Collapse
|
16
|
Allain H, Bentué-Ferrer D, Belliard S, Derouesné C. 1 Pharmacology of Alzheimer's Disease. PROGRESS IN MEDICINAL CHEMISTRY 1997. [DOI: 10.1016/s0079-6468(08)70104-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Kawarabayashi T, Shoji M, Sato M, Sasaki A, Ho L, Eckman CB, Prada CM, Younkin SG, Kobayashi T, Tada N, Matsubara E, Iizuka T, Harigaya Y, Kasai K, Hirai S. Accumulation of beta-amyloid fibrils in pancreas of transgenic mice. Neurobiol Aging 1996; 17:215-22. [PMID: 8744402 DOI: 10.1016/0197-4580(95)02061-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Some forms of familial Alzheimer's disease are caused by mutations in the amyloid beta protein precursor (beta APP), and there is excellent evidence that these mutations foster amyloid deposition by increasing secretion of total amyloid beta protein (A beta) or the highly amyloidogenic A beta 1-42 form. These observations provide a powerful rationale for developing an animal model of AD by generating transgenic mice in which cerebral amyloid deposition is induced by A beta overproduction. To produce substantial A beta in vivo, we generated mice expressing the transgene of signal peptide and 99 residues of carboxyl-terminal fragment (CTF) of beta APP under control of the cytomegalovirus enhancer/chicken beta-actin promoter. The transgenic mRNA was detected in many tissues of these mice, but the levels of transgenic mRNA, CTF, and A beta did not correlate well indicating that tissue-specific posttranslational processing may play an important role in determining the amount of A beta that accumulates in various tissues. A beta was detected biochemically in brain, kidney, and pancreas with the largest amount present in pancreas. In transgenic plasma, there was a marked accumulation of human A beta 1-40 and A beta 1-42(43) to levels over 30-times those observed in normal human plasma. Thus, the transgenic mice produce and secrete considerable A beta. Despite this increase in A beta secretion and the elevated A beta in brain, immunohistochemistry revealed no consistent cerebral A beta deposition. In pancreas, however, intracellular A beta deposits were detected immunohistochemically in acinar cells and interstitial macrophages, some of which showed severe degeneration. In addition, examination of these cells by immunoelectron microscopy revealed many putative amyloid fibrils (7-12 nm) that were stained by anti-A beta antibodies. Overall, our findings indicate that tissue-specific posttranslational processing may play a pivotal role in A beta production and amyloid fibril formation in vivo. By carefully analyzing the changes that occur in the transgenic mice described here as compared to the transgenic line that has recently been shown to form extracellular amyloid plaques in brain, it may be possible to gain considerable insight into the factors that determine the location and amount of A beta that accumulates as amyloid.
Collapse
Affiliation(s)
- T Kawarabayashi
- Department of Neurology, Gunma University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Greenberg BD, Savage MJ, Howland DS, Ali SM, Siedlak SL, Perry G, Siman R, Scott RW. APP transgenesis: approaches toward the development of animal models for Alzheimer disease neuropathology. Neurobiol Aging 1996; 17:153-71. [PMID: 8744397 DOI: 10.1016/0197-4580(96)00001-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Wisniewski HM, Wegiel J, Kotula L. Review. David Oppenheimer Memorial Lecture 1995: Some neuropathological aspects of Alzheimer's disease and its relevance to other disciplines. Neuropathol Appl Neurobiol 1996; 22:3-11. [PMID: 8866776 DOI: 10.1111/j.1365-2990.1996.tb00839.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies of diffuse A beta plaques point to the neurons as a source of A beta in diffuse plaques. The neuritic (primitive and classical) plaques appear to be the product of microglia and the myocytes are the source of amyloid deposits in the meningeal and cortical vessels. Dyshoric angiopathy is associated with deposits of amyloid by perivascular cells. Fibrillization of the neuron-derived diffuse, thioflavine-negative or benign plaques is poor or undetectable by current morphological methods including ultrastructural immunocytochemistry. It appears that fibrillization depends on the length of the A beta peptides and on the presence of amyloid-associated proteins. Four genes are now tightly linked with Alzheimer's disease (AD) and they are located on chromosomes 21, 19, 14 and 1. Therefore, AD should be considered a polyaetiological disease or syndrome. There are currently five transgenic mouse models overexpressing beta-APP. There is also a myocyte tissue culture model in which both soluble and fibrillized A beta are found. The relationship between A beta and neurofibrillary pathology is not clear and the current cascade hypothesis proposing that A beta pathology drives the formulation of neurofibrillary tangles is being questioned. There is growing evidence that it is not the A beta hypothesis, but the co-existing A beta neurofibrillary tangle pathology hypothesis which will be the basis for AD neuropathology.
Collapse
Affiliation(s)
- H M Wisniewski
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314-6399, USA
| | | | | |
Collapse
|
20
|
Dewji NN, Do C. Heat shock factor-1 mediates the transcriptional activation of Alzheimer's beta-amyloid precursor protein gene in response to stress. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 35:325-8. [PMID: 8717371 DOI: 10.1016/0169-328x(95)00214-d] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stress may be involved in the pathogenesis of Alzheimer's disease. There is a heat shock element located at position -317 bp on the beta-amyloid precursor protein (beta-APP) gene promoter. Recently we demonstrated [4] that stress, in the form of heat shock, ethanol and sodium arsenite treatment, transcriptionally activates the beta-APP gene. In this report we demonstrate that the nuclear factor that mediates this activation is heat shock factor-1.
Collapse
Affiliation(s)
- N N Dewji
- Department of Medicine, University of California at San Diego, La Jolla 92093, USA
| | | |
Collapse
|
21
|
Arendt T, Holzer M, Fruth R, Brückner MK, Gärtner U. Paired helical filament-like phosphorylation of tau, deposition of beta/A4-amyloid and memory impairment in rat induced by chronic inhibition of phosphatase 1 and 2A. Neuroscience 1995; 69:691-8. [PMID: 8596639 DOI: 10.1016/0306-4522(95)00347-l] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alzheimer's disease is histopathologically characterized by neurofibrillary tangles, formed by the abnormally high phosphorylated tau protein, and senile plaques which largely consist of the beta/A4-amyloid peptide. Metabolism of the amyloid precursor protein and its processing into beta/A4-amyloid is regulated by protein phosphorylation. Thus, an imbalance between protein phosphorylation and dephosphorylation might be crucial for the development of the molecular hallmarks of Alzheimer's disease. We report here that chronic infusion into rat brain ventricles of okadaic acid, a specific inhibitor of the serine/threonine protein phosphatases 1 and 2A, results in a severe memory impairment, accompanied by a paired helical filament-like phosphorylation of tau protein and the formation of beta/A4-amyloid containing plaque-like structures in gray and white matter areas.
Collapse
Affiliation(s)
- T Arendt
- Paul Flechsig Institute of Brain Research, Department of Neurochemistry, University of Leipzig, Germany
| | | | | | | | | |
Collapse
|
22
|
Hsiao KK, Borchelt DR, Olson K, Johannsdottir R, Kitt C, Yunis W, Xu S, Eckman C, Younkin S, Price D. Age-related CNS disorder and early death in transgenic FVB/N mice overexpressing Alzheimer amyloid precursor proteins. Neuron 1995; 15:1203-18. [PMID: 7576662 DOI: 10.1016/0896-6273(95)90107-8] [Citation(s) in RCA: 402] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transgenic FVB/N mice overexpressing human (Hu) or mouse (Mo) Alzheimer amyloid precursor protein (APP695) die early and develop a CNS disorder that includes neophobia and impaired spatial alternation, with diminished glucose utilization and astrogliosis mainly in the cerebrum. Age at onset of neophobia and age at death decrease with increasing levels of brain APP. HuAPP transgenes induce death much earlier than MoAPP transgenes expressed at similar levels. No extracellular amyloid was detected, indicating that some deleterious processes related to APP overexpression are dissociated from formation of amyloid. A similar clinical syndrome occurs spontaneously in approximately 20% of nontransgenic mice when they reach mid- to late-adult life, suggesting that APP overexpression may accelerate a naturally occurring age-related CNS disorder in FVB/N mice.
Collapse
Affiliation(s)
- K K Hsiao
- Department of Neurology, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dewji NN, Do C, Bayney RM. Transcriptional activation of Alzheimer's beta-amyloid precursor protein gene by stress. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 33:245-53. [PMID: 8750883 DOI: 10.1016/0169-328x(95)00131-b] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A neuropathological hallmark of Alzheimer's disease (AD) is the neuritic plaque, composed of an extracellular cluster of degenerating nerve terminals with a central core that is in part composed of deposits of a 4 kDa beta-amyloid peptide. Over-expression of the amyloid precursor protein (beta-APP) gene could be a contributing factor in the aberrant processing of the precursor protein, possibly leading to the formation of beta-amyloid. In AD the brain exhibits several features which indicate that neurons affected by AD exist under conditions of stress. Although the heat shock consensus sequence (CTCGACTTTTCTAG) located at position -317 bp is among the regulatory elements of the beta-APP gene, suggesting that this may act in the regulation of the beta-APP gene in response to stress, an induction of beta-APP as a result of interaction of this element with a heat shock factor has so far not been demonstrated. Moreover, there are conflicting reports in the literature regarding the up-regulation of beta-APP with stress. In this study we have used a fragment of the beta-APP promoter which includes the heat shock element, cloned into a luciferase expression vector pxP2 to transiently transfect cultured human NT2 and HeLa cells. Our findings directly demonstrate that transcription of the beta-APP gene is stimulated by various stresses--increase in temperature, treatment with ethanol and sodium arsenite. Gel mobility shift assays confirm the interaction of the heat shock element with a heat shock factor, induced as a result of stress.
Collapse
Affiliation(s)
- N N Dewji
- Department of Medicine, University of California at San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
24
|
Abstract
The etiology of Alzheimer's disease (AD) is poorly understood, and no effective therapies are available. Although histopathology of the disease has been studied thoroughly, the relationship of various AD lesions to pathological processes and to dementia are debated. Progress would be greatly enhanced by existence of manipulable small animal models of the disease. Recently, transgenic strategies to developing such a model have been extensively explored. The approach has proved to be difficult and has yielded some disappointments, but also some encouraging results. Transgenic strategies for obtaining a model for AD are surveyed in this review and, as an illustration, early AD-like features of transgenic mice produced in our laboratory are described.
Collapse
Affiliation(s)
- L S Higgins
- Scios Nova Inc., Mountain View, CA 94043, USA
| | | |
Collapse
|
25
|
Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature 1995; 373:523-7. [PMID: 7845465 DOI: 10.1038/373523a0] [Citation(s) in RCA: 1712] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of progressive intellectual failure in aged humans. AD brains contain numerous amyloid plaques surrounded by dystrophic neurites, and show profound synaptic loss, neurofibrillary tangle formation and gliosis. The amyloid plaques are composed of amyloid beta-peptide (A beta), a 40-42-amino-acid fragment of the beta-amyloid precursor protein (APP). A primary pathogenic role for APP/A beta is suggested by missense mutations in APP that are tightly linked to autosomal dominant forms of AD. A major obstacle to elucidating and treating AD has been the lack of an animal model. Animals transgenic for APP have previously failed to show extensive AD-type neuropathology, but we now report the production of transgenic mice that express high levels of human mutant APP (with valine at residue 717 substituted by phenylalanine) and which progressively develop many of the pathological hallmarks of AD, including numerous extracellular thioflavin S-positive A beta deposits, neuritic plaques, synaptic loss, astrocytosis and microgliosis. These mice support a primary role for APP/A beta in the genesis of AD and could provide a preclinical model for testing therapeutic drugs.
Collapse
Affiliation(s)
- D Games
- Athena Neurosciences, Inc., South San Francisco, California 94080
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
|
28
|
LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G. The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet 1995; 9:21-30. [PMID: 7704018 DOI: 10.1038/ng0195-21] [Citation(s) in RCA: 372] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To test whether the hypothesis that the Alzheimer's A beta peptide is neurotoxic, we introduced a transgene into mice to direct expression of this peptide to neurons. We show that the transgene is expressed in brain regions which are severely affected in Alzheimer's disease resulting in extensive neuronal degeneration. Morphological and biochemical evidence indicates that the eventual death of these cells occurs by apoptosis. Coincident with the cell degeneration and cell death is the presence of a striking reactive gliosis. Over 50% of the transgenic mice die by 12 months of age, half the normal life span of control mice. These data show that A beta is neurotoxic in vivo and suggest that apoptosis may be responsible for the accompanying neuronal loss, the principal underlying cellular feature of Alzheimer's disease.
Collapse
Affiliation(s)
- F M LaFerla
- Department of Virology, Jerome H. Holland Laboratory, Rockville, Maryland 20855
| | | | | | | | | |
Collapse
|
29
|
A direct role for protein kinase C and the transcription factor Jun/AP-1 in the regulation of the Alzheimer's beta-amyloid precursor protein gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31860-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
30
|
Abstract
Alzheimer's disease (AD), the most common dementing disorder of late life, is a major cause of disability and death in the elderly. Neurobiological, genetic, and molecular studies have defined the vulnerable neural systems, abnormalities in cytoskeletal proteins in neurons, the biology of the beta-amyloid precursor protein (APP) and beta-amyloid (A beta, beta A4), and several APP mutations linked to the disease. More recently, investigators have begun to develop animal models essential for delineating pathogenetic mechanisms and for developing and testing new therapies for treating AD in humans. This review focuses primarily on recent progress in investigation of animal models of AD (including aged nonhuman primates and transgenic mice), which have begun to clarify some of the questions raised by investigation of the disease in humans.
Collapse
Affiliation(s)
- D L Price
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196
| | | |
Collapse
|
31
|
Czech C, Masters C, Beyreuther K. Alzheimer's disease and transgenic mice. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1994; 44:219-30. [PMID: 7897394 DOI: 10.1007/978-3-7091-9350-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transgenic mice overexpressing the three major neuronal isoforms of the human amyloid precursor protein (APP), APP695, APP751, APP770 may provide an animal model for the analysis of the mechanisms and risk factors leading to amyloid deposition in Alzheimer's disease (AD) and Downs syndrome (DS). We have therefore generated transgenic mice expressing these isoforms under the control of the strong metallothionin promoter. Although we can demonstrate expression of transgenic APP in several tissues including brain, expression levels never exceeded those of the endogenous mouse APP. So far we have not been able to detect pathological changes resembling those of AD and DS. However we could demonstrate significant changes in spatial navigation tasks and motor behavior in the transgenic mice. The question remains open whether overexpression of APP is sufficient to induce Alzheimer pathology.
Collapse
Affiliation(s)
- C Czech
- Center for Molecular Biology, Heidelberg (ZMBH), University of Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
32
|
Harrington CR, Wischik CM. Molecular Pathobiology of Alzheimer’s Disease. DEMENTIA 1994. [DOI: 10.1007/978-1-4615-6805-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Sandhu FA, Porter RH, Eller RV, Zain SB, Salim M, Greenamyre JT. NMDA and AMPA receptors in transgenic mice expressing human beta-amyloid protein. J Neurochem 1993; 61:2286-9. [PMID: 7504089 DOI: 10.1111/j.1471-4159.1993.tb07471.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The human beta-amyloid protein may play an important, possibly primary, role in the pathogenesis of Alzheimer's disease (AD), and it appears to potentiate the susceptibility of neurons to excitotoxicity. AD is associated with alterations in the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) subtypes of glutamate receptors, and it has been suggested that excitotoxicity may play a role in neuronal damage in AD. In this study, we have used quantitative receptor autoradiography to examine NMDA and AMPA receptors in transgenic mice that contain the gene for the carboxyl-terminal 100 amino acids of the human amyloid precursor protein, beginning with the beta-amyloid region, which is under the control of the JC viral early region promoter. Reverse transcriptase-polymerase chain reaction confirmed that the brains of transgenic mice expressed beta-amyloid mRNA and that control mice did not. NMDA receptors, assessed with [3H]MK-801, were unchanged in the transgenic compared with the control mice. In the transgenic mice, there were no significant changes in [3H]AMPA receptor binding compared with controls. This study represents the first attempt to evaluate in transgenic mice the in vivo interaction between beta-amyloid expression and excitatory amino acid receptors.
Collapse
Affiliation(s)
- F A Sandhu
- Department of Biochemistry, University of Rochester School of Medicine, New York 14642
| | | | | | | | | | | |
Collapse
|
34
|
Lannfelt L, Folkesson R, Mohammed AH, Winblad B, Hellgren D, Duff K, Hardy J. Alzheimer's disease: molecular genetics and transgenic animal models. Behav Brain Res 1993; 57:207-13. [PMID: 8117426 DOI: 10.1016/0166-4328(93)90137-f] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Disease-causing mutations in the amyloid precursor protein (APP) gene have been found on chromosome 21 during the last 2 years in some early onset Alzheimer's disease (AD) families. Genetic evidence shows that other genes than the APP are also involved in the aetiology of AD. Linkage to a loci on chromosome 14 has been found in early onset disease. The identification of APP mutation has led to the realization that APP mismetabolism is a central event in the aetiology and pathogenesis of the disease. Experiments to test this in transgenic mice have so far met with little success. There are many possible explanations for the problems to generate transgenic mice. These include the possibilities that mice are incapable of developing AD for reasons dependent on their APP sequence; and that appropriate regulation of APP gene is required for pathology to develop. Current attempts that seem promising to model the disease pathology are the use of homologous recombination to insert the pathogenic mutation and transfection of YACs into transgenic animals.
Collapse
Affiliation(s)
- L Lannfelt
- Department of Geriatric Medicine, Karolinska Institute, Huddinge University Hospital, Sweden
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
One of the principal identifying features of Alzheimer's disease (AD) is the extracellular deposition of fibrous protein aggregates in the form of amyloid plaques. The major component of these deposits is the amyloid beta (A beta) protein that is a proteolytic fragment of the integral membrane amyloid precursor protein (APP). Understanding the pathways responsible for A beta formation and the mechanism by which it accumulates within the brain could provide key answers to AD pathogenesis. This review will explore the biochemistry of A beta and its precursor, the possible causal relationship between amyloid and AD-associated neuronal death, the role of additional cellular elements in amyloid formation, and the potential application of these components in clinical diagnosis.
Collapse
Affiliation(s)
- P E Fraser
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
36
|
Fukuchi K, Ogburn CE, Smith AC, Kunkel DD, Furlong CE, Deeb SS, Nochlin D, Sumi SM, Martin GM. Transgenic animal models for Alzheimer's disease. Ann N Y Acad Sci 1993; 695:217-23. [PMID: 8239285 DOI: 10.1111/j.1749-6632.1993.tb23055.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The neuropathology of Alzheimer's disease is characterized by the deposition of abnormal protein aggregates. The main constituent of the deposition is beta-amyloid protein. A seminal role of this protein is supported by the discovery of point mutations in the gene of its precursor protein in certain forms of familial Alzheimer's disease. In vitro (cultured neuronal cells), overexpression of the precursor protein or a part of the precursor leads to degeneration of neurons, suggesting neurotoxicity of its derivatives. At this time, all of the reported transgenic mice bearing DNA construct for the precursor or a part of the precursor, however, have not developed convincing pathological changes similar to what is observed in patients with Alzheimer's disease. This interesting discrepancy between in vitro and in vivo suggests suppressors in vivo which ameliorate beta-amyloid precursor protein derivative-mediated neurotoxicity.
Collapse
Affiliation(s)
- K Fukuchi
- Department of Pathology, University of Washington, Seattle 98195
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chapter 6. Perspectives on Amyloid and Alzheimer's Disease: A Critical Review. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1993. [DOI: 10.1016/s0065-7743(08)60876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
38
|
Miller CC, Anderton BH. Alzheimer's disease: Transgenic models to test new chemicals and pharmaceuticals. Curr Opin Biotechnol 1992; 3:683-6. [PMID: 1369125 DOI: 10.1016/0958-1669(92)90016-c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease is the most common form of senile dementia and is predicted to become even more prevalent as the proportion of elderly in the population increases over the next few decades. As yet, there are no effective treatments for the disorder. A major limitation to identifying new drugs and therapeutic targets for Alzheimer's disease has been the absence of an animal model displaying typical Alzheimer's pathology. Transgenic technology is now providing a powerful new approach for the development of animal models of Alzheimer's disease.
Collapse
Affiliation(s)
- C C Miller
- Department of Neuroscience, Institute of Psychiatry, Denmark Hill, London, UK
| | | |
Collapse
|
39
|
Shigematsu K, McGeer PL, McGeer EG. Localization of amyloid precursor protein in selective postsynaptic densities of rat cortical neurons. Brain Res 1992; 592:353-7. [PMID: 1280522 DOI: 10.1016/0006-8993(92)91697-d] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
One of the hallmarks of Alzheimer pathology is extracellular deposition of beta-amyloid protein (BAP) which is derived from a larger glycoprotein called amyloid precursor protein (APP). Although APP has often been described as a surface membrane protein, such a localization has not previously been demonstrated at the light or electron microscopic level. We now report the results of immunoelectron microscopy using three specific antibodies against different synthetic fragments of APP. All three antibodies demonstrated a major localization to organelles such as the Golgi apparatus, endoplasmic reticulum and vesicular-like structures. A minor proportion of staining with all three was on selective postsynaptic membranes of asymmetrical synapses, whereas staining of presynaptic membranes was not observed. The morphological evidence suggests that one role of APP may be in association with the function of selective synapses.
Collapse
Affiliation(s)
- K Shigematsu
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
40
|
De Strooper B, Van Leuven F, Van den Berghe H. Alpha 2-macroglobulin and other proteinase inhibitors do not interfere with the secretion of amyloid precursor protein in mouse neuroblastoma cells. FEBS Lett 1992; 308:50-3. [PMID: 1379551 DOI: 10.1016/0014-5793(92)81048-q] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A series of proteinase inhibitors active against proteinases of all four major classes, including highly purified and well-characterized alpha 2-macroglobulin, added to the cell culture medium of murine Neuro 2a neuroblastoma cells did not interfere with APP secretase activity. We therefore advance the hypothesis that APP secretase activity is localized in an intracellular compartment.
Collapse
Affiliation(s)
- B De Strooper
- Center for Human Genetics, University of Leuven, Belgium
| | | | | |
Collapse
|
41
|
Rowland LP. The first decade of molecular genetics in neurology: changing clinical thought and practice. Ann Neurol 1992; 32:207-14. [PMID: 1510360 DOI: 10.1002/ana.410320213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Molecular genetics has had a powerful impact on clinical neurology. Definitions of disease are changing from clinical criteria to DNA analysis, resolving questions about the nature of clinically similar but not identical diseases. Genetic counseling is more reliable. Concepts of mendelian inheritance are being tested and new forms of mutation have been discovered to explain anticipation. Nonmendelian forms of inheritance have emerged; concepts of pathogenesis are on a more secure footing; and novel treatments are being explored.
Collapse
Affiliation(s)
- L P Rowland
- Department of Neurology, H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Diseases, Columbia-Presbyterian Medical Center, New York, NY 10032-2603
| |
Collapse
|
42
|
Affiliation(s)
- J A Hardy
- Department of Biochemistry, St. Mary's Hospital Medical School, London, U.K
| | | |
Collapse
|