1
|
Sun H, Wang S, Chen J, Yu H. Label-free second harmonic generation imaging of cerebral vascular wall in local ischemia mouse model in vivo. Neuroscience 2022; 502:10-24. [PMID: 36055560 DOI: 10.1016/j.neuroscience.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
Second harmonic generation (SHG) imaging is label-free and non-invasive, and it has been extensively applied in multiple biological and medical studies, but not in the brain in vivo. In this study, we modified classical two photon excited fluorescence (TPEF) system to perform in vivo simultaneous TPEF and SHG imaging in the local ischemia mouse model. In cerebral vascular walls, we found strong SHG signal, which co-localized with collagen. In the continuous 2 days' in vivo imaging, this SHG signal remained stable in the local ischemic blood vessel in the initial 4 hours, then its signal abruptly increased and got spatially thickened 5 hours after thrombosis, and this tendency continued in the following 48 hours. This study provides direct and precise timeline of rapid collagen change in cerebral vascular walls in vivo, and reveals the subtle but significant temporal-spatial dynamics of this structural signal during local ischemia. Thus, this cerebral in vivo SHG imaging provides a powerful tool to identify the early and subtle pathological change of collagen around clinical key therapeutic time window.
Collapse
Affiliation(s)
- Hengfei Sun
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shu Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Jianxin Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Hongbo Yu
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| |
Collapse
|
2
|
Pouw AE, Greiner MA, Coussa RG, Jiao C, Han IC, Skeie JM, Fingert JH, Mullins RF, Sohn EH. Cell-Matrix Interactions in the Eye: From Cornea to Choroid. Cells 2021; 10:687. [PMID: 33804633 PMCID: PMC8003714 DOI: 10.3390/cells10030687] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) plays a crucial role in all parts of the eye, from maintaining clarity and hydration of the cornea and vitreous to regulating angiogenesis, intraocular pressure maintenance, and vascular signaling. This review focuses on the interactions of the ECM for homeostasis of normal physiologic functions of the cornea, vitreous, retina, retinal pigment epithelium, Bruch's membrane, and choroid as well as trabecular meshwork, optic nerve, conjunctiva and tenon's layer as it relates to glaucoma. A variety of pathways and key factors related to ECM in the eye are discussed, including but not limited to those related to transforming growth factor-β, vascular endothelial growth factor, basic-fibroblastic growth factor, connective tissue growth factor, matrix metalloproteinases (including MMP-2 and MMP-9, and MMP-14), collagen IV, fibronectin, elastin, canonical signaling, integrins, and endothelial morphogenesis consistent of cellular activation-tubulogenesis and cellular differentiation-stabilization. Alterations contributing to disease states such as wound healing, diabetes-related complications, Fuchs endothelial corneal dystrophy, angiogenesis, fibrosis, age-related macular degeneration, retinal detachment, and posteriorly inserted vitreous base are also reviewed.
Collapse
Affiliation(s)
- Andrew E. Pouw
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Razek G. Coussa
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ian C. Han
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
| | - John H. Fingert
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Robert F. Mullins
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Elliott H. Sohn
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA; (A.E.P.); (M.A.G.); (R.G.C.); (C.J.); (I.C.H.); (J.M.S.); (J.H.F.); (R.F.M.)
- Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Collagen Structure-Function Mapping Informs Applications for Regenerative Medicine. Bioengineering (Basel) 2020; 8:bioengineering8010003. [PMID: 33383610 PMCID: PMC7824244 DOI: 10.3390/bioengineering8010003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Type I collagen, the predominant protein of vertebrates, assembles into fibrils that orchestrate the form and function of bone, tendon, skin, and other tissues. Collagen plays roles in hemostasis, wound healing, angiogenesis, and biomineralization, and its dysfunction contributes to fibrosis, atherosclerosis, cancer metastasis, and brittle bone disease. To elucidate the type I collagen structure-function relationship, we constructed a type I collagen fibril interactome, including its functional sites and disease-associated mutations. When projected onto an X-ray diffraction model of the native collagen microfibril, data revealed a matrix interaction domain that assumes structural roles including collagen assembly, crosslinking, proteoglycan (PG) binding, and mineralization, and the cell interaction domain supporting dynamic aspects of collagen biology such as hemostasis, tissue remodeling, and cell adhesion. Our type III collagen interactome corroborates this model. We propose that in quiescent tissues, the fibril projects a structural face; however, tissue injury releases blood into the collagenous stroma, triggering exposure of the fibrils' cell and ligand binding sites crucial for tissue remodeling and regeneration. Applications of our research include discovery of anti-fibrotic antibodies and elucidating their interactions with collagen, and using insights from our angiogenesis studies and collagen structure-function model to inform the design of super-angiogenic collagens and collagen mimetics.
Collapse
|
4
|
Minor AJ, Coulombe KLK. Engineering a collagen matrix for cell-instructive regenerative angiogenesis. J Biomed Mater Res B Appl Biomater 2020; 108:2407-2416. [PMID: 31984665 PMCID: PMC7334070 DOI: 10.1002/jbm.b.34573] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/01/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023]
Abstract
Engineering an angiogenic material for regenerative medicine requires knowledge of native extracellular matrix remodeling by cellular processes in angiogenesis. Vascularization remains a key challenge in the field of tissue engineering, one that can be mitigated by developing platforms conducive to guiding dynamic cell-matrix interactions required for new vessel formation. In this review, we highlight nuanced processes of angiogenesis and demonstrate how materials engineering is being used to interface with dynamic type I collagen remodeling, Notch and VEGF signaling, cell migration, and tissue morphogenesis. Because α1(I)-collagen is secreted by endothelial tip cells during sprouting angiogenesis and required for migration, collagen is a very useful natural biomaterial and its angiogenic modifications are described. The balance between collagen types I and IV via secretion and degradation is tightly controlled by proteinases and other cell types that are capable of internalizing collagen to maintain tissue integrity. Thus, we provide examples in skin and cardiac tissue engineering of collagen tailoring in diverse cellular microenvironments for tissue regeneration. As our understanding of how to drive collagen remodeling and cellular phenotype through angiogenic pathways grows, our capabilities to model and manipulate material systems must continue to expand to develop novel applications for wound healing, angiogenic therapy, and regenerative medicine.
Collapse
Affiliation(s)
- Alicia J Minor
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| |
Collapse
|
5
|
Zanotelli MR, Ardalani H, Zhang J, Hou Z, Nguyen EH, Swanson S, Nguyen BK, Bolin J, Elwell A, Bischel LL, Xie AW, Stewart R, Beebe DJ, Thomson JA, Schwartz MP, Murphy WL. Stable engineered vascular networks from human induced pluripotent stem cell-derived endothelial cells cultured in synthetic hydrogels. Acta Biomater 2016; 35:32-41. [PMID: 26945632 PMCID: PMC4829480 DOI: 10.1016/j.actbio.2016.03.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Here, we describe an in vitro strategy to model vascular morphogenesis where human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) are encapsulated in peptide-functionalized poly(ethylene glycol) (PEG) hydrogels, either on standard well plates or within a passive pumping polydimethylsiloxane (PDMS) tri-channel microfluidic device. PEG hydrogels permissive towards cellular remodeling were fabricated using thiol-ene photopolymerization to incorporate matrix metalloproteinase (MMP)-degradable crosslinks and CRGDS cell adhesion peptide. Time lapse microscopy, immunofluorescence imaging, and RNA sequencing (RNA-Seq) demonstrated that iPSC-ECs formed vascular networks through mechanisms that were consistent with in vivo vasculogenesis and angiogenesis when cultured in PEG hydrogels. Migrating iPSC-ECs condensed into clusters, elongated into tubules, and formed polygonal networks through sprouting. Genes upregulated for iPSC-ECs cultured in PEG hydrogels relative to control cells on tissue culture polystyrene (TCP) surfaces included adhesion, matrix remodeling, and Notch signaling pathway genes relevant to in vivo vascular development. Vascular networks with lumens were stable for at least 14days when iPSC-ECs were encapsulated in PEG hydrogels that were polymerized within the central channel of the microfluidic device. Therefore, iPSC-ECs cultured in peptide-functionalized PEG hydrogels offer a defined platform for investigating vascular morphogenesis in vitro using both standard and microfluidic formats. STATEMENT OF SIGNIFICANCE Human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) cultured in synthetic hydrogels self-assemble into capillary networks through mechanisms consistent with in vivo vascular morphogenesis.
Collapse
Affiliation(s)
- Matthew R Zanotelli
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Hamisha Ardalani
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI, USA
| | | | - Eric H Nguyen
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | | | | | | | | | - Lauren L Bischel
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Angela W Xie
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI, USA
| | - David J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA
| | - James A Thomson
- Morgridge Institute for Research, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, WI, USA; Department of Molecular, Cellular, and Developmental Biology, University of California-Santa Barbara, CA, USA
| | - Michael P Schwartz
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA.
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, WI, USA.
| |
Collapse
|
6
|
|
7
|
Hielscher AC, Qiu C, Gerecht S. Breast cancer cell-derived matrix supports vascular morphogenesis. Am J Physiol Cell Physiol 2012; 302:C1243-56. [PMID: 22277754 DOI: 10.1152/ajpcell.00011.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM), important for maintaining tissue homeostasis, is abnormally expressed in mammary tumors and additionally plays a crucial role in angiogenesis. We hypothesize that breast cancer cells (BCCs) deposit ECM that supports unique patterns of vascular morphogenesis of endothelial cells (ECs). Evaluation of ECM expression revealed that a nontumorigenic cell line (MCF10A), a tumorigenic cell line (MCF7), and a metastatic cell line (MDA-MB-231) express collagens I and IV, fibronectin, and laminin, with tenascin-C limited to MCF10A and MCF7. The amount of ECM deposited by BCCs was found to be higher in MCF10A compared with MCF7 and MDA231, with all ECM differing in their gross structure but similar in mean fiber diameter. Nonetheless, deposition of ECM from BCC lines was overall difficult to detect and insufficient to support capillary-like structure (CLS) formation of ECs. Therefore, a coculture approach was undertaken in which individual BCC lines were cocultured with fibroblasts. Variation in abundance of deposited ECM, deposition of ECM proteins, such as absent collagen I deposition from MDA231-fibroblast cocultures, and fibril organization was found. Deposited ECM from fibroblasts and each coculture supported rapid CLS formation of ECs. Evaluation of capillary properties revealed that CLS grown on ECM deposited from MDA231-fibroblast cocultures possessed significantly larger lumen diameters, occupied the greatest percentage of area, expressed the highest levels of von Willebrand factor, and expressed the greatest amount of E-selectin, which was upregulated independent of exposure to TNF-α. To our knowledge, this is the first study to report tumor cell ECM-mediated differences in vascular capillary features, and thus offers the framework for future investigations interrogating the role of the tumor ECM in supporting vascular morphogenesis.
Collapse
Affiliation(s)
- Abigail C Hielscher
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | |
Collapse
|
8
|
Demidova-Rice TN, Geevarghese A, Herman IM. Bioactive peptides derived from vascular endothelial cell extracellular matrices promote microvascular morphogenesis and wound healing in vitro. Wound Repair Regen 2011; 19:59-70. [PMID: 21134032 PMCID: PMC3059781 DOI: 10.1111/j.1524-475x.2010.00642.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies in our laboratory indicate that collagenase from Clostridium histolyticum promotes endothelial cell and keratinocyte responses to injury in vitro and wound healing in vivo. We postulate that matrix degradation by Clostridial collagenase creates bioactive fragments that can stimulate cellular responses to injury and angiogenesis. To test this hypothesis, we performed limited digestion of defined capillary-endothelial-derived extracellular matrices using purified human or bacterial collagenases. Immunoprecipitation with antibodies recognizing collagens I, II, III, IV, and V, followed by mass spectrometry reveals the presence of unique fragments in bacterial, but not human-enzyme-digested matrix. Results show that there are several bioactive peptides liberated from Clostridial collagenase-treated matrices, which facilitate endothelial responses to injury, and accelerate microvascular remodeling in vitro. Fragments of collagen IV, fibrillin-1, tenascin X, and a novel peptide created by combining specific amino acids contained within fibrillin 1 and tenascin X each have profound proangiogenic properties. The peptides used at 10-100 nM increase rates of microvascular endothelial cell proliferation by up to 47% and in vitro angiogenesis by 200% when compared with serum-stimulated controls. Current studies are aimed at revealing the molecular mechanisms regulating peptide-induced wound healing while extending these in vitro observations using animal modeling.
Collapse
Affiliation(s)
- Tatiana N. Demidova-Rice
- Graduate Programs in Cell, Molecular and Developmental Biology, Cell and Molecular Physiology and The Center for Innovations in Wound Healing Research, Sackler School of Graduate Biomedical Sciences, School of Medicine, Tufts University, Boston, MA 02111
- The Wellman Center For Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Anita Geevarghese
- Graduate Programs in Cell, Molecular and Developmental Biology, Cell and Molecular Physiology and The Center for Innovations in Wound Healing Research, Sackler School of Graduate Biomedical Sciences, School of Medicine, Tufts University, Boston, MA 02111
| | - Ira M. Herman
- Graduate Programs in Cell, Molecular and Developmental Biology, Cell and Molecular Physiology and The Center for Innovations in Wound Healing Research, Sackler School of Graduate Biomedical Sciences, School of Medicine, Tufts University, Boston, MA 02111
| |
Collapse
|
9
|
Fiedler LR, Eble JA. Decorin regulates endothelial cell-matrix interactions during angiogenesis. Cell Adh Migr 2009; 3:3-6. [PMID: 19372733 DOI: 10.4161/cam.3.1.7275] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interactions between endothelial cells and the surrounding extracellular matrix are continuously adapted during angiogenesis, from early sprouting through to lumen formation and vessel maturation. Regulated control of these interactions is crucial to sustain normal responses in this rapidly changing environment, and dysfunctional endothelial cell behaviour results in angiogenic disorders. The proteoglycan decorin, an extracellular matrix component, is upregulated during angiogenesis. While it was shown previously that the absence of decorin leads to dysregulated angiogenesis in vivo, the molecular mechanisms were not clear. These abnormal endothelial cell responses have been attributed to indirect effects of decorin; however, our recent data provides evidence that decorin directly regulates endothelial cell-matrix interactions. This data will be discussed in conjunction with findings from previous studies, to better understand the role of this proteoglycan in angiogenesis.
Collapse
Affiliation(s)
- Lorna R Fiedler
- Clinical Pharmacology, Rayne Institute, University College London, London, UK.
| | | |
Collapse
|
10
|
Le TT, Cheng JX. Non-Linear Optical Imaging of Obesity-Related Health Risks: Review. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2009; 2:9-25. [PMID: 19784384 PMCID: PMC2750900 DOI: 10.1142/s1793545809000371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review highlights the recent applications of non-linear optical (NLO) microscopy to study obesity-related health risks. A strong emphasis is given to the applications of coherent anti-Stokes Raman scattering (CARS) microscopy where multiple non-linear optical imaging modalities including CARS, sum-frequency generation (SFG), and two-photon fluorescence are employed simultaneously on a single microscope platform. Specific examples on applications of NLO microscopy to study lipid-droplet biology, obesity-cancer relationship, atherosclerosis, and lipid-rich biological structures are discussed.
Collapse
Affiliation(s)
- Thuc T. Le
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA,
| | - Ji-Xin Cheng
- Department of Chemistry and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA,
| |
Collapse
|
11
|
Thrombospondin 1 and vasoactive agents indirectly alter tumor blood flow. Neoplasia 2008; 10:886-96. [PMID: 18670646 DOI: 10.1593/neo.08264] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) plays important physiological roles in the vasculature to regulate angiogenesis, blood flow, and hemostasis. In solid tumors, NO is generally acknowledged to mediate angiogenic responses to several growth factors. This contrasts with conflicting evidence that NO can acutely increase tumor perfusion through local vasodilation or diminish perfusion by preferential relaxation of peripheral vascular beds outside the tumor. Because thrombospondin 1 (TSP1) is an important physiological antagonist of NO in vascular cells, we examined whether, in addition to inhibiting tumor angiogenesis, TSP1 can acutely regulate tumor blood flow. We assessed this activity of TSP1 in the context of perfusion responses to NO as a vasodilator and epinephrine as a vasoconstrictor. Nitric oxide treatment of wild type and TSP1 null mice decreased perfusion of a syngeneic melanoma, whereas epinephrine transiently increased tumor perfusion. Acute vasoactive responses were also independent of the level of tumor-expressed TSP1 in a melanoma xenograft, but recovery of basal perfusion was modulated by TSP1 expression. In contrast, overexpression of truncated TSP1 lacking part of its CD47 binding domain lacked this modulating activity. These data indicate that TSP1 primarily regulates long-term vascular responses in tumors, in part, because the tumor vasculature has a limited capacity to acutely respond to vasoactive agents.
Collapse
|
12
|
van Kempen LCLT, Rijntjes J, Mamor-Cornelissen I, Vincent-Naulleau S, Gerritsen MJP, Ruiter DJ, van Dijk MCRF, Geffrotin C, van Muijen GNP. Type I collagen expression contributes to angiogenesis and the development of deeply invasive cutaneous melanoma. Int J Cancer 2008; 122:1019-29. [PMID: 17957794 DOI: 10.1002/ijc.23147] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tumors are complex tissues composed of neoplastic cells, soluble and insoluble matrix components and stromal cells. Here we report that in melanoma, turn-over of type I collagen (Col(I)), the predominant matrix protein in dermal stroma affects melanoma progression. Fibroblasts juxtaposed to melanoma cell nests within the papillary dermis display high levels of Col(I) mRNA expression. These nests are enveloped by collagen fibers. In contrast, melanoma-associated fibroblasts within the reticular dermis express Col(I) mRNA at a level that is comparable to its expression in uninvolved dermis and reduced amount of collagen protein can be observed. To determine the significance of Col(I) expression in melanoma, we pharmacologically inhibited its transcription in a porcine cutaneous melanoma model by oral administration of halofuginone. When administered before melanoma development, it reduced melanoma incidence and diminished the transition from microinvasive toward deeply invasive growth by limiting the development of a tumor vasculature. Whereas invasive melanoma growth has been correlated with increased blood vessel density previously, our data for the first time demonstrate that the proangiogenic effect of Col(I) expression by fibroblasts and vascular cells precedes the development of invasive melanomas in a de novo tumor model.
Collapse
Affiliation(s)
- Léon C L T van Kempen
- Department of Pathology, Radboud University Nijmegen - Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The extracellular matrix plays a number of important roles, among them providing structural support and information to cellular structures such as blood vessels imbedded within it. As more complex organisms have evolved, the matrix ability to direct signalling towards the vasculature and remodel in response to signalling from the vasculature has assumed progressively greater importance. This review will focus on the molecules of the extracellular matrix, specifically relating to vessel formation and their ability to signal to the surrounding cells to initiate or terminate processes involved in blood vessel formation.
Collapse
Affiliation(s)
- John M Rhodes
- *Correspondence to: Michael SIMONS Section of Cardiology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.; Tel.: 603 650 3540; E-mail:
| | - Michael Simons
- *Correspondence to: Michael SIMONS Section of Cardiology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, USA.; Tel.: 603 650 3540; E-mail:
| |
Collapse
|
14
|
Le TT, Rehrer CW, Huff TB, Nichols MB, Camarillo IG, Cheng JX. Nonlinear Optical Imaging to Evaluate the Impact of Obesity on Mammary Gland and Tumor Stroma. Mol Imaging 2007. [DOI: 10.2310/7290.2007.00018] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Thuc T. Le
- From the Weldon School of Biomedical Engineering, Department of Biological Sciences, Department of Chemistry, Purdue Cancer Center, and Purdue Oncological Sciences Center, Purdue University, West Lafayette, IN
| | - Charles W. Rehrer
- From the Weldon School of Biomedical Engineering, Department of Biological Sciences, Department of Chemistry, Purdue Cancer Center, and Purdue Oncological Sciences Center, Purdue University, West Lafayette, IN
| | - Terry B. Huff
- From the Weldon School of Biomedical Engineering, Department of Biological Sciences, Department of Chemistry, Purdue Cancer Center, and Purdue Oncological Sciences Center, Purdue University, West Lafayette, IN
| | - Maxine B. Nichols
- From the Weldon School of Biomedical Engineering, Department of Biological Sciences, Department of Chemistry, Purdue Cancer Center, and Purdue Oncological Sciences Center, Purdue University, West Lafayette, IN
| | - Ignacio G. Camarillo
- From the Weldon School of Biomedical Engineering, Department of Biological Sciences, Department of Chemistry, Purdue Cancer Center, and Purdue Oncological Sciences Center, Purdue University, West Lafayette, IN
| | - Ji-Xin Cheng
- From the Weldon School of Biomedical Engineering, Department of Biological Sciences, Department of Chemistry, Purdue Cancer Center, and Purdue Oncological Sciences Center, Purdue University, West Lafayette, IN
| |
Collapse
|
15
|
Hopf HW, Gibson JJ, Angeles AP, Constant JS, Feng JJ, Rollins MD, Zamirul Hussain M, Hunt TK. Hyperoxia and angiogenesis. Wound Repair Regen 2006; 13:558-64. [PMID: 16283871 DOI: 10.1111/j.1524-475x.2005.00078.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We hypothesized that tissue hyperoxia would enhance and hypoxia inhibit neovascularization in a wound model. Therefore, we used female Swiss-Webster mice to examine the influence of differential oxygen treatment on angiogenesis. One milliliter plugs of Matrigel, a mixture of matrix proteins that supports but does not itself elicit angiogenesis, were injected subcutaneously into the mice. Matrigel was used without additive or with added vascular endothelial growth factor (VEGF) or anti-VEGF antibody. Animals were maintained in hypoxic, normoxic, or one of four hyperoxic environments: hypoxia -- 13 percent oxygen at 1 atmosphere absolute (ATA); normoxia -- 21 percent oxygen at 1 ATA; hyperoxia -- (groups a-d) 100 percent oxygen for 90 minutes twice daily at the following pressures: Group a, 1 ATA; Group b, 2 ATA; Group c, 2.5 ATA; Group d, 3.0 ATA. Subcutaneous oxygen tension was measured in all groups. The Matrigel was removed 7 days after implantation. Sections were graded microscopically for the extent of neovascularization. Angiogenesis was significantly greater in all hyperoxic groups and significantly less in the hypoxic group compared with room air-exposed controls. Anti-VEGF antibody abrogated the angiogenic effect of both VEGF and increased oxygen tension. We conclude that angiogenesis is proportional to ambient pO(2) over a wide range. This confirms the clinical impression that angiogenesis requires oxygen. Intermittent oxygen exposure can satisfy the need for oxygen in ischemic tissue.
Collapse
Affiliation(s)
- Harriet W Hopf
- Wound Healing Research Laboratory, Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gaultier A, Salicioni AM, Arandjelovic S, Gonias SL. Regulation of the composition of the extracellular matrix by low density lipoprotein receptor-related protein-1: activities based on regulation of mRNA expression. J Biol Chem 2006; 281:7332-40. [PMID: 16407289 DOI: 10.1074/jbc.m511857200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Low density lipoprotein receptor-related protein-1 (LRP-1) is a catabolic receptor for extracellular matrix (ECM) structural proteins and for proteins that bind to ECM. LRP-1 also is implicated in integrin maturation. In this study, we applied a proteomics strategy to identify novel proteins involved in ECM modeling that are regulated by LRP-1. We show that LRP-1 deficiency in murine embryonic fibroblasts (MEFs) is associated with increased levels of type III collagen and pigment epithelium-derived factor, which accumulate in the substratum surrounding cells. The collagen receptor, uPAR-AP/Endo-180, is also increased in LRP-1-deficient MEFs. Human LRP-1 reversed the changes in protein expression associated with LRP-1 deficiency; however, the endocytic activity of LRP-1 was not involved. Instead, regulation occurred at the mRNA level. Inhibition of c-Jun amino-terminal kinase (JNK) blocked type III collagen expression in LRP-1-deficient MEFs, suggesting regulation of JNK activity as a mechanism by which LRP-1 controls mRNA expression. The ability of LRP-1 to regulate expression of the factors identified here suggests a role for LRP-1 in determining blood vessel structure and in angiogenesis.
Collapse
MESH Headings
- Animals
- Biotin/chemistry
- Cell Line
- Cell Membrane/metabolism
- Cloning, Molecular
- Collagen/chemistry
- Culture Media, Conditioned/metabolism
- Culture Media, Conditioned/pharmacology
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Endocytosis
- Extracellular Matrix/metabolism
- Fibrinogen/chemistry
- Gene Expression Regulation
- Humans
- LDL-Receptor Related Proteins/metabolism
- Low Density Lipoprotein Receptor-Related Protein-1/metabolism
- Low Density Lipoprotein Receptor-Related Protein-1/physiology
- Mass Spectrometry
- Mice
- Microscopy, Fluorescence
- Neovascularization, Pathologic
- Phosphorylation
- Proteomics
- RNA, Messenger/metabolism
- Receptors, LDL/metabolism
- Receptors, LDL/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Surface Properties
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Alban Gaultier
- Department of Pathology, School of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
17
|
Davis GE, Senger DR. Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 2005; 97:1093-107. [PMID: 16306453 DOI: 10.1161/01.res.0000191547.64391.e3] [Citation(s) in RCA: 901] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The extracellular matrix (ECM) is critical for all aspects of vascular biology. In concert with supporting cells, endothelial cells (ECs) assemble a laminin-rich basement membrane matrix that provides structural and organizational stability. During the onset of angiogenesis, this basement membrane matrix is degraded by proteinases, among which membrane-type matrix metalloproteinases (MT-MMPs) are particularly significant. As angiogenesis proceeds, ECM serves essential functions in supporting key signaling events involved in regulating EC migration, invasion, proliferation, and survival. Moreover, the provisional ECM serves as a pliable scaffold wherein mechanical guidance forces are established among distal ECs, thereby providing organizational cues in the absence of cell-cell contact. Finally, through specific integrin-dependent signal transduction pathways, ECM controls the EC cytoskeleton to orchestrate the complex process of vascular morphogenesis by which proliferating ECs organize into multicellular tubes with functional lumens. Thus, the composition of ECM and therefore the regulation of ECM degradation and remodeling serves pivotally in the control of lumen and tube formation and, finally, neovessel stability and maturation.
Collapse
Affiliation(s)
- George E Davis
- Department of Pathology, Texas A&M University System Health Science Center, College Station, USA
| | | |
Collapse
|
18
|
Zhou L, Isenberg JS, Cao Z, Roberts DD. Type I collagen is a molecular target for inhibition of angiogenesis by endogenous thrombospondin-1. Oncogene 2005; 25:536-45. [PMID: 16247480 DOI: 10.1038/sj.onc.1209069] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Three-dimensional explant cultures of muscle tissue were used to characterize secreted proteins regulated by endogenous levels of the angiogenesis modulator thrombospondin (TSP)-1. Explants from TSP1 null mice exhibit enhanced neovascularization associated with increased endothelial outgrowth but decreased outgrowth of perivascular smooth muscle cells . The absence of endogenous TSP1 did not diminish activation of latent transforming growth factor-beta and moderately decreased matrix metalloproteinase levels. However, significant changes in other secreted proteins were observed. Endogenous TSP1 decreased mRNA levels for collagens Ialpha1, Ialpha2, and IIIalpha1 and laminin alpha4 and increased collagen IValpha1 mRNA expression. Endogenous TSP1 also decreased the level of type I collagen protein produced by the vascular outgrowths. Collagens Ialpha1, Ialpha2, and IIIalpha1 are known tumor endothelial markers, suggesting that TSP1 coordinately regulates a set of extracellular matrix genes that reverse the angiogenic switch. Suppression of collagen Ialpha1 or Ialpha2 mRNAs using antisense morpholinos inhibited outgrowth in TSP1 null explants and proliferation of TSP1 null endothelial cells, indicating that type I collagen synthesis is limiting for this neovascularization response.
Collapse
Affiliation(s)
- L Zhou
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
19
|
Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A. Smart materials as scaffolds for tissue engineering. J Cell Physiol 2005; 203:465-70. [PMID: 15744740 DOI: 10.1002/jcp.20270] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this review, we focused our attention on the more important natural extracellular matrix (ECM) molecules (collagen and fibrin), employed as cellular scaffolds for tissue engineering and on a class of semi-synthetic materials made from the fusion of specific oligopeptide sequences, showing biological activities, with synthetic materials. In particular, these new "intelligent" scaffolds may contain oligopeptide cleaving sequences specific for matrix metalloproteinases (MMPs), integrin binding domains, growth factors, anti-thrombin sequences, plasmin degradation sites, and morphogenetic proteins. The aim was to confer to these new "intelligent" semi-synthetic biomaterials, the advantages offered by both the synthetic materials (processability, mechanical strength) and by the natural materials (specific cell recognition, cellular invasion, and the ability to supply differentiation/proliferation signals). Due to their characteristics, these semi-synthetic biomaterials represent a new and versatile class of biomimetic hybrid materials that hold clinical promise in serving as implants to promote wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Francesco Rosso
- IX Division of General Surgery and Applied Biotechnology, Department of Anaesthesological, Surgical and Emergency Sciences, Second University of Naples, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Liu Y, Senger DR. Matrix-specific activation of Src and Rho initiates capillary morphogenesis of endothelial cells. FASEB J 2004; 18:457-68. [PMID: 15003991 DOI: 10.1096/fj.03-0948com] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Interstitial collagen I stimulates microvascular endothelial cells to form solid cords that imitate precapillary structures found during angiogenesis. Time-lapse microscopy identified cell retraction and disruption of cell-cell contacts as early critical steps in collagen I-induced capillary morphogenesis. These early stages paralleled collagen I activation of Src kinase and GTPase Rho through beta1 integrins. The Src inhibitor PP2, dominant-negative Src, and Rho inhibitor exoenzyme C3 transferase each inhibited collagen I induction of actin stress fibers that mediate cell retraction and each inhibited capillary morphogenesis. Collagen I also disrupted VE-cadherin from intercellular junctions through a Src-dependent mechanism; both the Src inhibitor PP2 and dominant-negative Src preserved VE-cadherin localization to regions of cell-cell contact. An active Src mutant disrupted VE-cadherin and cell-cell contacts similarly to collagen I. In sharp contrast, laminin-1 did not induce capillary morphogenesis, and laminin-1 did not induce activation of Src or Rho. Rather, laminin-1 induced persistent activation of the GTPase Rac. Thus, these studies identify activation of Src and Rho as key mechanisms by which collagen I provokes capillary morphogenesis of microvascular endothelial cells, and they define marked differences between the functions of collagen I and laminin-1 in regulating endothelial cell morphogenesis.
Collapse
Affiliation(s)
- Yanqiu Liu
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
21
|
Sweeney SM, DiLullo G, Slater SJ, Martinez J, Iozzo RV, Lauer-Fields JL, Fields GB, San Antonio JD. Angiogenesis in collagen I requires alpha2beta1 ligation of a GFP*GER sequence and possibly p38 MAPK activation and focal adhesion disassembly. J Biol Chem 2003; 278:30516-24. [PMID: 12788934 DOI: 10.1074/jbc.m304237200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis depends on proper collagen biosynthesis and cross-linking, and type I collagen is an ideal angiogenic scaffold, although its mechanism is unknown. We examined angiogenesis using an assay wherein confluent monolayers of human umbilical vein endothelial cells were overlain with collagen in a serum-free defined medium. Small spaces formed in the cell layer by 2 h, and cells formed net-like arrays by 6-8 h and capillary-like lumens by 24 h. Blocking of alpha2beta1, but not alpha1 or alpha(v)beta3 integrin function halted morphogenesis. We found that a triple-helical, homotrimeric peptide mimetic of a putative alpha2beta1 binding site: alpha1(I)496-507 GARGERGFP*GER (where single-letter amino acid nomenclature is used, P* = hydroxyproline) inhibited tube formation, whereas a peptide carrying another putative site: alpha1(I)127-138 GLP*GERGRP*GAP* or control peptides did not. A chemical inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), SB202190, blocked tube formation, and p38 MAPK activity was increased in collagen-treated cultures, whereas targeting MAPK kinase (MEK), focal adhesion kinase (FAK), or phosphatidylinositol 3-kinase (PI3K) had little effect. Collagen-treated cells had fewer focal adhesions and 3- to 5-fold less activated FAK. Thus capillary morphogenesis requires endothelial alpha2beta1 integrin engagement of a single type I collagen integrin-binding site, possibly signaling via p38 MAPK and focal adhesion disassembly/FAK inactivation.
Collapse
Affiliation(s)
- Shawn M Sweeney
- Department of Pathology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Taneda S, Pippin JW, Sage EH, Hudkins KL, Takeuchi Y, Couser WG, Alpers CE. Amelioration of diabetic nephropathy in SPARC-null mice. J Am Soc Nephrol 2003; 14:968-80. [PMID: 12660331 DOI: 10.1097/01.asn.0000054498.83125.90] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular protein that inhibits mesangial cell proliferation and also affects production of extracellular matrix (ECM) by regulating transforming growth factor-beta1 (TGF-beta1) and type I collagen in mesangial cells. This study is an investigation of the role of SPARC in streptozotocin (STZ)-induced diabetic nephropathy (DN) of 6-mo duration in wild type (WT) and SPARC-null mice. SPARC expression was evaluated by immunohistochemistry (IHC) and by in situ hybridization (ISH). Deposition of type I and IV collagen and laminin was evaluated by IHC, and TGF-beta 1 mRNA was assessed by ISH. Renal function studies revealed no significant difference in BUN between diabetic SPARC-null mice and diabetic WT mice, whereas a significant increase in albumin excretion was detected in diabetic WT relative to diabetic SPARC-null mice. Diabetic WT animals exhibited increased levels of SPARC mRNA and protein in glomerular epithelial cells and in interstitial cells, in comparison with nondiabetic WT mice. Neither SPARC mRNA nor protein was detected in SPARC-null mice. Morphometry revealed a significant increase in the percentage of the glomerular tufts occupied by ECM in diabetic WT compared with nondiabetic WT mice, although there was no difference in the mean glomerular tuft area among groups. In contrast, diabetic SPARC-null mice did not show a significant difference in the percentage of the glomerular tufts occupied by ECM relative to nondiabetic null mice. Tubulointerstitial fibrosis was ameliorated in diabetic SPARC-null mice compared with diabetic WT animals. Further characterization of diabetic SPARC-null mice revealed diminished glomerular deposition of type IV collagen and laminin, and diminished interstitial deposition of type I and type IV collagen correlated with decreases in TGF-beta 1 mRNA compared with WT diabetic mice. These observations suggest that SPARC contributes to glomerulosclerosis and tubulointerstitial damage in response to hyperglycemia through increasing TGF-beta 1 expression in this model of chronic DN.
Collapse
Affiliation(s)
- Sekiko Taneda
- Department of Pathology, Division of Nephrology, University of Washington, Seattle Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Taneda S, Hudkins KL, Cui Y, Farr AG, Alpers CE, Segerer S. Growth factor expression in a murine model of cryoglobulinemia. Kidney Int 2003; 63:576-90. [PMID: 12631122 DOI: 10.1046/j.1523-1755.2003.00778.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Increased expression of growth factors including platelet-derived growth factor (PDGF) and transforming growth factor-beta (TGF-beta) are thought to play pivotal roles during mesangial expansion and glomerulosclerosis. Thymic stromal lymphopoietin (TSLP) transgenic mice develop mixed cryoglobulinemia and a membranoproliferative glomerulonephritis (MPGN). Here we describe the renal expression of isoforms of PDGF and TGF-beta in relation to changes in extracellular matrix (ECM) components and markers of cell proliferation and activation in this model. METHODS A total of 123 mice, including 61 TSLP transgenic mice and 62 wild-type controls, were sacrificed at defined intervals. PDGF-A chain, -B chain, PDGF alpha- and beta-receptor (beta-R) and TGF-beta1 mRNA were analyzed by in situ hybridization. Expression of alpha smooth muscle actin (alphaSMA), collagen type I, collagen type IV, laminin, and a marker of proliferating cells (PCNA) were assessed by immunohistochemistry. Slides also were studied by combined immunohistochemistry and in situ hybridization with an antibody that recognizes monocytes/macrophage and with riboprobes that detect PDGF B-chain, PDGF beta-R or TGF-beta1 mRNA. RESULTS Increased numbers of proliferating glomerular cells appeared early in the disease course, associated with de novo expression of alphaSMA. Expression of PDGF B-chain and beta-R mRNA was increased in the mesangium and in parietal epithelial cells of TSLP transgenic mice and correlated with the number of PCNA positive cells. Increased TGF-beta1 mRNA expression paralleled the deposition of type IV collagen. A significant proportion of Mac-2 positive macrophages expressed TGF-beta1 mRNA, while only a small percentage of glomerular macrophages expressed PDGF B-chain mRNA. No PDGF beta-R mRNA expression by macrophages was detected. CONCLUSION TSLP transgenic mice develop a membranoproliferative glomerulonephritis in which glomerular cell proliferation and matrix deposition are associated with an increased expression of PDGF B-chain, PDGF beta-R and TGF-beta1. These findings extend the paradigms covering these growth factors established in the rat Thy 1 model of mesangiolysis and repairs to a murine model of progressive glomerulonephritis closely resembling human MPGN.
Collapse
Affiliation(s)
- Sekiko Taneda
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
24
|
Whelan MC, Senger DR. Collagen I initiates endothelial cell morphogenesis by inducing actin polymerization through suppression of cyclic AMP and protein kinase A. J Biol Chem 2003; 278:327-34. [PMID: 12399469 DOI: 10.1074/jbc.m207554200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Collagen I provokes endothelial cells to assume a spindle-shaped morphology and to align into solid cord-like assemblies. These cords closely imitate the solid pre-capillary cords of embryonic angiogenesis, raising interesting questions about underlying mechanisms. Studies described here identify a critical mechanism beginning with collagen I ligation of integrins alpha(1)beta(1) and alpha(2)beta(1), followed by suppression of cyclic AMP and cyclic AMP (cAMP)-dependent protein kinase A, and marked induction of actin polymerization to form prominent stress fibers. In contrast to collagen I, laminin-1 neither suppressed cAMP nor protein kinase A activity nor induced actin polymerization or changes in cell shape. Moreover, fibroblasts did not respond to collagen I with changes in cAMP, actin polymerization, or cell shape, thus indicating that collagen signaling, as observed in endothelial cells, does not extend to all cell types. Pharmacological elevation of cAMP blocked collagen-induced actin polymerization and formation of cords by endothelial cells; conversely, pharmacological suppression of either cAMP or protein kinase A induced actin polymerization. Collectively, these studies identify a previously unrecognized and critical mechanism, involving suppression of cAMP-dependent protein kinase A and induction of actin polymerization, through which collagen I drives endothelial cell organization into multicellular pre-capillary cords.
Collapse
Affiliation(s)
- Mary C Whelan
- Division of Cancer Biology and Angiogenesis, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
25
|
Elkin M, Miao HQ, Nagler A, Aingorn E, Reich R, Hemo I, Dou HL, Pines M, Vlodavsky I. Halofuginone: a potent inhibitor of critical steps in angiogenesis progression. FASEB J 2000; 14:2477-85. [PMID: 11099465 DOI: 10.1096/fj.00-0292com] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously demonstrated that halofuginone, a low molecular weight quinazolinone alkaloid, is a potent inhibitor of collagen alpha1(I) and matrix metalloproteinase 2 (MMP-2) gene expression. Halofuginone also effectively suppresses tumor progression and metastasis in mice. These results together with the well-documented role of extracellular matrix (ECM) components and matrix degrading enzymes in formation of new blood vessels led us to investigate the effect of halofuginone on the angiogenic process. In a variety of experimental system, representing sequential events in the angiogenic cascade, halofuginone treatment resulted in profound inhibitory effect. Among these are the abrogation of endothelial cell MMP-2 expression and basement membrane invasion, capillary tube formation, and vascular sprouting, as well as deposition of subendothelial ECM. The most conclusive anti-angiogenic activity of halofuginone was demonstrated in vivo (mouse corneal micropocket assay) by showing a marked inhibition of basic fibroblast growth factor (bFGF) -induced neovascularization in response to systemic administration of halofuginone, either i.p. or in the diet. The ability of halofuginone to interfere with key events in neovascularization, together with its oral bioavailability and safe use as an anti-parasitic agent, make it a promising drug for further evaluation in the treatment of a wide range of diseases associated with pathological angiogenesis.
Collapse
Affiliation(s)
- M Elkin
- Departments of Oncology, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
St Croix B, Rago C, Velculescu V, Traverso G, Romans KE, Montgomery E, Lal A, Riggins GJ, Lengauer C, Vogelstein B, Kinzler KW. Genes expressed in human tumor endothelium. Science 2000; 289:1197-202. [PMID: 10947988 DOI: 10.1126/science.289.5482.1197] [Citation(s) in RCA: 1373] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To gain a molecular understanding of tumor angiogenesis, we compared gene expression patterns of endothelial cells derived from blood vessels of normal and malignant colorectal tissues. Of over 170 transcripts predominantly expressed in the endothelium, 79 were differentially expressed, including 46 that were specifically elevated in tumor-associated endothelium. Several of these genes encode extracellular matrix proteins, but most are of unknown function. Most of these tumor endothelial markers were expressed in a wide range of tumor types, as well as in normal vessels associated with wound healing and corpus luteum formation. These studies demonstrate that tumor and normal endothelium are distinct at the molecular level, a finding that may have significant implications for the development of anti-angiogenic therapies.
Collapse
MESH Headings
- Biomarkers, Tumor
- Cell Separation
- Cells, Cultured
- Colon/blood supply
- Colon/metabolism
- Colorectal Neoplasms/blood supply
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Corpus Luteum/blood supply
- Corpus Luteum/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Extracellular Matrix Proteins/genetics
- Female
- Gene Expression
- Gene Expression Profiling
- Humans
- Intestinal Mucosa/blood supply
- Intestinal Mucosa/cytology
- Intestinal Mucosa/pathology
- Neoplasms/blood supply
- Neoplasms/genetics
- Neoplasms/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Physiologic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rectum/blood supply
- Rectum/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- B St Croix
- Johns Hopkins Oncology Center, Howard Hughes Medical Institute, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kinsella MG, Fischer JW, Mason DP, Wight TN. Retrovirally mediated expression of decorin by macrovascular endothelial cells. Effects on cellular migration and fibronectin fibrillogenesis in vitro. J Biol Chem 2000; 275:13924-32. [PMID: 10788518 DOI: 10.1074/jbc.275.18.13924] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decorin is a member of the widely expressed family of small leucine-rich proteoglycans. In addition to a primary role as a modulator of extracellular matrix protein fibrillogenesis, decorin can inhibit the cellular response to growth factors. Decorin expression is induced in endothelial cells during angiogenesis, but not when migration and proliferation are stimulated. Thus, decorin may support the formation of the fibrillar pericellular matrix that stabilizes the differentiated endothelial phenotype during the later stages of angiogenesis. Therefore, we tested whether constitutive decorin expression alone could modify endothelial cell migration and proliferation or affect pericellular matrix formation. To this end, replication-defective retroviral vectors were used to stably express bovine decorin, which was detected by Northern and Western blotting. The migration of endothelial cells that express decorin is significantly inhibited in both monolayer outgrowth and microchemotaxis chamber assays. The inhibition of cell migration by decorin was not accompanied by decreased proliferation. In addition, endothelial cells that express decorin assemble an extensive fibrillar fibronectin matrix more rapidly than control cells as assessed by immunocytochemical and fibronectin fibrillogenesis assays. These observations suggest that cell migration may be modulated by the influence of decorin on the assembly of the cell-associated extracellular matrix.
Collapse
Affiliation(s)
- M G Kinsella
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
28
|
Peterkofsky B, Gosiewska A, Singh K, Pearlman S, Mahmoodian F. Species differences in cis-elements of the Pro?1(I) procollagen promoter and their binding proteins. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990601)73:3<408::aid-jcb12>3.0.co;2-d] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Vázquez F, Rodríguez-Manzaneque JC, Lydon JP, Edwards DP, O'Malley BW, Iruela-Arispe ML. Progesterone regulates proliferation of endothelial cells. J Biol Chem 1999; 274:2185-92. [PMID: 9890981 DOI: 10.1074/jbc.274.4.2185] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The use of steroid hormones in postmenopausal replacement therapy has been associated with prevention of cardiovascular disease. Although the contribution of estradiol to endothelial cell function has been addressed, little information is available on the effect of progestins on this cell type. Here, we provide direct evidence for the presence of functional nuclear progesterone receptor in endothelial cells and demonstrate that physiological levels of progesterone inhibit proliferation through a nuclear receptor-mediated mechanism. The effects of progesterone were blocked by pretreatment with a progesterone receptor antagonist, and progesterone receptor-deficient endothelial cells failed to respond to the hormone. We evaluated the effect of progesterone by analysis of aorta re-endothelialization experiments in wild-type and progesterone receptor knockout mice. The rate of re-endothelialization was significantly decreased in wild-type mice when in the presence of progesterone, whereas there was no difference between control and progesterone-treated progesterone receptor knockout mice. FACS analysis showed that progestins arrest endothelial cell cycle in G1. The lag in cell cycle progression involved reduction in cyclin-dependent kinase activity, as shown by down-regulation in retinoblastoma protein phosphorylation. In addition, treatment of endothelial cells with progestins altered the expression of cyclin E and A in accordance with G1 arrest. These results have important implications to our current knowledge of the effect of steroids on endothelial cell function and to the overall contribution of progesterone to vascular repair.
Collapse
Affiliation(s)
- F Vázquez
- Department of Pathology, Beth Israel-Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
30
|
Pröls F, Loser B, Marx M. Differential expression of osteopontin, PC4, and CEC5, a novel mRNA species, during in vitro angiogenesis. Exp Cell Res 1998; 239:1-10. [PMID: 9511718 DOI: 10.1006/excr.1997.3882] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The formation of new capillaries from preexisting blood vessels, a process termed angiogenesis, plays a key role in many physiological and pathological conditions such as wound healing, embryogenesis, and tumor growth. The aim of this study was to identify changes in endothelial cell gene expression specifically associated with angiogenesis. Using an in vitro model and the differential display strategy, we compared gene expression patterns of rat microvascular endothelial cells cultured in two (2D) and three-dimensional (3D) culture. In 2D culture, the cells express actin and proliferate, whereas in 3D culture actin expression is downregulated, and the cells are mitotically quiescent and reorganize into vascular tubes. We identified three differentially expressed genes, osteopontin, PC4, and CEC5, a novel mRNA species, with homology to calmodulin-dependent protein kinases. The expression patterns were confirmed by Northern blot analysis. In conclusion, the analysis of gene expression in endothelial cells in 3D and 3D culture allows the identification of genes differentially expressed during angiogenesis. These genes or proteins may serve as targets for therapeutic modulation of angiogenesis.
Collapse
Affiliation(s)
- F Pröls
- Medizinische Klinik IV, Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
31
|
Floege J, Hackmann B, Kliem V, Kriz W, Alpers CE, Johnson RJ, Kühn KW, Koch KM, Brunkhorst R. Age-related glomerulosclerosis and interstitial fibrosis in Milan normotensive rats: a podocyte disease. Kidney Int 1997; 51:230-43. [PMID: 8995738 DOI: 10.1038/ki.1997.28] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In Milan normotensive (MNS) rats glomerulosclerosis and interstitial fibrosis develop spontaneously in the absence of hypertension. Renal changes were sequentially assessed in these rats between 2 and 10 months of age. At 10 months, rats were characterized by heavy proteinuria, increased serum creatinine, focal or global glomerulosclerosis in 51 +/- 12% of the glomeruli as well as tubulointerstitial injury involving > 25% of the section area. Cell injury in podocytes (evidenced as increased expression of desmin and by electron microscopy) and interstitial fibroblasts (increased expression of alpha-smooth muscle actin) and mild glomerular hypertrophy were witnessed as early as three to four months of age and preceded glomerulosclerosis and interstitial fibrosis. Only minor evidence of mesangial cell activation (as assessed by glomerular (de novo alpha-smooth muscle actin or type I collagen expression or increased cell proliferation) was noted throughout the observation period. Later stages of the disease were characterized by glomerular and/or tubulointerstitial macrophage influx and osteopontin expression (a chemoattractant), mild accumulation of lymphocytes, platelets, fibrinogen, as well as by a progressive accumulation of various matrix proteins. Progressive renal disease in MNS rats is thus noteworthy for the relative lack of mesangial cell activation. Rather, early podocyte damage, induced by yet unknown mechanisms, may underlie the development of glomerulosclerosis and subsequent interstitial fibrosis.
Collapse
Affiliation(s)
- J Floege
- Division of Nephrology, Medizinische Hochschule, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kliem V, Johnson RJ, Alpers CE, Yoshimura A, Couser WG, Koch KM, Floege J. Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats. Kidney Int 1996; 49:666-78. [PMID: 8648907 DOI: 10.1038/ki.1996.95] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 5/6 nephrectomy model is used to study pathogenetic mechanisms underlying chronic renal failure. We previously demonstrated that increased mesangial cell proliferation and glomerular PDGF B-chain expression precede glomerulosclerosis in this model. In the present study we have assessed the concomitant changes in the cortical tubulointerstitium. A wave of tubular and interstitial cell proliferation (as determined by immunostaining for PCNA) occurred at week 1 after 5/6 nephrectomy. This wave preceded the peak glomerular cell proliferation by one week. Tubulointerstitial cell proliferation decreased thereafter and reached control values by week 10. In situ hybridization and immunostaining for PDGF B-chain and beta-receptor in sham-operated controls showed labeling of distal tubules and collecting ducts, while no signal was present in the interstitium. PDGF B-chain mRNA and protein expression was markedly increased in tubules at weeks 2 and 4 after 5/6 nephrectomy and in the interstitium (particularly in areas of inflammatory infiltrates) at weeks 2 to 10. Similar changes occurred with PDGF receptor beta-subunit immunostaining. Interstitial expression of desmin and alpha-smooth muscle actin (markers of myofibroblasts) progressively increased after week 1. Interstitial influx of monocytes/macrophages with focal accentuation started at week 2. Counts of lymphocytes, neutrophils and platelets showed only minor changes. In parallel to the monocyte/macrophage influx, progressive interstitial accumulation of collagens I and IV, laminin, and fibronectin occurred. All of these changes were correlated with the increase in serum creatinine, proteinuria and an index of tubulointerstitial damage. We conclude that tubulointerstitial changes after 5/6 nephrectomy show similarities with those observed in the glomeruli. Tubular and interstitial overexpression of PDGF B-chain and its receptor may play a role in mediating fibroblast migration and/or proliferation in areas of tubulointerstitial injury.
Collapse
Affiliation(s)
- V Kliem
- Division of Nephrology, Medizinische Hochschule, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Grigorova-Borsos AM, Bakillah A, Urios P, Leblond V, Guillot R, Sternberg M. Production of type IV collagen and 72-kDa gelatinase by human endothelial cells cultured in high glucose. Effects of a protein kinase C inhibitor, GF 109203X. Biochem Cell Biol 1996; 74:659-67. [PMID: 9018373 DOI: 10.1139/o96-071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Since diabetic microangiopathy and macroangiopathy are characterized by type IV collagen accumulation in vascular basement membranes, it was of interest to study type IV collagen production and type IV collagenase secretion by endothelial cells (EC) cultured in high glucose and to evaluate the role of protein kinase C (PKC) activation in the alterations induced by high glucose. Primary cultures of human umbilical vein EC were exposed to high glucose concentration for 3 days at the beginning of confluence. The number of EC decreased with glucose concentration from 5 to 50 mM. At 16.7 mM glucose concentration, the amount of type IV collagen, determined by a two-step ELISA, increased in the culture supernatant and in the insoluble fraction associated with the extracellular matrix and cells; proline incorporation was more markedly elevated in the collagenous than in the total proteins of the culture supernatant and of the extracellular matrix and cell extracts. Gelatin zymography of the culture supernatant showed that EC mainly produce a 72-kDa gelatinase known to degrade type IV collagen. At 16.7 mM glucose concentration, total gelatinase activity per millilitre of culture supernatant was reduced and the 72-kDa gelatinase activity measured on the zymogram scan was lowered. When EC were exposed to 16.7 mM glucose, the specific PKC inhibitor GF 109203X corrected the increases in type IV collagen concentration and in proline incorporation into the collagenous or total proteins present in he culture supernatant or in the extract of the insoluble fraction, including the extracellular matrix and cells. Our results show that soluble and insoluble type IV collagen accumulation by EC cultured at high glucose concentration is not only associated with increased synthesis of the collagenous and total proteins but also with decreased total 72-kDa gelatinase activity in the extracellular fluid. The observed effects of GF 109203X are in favor of the involvement of PKC activation in the type IV collagen accumulation.
Collapse
Affiliation(s)
- A M Grigorova-Borsos
- Equipe de Recherches sur la Biochimie et la Pharmacologie des Vaisseaux et du Rein, Faculté de Médecine Broussais-Hôtel-Dieu, Université de Paris V & VI, France
| | | | | | | | | | | |
Collapse
|
34
|
Young BA, Johnson RJ, Alpers CE, Eng E, Gordon K, Floege J, Couser WG, Seidel K. Cellular events in the evolution of experimental diabetic nephropathy. Kidney Int 1995; 47:935-44. [PMID: 7752595 DOI: 10.1038/ki.1995.139] [Citation(s) in RCA: 236] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In several models of progressive glomerular disease, mesangial cell proliferation, phenotypic change and increased growth factor expression precede up-regulation of genes for extracellular matrix components (ECM) and mesangial expansion. To examine these events in diabetic nephropathy (DN) we conducted sequential studies of glomeruli in rats with streptozotocin induced DN. We found prominent mesangial cell proliferation at three days (4.34 +/- 2.24 PCNA + cells/glom vs. 1.6 +/- 0.74 in controls, P < 0.001) associated with increased alpha-actin expression. PDGF B-chain mRNA was slightly increased at day one, and PDGF B-chain immunostaining was slightly increased at days one and six. Staining for bFGF was significantly increased at three days (2.2 +/- 0.6 vs. 1.2 +/- 0.1 in controls, P < 0.01). There was also an early increase in platelets in glomeruli of diabetic animals, and platelet depletion significantly inhibited the early phase of proliferation. In addition to mesangial cell proliferation, a prominent glomerular macrophage infiltration began at day three and peaked at day 30 (3.94 +/- 1.47 vs. 2.08 +/- 1.13 in controls, P < 0.01). TGF-beta mRNA increased at days 14 and 30. Insulin treatment prevented mesangial cell proliferation, actin expression, and macrophage infiltration, and normalized TGF-beta expression at 14 and 30 days. These multiple cellular events preceded any detectable increases in glomerular gene expression or deposition of collagen I, IV or laminin.
Collapse
Affiliation(s)
- B A Young
- Department of Medicine, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Johnson RJ, Lombardi D, Eng E, Gordon K, Alpers CE, Pritzl P, Floege J, Young B, Pippin J, Couser WG. Modulation of experimental mesangial proliferative nephritis by interferon-gamma. Kidney Int 1995; 47:62-9. [PMID: 7731171 DOI: 10.1038/ki.1995.7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The observation that interferon-gamma (IFN-gamma) inhibits cell proliferation and collagen synthesis of a variety of cell types in culture has suggested that IFN-gamma may be useful in the treatment of fibroproliferative diseases. We administered recombinant IFN-gamma subcutaneously (10(5) U/kg/day for 3 days) to rats, beginning one day after the induction of mesangial proliferative nephritis with anti-Thy 1 antibody. IFN-gamma reduced glomerular (primarily mesangial) cell proliferation by 44% at days 2 and 4 compared to vehicle injected control rats with anti-Thy 1 nephritis (that is, proliferating cells that excluded the macrophage marker, ED-1, P < 0.001). Despite the inhibition of mesangial cell proliferation, IFN-gamma did not reduce the overall extracellular matrix deposition (by silver stain) or deposition of type IV collagen or laminin (by immunostaining) at 4 or 7 days, and glomerular type IV collagen and laminin mRNA levels were increased (1.4 and 1.7-fold) at 4 days relative to controls. The inability of IFN-gamma treatment to reduce mesangial matrix expansion may relate to the fact that IFN-gamma treated rats had a twofold increase in glomerular macrophages (that is, ED-1 positive cells, P < 0.001 at 2 and 4 days) with an increase in oxidant producing cells (day 2, P < 0.05) and a 1.6-fold increase in glomerular TGF-beta mRNA expression (4 days). This suggests that the effect of IFN-gamma to inhibit mesangial cell proliferation in glomerulonephritis may be offset by the ability of IFN-gamma to increase glomerular macrophages and TGF-beta expression. These data also show that IFN-gamma can partly dissociate the mesangial proliferative response from the extracellular matrix expansion in glomerulonephritis.
Collapse
Affiliation(s)
- R J Johnson
- Division of Nephrology, University of Washington Medical Center, Seattle, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kobayashi S, Nagaura T, Kimura I, Kimura M. Interferon-gamma-activated macrophages enhance angiogenesis from endothelial cells of rat aorta. IMMUNOPHARMACOLOGY 1994; 27:23-30. [PMID: 7515864 DOI: 10.1016/0162-3109(94)90004-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The influence of interferon-gamma (IFN-gamma), an activator of macrophages, was investigated on angiogenesis in vitro from rat aortic endothelial cells (EC). Subcultured EC were cultured in 0.15% type I collagen gel with 2% fetal bovine serum (FBS)-Dulbecco's modified Eagle's medium. Tube formation by EC began on the first day of culture and reached a plateau that lasted from the second to the eighth day. A peritoneal macrophage preparation was co-cultured on overlaying collagen gel containing EC. The macrophage preparation increased tube length from the second to the fourth day in a time-dependent manner. IFN-gamma (2.2 and 6.5 ng/ml) enhanced the effect of co-cultured macrophages from the fourth to the eighth day. The conditioned media derived from macrophages after 4 and 6 days of exposure to IFN-gamma (6.5 ng/ml) also showed significantly enhanced tube formation induced by macrophage-conditioned medium. However, IFN-gamma (6.5 ng/ml) did not influence the activity of the macrophage-conditioned medium. These results suggest that IFN-gamma enhances angiogenesis from EC of rat aorta by releasing an angiogenic factor from macrophages.
Collapse
Affiliation(s)
- S Kobayashi
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | |
Collapse
|
37
|
Floege J, Eng E, Young BA, Couser WG, Johnson RJ. Heparin suppresses mesangial cell proliferation and matrix expansion in experimental mesangioproliferative glomerulonephritis. Kidney Int 1993; 43:369-80. [PMID: 8441232 DOI: 10.1038/ki.1993.55] [Citation(s) in RCA: 121] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Proliferation and extracellular matrix (ECM) overproduction by glomerular mesangial cells characterizes many types of glomerulonephritis and often precedes the development of glomerulosclerosis. Heparin is a potent inhibitor of mesangial cell growth in vitro. We examined whether standard heparin can inhibit mesangial cell proliferation in vivo in the mesangioproliferative anti-Thy 1.1 nephritis. Untreated control rats were compared to rats infused with heparin either early (day -2 to 1) or late (day 2 to 5) after induction of anti-Thy 1.1 nephritis. The results show that heparin treatment significantly reduced mesangial cell proliferation regardless of when it was initiated. Heparin (either early or late treatment) also reduced mesangial basic fibroblast growth factor (bFGF) expression and platelet-derived growth factor (PDGF) receptor up-regulation as reflected by immunostaining, whereas PDGF B-chain expression was reduced only by late heparin treatment. Furthermore, heparin treatment markedly inhibited the mesangial matrix expansion for a variety of ECM proteins, including laminin, type I and IV collagen, fibronectin and entactin. Heparin did not affect the initial mesangiolysis, glomerular macrophage influx, deposition of anti-Thy 1.1 IgG or fibrinogen, or the glomerular platelet influx. These results suggest that heparin, via its antiproliferative rather than anticoagulant effect, can inhibit mesangial cell proliferation, overexpression of polypeptide growth factors, and ECM protein overproduction in vivo. The beneficial effect of heparin can be demonstrated even if treatment is initiated after the development of nephritis. By virtue of these properties, heparin may be an effective agent in the treatment of human mesangioproliferative disease and in the prevention of glomerulosclerosis.
Collapse
Affiliation(s)
- J Floege
- Department of Medicine, University of Washington, Seattle
| | | | | | | | | |
Collapse
|
38
|
Bauer J, Margolis M, Schreiner C, Edgell CJ, Azizkhan J, Lazarowski E, Juliano RL. In vitro model of angiogenesis using a human endothelium-derived permanent cell line: contributions of induced gene expression, G-proteins, and integrins. J Cell Physiol 1992; 153:437-49. [PMID: 1280276 DOI: 10.1002/jcp.1041530302] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The EA hy926 cell line is a continuous, clonable, human cell line that displays a number of features characteristic of vascular endothelial cells (Edgell et al., 1983). Here we report that when EA hy926 cells (EA cells) are plated on an extracellular matrix material [Matrigel], they undergo a process of morphological re-organization leading to the formation of a complex network of cord or tubelike structures. These events seem to resemble, in some respects, an in vitro process of angiogenesis. The morphological re-arrangement occurs within a 12-16 hr period and seems to require expression of new messenger RNA and protein, since it is completely blocked when actinomycin D or cycloheximide are present at the time the cells are plated on Matrigel. This is not due to overt toxicity of the drugs, since exposure of cells to actinomycin D at 2 hr or more after plating on Matrigel has little effect on the formation of the tubelike structures. The process of Matrigel-induced tube formation also apparently involves a G-protein mediated signal. Treatment of the EA cells with pertussis toxin completely blocks the process and causes the ADP-ribosylation of a 42 kD protein that is recognized by an antibody to Gi-alpha subunits. In contrast, concentrations of pertussis toxin sufficient to block tube formation have only modest effects on the adhesion or motility of EA cells on purified matrix components such as laminin or collagen IV. The process of Matrigel-induced tube formation also involves integrins since monoclonal antibodies to integrin alpha 6 or beta 1 subunits can completely block the process. The concentrations of anti-integrin antibodies needed to block tube formation are much lower than those required to block cell adhesion on purified matrix components and are sufficient to occupy less than 10% of the alpha 6 or beta 1 subunits available at the cell surface. These results suggest that integrins may be involved in this potential model of angiogenesis in processes beyond their usual role in cell adhesion. Based on these results, it seems likely that the EA hy 926 cell line will prove to be a useful model for in vitro study of angiogenic processes.
Collapse
Affiliation(s)
- J Bauer
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill 27599
| | | | | | | | | | | | | |
Collapse
|
39
|
Floege J, Johnson RJ, Gordon K, Yoshimura A, Campbell C, Iruela-Arispe L, Alpers CE, Couser WG. Altered glomerular extracellular matrix synthesis in experimental membranous nephropathy. Kidney Int 1992; 42:573-85. [PMID: 1383596 DOI: 10.1038/ki.1992.321] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic progressive membranous nephropathy (MN) in humans is characterized by thickening of the glomerular basement membrane (GBM) with formation of spikes which contain laminin and other extracellular matrix (ECM) proteins. We have utilized two models of MN in the rat (active and passive Heymann nephritis, AICN, PHN) to define the sequential changes in composition of GBM as they relate to changes in glomerular gene expression for ECM components, altered permeability and morphological changes. Renal biopsies obtained during the course of AICN and PHN were immunostained for various ECM proteins and total glomerular RNA was hybridized with cDNA probes specific for laminin B2-chain, s-laminin, and types I and IV collagen. In addition, the ability of anti-glomerular epithelial cell (GEC) antibody and complement on rat GEC in culture to induce laminin release or laminin and s-laminin mRNA expression was determined. The results demonstrate that at weeks 12, 16, and 20 of AICN, immunostaining for laminin, s-laminin, fibronectin, entactin, and heparan sulfate proteoglycan increased in the GBM in a spike-like pattern. Concomitantly, glomerular mRNA levels of laminin B2-chain and of s-laminin increased. Type IV collagen protein and gene expression remained unchanged or decreased. No glomerular immunostaining for type I collagen occurred during AICN despite increased expression of mRNA for this collagen type. In contrast to AICN, in PHN no pronounced changes of the glomerular ECM occurred, except for transient expression of type I collagen mRNA in whole glomerular RNA and type I collagen protein the GEC cytoplasm. Stimulation of GEC in culture with anti-GEC antibody and complement also failed to induce transcription of laminin or s-laminin mRNA or the release of laminin protein. These findings suggest that the polyantigenic expansion of GBM which occurs in chronic experimental MN may be stimulated by factors different from the C5b-9 mediated processes that cause the initial proteinuria.
Collapse
Affiliation(s)
- J Floege
- Department of Medicine, University of Washington, Seattle
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lane T, Iruela-Arispe M, Sage E. Regulation of gene expression by SPARC during angiogenesis in vitro. Changes in fibronectin, thrombospondin-1, and plasminogen activator inhibitor-1. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42063-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|