1
|
Niavarani A. The role of distinct APOBEC/ADAR mRNA levels in mutational signatures linked to aging and ultraviolet radiation. Sci Rep 2024; 14:15395. [PMID: 38965255 PMCID: PMC11224270 DOI: 10.1038/s41598-024-64986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024] Open
Abstract
The APOBEC/AID family is known for its mutator activity, and recent evidence also supports the potential impact of ADARs. Furthermore, the mutator impacts of APOBEC/ADAR mutations have not yet been investigated. Assessment of pancancer TCGA exomes identified enriched somatic variants among exomes with nonsynonymous APOBEC1, APOBEC3B, APOBEC3C, ADAR, and ADARB1 mutations, compared to exomes with synonymous ones. Principal component (PC) analysis reduced the number of potential players to eight in cancer exomes/genomes, and to five in cancer types. Multivariate regression analysis was used to assess the impact of the PCs on each COSMIC mutational signature among pancancer exomes/genomes and particular cancers, identifying several novel links, including SBS17b, SBS18, and ID7 mainly determined by APOBEC1 mRNA levels; SBS40, ID1, and ID2 by age; SBS3 and SBS16 by APOBEC3A/APOBEC3B mRNA levels; ID5 and DBS9 by DNA repair/replication (DRR) defects; and SBS7a-d, SBS38, ID4, ID8, ID13, and DBS1 by ultraviolet (UV) radiation/ADARB1 mRNA levels. APOBEC/ADAR mutations appeared to potentiate the impact of DRR defects on several mutational signatures, and some factors seemed to inversely affect certain signatures. These findings potentially implicate certain APOBEC/ADAR mutations/mRNA levels in distinct mutational signatures, particularly APOBEC1 mRNA levels in aging-related signatures and ADARB1 mRNA levels in UV radiation-related signatures.
Collapse
Affiliation(s)
- Ahmadreza Niavarani
- Digestive Oncology Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Pfeiffer LS, Stafforst T. Precision RNA base editing with engineered and endogenous effectors. Nat Biotechnol 2023; 41:1526-1542. [PMID: 37735261 DOI: 10.1038/s41587-023-01927-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
RNA base editing refers to the rewriting of genetic information within an intact RNA molecule and serves various functions, such as evasion of the endogenous immune system and regulation of protein function. To achieve this, certain enzymes have been discovered in human cells that catalyze the conversion of one nucleobase into another. This natural process could be exploited to manipulate and recode any base in a target transcript. In contrast to DNA base editing, analogous changes introduced in RNA are not permanent or inheritable but rather allow reversible and doseable effects that appeal to various therapeutic applications. The current practice of RNA base editing involves the deamination of adenosines and cytidines, which are converted to inosines and uridines, respectively. In this Review, we summarize current site-directed RNA base-editing strategies and highlight recent achievements to improve editing efficiency, precision, codon-targeting scope and in vivo delivery into disease-relevant tissues. Besides engineered editing effectors, we focus on strategies to harness endogenous adenosine deaminases acting on RNA (ADAR) enzymes and discuss limitations and future perspectives to apply the tools in basic research and as a therapeutic modality. We expect the field to realize the first RNA base-editing drug soon, likely on a well-defined genetic disease. However, the long-term challenge will be to carve out the sweet spot of the technology where its unique ability is exploited to modulate signaling cues, metabolism or other clinically relevant processes in a safe and doseable manner.
Collapse
Affiliation(s)
- Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Kim K, Shi AB, Kelley K, Chen XS. Unraveling the Enzyme-Substrate Properties for APOBEC3A-Mediated RNA Editing. J Mol Biol 2023; 435:168198. [PMID: 37442413 PMCID: PMC10528890 DOI: 10.1016/j.jmb.2023.168198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
The APOBEC3 family of human cytidine deaminases is involved in various cellular processes, including the innate and acquired immune system, mostly through inducing C-to-U in single-stranded DNA and/or RNA mutations. Although recent studies have examined RNA editing by APOBEC3A (A3A), its intracellular target specificity are not fully characterized. To address this gap, we performed in-depth analysis of cellular RNA editing using our recently developed sensitive cell-based fluorescence assay. Our findings demonstrate that A3A and an A3A-loop1-containing APOBEC3B (A3B) chimera are capable of RNA editing. We observed that A3A prefers to edit specific RNA substrates which are not efficiently deaminated by other APOBEC members. The editing efficiency of A3A is influenced by the RNA sequence contexts and distinct stem-loop secondary structures. Based on the identified RNA specificity features, we predicted potential A3A-editing targets in the encoding region of cellular mRNAs and discovered novel RNA transcripts that are extensively edited by A3A. Furthermore, we found a trend of increased synonymous mutations at the sites for more efficient A3A-editing, indicating evolutionary adaptation to the higher editing rate by A3A. Our results shed light on the intracellular RNA editing properties of A3A and provide insights into new RNA targets and potential impact of A3A-mediated RNA editing.
Collapse
Affiliation(s)
- Kyumin Kim
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA. https://twitter.com/KYUMINK1324
| | - Alan B Shi
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kori Kelley
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
4
|
Martignano F, Di Giorgio S, Mattiuz G, Conticello SG. Commentary on "Poor evidence for host-dependent regular RNA editing in the transcriptome of SARS-CoV-2". J Appl Genet 2022; 63:423-428. [PMID: 35279801 PMCID: PMC8917825 DOI: 10.1007/s13353-022-00688-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/10/2023]
Abstract
Analysis of the SARS-CoV-2 transcriptome has revealed a background of low-frequency intra-host genetic changes with a strong bias towards transitions. A similar pattern is also observed when inter-host variability is considered. We and others have shown that the cellular RNA editing machinery based on ADAR and APOBEC host-deaminases could be involved in the onset of SARS-CoV-2 genetic variability. Our hypothesis is based both on similarities with other known forms of viral genome editing and on the excess of transition changes, which is difficult to explain with errors during viral replication. Zong et al. criticize our analysis on both conceptual and technical grounds. While ultimate proof of an involvement of host deaminases in viral RNA editing will depend on experimental validation, here, we address the criticism to suggest that viral RNA editing is the most reasonable explanation for the observed intra- and inter-host variability.
Collapse
Affiliation(s)
- F Martignano
- Core Research Laboratory, ISPRO, 50139, Firenze, Italy
| | - S Di Giorgio
- German Cancer Research Center (DKFZ), Division of Immune Diversity, Foundation Under Public Law, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - G Mattiuz
- Department of Experimental and Clinical Medicine, University of Florence, 50139, Firenze, Italy
| | - S G Conticello
- Core Research Laboratory, ISPRO, 50139, Firenze, Italy.
- Institute of Clinical Physiology, National Research Council, 56124, Pisa, Italy.
| |
Collapse
|
5
|
Chu Y, Gong J, Wu P, Liu Y, Du Y, Ma L, Fu D, Zhu H, Qu G, Zhu B. Deciphering Precise Gene Transcriptional Expression Using gwINTACT in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:852206. [PMID: 35498641 PMCID: PMC9048029 DOI: 10.3389/fpls.2022.852206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Functional gene transcription mainly occurs in the nucleus and has a significant role in plant physiology. The isolation of nuclei tagged in specific cell type (INTACT) technique provides an efficient and stable nucleus purification method to investigate the dynamic changes of nuclear gene transcriptional expression. However, the application of traditional INTACT in plants is still limited to seedlings or root cells because of severe chloroplast pollution. In this study, we proposed a newly designed and simplified INTACT based on mas-enhanced GFP (eGFP)-SlWIP2 (gwINTACT) for nuclear purification in tomato (Solanum lycopersicum) leaves, flowers, and fruits for the first time. The yield of the nucleus purified using gwINTACT from transgenic tomato leaves was doubled compared with using a traditional INTACT procedure, accompanied by more than 95% removal of chloroplasts. Relative gene expression of ethylene-related genes with ethylene treatment was reevaluated in gwINTACT leaves to reveal more different results from the traditional gene expression assay based on total RNA. Therefore, establishing the gwINTACT system in this study facilitates the precise deciphering of the transcriptional status in various tomato tissues, which lays the foundation for the further experimental study of nucleus-related molecular regulation on fruit ripening, such as ChIP-seq and ATAC-seq.
Collapse
|
6
|
Lerner T, Papavasiliou FN, Pecori R. RNA Editors, Cofactors, and mRNA Targets: An Overview of the C-to-U RNA Editing Machinery and Its Implication in Human Disease. Genes (Basel) 2018; 10:E13. [PMID: 30591678 PMCID: PMC6356216 DOI: 10.3390/genes10010013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
One of the most prevalent epitranscriptomic modifications is RNA editing. In higher eukaryotes, RNA editing is catalyzed by one of two classes of deaminases: ADAR family enzymes that catalyze A-to-I (read as G) editing, and AID/APOBEC family enzymes that catalyze C-to-U. ADAR-catalyzed deamination has been studied extensively. Here we focus on AID/APOBEC-catalyzed editing, and review the emergent knowledge regarding C-to-U editing consequences in the context of human disease.
Collapse
Affiliation(s)
- Taga Lerner
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
- Division of Biosciences, Uni Heidelberg, 69120 Heidelberg, Germany.
| | - F Nina Papavasiliou
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
| | - Riccardo Pecori
- Division of Immune Diversity, Program in Cancer Immunology, German Cancer Research Centre, 69120 Heidelberg, Germany.
| |
Collapse
|
7
|
Niavarani A, Shahrabi Farahani A, Sharafkhah M, Rassoulzadegan M. Pancancer analysis identifies prognostic high-APOBEC1 expression level implicated in cancer in-frame insertions and deletions. Carcinogenesis 2018; 39:327-335. [PMID: 29346513 DOI: 10.1093/carcin/bgy005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Genome insertions and deletions (indels) show tremendous functional impacts despite they are much less common than single nucleotide variants, which are at the center of studies assessing cancer mutational signatures. We studied 8891 tumor samples of 32 types from The Cancer Genome Atlas in order to explore those genes which are potentially implicated in cancer indels. Survival analysis identified in-frame indels as the most important variants predicting adverse outcome. Transcriptome-wide association study identified 16 genes overexpressed in both tumor samples and tumor types with high number of in-frame indels, of whom four (APOBEC1, BCL2L15, FOXL1 and PDX1) were identified with gene products distributed within the nucleus. APOBEC1 emerged as the mere consistently hypomethylated gene in tumor samples with high number of in-frame indels. The correlation of APOBEC1 expression levels with cancer indels was independent of age and defects in DNA homologous recombination (HR) and/or mismatch repair. Unlike frame-shift indels, triplet repeat motifs were found to occur frequently at in-frame indel sites. The splicing variant 3, making a shorter isoform b, showed essentially all the same indel correlations as of APOBEC1. Expression levels of both APOBEC1 and variant 3 were found to be predicting adverse prognosis independent of DNA HR and mismatch repair. Not less importantly, high level of variant 3 in paired normal tissues was also proved to predict cancer outcome. Our findings propose APOBEC1 and isoform b as the potential endogenous mutators implicated in cancer in-frame indels and pave the way for their use as novel prognostic tumor markers.
Collapse
Affiliation(s)
- Ahmadreza Niavarani
- Digestive Oncology Research Center, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Asieh Shahrabi Farahani
- Digestive Oncology Research Center, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharafkhah
- Digestive Oncology Research Center, Digestive Disease Research Institute (DDRI), Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Rassoulzadegan
- Institut Valrose Biologie, INSERM U1091, Université Nice Sophia Antipolis, Nice, France
| |
Collapse
|
8
|
Damsteegt EL, Davie A, Lokman PM. The evolution of apolipoprotein B and its mRNA editing complex. Does the lack of editing contribute to hypertriglyceridemia? Gene 2017; 641:46-54. [PMID: 29031774 DOI: 10.1016/j.gene.2017.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/18/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022]
Abstract
The evolution of apolipoprotein B (Apob) has been intensely researched due to its importance during lipid transport. Mammalian full-length apob100 can be post-transcriptionally edited by the enzyme apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like complex-one (Apobec1) resulting in a truncated Apob, known as Apob48. Whilst both full-length and truncated forms of Apob are important for normal lipid homeostasis in mammals, there is no evidence for the presence of apob mRNA editing prior to the divergence of the mammals, yet, non-mammalian vertebrates appear to function normally with only Apob100. To date, the majority of the research carried out in non-mammalian vertebrates has focused on chickens with only a very limited number examining apob mRNA editing in fish. This study focused on the molecular evolution of Apobec1 and Apob in order to ascertain if apob mRNA editing occurs in eels, a basal teleost which represents an evolutionarily important animal group. No evidence for the presence of Apobec1 or the ability for eel apob to be edited was found. However, an important link between mutant mice and the evident hypertriglyceridemia in the plasma of non-mammalian vertebrates was made. This study has provided imperative evidence to help bridge the evolutionary gap between fish and mammals and provides further support for the lack of apob mRNA editing in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Erin L Damsteegt
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand.
| | - Andrew Davie
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - P Mark Lokman
- Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
9
|
Meier JC, Kankowski S, Krestel H, Hetsch F. RNA Editing-Systemic Relevance and Clue to Disease Mechanisms? Front Mol Neurosci 2016; 9:124. [PMID: 27932948 PMCID: PMC5120146 DOI: 10.3389/fnmol.2016.00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/04/2016] [Indexed: 11/13/2022] Open
Abstract
Recent advances in sequencing technologies led to the identification of a plethora of different genes and several hundreds of amino acid recoding edited positions. Changes in editing rates of some of these positions were associated with diseases such as atherosclerosis, myopathy, epilepsy, major depression disorder, schizophrenia and other mental disorders as well as cancer and brain tumors. This review article summarizes our current knowledge on that front and presents glycine receptor C-to-U RNA editing as a first example of disease-associated increased RNA editing that includes assessment of disease mechanisms of the corresponding gene product in an animal model.
Collapse
Affiliation(s)
- Jochen C Meier
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Svenja Kankowski
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| | - Heinz Krestel
- Neurology, Universitätsspital und Universität Bern Bern, Switzerland
| | - Florian Hetsch
- Cell Physiology, Technische Universität Braunschweig Braunschweig, Germany
| |
Collapse
|
10
|
Severi F, Conticello SG. Flow-cytometric visualization of C>U mRNA editing reveals the dynamics of the process in live cells. RNA Biol 2016; 12:389-97. [PMID: 25806564 PMCID: PMC4615904 DOI: 10.1080/15476286.2015.1026033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
APOBEC1 is the catalytic subunit of the complex that edits ApolipoproteinB (ApoB) mRNA, which specifically deaminates cytidine 6666 to uracil in the human transcript. The editing leads to the generation of a stop codon, resulting in the synthesis of a truncated form of ApoB. We have developed a method to quantitatively assay ApoB RNA editing in live cells by using a double fluorescent mCherry-EGFP chimera containing a ∼300bp fragment encompassing the region of ApoB subject to RNA editing. Coexpression of APOBEC1 together with this chimera causes specific RNA editing of the ApoB fragment. The insertion of a stop codon between the mCherry and EGFP thus induces the loss of EGFP fluorescence. Using this method we analyze the dynamics of APOBEC1-dependent RNA editing under various conditions. Namely we show the interplay of APOBEC1 with known interactors (ACF, hnRNP-C1, GRY-RBP) in cells that are RNA editing-proficient (HuH-7) or -deficient (HEK-293T), and the effects of restricted cellular localization of APOBEC1 on the efficiency of the editing. Furthermore, our approach is effective in assaying the induction of RNA editing in Caco-2, a cellular model physiologically capable of ApoB RNA editing.
Collapse
Key Words
- ACF, APOBEC1 Complementation Factor
- ADAR, Adenosine Deaminase, RNA-specific
- ADAT, Adenosine Deaminase, tRNA-specific
- AID/APOBECs
- APOBEC1, Apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1
- ApoB, Apolipoprotein B
- EGFP, Enhanced Green Fluorescent Protein
- FACS, Fluorescence activated cell sorting
- FBS, Fetal bovine serum
- GRY-RBP, Glycine-Arginine-Tyrosine-rich RNA-binding protein
- RBM47, RNA binding motif protein 47
- RNA editing
- cds, coding sequence
- cytosine deaminase
- hnRNP-C1, heterogeneous nuclear ribonucleoprotein C1
- lipid metabolism
- mRNA
- post-transcriptional modification
Collapse
Affiliation(s)
- Francesco Severi
- a Core Research Laboratory; Istituto Toscano Tumori ; Firenze , Italy
| | | |
Collapse
|
11
|
Abstract
Cytidine (C) to Uridine (U) RNA editing is a post-trancriptional modification that until recently was known to only affect Apolipoprotein b (Apob) RNA and minimally require 2 components of the C to U editosome, the deaminase APOBEC1 and the RNA-binding protein A1CF. Our latest work has identified a novel RNA-binding protein, RBM47, as a core component of the editosome, which can substitute A1CF for the editing of ApoB mRNA. In addition, new RNA species that are subjected to C to U editing have been identified. Here, we highlight these recent discoveries and discuss how they change our view of the composition of the C to U editing machinery and expand our knowledge of the functional attributes of C to U RNA editing.
Collapse
Affiliation(s)
- Nicolas Fossat
- a Embryology Unit; Children's Medical Research Institute ; Westmead , Australia
| | | |
Collapse
|
12
|
He X, Li J, Wu J, Zhang M, Gao P. Associations between activation-induced cytidine deaminase/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like cytidine deaminase expression, hepatitis B virus (HBV) replication and HBV-associated liver disease (Review). Mol Med Rep 2015; 12:6405-14. [PMID: 26398702 PMCID: PMC4626158 DOI: 10.3892/mmr.2015.4312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
The hepatitis B virus (HBV) infection is a major risk factor in the development of chronic hepatitis (CH) and hepa-tocellular carcinoma (HCC). The activation-induced cytidine deaminase (AID)/apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases is significant in innate immunity, as it restricts numerous viruses, including HBV, through hypermutation-dependent and -independent mechanisms. It is important to induce covalently closed circular (ccc)DNA degradation by interferon-α without causing side effects in the infected host cell. Furthermore, organisms possess multiple mechanisms to regulate the expression of AID/APOBECs, control their enzymatic activity and restrict their access to DNA or RNA substrates. Therefore, the AID/APOBECs present promising targets for preventing and treating viral infections. In addition, gene polymorphisms of the AID/APOBEC family may alter host susceptibility to HBV acquisition and CH disease progression. Through G-to-A hypermutation, AID/APOBECs also edit HBV DNA and facilitate the mutation of HBV DNA, which may assist the virus to evolve and potentially escape from the immune responses. The AID/APOBEC family and their associated editing patterns may also exert oncogenic activity. Understanding the effects of cytidine deaminases in CH virus-induced hepatocarcinogenesis may aid with developing efficient prophylactic and therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Xiuting He
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jie Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Wu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Manli Zhang
- Department of Gastroenterology, The Second Branch of The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
13
|
Frésard L, Leroux S, Roux PF, Klopp C, Fabre S, Esquerré D, Dehais P, Djari A, Gourichon D, Lagarrigue S, Pitel F. Genome-Wide Characterization of RNA Editing in Chicken Embryos Reveals Common Features among Vertebrates. PLoS One 2015; 10:e0126776. [PMID: 26024316 PMCID: PMC4449034 DOI: 10.1371/journal.pone.0126776] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/07/2015] [Indexed: 12/15/2022] Open
Abstract
RNA editing results in a post-transcriptional nucleotide change in the RNA sequence that creates an alternative nucleotide not present in the DNA sequence. This leads to a diversification of transcription products with potential functional consequences. Two nucleotide substitutions are mainly described in animals, from adenosine to inosine (A-to-I) and from cytidine to uridine (C-to-U). This phenomenon is described in more details in mammals, notably since the availability of next generation sequencing technologies allowing whole genome screening of RNA-DNA differences. The number of studies recording RNA editing in other vertebrates like chicken is still limited. We chose to use high throughput sequencing technologies to search for RNA editing in chicken, and to extend the knowledge of its conservation among vertebrates. We performed sequencing of RNA and DNA from 8 embryos. Being aware of common pitfalls inherent to sequence analyses that lead to false positive discovery, we stringently filtered our datasets and found fewer than 40 reliable candidates. Conservation of particular sites of RNA editing was attested by the presence of 3 edited sites previously detected in mammals. We then characterized editing levels for selected candidates in several tissues and at different time points, from 4.5 days of embryonic development to adults, and observed a clear tissue-specificity and a gradual increase of editing level with time. By characterizing the RNA editing landscape in chicken, our results highlight the extent of evolutionary conservation of this phenomenon within vertebrates, attest to its tissue and stage specificity and provide support of the absence of non A-to-I events from the chicken transcriptome.
Collapse
Affiliation(s)
- Laure Frésard
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Sophie Leroux
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Pierre-François Roux
- Agrocampus Ouest, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
- INRA, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
| | - Christophe Klopp
- INRA, Sigenae Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Stéphane Fabre
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Diane Esquerré
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- INRA, GeT-PlaGe Genotoul, Castanet-Tolosan, France
| | - Patrice Dehais
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- INRA, Sigenae Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Anis Djari
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- INRA, Sigenae Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - David Gourichon
- INRA, Pôle d'Expérimentation Avicole de Tours, Nouzilly, France
| | - Sandrine Lagarrigue
- Agrocampus Ouest, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
- INRA, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
| | - Frédérique Pitel
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| |
Collapse
|
14
|
Moris A, Murray S, Cardinaud S. AID and APOBECs span the gap between innate and adaptive immunity. Front Microbiol 2014; 5:534. [PMID: 25352838 PMCID: PMC4195361 DOI: 10.3389/fmicb.2014.00534] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022] Open
Abstract
The activation-induced deaminase (AID)/APOBEC cytidine deaminases participate in a diversity of biological processes from the regulation of protein expression to embryonic development and host defenses. In its classical role, AID mutates germline-encoded sequences of B cell receptors, a key aspect of adaptive immunity, and APOBEC1, mutates apoprotein B pre-mRNA, yielding two isoforms important for cellular function and plasma lipid metabolism. Investigations over the last ten years have uncovered a role of the APOBEC superfamily in intrinsic immunity against viruses and innate immunity against viral infection by deamination and mutation of viral genomes. Further, discovery in the area of human immunodeficiency virus (HIV) infection revealed that the HIV viral infectivity factor protein interacts with APOBEC3G, targeting it for proteosomal degradation, overriding its antiviral function. More recently, our and others' work have uncovered that the AID and APOBEC cytidine deaminase family members have an even more direct link between activity against viral infection and induction and shaping of adaptive immunity than previously thought, including that of antigen processing for cytotoxic T lymphocyte activity and natural killer cell activation. Newly ascribed functions of these cytodine deaminases will be discussed, including their newly identified roles in adaptive immunity, epigenetic regulation, and cell differentiation. Herein this review we discuss AID and APOBEC cytodine deaminases as a link between innate and adaptive immunity uncovered by recent studies.
Collapse
Affiliation(s)
- Arnaud Moris
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France ; Department of Immunology, Hôpital Pitié-Salpêtière Paris, France
| | - Shannon Murray
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| | - Sylvain Cardinaud
- Center for Immunology and Microbial Infections, Faculty of Medicine, Université Paris-Sorbonne UPMC Univ Paris 06, Paris, France ; Center for Immunology and Microbial Infections, Institut National de la Santé et de la Recherche Médicale U1135, Paris, France ; Center for Immunology and Microbial Infections, Centre National de la Recherche Scientifique ERL 8255, Paris, France
| |
Collapse
|
15
|
Vieira VC, Soares MA. The role of cytidine deaminases on innate immune responses against human viral infections. BIOMED RESEARCH INTERNATIONAL 2013; 2013:683095. [PMID: 23865062 PMCID: PMC3707226 DOI: 10.1155/2013/683095] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 02/06/2023]
Abstract
The APOBEC family of proteins comprises deaminase enzymes that edit DNA and/or RNA sequences. The APOBEC3 subgroup plays an important role on the innate immune system, acting on host defense against exogenous viruses and endogenous retroelements. The role of APOBEC3 proteins in the inhibition of viral infection was firstly described for HIV-1. However, in the past few years many studies have also shown evidence of APOBEC3 action on other viruses associated with human diseases, including HTLV, HCV, HBV, HPV, HSV-1, and EBV. APOBEC3 inhibits these viruses through a series of editing-dependent and independent mechanisms. Many viruses have evolved mechanisms to counteract APOBEC effects, and strategies that enhance APOBEC3 activity constitute a new approach for antiviral drug development. On the other hand, novel evidence that editing by APOBEC3 constitutes a source for viral genetic diversification and evolution has emerged. Furthermore, a possible role in cancer development has been shown for these host enzymes. Therefore, understanding the role of deaminases on the immune response against infectious agents, as well as their role in human disease, has become pivotal. This review summarizes the state-of-the-art knowledge of the impact of APOBEC enzymes on human viruses of distinct families and harboring disparate replication strategies.
Collapse
Affiliation(s)
- Valdimara C. Vieira
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rua André Cavalcanti, No. 37–4 Andar, Bairro de Fátima, 20231-050 Rio de Janeiro, RJ, Brazil
| | - Marcelo A. Soares
- Programa de Oncovirologia, Instituto Nacional de Câncer, Rua André Cavalcanti, No. 37–4 Andar, Bairro de Fátima, 20231-050 Rio de Janeiro, RJ, Brazil
- Departamento de Genética, Universidade Federal do Rio de Janeiro, 21949-570 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Davidson NO. RNA editing of the apolipoprotein B gene A mechanism to regulate the atherogenic potential of intestinal lipoproteins? Trends Cardiovasc Med 2012; 4:231-5. [PMID: 21244872 DOI: 10.1016/1050-1738(94)90039-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Apolipoprotein B (apo B) circulates in two distinct isomorphic forms, each the product of a single gene. The larger form, referred to as apo B-100, is the major protein of plasma low-density lipoproteins (LDLs) and is synthesized by the human liver. The smaller form, referred to as apo B-48, is produced in the small intestine as a result of a site-specific cytidine deamination, which alters a CAA codon, encoding glutamine in the unedited (apo B-100) mRNA to UAA, which specifies an in-frame stop codon. Apo B-48 lacks the domains involved in LDL receptor interaction and in complex formation with apolipoprotein(a). DNA sequence analysis of the gene that mediates this site-specific cytidine deamination suggests that apo B mRNA editing is an evolutionary adaptation to limit the atherogenic potential of intestinal lipoproteins.
Collapse
Affiliation(s)
- N O Davidson
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Smith HC, Bennett RP, Kizilyer A, McDougall WM, Prohaska KM. Functions and regulation of the APOBEC family of proteins. Semin Cell Dev Biol 2011; 23:258-68. [PMID: 22001110 DOI: 10.1016/j.semcdb.2011.10.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
APOBEC1 is a cytidine deaminase that edits messenger RNAs and was the first enzyme in the APOBEC family to be functionally characterized. Under appropriate conditions APOBEC1 also deaminates deoxycytidine in single-stranded DNA (ssDNA). The other ten members of the APOBEC family have not been fully characterized however several have deoxycytidine deaminase activity on ssDNAs. Despite the nucleic acid substrate preferences of different APOBEC proteins, a common feature appears to be their intrinsic ability to bind to RNA as well as to ssDNA. RNA binding to APOBEC proteins together with protein-protein interactions, post-translation modifications and subcellular localization serve as biological modulators controlling the DNA mutagenic activity of these potentially genotoxic proteins.
Collapse
Affiliation(s)
- Harold C Smith
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
18
|
Blanc V, Davidson NO. APOBEC-1-mediated RNA editing. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:594-602. [PMID: 20836050 DOI: 10.1002/wsbm.82] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA editing defines a molecular process by which a nucleotide sequence is modified in the RNA transcript and results in an amino acid change in the recoded message from that specified in the gene. We will restrict our attention to the type of RNA editing peculiar to mammals, i.e., nuclear C to U RNA editing. This category of RNA editing contrasts with RNA modifications described in plants, i.e., organellar RNA editing (reviewed in Ref 1). Mammalian RNA editing is genetically and biochemically classified into two groups, namely insertion-deletional and substitutional. Substitutional RNA editing is exclusive to mammals, again with two types reported, namely adenosine to inosine and cytosine to uracil (C to U). This review will examine mammalian C to U RNA editing of apolipoproteinB (apoB) RNA and the role of the catalytic deaminase Apobec-1. We will speculate on the functions of Apobec-1 beyond C to U RNA editing as implied from its ability to bind AU-rich RNAs and discuss evidence that dysregulation of Apobec-1 expression might be associated with carcinogenesis through aberrant RNA editing or altered RNA stability.
Collapse
Affiliation(s)
- Valerie Blanc
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Nicholas O Davidson
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63105, USA
| |
Collapse
|
19
|
Galloway CA, Ashton J, Sparks JD, Mooney RA, Smith HC. Metabolic regulation of APOBEC-1 complementation factor trafficking in mouse models of obesity and its positive correlation with the expression of ApoB protein in hepatocytes. Biochim Biophys Acta Mol Basis Dis 2010; 1802:976-85. [PMID: 20541607 DOI: 10.1016/j.bbadis.2010.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 10/19/2022]
Abstract
APOBEC-1 Complementation Factor (ACF) is an RNA-binding protein that interacts with apoB mRNA to support RNA editing. ACF traffics between the cytoplasm and nucleus. It is retained in the nucleus in response to elevated serum insulin levels where it supports enhanced apoB mRNA editing. In this report we tested whether ACF may have the ability to regulate nuclear export of apoB mRNA to the sites of translation in the cytoplasm. Using mouse models of obesity-induced insulin resistance and primary hepatocyte cultures we demonstrated that both nuclear retention of ACF and apoB mRNA editing were reduced in the livers of hyperinsulinemic obese mice relative to lean controls. Coincident with an increase in the recovery of ACF in the cytoplasm was an increase in the proportion of total cellular apoB mRNA recovered in cytoplasmic extracts. Cytoplasmic ACF from both lean controls and obese mouse livers was enriched in endosomal fractions associated with apoB mRNA translation and ApoB lipoprotein assembly. Inhibition of ACF export to the cytoplasm resulted in nuclear retention of apoB mRNA and reduced both intracellular and secreted ApoB protein in primary hepatocytes. The importance of ACF for modulating ApoB was supported by the finding that RNAi knockdown of ACF reduced ApoB secretion. An additional discovery from this study was the finding that leptin is a suppressor ACF expression. Dyslipidemia is a common pathology associated with insulin resistance that is in part due to the loss of insulin controlled secretion of lipid in ApoB-containing very low density lipoproteins. The data from animal models suggested that loss of insulin regulated ACF trafficking and leptin regulated ACF expression may make an early contribution to the overall pathology associated with very low density lipoprotein secretion from the liver in obese individuals.
Collapse
Affiliation(s)
- Chad A Galloway
- University of Rochester, Department of Biochemistry and Biophysics, 601 Elmwood Ave Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
20
|
López-Soldado I, Avella M, Botham KM. Differential influence of different dietary fatty acids on very low-density lipoprotein secretion when delivered to hepatocytes in chylomicron remnants. Metabolism 2009; 58:186-95. [PMID: 19154951 PMCID: PMC2779336 DOI: 10.1016/j.metabol.2008.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 09/22/2008] [Indexed: 11/28/2022]
Abstract
The influence of dietary fats carried in chylomicron remnants on the hepatic secretion of very low-density lipoprotein (VLDL) was investigated using chylomicron remnant-like particles (CRLPs) and cultured rat hepatocytes as the experimental model. Chylomicron remnant-like particles containing triacylglycerol (TG) from palm, olive, or corn (enriched in saturated, monounsaturated, or n-6 polyunsaturated fatty acids) oil, respectively, were incubated with cultured hepatocytes for 5 hours. The medium was then removed and replaced with medium without CRLPs; and the secretion of TG, cholesterol, and apolipoprotein B48 during the following 16 hours was determined. Secretion of TG into the d less than 1.050-g/mL fraction containing VLDL was unaffected by olive CRLPs, but was significantly increased in cells exposed to palm or corn CRLPs in comparison with both olive CRLPs and control incubations without CRLPs. Secretion of apolipoprotein B48, however, was not changed by any of the CRLP types. Apolipoprotein B messenger RNA levels were decreased by olive and corn CRLPs, and 3-hydroxy-3-methylglutaryl coenzyme A reductase messenger RNA abundance was increased by palm CRLPs; but expression of other genes involved in the regulation of VLDL secretion was unaffected. These findings demonstrate that CRLPs enriched in saturated fatty acids or n-6 polyunsaturated fatty acids increase the secretion of TG in VLDL, possibly because of the secretion of larger particles, whereas those enriched in monounsaturated fatty acids have no effect. Thus, different dietary fats have differential effects on VLDL secretion directly when delivered to the liver in chylomicron remnants.
Collapse
Affiliation(s)
| | | | - Kathleen M. Botham
- Department of Veterinary Basic Sciences, The Royal Veterinary College, NW1 0TU London, United Kingdom
| |
Collapse
|
21
|
Ikeda T, Ohsugi T, Kimura T, Matsushita S, Maeda Y, Harada S, Koito A. The antiretroviral potency of APOBEC1 deaminase from small animal species. Nucleic Acids Res 2008; 36:6859-71. [PMID: 18971252 PMCID: PMC2588513 DOI: 10.1093/nar/gkn802] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although the role of the APOBEC3-dependent retroelement restriction system as an intrinsic immune defense against human immunodeficiency virus type1 (HIV-1) infection is becoming clear, only the rat ortholog of mammalian APOBEC1s (A1) thus far has been shown to possess antiviral activity. Here, we cloned A1 cDNAs from small animal species, and showed that similar to rat A1, both wild-type and Δvif HIV-1 infection was inhibited by mouse and hamster A1 (4- to 10-fold), whereas human A1 had negligible effects. Moreover, rabbit A1 significantly reduced the infectivity of both HIV-1 virions (>300-fold), as well as that of SIVmac, SIVagm, FIV and murine leukemia virus. Immunoblot analysis showed that A1s were efficiently incorporated into the HIV-1 virion, and their packaging is mediated through an interaction with the nucleocapsid Gag domain. Interestingly, there was a clear accumulation of particular C-T changes in the genomic RNAs of HIV-1 produced in their presence, with few G-A changes in the proviral DNA. Together, these data reveal that A1 may function as a defense mechanism, regulating retroelements in a wide range of mammalian species.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Department of Retrovirology and Self-Defense, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Bennett RP, Presnyak V, Wedekind JE, Smith HC. Nuclear Exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding. J Biol Chem 2007; 283:7320-7. [PMID: 18165230 DOI: 10.1074/jbc.m708567200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human APOBEC3G (hA3G) is a host factor that defends against HIV-1 as well as other exogenous retroviruses and endogenous retroelements. To this end, hA3G is restricted to the cytoplasm of T lymphocytes where it interacts with viral RNA and proteins to assemble with viral particles causing a post-entry block during reverse transcription. hA3G also exhibits a mechanism to inhibit the reverse transcription of retroelements by RNA binding and sequestration into mRNA processing centers in the cytoplasm. We have determined that the molecular basis for this specialized property of hA3G is a novel cytoplasmic retention signal (CRS) that is necessary and sufficient to restrict wild-type hA3G and chimeric constructs to the cytoplasm. The CRS resides within amino acids 113-128 and is embedded within a basic flanking sequence and does not require RNA binding to retain hA3G in the cytoplasm. Paralogs of hA3G that have nuclear or cytoplasmic distributions differ from hA3G within the region encompassing the CRS motif with respect to charge and amino acid composition. We propose that the CRS enables hA3G to interact with cytoplasmic factors, and thereby enables hA3G to serve in host cell defense by restricting an antiviral sentinel to the cytoplasm. The CRS lies in a region involved in both Gag and Vif interactions; therefore, identification of this motif has important implications for the design of therapeutics that target HIV-1 while maintaining antiviral and cellular functions.
Collapse
Affiliation(s)
- Ryan P Bennett
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
23
|
Martínez R, Lacort M, Ruiz-Sanz JI, Ruiz-Larrea MB. Ferrylmyoglobin impairs secretion of VLDL triacylglycerols from stored intracellular pools: Involvement of lipid peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:590-9. [PMID: 17478120 DOI: 10.1016/j.bbalip.2007.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 03/19/2007] [Accepted: 03/26/2007] [Indexed: 11/28/2022]
Abstract
Ferrylmyoglobin (ferrylMb) may play a major role in vivo under certain pathological conditions. Preliminary experiments showed that ferrylmyoglobin induced a mild oxidative stress in rat hepatocytes, mainly reflected by early lipid peroxidation. One of the major functions of hepatocytes is the synthesis, secretion and distribution of lipids to other cells. The aim of this work was to examine whether ferrylMb affected the synthesis and secretion of triacylglycerols (TAG), and the possible involvement of lipid peroxidation on these effects. The heme protein completely impaired VLDL secretion, affecting both the lipid and apoB components of the lipoprotein particle. The incorporation of [(3)H]-oleate into newly synthesized diacylglycerol and TAG was not altered by ferrylMb. The co-treatment of cells with alpha-tocopherol prevented lipid peroxidation and concomitantly reverted VLDL TAG secretion to control values. Importantly, although ferrylMb dramatically blocked prelabeled TAG secretion, newly synthesized TAG secretion was not impaired. These data indicate that lipid peroxidation elicited by ferrylMb modulates the VLDL TAG secretion process, specifically affecting the stored intracellular TAG mobilization, rather than de novo synthesis. Apart from its potential role in vivo, ferrylmyoglobin constitutes a useful model for studying the interactions between lipid peroxidation and the specific TAG pool dependence for VLDL secretion.
Collapse
Affiliation(s)
- Rosa Martínez
- Department of Physiology, Medicine School, University of the Basque Country, 48080-Bilbao, Spain
| | | | | | | |
Collapse
|
24
|
Abstract
RNA editing is a process through which the nucleotide sequence specified in the genomic template is modified to produce a different nucleotide sequence in the transcript. RNA editing is an important mechanism of genetic regulation that amplifies genetic plasticity by allowing the production of alternative protein products from a single gene. There are two generic classes of RNA editing in nuclei, involving enzymatic deamination of either C-to-U or A-to-I nucleotides. The best characterized example of C-to-U RNA editing is that of apolipoprotein B (apoB), which is mediated by a holoenzyme that contains a minimal core composed of an RNA-specific cytidine deaminase apobec-1, and its cofactor apobec-1 complementation factor (ACF). C-to-U editing of apoB RNA generates two different isoforms--apoB100 and apoB48--from a single transcript. Both are important regulators of lipid transport and metabolism, and are functionally distinct. C-to-U apoB RNA editing is regulated by a range of factors including developmental, nutritional, environmental, and metabolic stimuli. Rodent models have provided a tractable system in which to study the effects of such stimuli on lipid metabolism. In addition, both transgenic and gene knockout experiments have provided important insights into gain and loss of function approaches for studying C-to-U RNA editing in a murine background.
Collapse
Affiliation(s)
- Soo-Jin Cho
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
25
|
Conticello SG, Langlois MA, Yang Z, Neuberger MS. DNA deamination in immunity: AID in the context of its APOBEC relatives. Adv Immunol 2007; 94:37-73. [PMID: 17560271 DOI: 10.1016/s0065-2776(06)94002-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The activation-induced cytidine deaminase (AID)/apolipoprotein B RNA-editing catalytic component (APOBEC) family is a vertebrate-restricted subgrouping of a superfamily of zinc (Zn)-dependent deaminases that has members distributed throughout the biological world. AID and APOBEC2 are the oldest family members with APOBEC1 and the APOBEC3s being later arrivals restricted to placental mammals. Many AID/APOBEC family members exhibit cytidine deaminase activity on polynucleotides, although in different physiological contexts. Here, we examine the AID/APOBEC proteins in the context of the entire Zn-dependent deaminase superfamily. On the basis of secondary structure predictions, we propose that the cytosine and tRNA deaminases are likely to provide better structural paradigms for the AID/APOBEC family than do the cytidine deaminases, to which they have conventionally been compared. These comparisons yield predictions concerning likely polynucleotide-interacting residues in AID/APOBEC3s, predictions that are supported by mutagenesis studies. We also focus on a specific comparison between AID and the APOBEC3s. Both are DNA deaminases that function in immunity and are responsible for the hypermutation of their target substrates. AID functions in the adaptive immune system to diversify antibodies with targeted DNA deamination being central to this function. APOBEC3s function as part of an innate pathway of immunity to retroviruses with targeted DNA deamination being central to their activity in retroviral hypermutation. However, the mechanism by which the APOBEC3s fulfill their function of retroviral restriction remains unresolved.
Collapse
Affiliation(s)
- Silvestro G Conticello
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom
| | | | | | | |
Collapse
|
26
|
Lehmann DM, Galloway CA, MacElrevey C, Sowden MP, Wedekind JE, Smith HC. Functional characterization of APOBEC-1 complementation factor phosphorylation sites. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:408-18. [PMID: 17229474 PMCID: PMC1847399 DOI: 10.1016/j.bbamcr.2006.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/13/2006] [Accepted: 11/27/2006] [Indexed: 11/17/2022]
Abstract
ApoB mRNA editing involves site-specific deamination of cytidine 6666 producing an in-frame translation stop codon. Editing minimally requires APOBEC-1 and APOBEC-1 complementation factor (ACF). Metabolic stimulation of apoB mRNA editing in hepatocytes is associated with serine phosphorylation of ACF localized to editing competent, nuclear 27S editosomes. We demonstrate that activation of protein kinase C (PKC) stimulated editing and enhanced ACF phosphorylation in rat primary hepatocytes. Conversely, activation of protein kinase A (PKA) had no effect on editing. Recombinant PKC efficiently phosphorylated purified ACF64 protein in vitro, whereas PKA did not. Mutagenesis of predicted PKC phosphorylation sites S154 and S368 to alanine inhibited ethanol-stimulated induction of editing suggesting that these sites function in the metabolic regulation of editing. Consistent with this interpretation, substitution of S154 and S368 with aspartic acid stimulated editing to levels comparable to ethanol treatment in control McArdle RH7777 cells. These data suggest that phosphorylation of ACF by PKC may be a key regulatory mechanism of apoB mRNA editing in rat hepatocytes.
Collapse
Affiliation(s)
- David M. Lehmann
- Department of Toxicology, University of Rochester, Rochester, New York 14642
- Environmental Health Sciences Center, University of Rochester, Rochester, New York 14642
| | - Chad A. Galloway
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - Celeste MacElrevey
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - Mark P. Sowden
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York 14642
| | - Joseph E. Wedekind
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
| | - Harold C. Smith
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642
- Department of Pathology and Laboratory Medicine, University of Rochester, Rochester, New York 14642
- Department of Toxicology, University of Rochester, Rochester, New York 14642
- Environmental Health Sciences Center, University of Rochester, Rochester, New York 14642
- James P. Wilmot Cancer Center, University of Rochester, Rochester, New York 14642
- * Corresponding author: Department of Biochemistry and Biophysics, University of Rochester, 601 Elmwood Ave., Rochester, NY 14642 Tel.: 585-275-4267 FAX: 585-275-6007 E-mail:
| |
Collapse
|
27
|
Maris C, Masse J, Chester A, Navaratnam N, Allain FHT. NMR structure of the apoB mRNA stem-loop and its interaction with the C to U editing APOBEC1 complementary factor. RNA (NEW YORK, N.Y.) 2005; 11:173-86. [PMID: 15659357 PMCID: PMC1370706 DOI: 10.1261/rna.7190705] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 11/19/2004] [Indexed: 05/20/2023]
Abstract
We have solved the NMR structure of the 31-nucleotide (nt) apoB mRNA stem-loop, a substrate of the cytidine deaminase APOBEC1. We found that the edited base located at the 5' end of the octa-loop is stacked between two adenosines in both the unedited (cytidine 6666) and the edited (uridine 6666) forms and that the rest of the loop is unstructured. The 11-nt "mooring" sequence essential for editing is partially flexible although it is mostly in the stem of the RNA. The octa-loop and the internal loop in the middle of the stem confer this flexibility. These findings shed light on why APOBEC1 alone cannot edit efficiently the cytidine 6666 under physiological conditions, the editing base being buried in the loop and not directly accessible. We also show that APOBEC1 does not specifically bind apoB mRNA and requires the auxiliary factor, APOBEC1 complementary factor (ACF), to edit specifically cytidine 6666. The binding of ACF to both the mooring sequence and APOBEC1 explains the specificity of the reaction. Our NMR study lead us to propose a mechanism in which ACF recognizes first the flexible nucleotides of the mooring sequence (the internal loop and the 3' end octa-loop) and subsequently melts the stem-loop, exposing the amino group of the cytidine 6666 to APOBEC1. Thus, the flexibility of the mooring sequence plays a central role in the RNA recognition by ACF.
Collapse
Affiliation(s)
- Christophe Maris
- Institute for Molecular Biology and Biophysics, ETH Hönggerberg HPK D11.2, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
28
|
Abstract
Gene regulation by short RNAs is a ubiquitous and important mode of control. MicroRNAs are short, single-strand RNAs that bind with partial complementarity to the 3' untranslated region of several genes to silence their expression. This expanding class of endogenous short RNAs are evolutionarily conserved and participate in control of development and cell-specific gene function. Several of these microRNAs have been cloned uniquely from mammalian lymphocytes suggesting specialized roles in lymphocyte development and function. In addition, several genes linked to RNAi in lower eukaryotes have mammalian homologs with specialized roles in adaptive immunity. For example, in worms, the nonsense-mediated decay (NMD) and RNAi pathways appear to be intricately linked. NMD plays a key role in regulating antigen-receptor expression in lymphocytes and there are mammalian homologs for factors identified in worms that appear to be common in both RNAi and NMD pathways. On the other hand, RNA editing and RNAi have an inverse relationship and RNA editing has an important role in viral immunity. These observations indicate unique roles for dsRNAs in the mammalian immune system.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
29
|
Abstract
Increased serum concentrations of low density lipoproteins represent a major cardiovascular risk factor. Low-density lipoproteins are derived from very low density lipoproteins secreted by the liver. Apolipoprotein (apo)B that constitutes the essential structural protein of these lipoproteins exists in two forms, the full length form apoB-100 and the carboxy-terminal truncated apoB-48. The generation of apoB-48 is due to editing of the apoB mRNA which generates a premature stop translation codon. The editing of apoB mRNA is an important regulatory event because apoB-48-containing lipoproteins cannot be converted into the atherogenic low density lipoproteins. The apoB gene is constitutively expressed in liver and intestine, and the rate of apoB secretion is regulated post-transcriptionally. The translocation of apoB into the endoplasmic reticulum is complicated by the hydrophobicity of the nascent polypeptide. The assembly and secretion of apoB-containing lipoproteins within the endoplasmic reticulum is strictly dependent on the microsomal tricylceride transfer protein which shuttles triglycerides onto the nascent lipoprotein particle. The overall synthesis of apoB lipoproteins is regulated by proteosomal and nonproteosomal degradation and is dependent on triglyceride availability. Noninsulin dependent diabetes mellitus, obesity and the metabolic syndrome are characterized by an increased hepatic synthesis of apoB-containing lipoproteins. Interventions aimed to reduce the hepatic secretion of apoB-containing lipoproteins are therefore of great clinical importance. Lead targets in these pathways are discussed.
Collapse
Affiliation(s)
- J Greeve
- Klinik für Allgemeine Innere Medizin, Inselspital-Universitätsspital Bern, Switzerland.
| |
Collapse
|
30
|
Rückerl F, Bachl J. Activation-induced cytidine deaminase fails to induce a mutator phenotype in the human pre-B cell line Nalm-6. Eur J Immunol 2004; 35:290-8. [PMID: 15593119 DOI: 10.1002/eji.200425315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Activation-induced cytidine deaminase (AID) plays a key role in the induction of somatic hypermutation and class switching at the immunoglobulin loci of B lymphocytes. AID overexpression can induce a mutator phenotype in lymphoid and nonlymphoid cell lines, suggesting that AID by itself is sufficient to trigger hypermutation and class switching. AID expression in vivo is considered to be restricted to germinal center B lymphocytes, yet AID expression is also seen in many B cell lymphomas, hinting at a potential role for the development of these malignancies. We used a GFP-based reversion assay to efficiently evaluate the activation of mutator phenotypes. As expected, AID overexpression in the human Burkitt lymphoma cell line BL70 caused hypermutation. Surprisingly, AID overexpression in the human pre-B cell line Nalm-6 failed to induce a detectable mutator phenotype, indicating that Nalm-6 cells are probably lacking an essential factor(s) to confer AID-induced mutagenesis. This finding supports the concept that AID overexpression by itself must not automatically lead to the onset of a mutator phenotype. In addition, treating Nalm-6 transfectants with thymidine, a potential mutagenic drug, caused profound mutation rates on the GFP transgene. Thus, the GFP-based mutation assay might prove a powerful tool to study protein- and chemical-induced mutator phenotypes in cell lines.
Collapse
Affiliation(s)
- Florian Rückerl
- GSF-National Research Centre for Environment and Health, Institute of Clinical Molecular Biology and Tumor Genetics, D-81377 Munich, Germany
| | | |
Collapse
|
31
|
Abstract
Cytidine deamination of nucleic acids underlies diversification of Ig genes and inhibition of retroviral infection, and thus, it would appear to be vital to host defense. The host defense properties of cytidine deamination require two distinct but homologous cytidine deaminases-activation-induced cytidine deaminase and apolipoprotein B-editing cytidine deaminase, subunit 3G. Although cytidine deamination has clear benefits, it might well have biological costs. Uncontrolled cytidine deamination might generate misfolded polypeptides, dominant-negative proteins, or mutations in tumor suppressor genes, and thus contribute to tumor formation. How cytidine deaminases target a given nucleic acid substrate at specific sequences is not understood, and what protects cells from uncontrolled mutagenesis is not known. In this paper, I shall review the functions and regulation of activation-induced cytidine deaminase and apolipoprotein B-editing cytidine deaminase, subunit 3G, and speculate about the basis for site specificity vis-à-vis generalized mutagenesis.
Collapse
Affiliation(s)
- Marilia Cascalho
- Transplantation Biology, and Departments of Immunology, Surgery, and Pediatrics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
32
|
Blanc V, Kennedy S, Davidson NO. A novel nuclear localization signal in the auxiliary domain of apobec-1 complementation factor regulates nucleocytoplasmic import and shuttling. J Biol Chem 2003; 278:41198-204. [PMID: 12896982 DOI: 10.1074/jbc.m302951200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C to U editing of the nuclear apolipoprotein B (apoB) transcript is mediated by a core enzyme containing a catalytic deaminase, apobec-1, and an RNA binding subunit, apobec-1 complementation factor (ACF). ACF expression is predominantly nuclear, including mutant proteins with deletions of a putative nuclear localization signal. We have now identified a novel 41-residue motif (ANS) in the auxiliary domain of ACF that functions as an authentic nuclear localization signal. ANS-green fluorescence protein and ANS-beta-galactosidase chimeras were both expressed exclusively in the nucleus, whereas wild-type chimeras or an ACF deletion mutant lacking the ANS were cytoplasmic. Nuclear accumulation of ACF is transcription-dependent, temperature-sensitive, and reversible, features reminiscent of a shuttling protein. ACF relocates to the cytoplasm after actinomycin D treatment, an effect blocked by the CRM1 inhibitor leptomycin B. Heterokaryon assays confirmed directly that ACF shuttles in vivo. ACF binds to the protein carrier, transportin 2 in vivo, and colocalizes to the nucleus as determined by confocal microscopy. Co-immunoprecipitation experiments revealed that transportin 2 binds directly to the ANS motif. These data suggest that directed nuclear localization and compartmentalization of the core complex of the apoB RNA editing enzyme is regulated through a dominant targeting sequence (ANS) contained within ACF.
Collapse
Affiliation(s)
- Valerie Blanc
- Departments of Internal Medicine and Pharmacology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | |
Collapse
|
33
|
Lau PP, Chan L. Involvement of a chaperone regulator, Bcl2-associated athanogene-4, in apolipoprotein B mRNA editing. J Biol Chem 2003; 278:52988-96. [PMID: 14559896 DOI: 10.1074/jbc.m310153200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apobec-1 is the catalytic subunit of a multicomponent editosome complex that mediates apolipoprotein B (apoB) mRNA editing. We isolated a novel apobec-1-interacting protein by yeast two-hybrid cloning and identified the protein as BAG-4. BAG-4, a chaperone-regulating protein, also known as SODD (silencer of death domains), is a member of the BAG family of proteins. In this report, we found that apobec-1 is localized in the perinucleolar compartment in HepG2 cells and rat liver MCR-RH7777 cells. BAG-4 binds to apobec-1 via its N-terminal region independent of the BAG domain. It is ubiquitously expressed with predominant occurrence in human pancreas, heart, brain, and placenta. Immunoprecipitation experiments confirmed that BAG-4 interacts with Hsc70/Hsp90 in HepG2 cells. BAG-4 tagged with green fluorescent protein (GFP) or FLAG was localized both in cytoplasm of mouse BNLCL.2 liver cells and human liver hepatoma HepG2 cells. After heat shock, GFP-BAG-4 co-localizes with Hsc70 in the nucleus in HepG2 cells, whereas GFP-BAG-4 mutants lacking the BAG domain remain perinuclear. BAG-4 has no effects on apoB mRNA editing in vitro. However, unlike other apobec-1 complementation factors studied to date, antisense knockdown of BAG-4 in BNLCL.2 cells and in MCR-RH7777 cells increases rather than decreases endogenous apoB mRNA editing. Overexpression of BAG-4 in MCR-RH7777 cells also suppresses apoB mRNA editing. ApoB-48 production also increases with antisense BAG-4 expression in MCR-RH7777 cells. We previously showed that apoB mRNA editing is an intranuclear event (Lau, P. P., Xiong, W. J., Zhu, H. J., Chen, S. H., and Chan, L. (1991) J. Biol. Chem. 266, 20550-20554). Thus, BAG-4 overexpression down-regulates apoB mRNA editing by shuttling apobec-1 from the intranuclear perinucleolar compartment to the cytoplasm. We propose that BAG-4 functions as a negative regulator for apobec-1-mediated apoB mRNA editing through its ability to suppress the Hsp/Hsc70 chaperone activity and thereby editosome formation and, as a consequence, prevents nuclear localization of the apobec-1 editosome.
Collapse
Affiliation(s)
- Paul P Lau
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
34
|
Fan X, Messaed C, Dion P, Laganiere J, Brais B, Karpati G, Rouleau GA. HnRNP A1 and A/B interaction with PABPN1 in oculopharyngeal muscular dystrophy. Can J Neurol Sci 2003; 30:244-51. [PMID: 12945950 DOI: 10.1017/s0317167100002675] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive ptosis, dysphagia and proximal limb weakness. The autosomal dominant form of this disease is caused by short expansions of a (GCG)6 repeat to (GCG) in the PABPN1 gene. The mutations lead to the expansion of a polyalanine stretch from 10 to 12-17 alanines in the N-terminus of PABPN1. The mutated PABPN1 (mPABPN1) induces the formation of intranuclear filamentous inclusions that sequester poly(A) RNA and are associated with cell death. METHODS Human fetal brain cDNA library was used to look for PABPNI binding proteins using yeast two-hybrid screen. The protein interaction was confirmed by GST pull-down and co-immunoprecipitation assays. Oculopharyngeal muscular dystrophy cellular model and OPMD patient muscle tissue were used to check whether the PABPN1 binding proteins were involved in the formation of OPMD intranuclear inclusions. RESULTS We identify two PABPNI interacting proteins, hnRNP A1 and hnRNP A/B. When co-expressed with mPABPN1 in COS-7 cells, predominantly nuclear protein hnRNP A1 and A/B co-localize with mPABPN1 in the insoluble intranuclear aggregates. Patient studies showed that hnRNP A1 is sequestered in OPMD nuclear inclusions. CONCLUSIONS The hnRNP proteins are involved in mRNA processing and mRNA nucleocytoplasmic export, sequestering of hnRNPs in OPMD intranuclear aggregates supports the view that OPMD intranuclear inclusions are "poly(A) RNA traps", which would interfere with RNA export, and cause muscle cell death.
Collapse
Affiliation(s)
- Xueping Fan
- Center for Research in Neuroscience, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
35
|
Wedekind JE, Dance GSC, Sowden MP, Smith HC. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet 2003; 19:207-16. [PMID: 12683974 DOI: 10.1016/s0168-9525(03)00054-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Alteration of mRNA sequence through base modification mRNA editing frequently generates protein diversity. Several proteins have been identified as being similar to C-to-U mRNA editing enzymes based on their structural domains and the occurrence of a catalytic domain characteristic of cytidine deaminases. In light of the hypothesis that these proteins might represent novel mRNA editing systems that could affect proteome diversity, we consider their structure, expression and relevance to biomedically significant processes or pathologies.
Collapse
Affiliation(s)
- Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester, School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14623, USA
| | | | | | | |
Collapse
|
36
|
Fan X, Rouleau GA. Progress in understanding the pathogenesis of oculopharyngeal muscular dystrophy. Can J Neurol Sci 2003; 30:8-14. [PMID: 12619777 DOI: 10.1017/s0317167100002365] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive eyelid drooping (ptosis), swallowing difficulties (dysphagia), and proximal limb weakness. The autosomal dominant form of this disease is caused by expansions of a (GCG)6 repeat to (GCG)8-13 in the PABPN1 gene. These mutations lead to the expansion of a polyalanine stretch from 10 to 12-17 alanines in the N-terminal domain of PABPN1. Mutated PABPN1 (mPABPN1) induces the formation of muscle intranuclear inclusions that are thought to be the hallmark of this disease. In this review, we discuss: 1) OPMD genetics and PABPN I function studies; 2) diseases caused by polyalanine expansions and cellular polyalanine toxicity; 3) mPABPN1-induced intranuclear inclusion toxicity; 4) role of oligomerization of mPABPNI in the formation and toxicity of OPMD intranuclear inclusions and; 5) recruitment of subcellular components to the OPMD inclusions. We present a potential molecular mechanism for OPMD pathogenesis that accounts for these observations.
Collapse
Affiliation(s)
- Xueping Fan
- Center for Research in Neuroscience, McGill University, and the McGill University Health Center, Montreal, Quebec, Canada
| | | |
Collapse
|
37
|
Affiliation(s)
- Valerie Blanc
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
38
|
Anant S, Blanc V, Davidson NO. Molecular regulation, evolutionary, and functional adaptations associated with C to U editing of mammalian apolipoproteinB mRNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 75:1-41. [PMID: 14604008 DOI: 10.1016/s0079-6603(03)75001-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
RNA editing encompasses an important class of co- or posttranscriptional nucleic acid modification that has expanded our understanding of the range of mechanisms that facilitate genetic plasticity. Since the initial description of RNA editing in trypanosome mitochondria, a model of gene regulation has emerged that now encompasses a diverse range of biochemical and genetic mechanisms by which nuclear, mitochondrial, and t-RNA sequences are modified from templated versions encoded in the genome. RNA editing is genetically and biochemically distinct from other RNA modifications such as splicing, capping, and polyadenylation although, as discussed in Section I, these modifications may have relevance to the regulation of certain types of mammalian RNA editing. This review will focus on C to U RNA editing, in particular, the biochemical and genetic mechanisms that regulate this process in mammals. These mechanisms will be examined in the context of the prototype model of C to U RNA editing, namely the posttranscriptional cytidine deamination targeting a single nucleotide in mammalian apolipoproteinB (apoB). Other examples of C to U RNA editing will be discussed and the molecular mechanisms--where known--contrasted with those regulating apoB RNA editing.
Collapse
Affiliation(s)
- Shrikant Anant
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
39
|
Lellek H, Welker S, Diehl I, Kirsten R, Greeve J. Reconstitution of mRNA editing in yeast using a Gal4-apoB-Gal80 fusion transcript as the selectable marker. J Biol Chem 2002; 277:23638-44. [PMID: 11976346 DOI: 10.1074/jbc.m203517200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We describe a fusion transcript of Gal4 linked to its specific inhibitor protein Gal80 by 276 nucleotides of apolipoprotein (apo) B sequence as a selectable marker for mRNA editing. Editing of apoB mRNA is catalyzed by an editing enzyme complex that introduces a stop codon by deamination of C to U. The catalytic subunit APOBEC-1 is a cytidine deaminase and requires a second essential component recently cloned and termed APOBEC-1 complementing factor (ACF) or APOBEC-1-stimulating protein (ASP). The aim of this study was to demonstrate that APOBEC-1 plus ACF/ASP comprise all that is required for editing of apoB mRNA in vivo. Expression of APOBEC-1 and Gal4 fused to its inhibitor Gal80 by an intervening unedited apoB sequence (Gal4-apoB(C)-Gal80) did not result in the Gal4-dependent expression of HIS3 and beta-galactosidase in the yeast strain CG1945. Co-expression of APOBEC-1 and ACF/ASP induced editing of the apoB site in up to 13% of the Gal4-apoB(C)-Gal80 transcripts and enabled selection of yeast cells for robust expression of HIS3 and beta-galactosidase. Additional expression of the alternative splicing regulatory protein KSRP increased the editing of the apoB site by APOBEC-1 and ACF/ASP to 21%. Thus, APOBEC-1 and ACF/ASP represent the core apoB mRNA editing enzyme in vivo. This study demonstrates for the first time the successful use of a selectable marker for mRNA editing. The Gal4-Gal80 system is analogous to the two-hybrid assay and may have broader applications for the study of other mRNA processing reactions.
Collapse
Affiliation(s)
- Heinrich Lellek
- Klinik und Poliklinik für Innere Medizin, Kernklinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Sowden MP, Ballatori N, Jensen KLDM, Reed LH, Smith HC. The editosome for cytidine to uridine mRNA editing has a native complexity of 27S: identification of intracellular domains containing active and inactive editing factors. J Cell Sci 2002; 115:1027-39. [PMID: 11870221 DOI: 10.1242/jcs.115.5.1027] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein B mRNA cytidine to uridine editing requires the assembly of a multiprotein editosome comprised minimally of the catalytic subunit,apolipoprotein B mRNA editing catalytic subunit 1 (APOBEC-1), and an RNA-binding protein, APOBEC-1 complementation factor (ACF). A rat homolog has been cloned with 93.5% identity to human ACF (huACF). Peptide-specific antibodies prepared against huACF immunoprecipitated a rat protein of similar mass as huACF bound to apolipoprotein B (apoB) RNA in UV cross-linking reactions, thereby providing evidence that the p66, mooring sequence-selective, RNA-binding protein identified previously in rat liver by UV cross-linking and implicated in editosome assembly is a functional homolog of huACF. The rat protein (p66/ACF) was distributed in both the nucleus and cytoplasm of rat primary hepatocytes. Within a thin section, a significant amount of total cellular p66/ACF was cytoplasmic, with a concentration at the outer surface of the endoplasmic reticulum. Native APOBEC-1 co-fractionated with p66/ACF in the cytoplasm as 60S complexes. In the nucleus, the biological site of apoB mRNA editing, native p66/ACF, was localized to heterochromatin and fractionated with APOBEC-1 as 27S editosomes. When apoB mRNA editing was stimulated in rat primary hepatocytes with ethanol or insulin, the abundance of p66/ACF in the nucleus markedly increased. It is proposed that the heterogeneity in size of complexes containing editing factors is functionally significant and reflects functionally engaged editosomes in the nucleus and an inactive cytoplasmic pool of factors.
Collapse
Affiliation(s)
- Mark P Sowden
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
41
|
Anant S, Henderson JO, Mukhopadhyay D, Navaratnam N, Kennedy S, Min J, Davidson NO. Novel role for RNA-binding protein CUGBP2 in mammalian RNA editing. CUGBP2 modulates C to U editing of apolipoprotein B mRNA by interacting with apobec-1 and ACF, the apobec-1 complementation factor. J Biol Chem 2001; 276:47338-51. [PMID: 11577082 DOI: 10.1074/jbc.m104911200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian apolipoprotein B (apoB) mRNA editing is mediated by a multicomponent holoenzyme containing apobec-1 and ACF. We have now identified CUGBP2, a 54-kDa RNA-binding protein, as a component of this holoenzyme. CUGBP2 and ACF co-fractionate in bovine liver S-100 extracts, and addition of recombinant apobec-1 leads to assembly of a holoenzyme. Immunodepletion of CUGBP2 co-precipitates ACF, and these proteins co-localize the nucleus of transfected cells, suggesting that CUGBP2 and ACF are bound in vivo. CUGBP2 binds apoB RNA, specifically an AU-rich sequence located immediately upstream of the edited cytidine. ApoB RNA from McA cells, bound to CUGBP2, was more extensively edited than the unbound fraction. However, addition of recombinant CUGBP2 to a reconstituted system demonstrated a dose-dependent inhibition of C to U RNA editing, which was rescued with either apobec-1 or ACF. Antisense CUGBP2 knockout increased endogenous apoB RNA editing, whereas antisense knockout of either apobec-1 or ACF expression eliminated apoB RNA editing, establishing the absolute requirement of these components of the core enzyme. These data suggest that CUGBP2 plays a role in apoB mRNA editing by forming a regulatory complex with the three components of the minimal editing enzyme, apobec-1, ACF, and apoB RNA.
Collapse
Affiliation(s)
- S Anant
- Department of Internal Medicine, Division of Gastroenterology, Washington University Medical School, 660 South Euclid Ave., St Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Blanc V, Henderson JO, Kennedy S, Davidson NO. Mutagenesis of apobec-1 complementation factor reveals distinct domains that modulate RNA binding, protein-protein interaction with apobec-1, and complementation of C to U RNA-editing activity. J Biol Chem 2001; 276:46386-93. [PMID: 11571303 DOI: 10.1074/jbc.m107654200] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C to U editing of apolipoprotein B (apoB) RNA requires a multicomponent holoenzyme complex in which minimal constituents include apobec-1 and apobec-1 complementation factor (ACF). We have examined the predicted functional domains in ACF in binding apoB RNA, interaction with apobec-1, and complementation of RNA editing. We demonstrate that apoB RNA binding and apobec-1-interacting domains are defined by two partially overlapping regions containing the NH(2)-terminal RNA recognition motifs of ACF. Both apoB RNA binding and apobec-1 interaction are required for editing complementation activity. ACF is a nuclear protein that upon cotransfection with apobec-1 results in nuclear colocalization and redistribution of apobec-1 from the cytoplasm. ACF constructs with deletions or mutations in the putative nuclear localization signal (NLS) still localize in the nucleus of transfected cells but do not colocalize with apobec-1, the latter remaining predominantly cytoplasmic. These observations suggest that the putative NLS motif in ACF is not responsible for its nucleo-cytoplasmic trafficking. By contrast, protein-protein interaction is important for the nuclear import of apobec-1. Taken together, these data suggest that functional complementation of C to U RNA editing by apobec-1 involves the NH(2)-terminal 380 residues of ACF.
Collapse
Affiliation(s)
- V Blanc
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
43
|
Lau PP, Villanueva H, Kobayashi K, Nakamuta M, Chang BH, Chan L. A DnaJ protein, apobec-1-binding protein-2, modulates apolipoprotein B mRNA editing. J Biol Chem 2001; 276:46445-52. [PMID: 11584023 DOI: 10.1074/jbc.m109215200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian homologues of DnaJ proteins, also known as Hsp40 proteins, are co-chaperonins that complement Hsp70 chaperone function. Using the yeast two-hybrid system, we cloned an apolipoprotein (apo) B mRNA editing complementation protein, called apobec-1-binding protein-2 (ABBP-2), and found that it is a Class II DnaJ homologue. ABBP-2 binds to apobec-1, the mammalian apoB mRNA editase, via its J domain and neighboring G/F domain. It is a ubiquitously expressed protein, and, by transfection analysis of GFP-ABBP-2, we found that the protein is located in both the nucleus and cytosol of transfected cells, with predominance in the nucleus. Down-regulation of ABBP-2 expression in cultured cells inhibits endogenous apobec-1-mediated apoB mRNA editing. Like other Hsp40 proteins, ABBP-2 binds to Hsp70 and has ATPase-stimulating activity. Apobec-1-mediated apoB mRNA editing activity of in vitro tissue extracts requires the presence of Hsp70/ABBP-2. Although exogenously added ATP is not required for editing activity, removal of the endogenous ATP present in these extracts, which disrupts ABBP-2-Hsp70 interaction, completely inhibits editing. ABBP-2 differs from previously described auxiliary proteins (ABBP-1, ACF, and GRY-RBP) in that it does not contain any RNA recognition motifs. Not only is ABBP-2 required for efficient apoB mRNA editing, this newly discovered apobec-1-binding protein may help determine the subcellular distribution and trafficking of apobec-1 via its interaction with the chaperonin Hsp70.
Collapse
Affiliation(s)
- P P Lau
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
44
|
Henderson JO, Blanc V, Davidson NO. Isolation, characterization and developmental regulation of the human apobec-1 complementation factor (ACF) gene. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1522:22-30. [PMID: 11718896 DOI: 10.1016/s0167-4781(01)00295-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mammalian apolipoprotein B (apo B) mRNA undergoes site-specific C to U deamination which is mediated by a multicomponent enzyme complex containing a minimal core composed of apobec-1 and a complementation factor, ACF. We have isolated and characterized the human ACF gene and examined its tissue-specific and developmental expression. The ACF gene spans approximately 80 kb and contains 15 exons, three of which are non-coding. Multiple alternative splice acceptor sites were found, generating at least nine different transcripts. Of these, the majority (approximately 75-89%) encode functional protein. In order to examine the role of ACF mRNA expression in the regulation of apo B mRNA editing, we examined a panel of fetal intestinal and hepatic mRNAs as well as RNA from an intestinal cell line. A developmental increase in C to U RNA editing has been previously noted in the human intestine. In both instances, the pattern of alternative splicing and overall abundance of ACF mRNA was relatively constant during development in both liver and small intestine. Taken together, the data demonstrate a complex pattern of differential, tissue-specific splicing of ACF mRNA, but suggest that other mechanisms are responsible for the developmental increase noted in intestinal apo B mRNA editing in humans.
Collapse
Affiliation(s)
- J O Henderson
- Department of Internal Medicine, Washington University School of Medicine, 660 S. Euclid Ave, Box 8124, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
45
|
Yang Y, Sowden MP, Yang Y, Smith HC. Intracellular trafficking determinants in APOBEC-1, the catalytic subunit for cytidine to uridine editing of apolipoprotein B mRNA. Exp Cell Res 2001; 267:153-64. [PMID: 11426934 DOI: 10.1006/excr.2001.5255] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The posttranscriptional deamination editing of apolipoprotein B (apoB) mRNA catalyzed by APOBEC-1 (apoB mRNA editing catalytic subunit 1) is a nuclear process. The signals in APOBEC-1 responsible for its dual cytoplasmic/nuclear distribution have been evaluated. Residues 97-172 in the middle of APOBEC-1 together with its N-terminal 56 residues affect nuclear localization. Mutagenesis studies however revealed no discrete nuclear localization signal in APOBEC-1. Fifteen amino acids (Leu 173-Leu 187) within the previously identified C-terminal domain of APOBEC-1 were sufficient as a determinant for cytoplasmic distribution in that context. These residues failed to demonstrate nuclear export function in a reporter assay. Further, the distribution of APOBEC-1 in the cytoplasm did not respond to leptomycin B, suggesting that APOBEC-1 did not have nuclear export activity. The data suggested that there are at least three regions in APOBEC-1 that participate in its distribution in both the nucleus and the cytoplasm of editing competent cells; however, none of these meet the functional criteria of nuclear localization or nuclear export signals. The findings are discussed in terms of their implications in the regulation of nuclear editing activity and the possibility that interactions with chaperones may play a role in the cellular distribution of APOBEC-1.
Collapse
Affiliation(s)
- Y Yang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
46
|
Abstract
A site-specific post-transcriptional cytidine to uridine deamination reaction is responsible for the production of apolipoprotein B48 in the mammalian small intestine. The molecular machinery responsible for apolipoprotein B RNA editing consists of apobec-1, an RNA-specific cytidine deaminase that functions in conjunction with a recently identified protein referred to as ACF/ASP. These proteins together represent the minimal editing enzyme, although other proteins may associate with the enzyme complex. Apobec-1 is a member of a supergene family of cytidine deaminases, with several homologs recently identified in the human genome. ACF/ASP is novel, and emerging information reveals interesting clues to its role in the apolipoprotein B RNA editing enzyme complex.
Collapse
Affiliation(s)
- S Anant
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
47
|
Abstract
RNA editing can be broadly defined as any site-specific alteration in an RNA sequence that could have been copied from the template, excluding changes due to processes such as RNA splicing and polyadenylation. Changes in gene expression attributed to editing have been described in organisms from unicellular protozoa to man, and can affect the mRNAs, tRNAs, and rRNAs present in all cellular compartments. These sequence revisions, which include both the insertion and deletion of nucleotides, and the conversion of one base to another, involve a wide range of largely unrelated mechanisms. Recent advances in the development of in vitro editing and transgenic systems for these varied modifications have provided a better understanding of similarities and differences between the biochemical strategies, regulatory sequences, and cellular factors responsible for such RNA processing events.
Collapse
Affiliation(s)
- J M Gott
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
48
|
Chester A, Scott J, Anant S, Navaratnam N. RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1494:1-13. [PMID: 11072063 DOI: 10.1016/s0167-4781(00)00219-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA editing is a post-transcriptional process that changes the informational capacity within the RNA. These processes include alterations made by nucleotide deletion, insertion and base conversion. A to I and C to U conversion occurs in mammals and these editing events are catalysed by RNA binding deaminases. C to U editing of apoB mRNA was the first mammalian editing event to be identified. The minimal protein complex necessary for apoB mRNA editing has been determined and consists of APOBEC-1 and ACF. Overexpression of APOBEC-1 in transgenic animals caused liver dysplasia and APOBEC-1 has been identified in neurofibromatosis type 1 tumours, suggesting that RNA editing may be another mechanism for tumourigenesis. Several APOBEC-1-like proteins have been identified, including a family of APOBEC-1-related proteins with unknown function on chromosome 22. This review summarises the different types of RNA editing and discusses the current status of C to U apoB mRNA editing. This knowledge is very important in understanding the structure and function of these related proteins and their role in biology.
Collapse
Affiliation(s)
- A Chester
- MRC Molecular Medicine, Clinical Science Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
49
|
Reaves SK, Wu JY, Wu Y, Fanzo JC, Wang YR, Lei PP, Lei KY. Regulation of intestinal apolipoprotein B mRNA editing levels by a zinc-deficient diet and cDNA cloning of editing protein in hamsters. J Nutr 2000; 130:2166-73. [PMID: 10958808 DOI: 10.1093/jn/130.9.2166] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was conducted to investigate the influence of dietary zinc on intestinal apoB mRNA editing in hamsters. Apolipoprotein B-48 (apoB-48) is synthesized from the same gene as apoB-100 by a post-transcriptional, site-specific cytidine deamination, a process known as apoB mRNA editing. A cDNA encoding the hamster apoB mRNA editing enzyme was obtained by reverse transcriptase-polymerase chain reaction (RT-PCR) and the deduced amino acid sequence was found to possess high amino acid sequence identity to apoB mRNA editing enzymes from several other species. Editing activity was detected in the small intestine and colon but, like humans, none was detected in the liver. Analysis by RT-PCR indicated that the small intestine possessed the highest expression of editing enzyme mRNA abundance, whereas both liver and small intestine expressed relatively high levels of apoB mRNA. The influence of dietary zinc on intestinal apoB mRNA editing levels was examined in Golden Syrian hamsters (7 wk old) assigned to one of the following three dietary treatments: Zn-adequate (ZA, 30 mg Zn/kg diet), Zn-deficient (ZD, <0. 5 mg Zn/kg diet), or Zn-replenished (ZDA, ZD hamsters receiving ZA diet for last 2 d) for 7 wk. Hamsters consuming the ZD diet had modestly but significantly lower intestinal editing activity than ZA hamsters. Intestinal editing activity in the ZDA group was not different from that of ZA hamsters. Data derived from these studies contribute to the understanding of lipoprotein metabolism in hamsters, a suitable model for the study of atherosclerosis.
Collapse
Affiliation(s)
- S K Reaves
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Yang Y, Sowden MP, Smith HC. Induction of cytidine to uridine editing on cytoplasmic apolipoprotein B mRNA by overexpressing APOBEC-1. J Biol Chem 2000; 275:22663-9. [PMID: 10833526 DOI: 10.1074/jbc.m910406199] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-transcriptional editing of apolipoprotein B (apoB) mRNA is regulated in hepatic cells to achieve a steady state proportion of edited and unedited RNA molecules. This activity is catalyzed by APOBEC-1 (apoB mRNA editing catalytic subunit 1) in what has been widely accepted as nuclear event occurring during or after mRNA splicing. Introns impair the efficiency of editing within an adjacent exon in a distance-dependent manner in reporter RNAs. We show here that this inhibition can be overcome by overexpressing APOBEC-1 and that the enhanced editing efficiency on these reporter RNAs occurred after splicing on cytoplasmic transcripts. Given the absolute requirement of auxiliary proteins in apoB mRNA editing, the data suggested that auxiliary proteins were distributed with APOBEC-1 in both the nucleus and cytoplasm of McArdle cells. In fact, immunolocalization of one such auxiliary protein, APOBEC-1 complementation factor (ACF) demonstrated a nuclear and cytoplasmic distribution. We also demonstrate that in the absence of alterations in APOBEC-1 expression, changes in edited apoB RNA induced by ethanol arise through the stimulation of nuclear editing activity. The finding that apoB mRNA editing can occur in the cytoplasm but normally does not suggests that under biological conditions, restricting editing activity to the nucleus must be an important step in regulating the proportion of the edited apoB mRNAs.
Collapse
Affiliation(s)
- Y Yang
- Department of Biochemistry and Biophysics, Environmental Health Sciences Center, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|