1
|
Kawada Y, Goshima T, Sawamura R, Yokoyama SI, Yanase E, Niwa T, Ebihara A, Inagaki M, Yamaguchi K, Kuwata K, Kato Y, Sakurada O, Suzuki T. Daidzein reductase of Eggerthella sp. YY7918, its octameric subunit structure containing FMN/FAD/4Fe-4S, and its enantioselective production of R-dihydroisoflavones. J Biosci Bioeng 2018; 126:301-309. [PMID: 29699942 DOI: 10.1016/j.jbiosc.2018.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
S-Equol is a metabolite of daidzein, a type of soy isoflavone, and three reductases are involved in the conversion of daidzein by specific intestinal bacteria. S-Equol is thought to prevent hormone-dependent diseases. We previously identified the equol producing gene cluster (eqlABC) of Eggerthella sp. YY7918. Daidzein reductase (DZNR), encoded by eqlA, catalyzes the reduction of daidzein to dihydrodaidzein (the first step of equol synthesis), which was confirmed using a recombinant enzyme produced in Escherichia coli. Here, we purified recombinant DZNR to homogeneity and analyzed its enzymological properties. DZNR contained FMN, FAD, and one 4Fe-4S cluster per 70-kDa subunit as enzymatic cofactors. DZNR reduced the CC bond between the C-2 and C-3 positions of daidzein, genistein, glycitein, and formononetin in the presence of NADPH. R-Dihydrodaidzein and R-dihydrogenistein were highly stereo-selectively produced from daidzein and genistein. The Km and kcat for daidzein were 11.9 μM and 6.7 s-1, and these values for genistein were 74.1 μM and 28.3 s-1, respectively. This enzyme showed similar kinetic parameters and wide substrate specificity for isoflavone molecules. Thus, this enzyme appears to be an isoflavone reductase. Gel filtration chromatography and chemical cross-linking analysis of the active form of DZNR suggested that the enzyme consists of an octameric subunit structure. We confirmed this by small-angle X-ray scattering and transmission electron microscopy at a magnification of ×200,000. DZNR formed a globular four-petal cloverleaf structure with a central vertical hole. The maximum particle size was 173 Å.
Collapse
Affiliation(s)
- Yuika Kawada
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tomoko Goshima
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Rie Sawamura
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shin-Ichiro Yokoyama
- Department of Food Technology, Industrial Technology Center, Gifu Prefectural Government, 47 Kitaoyobi, Kasamatsu, Hashima, Gifu 501-6064, Japan
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshio Niwa
- Faculty of Health and Nutrition, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi 491-0938, Japan
| | - Akio Ebihara
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Mizuho Inagaki
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Keiichi Yamaguchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yuta Kato
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Osamu Sakurada
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tohru Suzuki
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
2
|
Abstract
Fungi are able to switch between different lifestyles in order to adapt to environmental changes. Their ecological strategy is connected to their secretome as fungi obtain nutrients by secreting hydrolytic enzymes to their surrounding and acquiring the digested molecules. We focus on fungal serine proteases (SPs), the phylogenetic distribution of which is barely described so far. In order to collect a complete set of fungal proteases, we searched over 600 fungal proteomes. Obtained results suggest that serine proteases are more ubiquitous than expected. From 54 SP families described in MEROPS Peptidase Database, 21 are present in fungi. Interestingly, 14 of them are also present in Metazoa and Viridiplantae - this suggests that, except one (S64), all fungal SP families evolved before plants and fungi diverged. Most representatives of sequenced eukaryotic lineages encode a set of 13-16 SP families. The number of SPs from each family varies among the analysed taxa. The most abundant are S8 proteases. In order to verify hypotheses linking lifestyle and expansions of particular SP, we performed statistical analyses and revealed previously undescribed associations. Here, we present a comprehensive evolutionary history of fungal SP families in the context of fungal ecology and fungal tree of life.
Collapse
|
3
|
Buddelmeijer N. The molecular mechanism of bacterial lipoprotein modification—How, when and why? FEMS Microbiol Rev 2015; 39:246-61. [DOI: 10.1093/femsre/fuu006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
4
|
Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. Proc Natl Acad Sci U S A 2011; 108:13740-5. [PMID: 21810987 DOI: 10.1073/pnas.1108376108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A signal peptide (SP) is cleaved off from presecretory proteins by signal peptidase during or immediately after insertion into the membrane. In metazoan cells, the cleaved SP then receives proteolysis by signal peptide peptidase, an intramembrane-cleaving protease (I-CLiP). However, bacteria lack any signal peptide peptidase member I-CLiP, and little is known about the metabolic fate of bacterial SPs. Here we show that Escherichia coli RseP, an site-2 protease (S2P) family I-CLiP, introduces a cleavage into SPs after their signal peptidase-mediated liberation from preproteins. A Bacillus subtilis S2P protease, RasP, is also shown to be involved in SP cleavage. These results uncover a physiological role of bacterial S2P proteases and update the basic knowledge about the fate of signal peptides in bacterial cells.
Collapse
|
5
|
Abstract
Proteins that reside partially or completely outside the bacterial cytoplasm require specialized pathways to facilitate their localization. Globular proteins that function in the periplasm must be translocated across the hydrophobic barrier of the inner membrane. While the Sec pathway transports proteins in a predominantly unfolded conformation, the Tat pathway exports folded protein substrates. Protein transport by the Tat machinery is powered solely by the transmembrane proton gradient, and there is no requirement for nucleotide triphosphate hydrolysis. Proteins are targeted to the Tat machinery by N-terminal signal peptides that contain a consensus twin arginine motif. In Escherichia coli and Salmonella there are approximately thirty proteins with twin arginine signal peptides that are transported by the Tat pathway. The majority of these bind complex redox cofactors such as iron sulfur clusters or the molybdopterin cofactor. Here we describe what is known about Tat substrates in E. coli and Salmonella, the function and mechanism of Tat protein export, and how the cofactor insertion step is coordinated to ensure that only correctly assembled substrates are targeted to the Tat machinery.
Collapse
|
6
|
Wang P, Shim E, Cravatt B, Jacobsen R, Schoeniger J, Kim AC, Paetzel M, Dalbey RE. Escherichia coli signal peptide peptidase A is a serine-lysine protease with a lysine recruited to the nonconserved amino-terminal domain in the S49 protease family. Biochemistry 2008; 47:6361-9. [PMID: 18476724 PMCID: PMC2706529 DOI: 10.1021/bi800657p] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli signal peptide peptidase A (SppA) is a serine protease which cleaves signal peptides after they have been proteolytically removed from exported proteins by signal peptidase processing. We present here results of site-directed mutagenesis studies of all the conserved serines of SppA in the carboxyl-terminal domain showing that only Ser 409 is essential for enzymatic activity. Also, we show that the serine hydrolase inhibitor FP-biotin inhibits SppA and modifies the protein but does not label the S409A mutant with an alanine substituted for the essential serine. These results are consistent with Ser 409 being directly involved in the proteolytic mechanism. Remarkably, additional site-directed mutagenesis studies showed that none of the lysines or histidine residues in the carboxyl-terminal protease domain (residues 326-549) is critical for activity, suggesting this domain lacks the general base residue required for proteolysis. In contrast, we found that E. coli SppA has a conserved lysine (K209) in the N-terminal domain (residues 56-316) that is essential for activity and important for activation of S409 for reactivity toward the FP-biotin inhibitor and is conserved in those other bacterial SppA proteins that have an N-terminal domain. We also performed alkaline phosphatase fusion experiments that establish that SppA has only one transmembrane segment (residues 29-45) with the C-terminal domain (residues 46-618) protruding into the periplasmic space. These results support the idea that E. coli SppA is a Ser-Lys dyad protease, with the Lys recruited to the amino-terminal domain that is itself not present in most known SppA sequences.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Eunjung Shim
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Cravatt
- The Skaggs Institute for Chemical Biology, Department of Cell Biology and Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | | | - Joe Schoeniger
- Sandia National Laboratories, Livermore, California 94551-0969
| | - Apollos C. Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Mark Paetzel
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Ross E. Dalbey
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Kim AC, Oliver DC, Paetzel M. Crystal structure of a bacterial signal Peptide peptidase. J Mol Biol 2007; 376:352-66. [PMID: 18164727 DOI: 10.1016/j.jmb.2007.11.080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 11/20/2007] [Accepted: 11/22/2007] [Indexed: 11/16/2022]
Abstract
Signal peptide peptidase (Spp) is the enzyme responsible for cleaving the remnant signal peptides left behind in the membrane following Sec-dependent protein secretion. Spp activity appears to be present in all cell types, eukaryotic, prokaryotic and archaeal. Here we report the first structure of a signal peptide peptidase, that of the Escherichia coli SppA (SppA(EC)). SppA(EC) forms a tetrameric assembly with a novel bowl-shaped architecture. The bowl has a dramatically hydrophobic interior and contains four separate active sites that utilize a Ser/Lys catalytic dyad mechanism. Our structural analysis of SppA reveals that while in many Gram-negative bacteria as well as characterized plant variants, a tandem duplication in the protein fold creates an intact active site at the interface between the repeated domains, other species, particularly Gram-positive and archaeal organisms, encode half-size, unduplicated SppA variants that could form similar oligomers to their duplicated counterparts, but using an octamer arrangement and with the catalytic residues provided by neighboring monomers. The structure reveals a similarity in the protein fold between the domains in the periplasmic Ser/Lys protease SppA and the monomers seen in the cytoplasmic Ser/His/Asp protease ClpP. We propose that SppA may, in addition to its role in signal peptide hydrolysis, have a role in the quality assurance of periplasmic and membrane-bound proteins, similar to the role that ClpP plays for cytoplasmic proteins.
Collapse
Affiliation(s)
- Apollos C Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building, 8888 University Drive, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
8
|
Matsumi R, Atomi H, Imanaka T. Identification of the amino acid residues essential for proteolytic activity in an archaeal signal peptide peptidase. J Biol Chem 2006; 281:10533-9. [PMID: 16484219 DOI: 10.1074/jbc.m513754200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptide peptidases (SPPs) are enzymes involved in the initial degradation of signal peptides after they are released from the precursor proteins by signal peptidases. In contrast to the eukaryotic enzymes that are aspartate peptidases, the catalytic mechanisms of prokaryotic SPPs had not been known. In this study on the SPP from the hyperthermophilic archaeon Thermococcus kodakaraensis (SppA(Tk)), we have identified amino acid residues that are essential for the peptidase activity of the enzyme. DeltaN54SppA(Tk), a truncated protein without the N-terminal 54 residues and putative transmembrane domain, exhibits high peptidase activity, and was used as the wild-type protein. Sixteen residues, highly conserved among archaeal SPP homologue sequences, were selected and replaced by alanine residues. The mutations S162A and K214A were found to abolish peptidase activity of the protein, whereas all other mutant proteins displayed activity to various extents. The results indicated the function of Ser(162) as the nucleophilic serine and that of Lys(214) as the general base, comprising a Ser/Lys catalytic dyad in SppA(Tk). Kinetic analyses indicated that Ser(184), His(191) Lys(209), Asp(215), and Arg(221) supported peptidase activity. Intriguingly, a large number of mutations led to an increase in activity levels of the enzyme. In particular, mutations in Ser(128) and Tyr(165) not only increased activity levels but also broadened the substrate specificity of SppA(Tk), suggesting that these residues may be present to prevent the enzyme from cleaving unintended peptide/protein substrates in the cell. A detailed alignment of prokaryotic SPP sequences strongly suggested that the majority of archaeal enzymes, along with the bacterial enzyme from Bacillus subtilis, adopt the same catalytic mechanism for peptide hydrolysis.
Collapse
Affiliation(s)
- Rie Matsumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
9
|
De Castro RE, Maupin-Furlow JA, Giménez MI, Herrera Seitz MK, Sánchez JJ. Haloarchaeal proteases and proteolytic systems. FEMS Microbiol Rev 2006; 30:17-35. [PMID: 16438678 DOI: 10.1111/j.1574-6976.2005.00003.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Proteases play key roles in many biological processes and have numerous applications in biotechnology and industry. Recent advances in the genetics, genomics and biochemistry of the halophilic Archaea provide a tremendous opportunity for understanding proteases and their function in the context of an archaeal cell. This review summarizes our current knowledge of haloarchaeal proteases and provides a reference for future research.
Collapse
Affiliation(s)
- Rosana E De Castro
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| | | | | | | | | |
Collapse
|
10
|
Matsumi R, Atomi H, Imanaka T. Biochemical properties of a putative signal peptide peptidase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 2005; 187:7072-80. [PMID: 16199578 PMCID: PMC1251612 DOI: 10.1128/jb.187.20.7072-7080.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have performed the first biochemical characterization of a putative archaeal signal peptide peptidase (SppA(Tk)) from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. SppA(Tk), comprised of 334 residues, was much smaller than its counterpart from Escherichia coli (618 residues) and harbored a single predicted transmembrane domain near its N terminus. A truncated mutant protein without the N-terminal 54 amino acid residues (deltaN54SppA(Tk)) was found to be stable against autoproteolysis and was examined further. DeltaN54SppA(Tk) exhibited peptidase activity towards fluorogenic peptide substrates and was found to be highly thermostable. Moreover, the enzyme displayed a remarkable stability and preference for alkaline pH, with optimal activity detected at pH 10. DeltaN54SppA(Tk) displayed a K(m) of 240 +/- 18 microM and a V(max) of 27.8 +/- 0.7 micromol min(-1) mg(-1) towards Ala-Ala-Phe-4-methyl-coumaryl-7-amide at 80 degrees C and pH 10. The substrate specificity of the enzyme was examined in detail with a FRETS peptide library. By analyzing the cleavage products with liquid chromatography-mass spectrometry, deltaN54SppA(Tk) was found to efficiently cleave peptides with a relatively small side chain at the P-1 position and a hydrophobic or aromatic residue at the P-3 position. The positively charged Arg residue was preferred at the P-4 position, while substrates with negatively charged residues at the P-2, P-3, or P-4 position were not cleaved. When predicted signal sequences from the T. kodakaraensis genome sequence were examined, we found that the substrate specificity of deltaN54SppA(Tk) was in good agreement with its presumed role as a signal peptide peptidase in this archaeon.
Collapse
Affiliation(s)
- Rie Matsumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
11
|
Affiliation(s)
- Mark Paetzel
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
12
|
Ferris PJ, Armbrust EV, Goodenough UW. Genetic structure of the mating-type locus of Chlamydomonas reinhardtii. Genetics 2002; 160:181-200. [PMID: 11805055 PMCID: PMC1461944 DOI: 10.1093/genetics/160.1.181] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Portions of the cloned mating-type (MT) loci (mt(+) and mt(-)) of Chlamydomonas reinhardtii, defined as the approximately 1-Mb domains of linkage group VI that are under recombinational suppression, were subjected to Northern analysis to elucidate their coding capacity. The four central rearranged segments of the loci were found to contain both housekeeping genes (expressed during several life-cycle stages) and mating-related genes, while the sequences unique to mt(+) or mt(-) carried genes expressed only in the gametic or zygotic phases of the life cycle. One of these genes, Mtd1, is a candidate participant in gametic cell fusion; two others, Mta1 and Ezy2, are candidate participants in the uniparental inheritance of chloroplast DNA. The identified housekeeping genes include Pdk, encoding pyruvate dehydrogenase kinase, and GdcH, encoding glycine decarboxylase complex subunit H. Unusual genetic configurations include three genes whose sequences overlap, one gene that has inserted into the coding region of another, several genes that have been inactivated by rearrangements in the region, and genes that have undergone tandem duplication. This report extends our original conclusion that the MT locus has incurred high levels of mutational change.
Collapse
Affiliation(s)
- Patrick J Ferris
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | | | |
Collapse
|
13
|
Lensch M, Herrmann RG, Sokolenko A. Identification and characterization of SppA, a novel light-inducible chloroplast protease complex associated with thylakoid membranes. J Biol Chem 2001; 276:33645-51. [PMID: 11443110 DOI: 10.1074/jbc.m100506200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A new component of the chloroplast proteolytic machinery from Arabidopsis thaliana was identified as a SppA-type protease. The sequence of the mature protein, deduced from a full-length cDNA, displays 22% identity to the serine-type protease IV (SppA) from Escherichia coli and 27% identity to Synechocystis SppA1 (sll1703) but lacks the putative transmembrane spanning segments predicted from the E. coli sequence. The N-terminal sequence exhibits typical features of a cleavable chloroplast stroma-targeting sequence. The chloroplast localization of SppA was confirmed by in organello import experiments using an in vitro expression system and by immunodetection with antigen-specific antisera. Subfractionation of intact chloroplasts demonstrated that SppA is associated exclusively with thylakoid membranes, predominantly stroma lamellae, and is a part of some high molecular mass complex of about 270 kDa that exhibits proteolytic activity. Treatments with chaotropic salts and proteases showed that SppA is largely exposed to the stroma but that it behaves as an intrinsic membrane protein that may have an unusual monotopic arrangement in the thylakoids. We demonstrate that SppA is a light-inducible protease and discuss its possible involvement in the light-dependent degradation of antenna and photosystem II complexes that both involve serine-type proteases.
Collapse
Affiliation(s)
- M Lensch
- Botanisches Institut der Ludwig-Maximilians-Universität, Menzingerstrasse 67, D-80638 München, Germany
| | | | | |
Collapse
|
14
|
Friedrich A, Hartsch T, Averhoff B. Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27. Appl Environ Microbiol 2001; 67:3140-8. [PMID: 11425734 PMCID: PMC92993 DOI: 10.1128/aem.67.7.3140-3148.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mesophile Acinetobacter sp. strain BD413 and the extreme thermophile Thermus thermophilus HB27 display high frequencies of natural transformation. In this study we identified and characterized a novel competence gene in Acinetobacter sp. strain BD413, comA, whose product displays significant similarities to the competence proteins ComA and ComEC in Neisseria and Bacillus species. Transcription of comA correlated with growth phase-dependent transcriptional regulation of the recently identified pilin-like factors of the transformation machinery. This finding strongly suggests that comA is part of a competence regulon. Examination of the genome sequence of T. thermophilus HB27 led to detection of a comA/comEC-like open reading frame (ORF) which is flanked by an ORF whose product shows significant similarities to the Bacillus subtilis competence protein ComEA. To examine whether these two ORFs, designated comEC and comEA, are implicated in natural transformation of T. thermophilus HB27, both were disrupted by using a thermostable kanamycin resistance marker. Natural transformation in comEC mutants was reduced 1,000-fold, whereas in comEA mutants the natural transformation phenotype was completely eliminated. These results strongly suggest that both genes, comEC and comEA, are required for natural transformation in T. thermophilus HB27. Several transmembrane alpha-helices are predicted based on the amino acid sequences of ComA in Acinetobacter sp. strain BD413 and ComEC in T. thermophilus HB27, which suggests that ComA and ComEC are located in the inner membrane and function in DNA transport through the cytoplasmic membrane.
Collapse
Affiliation(s)
- A Friedrich
- Department of Genetics and Microbiology, Ludwig Maximilians University, 80638 Munich, Germany
| | | | | |
Collapse
|
15
|
Temenak JJ, Anderson BE, McDonald GA. Molecular cloning, sequence and characterization of cjsT, a putative protease from Rickettsia rickettsii. Microb Pathog 2001; 30:221-8. [PMID: 11312615 DOI: 10.1006/mpat.2000.0428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cloning and sequencing of a gene from Rickettsia rickettsii which confers haemolytic activity on Escherichia coli strain TB1 is described. The open reading frame of the haemolysis-promoting gene, cjsT, is 1041 bp and encodes a putative protein with a molecular mass of 33 825 Da. CjsT has high sequence similarity to several bacterial proteases, particularly type IV signal peptidases. Cell lysates from an E. coli clone containing cjsT in pUC19 (pJON1) exhibited greater protease activity in functional assays than found in E. coli containing pUC19 alone. Disruption of the cjsT gene by insertional inactivation with a kanamycin cassette reduced both the protease and haemolytic activities conferred by cjsT. The protease inhibitors antipain and diisopropylfluorophosphate (DFP) both reduced the proteolytic activity of pJON1. The mechanism by which the R. rickettsii cjsT promotes haemolysis in E. coli remains unclear.
Collapse
Affiliation(s)
- J J Temenak
- Viral and Rickettsial Diseases Program, Naval Medical Research Center and Virus Diseases Program, Silver Spring, MD 20910, USA.
| | | | | |
Collapse
|
16
|
Cooper KW, Baneyx F. Escherichia coli FtsH (HflB) degrades a membrane-associated TolAI-II-beta-lactamase fusion protein under highly denaturing conditions. Protein Expr Purif 2001; 21:323-32. [PMID: 11237695 DOI: 10.1006/prep.2000.1378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TolAI--II--beta-lactamase, a fusion protein consisting of the inner membrane and transperiplasmic domains of TolA followed by TEM--beta-lactamase associated with the inner membrane but remained confined to the cytoplasm when expressed at high level in Escherichia coli. Although the fusion protein was resistant to proteolysis in vivo, it was hydrolyzed during preparative SDS-polyacrylamide electrophoresis and when insoluble cellular fractions unfolded with 5 M urea were subjected to microdialysis. Inhibitor profiling studies revealed that both a metallo- and serine protease were involved in TolAI--II--beta-lactamase degradation under denaturing conditions. The in vitro degradation rates of the fusion protein were not affected when insoluble fractions were harvested from a strain lacking protease IV, but were significantly reduced when microdialysis experiments were conducted with material isolated from an isogenic ftsH1 mutant. Adenine nucleotides were not required for degradation, and ATP supplementation did not accelerate the apparent rate of TolAI--II--beta-lactamase hydrolysis under denaturing conditions. Our results indicate that the metalloprotease active site of FtsH remains functional in the presence of 3--5 M urea and suggest that the ATPase and proteolytic activities of FtsH can be uncoupled if the substrate is sufficiently unstructured. Thus, a key role of the FtsH AAA module appears to be the net unfolding of bound substrates so that they can be efficiently engaged by the protease active site.
Collapse
Affiliation(s)
- K W Cooper
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
17
|
Yaoi T, Laksanalamai P, Jiemjit A, Kagawa HK, Alton T, Trent JD. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum. Biochem Biophys Res Commun 2000; 275:936-45. [PMID: 10973825 DOI: 10.1006/bbrc.2000.3401] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif.
Collapse
Affiliation(s)
- T Yaoi
- NASA Ames Research Center, Moffett Field, California 94035, USA
| | | | | | | | | | | |
Collapse
|
18
|
Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 2000; 64:515-47. [PMID: 10974125 PMCID: PMC99003 DOI: 10.1128/mmbr.64.3.515-547.2000] [Citation(s) in RCA: 602] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the most salient features of Bacillus subtilis and related bacilli is their natural capacity to secrete a variety of proteins into their environment, frequently to high concentrations. This has led to the commercial exploitation of bacilli as major "cell factories" for secreted enzymes. The recent sequencing of the genome of B. subtilis has provided major new impulse for analysis of the molecular mechanisms underlying protein secretion by this organism. Most importantly, the genome sequence has allowed predictions about the composition of the secretome, which includes both the pathways for protein transport and the secreted proteins. The present survey of the secretome describes four distinct pathways for protein export from the cytoplasm and approximately 300 proteins with the potential to be exported. By far the largest number of exported proteins are predicted to follow the major "Sec" pathway for protein secretion. In contrast, the twin-arginine translocation "Tat" pathway, a type IV prepilin-like export pathway for competence development, and ATP-binding cassette transporters can be regarded as "special-purpose" pathways, through which only a few proteins are transported. The properties of distinct classes of amino-terminal signal peptides, directing proteins into the various protein transport pathways, as well as the major components of each pathway are discussed. The predictions and comparisons in this review pinpoint important differences as well as similarities between protein transport systems in B. subtilis and other well-studied organisms, such as Escherichia coli and the yeast Saccharomyces cerevisiae. Thus, they may serve as a lead for future research and applications.
Collapse
Affiliation(s)
- H Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Ffrench-Constant RH, Waterfield N, Burland V, Perna NT, Daborn PJ, Bowen D, Blattner FR. A genomic sample sequence of the entomopathogenic bacterium Photorhabdus luminescens W14: potential implications for virulence. Appl Environ Microbiol 2000; 66:3310-29. [PMID: 10919786 PMCID: PMC92150 DOI: 10.1128/aem.66.8.3310-3329.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Photorhabdus luminescens is a pathogenic bacterium that lives in the guts of insect-pathogenic nematodes. After invasion of an insect host by a nematode, bacteria are released from the nematode gut and help kill the insect, in which both the bacteria and the nematodes subsequently replicate. However, the bacterial virulence factors associated with this "symbiosis of pathogens" remain largely obscure. In order to identify genes encoding potential virulence factors, we performed approximately 2,000 random sequencing reads from a P. luminescens W14 genomic library. We then compared the sequences obtained to sequences in existing gene databases and to the Escherichia coli K-12 genome sequence. Here we describe the different classes of potential virulence factors found. These factors include genes that putatively encode Tc insecticidal toxin complexes, Rtx-like toxins, proteases and lipases, colicin and pyocins, and various antibiotics. They also include a diverse array of secretion (e.g., type III), iron uptake, and lipopolysaccharide production systems. We speculate on the potential functions of each of these gene classes in insect infection and also examine the extent to which the invertebrate pathogen P. luminescens shares potential antivertebrate virulence factors. The implications for understanding both the biology of this insect pathogen and links between the evolution of vertebrate virulence factors and the evolution of invertebrate virulence factors are discussed.
Collapse
|
20
|
Stathopoulos C, Hendrixson DR, Thanassi DG, Hultgren SJ, St Geme JW, Curtiss R. Secretion of virulence determinants by the general secretory pathway in gram-negative pathogens: an evolving story. Microbes Infect 2000; 2:1061-72. [PMID: 10967286 DOI: 10.1016/s1286-4579(00)01260-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Secretion of proteins by the general secretory pathway (GSP) is a two-step process requiring the Sec translocase in the inner membrane and a separate substrate-specific secretion apparatus for translocation across the outer membrane. Gram-negative bacteria with pathogenic potential use the GSP to deliver virulence factors into the extracellular environment for interaction with the host. Well-studied examples of virulence determinants using the GSP for secretion include extracellular toxins, pili, curli, autotransporters, and crystaline S-layers. This article reviews our current understanding of the GSP and discusses examples of terminal branches of the GSP which are utilized by factors implicated in bacterial virulence.
Collapse
Affiliation(s)
- C Stathopoulos
- Department of Biology, Washington University, One Brookings Drive, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
21
|
Bolhuis A, Matzen A, Hyyryläinen HL, Kontinen VP, Meima R, Chapuis J, Venema G, Bron S, Freudl R, van Dijl JM. Signal peptide peptidase- and ClpP-like proteins of Bacillus subtilis required for efficient translocation and processing of secretory proteins. J Biol Chem 1999; 274:24585-92. [PMID: 10455123 DOI: 10.1074/jbc.274.35.24585] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal peptides direct the export of secretory proteins from the cytoplasm. After processing by signal peptidase, they are degraded in the membrane and cytoplasm. The resulting fragments can have signaling functions. These observations suggest important roles for signal peptide peptidases. The present studies show that the Gram-positive eubacterium Bacillus subtilis contains two genes for proteins, denoted SppA and TepA, with similarity to the signal peptide peptidase A of Escherichia coli. Notably, TepA also shows similarity to ClpP proteases. SppA of B. subtilis was only required for efficient processing of pre-proteins under conditions of hyper-secretion. In contrast, TepA depletion had a strong effect on pre-protein translocation across the membrane and subsequent processing, not only under conditions of hyper-secretion. Unlike SppA, which is a typical membrane protein, TepA appears to have a cytosolic localization, which is consistent with the observation that TepA is involved in early stages of the secretion process. Our observations demonstrate that SppA and TepA have a role in protein secretion in B. subtilis. Based on their similarity to known proteases, it seems likely that SppA and TepA are specifically required for the degradation of proteins or (signal) peptides that are inhibitory to protein translocation.
Collapse
Affiliation(s)
- A Bolhuis
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
O'Keeffe T, Hill C, Ross RP. Characterization and heterologous expression of the genes encoding enterocin a production, immunity, and regulation in Enterococcus faecium DPC1146. Appl Environ Microbiol 1999; 65:1506-15. [PMID: 10103244 PMCID: PMC91214 DOI: 10.1128/aem.65.4.1506-1515.1999] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/1998] [Accepted: 01/13/1999] [Indexed: 02/05/2023] Open
Abstract
Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10, 879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the control of a constitutive promoter resulted in heterologous enterocin A production in both E. faecalis and Lactococcus lactis.
Collapse
Affiliation(s)
- T O'Keeffe
- Department of Microbiology and National Food Biotechnology Centre, University College Cork, Fermoy, Ireland
| | | | | |
Collapse
|
23
|
Huang X, Gaballa A, Cao M, Helmann JD. Identification of target promoters for the Bacillus subtilis extracytoplasmic function sigma factor, sigma W. Mol Microbiol 1999; 31:361-71. [PMID: 9987136 DOI: 10.1046/j.1365-2958.1999.01180.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Bacillus subtilis sigW gene encodes an extracytoplasmic function (ECF) sigma factor that is expressed in early stationary phase from a sigW-dependent autoregulatory promoter, PW. Using a consensus-based search procedure, we have identified 15 operons preceded by promoters similar in sequence to PW. At least 14 of these promoters are dependent on sigma W both in vivo and in vitro as judged by lacZ reporter fusions, run-off transcription assays and nucleotide resolution start site mapping. We conclude that sigma W controls a regulon of more than 30 genes, many of which encode membrane proteins of unknown function. The sigma W regulon includes a penicillin binding protein (PBP4*) and a co-transcribed amino acid racemase (RacX), homologues of signal peptide peptidase (YteI), flotillin (YuaG), ABC transporters (YknXYZ), non-haem bromoperoxidase (YdjP), epoxide hydrolase (YfhM) and three small peptides with structural similarities to bacteriocin precursor polypeptides. We suggest that sigma W activates a large stationary-phase regulon that functions in detoxification, production of anti-microbial compounds or both.
Collapse
Affiliation(s)
- X Huang
- Section of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA
| | | | | | | |
Collapse
|
24
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
25
|
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998; 62:597-635. [PMID: 9729602 PMCID: PMC98927 DOI: 10.1128/mmbr.62.3.597-635.1998] [Citation(s) in RCA: 1062] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology.
Collapse
Affiliation(s)
- M B Rao
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | | | | | | |
Collapse
|
26
|
Abstract
Proteolysis in Escherichia coli serves to rid the cell of abnormal and misfolded proteins and to limit the time and amounts of availability of critical regulatory proteins. Most intracellular proteolysis is initiated by energy-dependent proteases, including Lon, ClpXP, and HflB; HflB is the only essential E. coli protease. The ATPase domains of these proteases mediate substrate recognition. Recognition elements in target are not well defined, but are probably not specific amino acid sequences. Naturally unstable protein substrates include the regulatory sigma factors for heat shock and stationary phase gene expression, sigma 32 and RpoS. Other cellular proteins serve as environmental sensors that modulate the availability of the unstable proteins to the proteases, resulting in rapid changes in sigma factor levels and therefore in gene transcription. Many of the specific proteases found in E. coli are well-conserved in both prokaryotes and eukaryotes, and serve critical functions in developmental systems.
Collapse
Affiliation(s)
- S Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892-4255, USA.
| |
Collapse
|
27
|
Dolg P, Yao R, Burr DH, Guerry P, Trust TJ. An environmentally regulated pilus-like appendage involved in Campylobacter pathogenesis. Mol Microbiol 1996; 20:885-94. [PMID: 8793884 DOI: 10.1111/j.1365-2958.1996.tb02526.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Examination of strains of Campylobacter jejuni, Campylobacter coli, and Campylobacter fetus by electron microscopy revealed that they produced peritrichous pilus-like appendages when the bacteria were grown in the presence of bile salts. Various bile-salt supplements were used and it was found that deoxycholate and chenodeoxycholic acid caused a significant enhancement of pilus production and resulted in a highly aggregative phenotype. Morphologically, the pili were between 4 and 7 nm in width and were greater than 1 micron in length. A gene, termed pspA, which encodes a predicted protein resembling protease IV of Escherichia coli, was identified in C. jejuni strain 81-176. A site-specific insertional mutation within this gene resulted in the loss of pilus synthesis as determined by electron microscopy. Insertions upstream and downstream of the gene had no effect on pilus production. The non-piliated mutant of strain 81-176 showed no reduction in adherence to or invasion of INT 407 cells in vitro. However, this mutant, while still possessing the ability to colonize ferrets, caused significantly reduced disease symptoms in this animal model.
Collapse
Affiliation(s)
- P Dolg
- Department of Biochemistry and Microbiology, University of Victoria, British Columbia, Canada
| | | | | | | | | |
Collapse
|
28
|
Bass S, Gu Q, Christen A. Multicopy suppressors of prc mutant Escherichia coli include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. J Bacteriol 1996; 178:1154-61. [PMID: 8576052 PMCID: PMC177779 DOI: 10.1128/jb.178.4.1154-1161.1996] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have isolated three multicopy suppressors of the conditional lethal phenotype of a prc (tsp) null strain of Escherichia coli. One of these suppressors included two novel putative protease genes in tandem that map to 3400 kb or 72.5 centisomes on the chromosome. We propose the names hhoA and hhoB, for htrA homolog, to denote that these genes encode proteins that are 58 and 35% identical, respectively, to the HtrA (DegP) serine protease and 36% identical to each other. The HhoA and HhoB proteins are predicted to be 455 and 355 amino acids, respectively, in length. The mature HhoA protein is periplasmic in location, and amino-terminal sequencing shows that it arises following cleavage of a 27-amino-acid signal peptide. Searches of the protein and DNA databases reveal a rapidly growing family of homologous genes in a variety of other bacteria, including several which are required for virulence in their host. Deletion of the hhoAB genes shows that they are not required for viability at high temperatures like the homologous htrA but grow more slowly than wild-type strains. A second multicopy prc suppressor is the dksA (dnaK suppressor) gene, which is also a multicopy suppressor of defects in the heat shock genes dnaK, dnaJ, and grpE. The dksA gene was independently isolated as a multicopy suppressor of a mukB mutation, which is required for chromosomal partitioning. A third dosage-dependent prc suppressor includes a truncated rare lipoprotein A (rlpA) gene.
Collapse
Affiliation(s)
- S Bass
- Department of Molecular Biology, Genentech Inc, South San Francisco, California 94080-4990, USA
| | | | | |
Collapse
|
29
|
Reid LM. Stem cell-fed maturational lineages and gradients in signals: relevance to differentiation of epithelia. Mol Biol Rep 1996; 23:21-33. [PMID: 8983016 DOI: 10.1007/bf00357070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- L M Reid
- Department of Physiology, University of North Carolina School of Medicine, Chapel Hill 27514, USA
| |
Collapse
|
30
|
Lyko F, Martoglio B, Jungnickel B, Rapoport TA, Dobberstein B. Signal sequence processing in rough microsomes. J Biol Chem 1995; 270:19873-8. [PMID: 7650000 DOI: 10.1074/jbc.270.34.19873] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Secretory proteins are synthesized with a signal sequence that is usually cleaved from the nascent protein during the translocation of the polypeptide chain into the lumen of the endoplasmic reticulum. To determine the fate of a cleaved signal sequence, we used a synchronized in vitro translocation system. We found that the cleaved signal peptide of preprolactin is further processed close to its COOH terminus. The resulting fragment accumulated in the microsomal fraction and with time was released into the cytosol. Signal sequence cleavage and processing could be reproduced with reconstituted vesicles containing Sec61, signal recognition particle receptor, and signal peptidase complex.
Collapse
Affiliation(s)
- F Lyko
- ZMBH, Universität Heidelberg, Germany
| | | | | | | | | |
Collapse
|
31
|
Abstract
A lambda gt11 library constructed with Leptospira borgpetersenii DNA was screened with monoclonal antibodies (mAb) recognizing a periplasmic flagella-associated protein. A plaque expressing a fusion protein (lambda F15) which reacted with the mAb was isolated and the nucleotide sequence analyzed. The deduced amino-acid (aa) sequence indicates that the pfaP gene belongs to a group of bacterial genes whose products share aa sequence and possibly functional homologies with sppA, an Escherichia coli signal peptidase-encoding gene.
Collapse
Affiliation(s)
- G A Trueba
- Leptospirosis/Mycobacteriosis Research Unit, U.S. Department of Agriculture, National Animal Disease Center, Ames, IA 50010, USA
| | | | | |
Collapse
|
32
|
Larriba G. Translocation of proteins across the membrane of the endoplasmic reticulum: a place for Saccharomyces cerevisiae. Yeast 1993; 9:441-63. [PMID: 8391742 DOI: 10.1002/yea.320090502] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- G Larriba
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
33
|
Ichihara S, Matsubara Y, Kato C, Akasaka K, Mizushima S. Molecular cloning, sequencing, and mapping of the gene encoding protease I and characterization of proteinase and proteinase-defective Escherichia coli mutants. J Bacteriol 1993; 175:1032-7. [PMID: 8432696 PMCID: PMC193016 DOI: 10.1128/jb.175.4.1032-1037.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Clones carrying the gene encoding a proteinase were isolated from Clarke and Carbon's collection, using a chromogenic substrate, N-benzyloxycarbonyl-L-phenylalanine beta-naphthyl ester. The three clones isolated, pLC6-33, pLC13-1, and pLC36-46, shared the same chromosomal DNA region. A 0.9-kb Sau3AI fragment within this region was found to be responsible for the overproduction of the proteinase, and the nucleotide sequence of the region was then determined. The proteinase was purified to homogeneity from the soluble fraction of an overproducing strain possessing the cloned gene. N-terminal amino acid sequencing of the purified protein revealed that the cloned gene is the structural gene for the protein, with the protein being synthesized in precursor form with a signal peptide. On the basis of its molecular mass (20 kDa), periplasmic localization, and substrate specificity, we conclude this protein to be protease I. By using the gene cloned on a plasmid, a deletion mutant was constructed in which the gene was replaced by the kanamycin resistance gene (Kmr) on the chromosome. The Kmr gene was mapped at 11.8 min, the gene order being dnaZ-adk-ush-Kmr-purE, which is consistent with the map position of apeA, the gene encoding protease I in Salmonella typhimurium. Therefore, the gene was named apeA. Deletion of the apeA gene, either with or without deletion of other proteinases (protease IV and aminopeptidase N), did not have any effect on cell growth in the various media tested.
Collapse
Affiliation(s)
- S Ichihara
- Laboratory of Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | | | | | |
Collapse
|
34
|
Conlin CA, Miller CG. Cloning and nucleotide sequence of opdA, the gene encoding oligopeptidase A in Salmonella typhimurium. J Bacteriol 1992; 174:1631-40. [PMID: 1537805 PMCID: PMC206560 DOI: 10.1128/jb.174.5.1631-1640.1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The opdA gene (formerly called optA) of Salmonella typhimurium encodes a metallopeptidase, oligopeptidase A (OpdA), first recognized by its ability to cleave and allow utilization of N-acetyl-L-Ala4 (E. R. Vimr, L. Green, and C. G. Miller, J. Bacteriol. 153:1259-1265, 1983). Derivatives of pBR328 carrying the opdA gene were isolated and shown to express oligopeptidase activity at levels approximately 100-fold higher than that of the wild type. These plasmids complemented all of the phenotypes associated with opdA mutations (failure to use N-acetyl-L-Ala4, defective phage P22 development, and diminished endopeptidase activity). The opdA region of one of these plasmids (pCM127) was defined by insertions of Tn1000 (gamma delta), and these insertions were used as priming sites to determine the nucleotide sequence of a 2,843-bp segment of the insert DNA. This region contained an open reading frame coding for a 680-amino-acid protein, the N terminus of which agreed with that determined for purified OpdA. This open reading frame contained both a sequence motif typical of Zn2+ metalloproteases and a putative sigma 32 promoter. However, no induction was detected upon temperature shift by using a beta-galactosidase operon fusion. The predicted OpdA sequence showed similarity to dipeptidyl carboxypeptidase, the product of the S. typhimurium gene dcp, and to rat metallopeptidase EC 3.4.24.15., which is involved in peptide hormone processing.
Collapse
Affiliation(s)
- C A Conlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
35
|
Abstract
In E. coli, protein degradation plays important roles in regulating the levels of specific proteins and in eliminating damaged or abnormal proteins. E. coli possess a very large number of proteolytic enzymes distributed in the cytoplasm, the inner membrane, and the periplasm, but, with few exceptions, the physiological functions of these proteases are not known. More than 90% of the protein degradation occurring in the cytoplasm is energy-dependent, but the activities of most E. coli proteases in vitro are not energy-dependent. Two ATP-dependent proteases, Lon and Clp, are responsible for 70-80% of the energy-dependent degradation of proteins in vivo. In vitro studies with Lon and Clp indicate that both proteases directly interact with substrates for degradation. ATP functions as an allosteric effector promoting an active conformation of the proteases, and ATP hydrolysis is required for rapid catalytic turnover of peptide bond cleavage in proteins. Lon and Clp show virtually no homology at the amino acid level, and thus it appears that at least two families of ATP-dependent proteases have evolved independently.
Collapse
Affiliation(s)
- M R Maurizi
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland 20892
| |
Collapse
|
36
|
Baird L, Lipinska B, Raina S, Georgopoulos C. Identification of the Escherichia coli sohB gene, a multicopy suppressor of the HtrA (DegP) null phenotype. J Bacteriol 1991; 173:5763-70. [PMID: 1885549 PMCID: PMC208308 DOI: 10.1128/jb.173.18.5763-5770.1991] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We cloned and sequenced the sohB gene of Escherichia coli. The temperature-sensitive phenotype of bacteria that carry a Tn10 insertion in the htrA (degP) gene is relieved when the sohB gene is present in the cell on a multicopy plasmid (30 to 50 copies per cell). The htrA gene encodes a periplasmic protease required for bacterial viability only at high temperature, i.e., above 39 degrees C. The sohB gene maps to 28 min on the E. coli chromosome, precisely between the topA and btuR genes. The gene encodes a 39,000-Mr precursor protein which is processed to a 37,000-Mr mature form. Sequencing of a DNA fragment containing the gene revealed an open reading frame which could encode a protein of Mr 39,474 with a predicted signal sequence cleavage site between amino acids 22 and 23. Cleavage at this site would reduce the size of the processed protein to 37,474 Mr. The predicted protein encoded by the open reading frame has homology with the inner membrane enzyme protease IV of E. coli, which digests cleaved signal peptides. Therefore, it is possible that the sohB gene encodes a previously undiscovered periplasmic protease in E. coli that, when overexpressed, can partially compensate for the missing HtrA protein function.
Collapse
Affiliation(s)
- L Baird
- Department of Cellular, Viral and Molecular Biology, University of Utah School of Medicine, Salt Lake City 84132
| | | | | | | |
Collapse
|
37
|
Sawers G, Heider J, Zehelein E, Böck A. Expression and operon structure of the sel genes of Escherichia coli and identification of a third selenium-containing formate dehydrogenase isoenzyme. J Bacteriol 1991; 173:4983-93. [PMID: 1650339 PMCID: PMC208187 DOI: 10.1128/jb.173.16.4983-4993.1991] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A detailed analysis of the expression of the sel genes, the products of which are necessary for the specific incorporation of selenium into macromolecules in Escherichia coli, showed that transcription was constitutive, being influenced neither by aerobiosis or anaerobiosis nor by the intracellular selenium concentration. The gene encoding the tRNA molecule which is specifically aminoacylated with selenocysteine (selC) proved to be monocistronic. In contrast, the other three sel genes (selA, -B, and -D) were shown to be constituents of two unlinked operons. The selA and selB genes formed one transcriptional unit (sel vector AB), while selD was shown to be the central gene in an operon including two other genes, the promoter distal of which (topB) encodes topoisomerase III. The promoter proximal gene (orf183) was sequenced and shown to encode a protein consisting of 183 amino acids (Mr, 20,059), the amino acid sequence of which revealed no similarity to any currently known protein. The products of the orf183 and topB genes were required neither for selenoprotein biosynthesis nor for selenation of tRNAs. selAB transcription was driven by a single, weak promoter; however, two major selD operon transcripts were identified. The longer initiated just upstream of the orf183 gene, whereas the 5' end of the other mapped in a 116-bp nontranslated region between orf183 and selD. Aerobic synthesis of all four sel gene products incited a reexamination of a weak 110-kDa selenopolypeptide which is produced under these conditions. The aerobic appearance of this 110-kDa selenopolypeptide was not a consequence of residual expression of the gene encoding the 110-kDa selenopolypeptide of the anaerobically inducible formate dehydrogenase N (FDHN) enzyme, as previously surmised, but rather resulted from the expression of a gene encoding a third, distinct selenopolypeptide in E. coli. A mutant strain no longer capable of synthesizing the 80- and 110-kDa selenopolypeptides of FDHH and FDHN, respectively, still synthesized this alternative 110-kDa selenopolypeptide which was present at equivalent levels in cells grown aerobically and anaerobically with nitrate. Furthermore, this strain exhibited a formate- and sel gene-dependent respiratory activity, indicating that it is probable that this selenopolypeptide constitutes a major component of the formate oxidase, an enzyme activity initially discovered in aerobically grown E. coli more than 30 years ago.
Collapse
Affiliation(s)
- G Sawers
- Lehrstuhl für Mikrobiologie, Universität München, Germany
| | | | | | | |
Collapse
|
38
|
Baneyx F, Georgiou G. Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high-molecular-weight substrates in vivo. J Bacteriol 1991; 173:2696-703. [PMID: 2013581 PMCID: PMC207839 DOI: 10.1128/jb.173.8.2696-2703.1991] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protease III, the product of the ptr gene, is a 110-kDa periplasmic protease with specificity towards insulin and other low-molecular-weight substrates (less than 7,000 molecular weight) in vitro (Y.-S.E. Cheng and D. Zipser, J. Biol. Chem. 254:4698-4706, 1979). Escherichia coli strains deficient in protease III were constructed by insertional inactivation of the ptr gene. This mutation did not appear to affect the function of the adjoining recB and recC genes. Expression of protein A-beta-lactamase, a protease-sensitive secreted polypeptide, was increased approximately twofold in ptr cells. A comparable increase in the half-life of protein A-beta-lactamase was observed by pulse-chase experiments, suggesting that protease III is involved in the catabolism of high-molecular-weight substrates in vivo, ptr mutants exhibited no detectable phenotypic alterations except for a slight reduction in growth rate. When the ptr mutation was transferred to a strain deficient in the secreted protease DegP, a further decrease in growth rate, as well as an additive increase in the expression of the fusion protein, was observed. A ptr degP ompT mutant strain resulted in a further increase in expression in minimal medium but not in rich medium.
Collapse
Affiliation(s)
- F Baneyx
- Department of Chemical Engineering, University of Texas, Austin 78712
| | | |
Collapse
|
39
|
Helling RB. The glutamate dehydrogenase structural gene of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1990; 223:508-12. [PMID: 2270089 DOI: 10.1007/bf00264460] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The glutamate dehydrogenase structural gene, gdhA, was mapped at 38.6 min on the genetic map and at 1860 kb on the physical map. A detailed map of this region is presented.
Collapse
Affiliation(s)
- R B Helling
- Department of Biology, University of Michigan, Ann Arbor 48109
| |
Collapse
|
40
|
Abstract
Signal peptidases, the endoproteases that remove the amino-terminal signal sequence from many secretory proteins, have been isolated from various sources. Seven signal peptidases have been purified, two from E. coli, two from mammalian sources, and three from mitochondrial matrix. The mitochondrial enzymes are soluble and function as a heterogeneous dimer. The mammalian enzymes are isolated as a complex and share a common glycosylated subunit. The bacterial enzymes are isolated as monomers and show no sequence homology with each other or the mammalian enzymes. The membrane-bound enzymes seem to require a substrate containing a consensus sequence following the -3, -1 rule of von Heijne at the cleavage site; however, processing of the substrate is strongly influenced by the hydrophobic region of the signal peptide. The enzymes appear to recognize an unknown three-dimensional motif rather than a specific amino acid sequence around the cleavage site. The matrix mitochondrial enzymes are metallo-endopeptidases; however, the other signal peptidases may belong to a unique class of proteases as they are resistant to chelators and most protease inhibitors. There are no data concerning the substrate binding site of these enzymes. In vivo, the signal peptide is rapidly degraded. Three different enzymes in Escherichia coli that can degrade a signal peptide in vitro have been identified. The intact signal peptide is not accumulated in mutants lacking these enzymes, which suggests that these peptidases individually are not responsible for the degradation of an intact signal peptide in vivo. It is speculated that signal peptidases and signal peptide hydrolases are integral components of the secretory pathway and that inhibition of the terminal steps can block translocation.
Collapse
Affiliation(s)
- I K Dev
- Division of Molecular Genetics and Microbiology, Burroughs Wellcome Co., Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
41
|
Weiser JN, Love JM, Moxon ER. The molecular mechanism of phase variation of H. influenzae lipopolysaccharide. Cell 1989; 59:657-65. [PMID: 2479481 DOI: 10.1016/0092-8674(89)90011-1] [Citation(s) in RCA: 217] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multiple carbohydrate structures on the outer-membrane lipopolysaccharide (LPS) of the gram-negative pathogen H. influenzae undergo high frequency, reversible loss, indicative of phase variation. Characterization of a genetic locus, lic-1, responsible for expression of two LPS epitopes displaying phase variation, showed it to comprise four genes. The first gene mediates phase variation. At its 5' end, within the open reading frame, are a variable number of tandem repeats of the tetramer CAAT. By shifting upstream initiation codons in or out of frame, these 4 bp units create a translational switch. The phenotype of organisms corresponds to the number of 4 bp units. Phase variation between three levels of expression ( +, +, and -) of lic-1-derived epitopes is caused by differences in the three phases of translation of the 5' terminus of this gene. Phase variation also allows for selection of organisms displaying certain LPS epitopes in vivo.
Collapse
Affiliation(s)
- J N Weiser
- Institute of Molecular Medicine, University of Oxford, United Kingdom
| | | | | |
Collapse
|
42
|
|
43
|
Cioffi JA, Allen KL, Lively MO, Kemper B. Parallel Effects of signal Peptide Hydrophobic Core Modifications on Co-translational Translocation and Post-Translational Cleavage by Purified Signal Peptidase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)63809-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Yamada H, Tokuda H, Mizushima S. Proton Motive Force-dependent and -independent Protein Translocation Revealed by an Efficient in Vitro Assay System of Escherichia coli. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)94246-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Abstract
The degradation of the prolipoprotein signal peptide in vitro by membranes, cytoplasmic fraction, and two purified major signal peptide peptidases from Escherichia coli was followed by reverse-phase liquid chromatography (RPLC). The cytoplasmic fraction hydrolyzed the signal peptide completely into amino acids. In contrast, many peptide fragments accumulated as final products during the cleavage by a membrane fraction. Most of the peptides were similar to the peptides formed during the cleavage of the signal peptide by the purified membrane-bound signal peptide peptidase, protease IV. Peptide fragments generated during the cleavage of the signal peptide by protease IV and a cytoplasmic enzyme, oligopeptidase A, were identified from their amino acid compositions, their retention times during RPLC, and knowledge of the amino acid sequence of the signal peptide. Both enzymes were endopeptidases, as neither dipeptides nor free amino acids were formed during the cleavage reactions. Protease IV cleaved the signal peptide predominantly in the hydrophobic segment (residues 7 to 14). Protease IV required substrates with hydrophobic amino acids at the primary and the adjacent substrate-binding sites, with a minimum of three amino acids on either side of the scissile bond. Oligopeptidase A cleaved peptides (minimally five residues) that had either alanine or glycine at the P'1 (primary binding site) or at the P1 (preceding P'1) site of the substrate. These results support the hypothesis that protease IV is the major signal peptide peptidase in membranes that initiates the degradation of the signal peptide by making endoproteolytic cuts; oligopeptidase A and other cytoplasmic enzymes further degrade the partially degraded portions of the signal peptide that may be diffused or transported back into the cytoplasm from the membranes.
Collapse
Affiliation(s)
- P Novak
- Department of Microbiology, Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
46
|
Suzuki T, Itoh A, Ichihara S, Mizushima S. Characterization of the sppA gene coding for protease IV, a signal peptide peptidase of Escherichia coli. J Bacteriol 1987; 169:2523-8. [PMID: 3294796 PMCID: PMC212110 DOI: 10.1128/jb.169.6.2523-2528.1987] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The sppA gene codes for protease IV, a signal peptide peptidase of Escherichia coli. Using the gene cloned on a plasmid, we constructed an E. coli strain carrying the ampicillin resistance gene near the chromosomal sppA gene and an sppA deletion strain in which the deleted portion was replaced by the kanamycin resistance gene. Using these strains, we mapped the sppA gene at 38.5 min on the chromosome, the gene order being katE-xthA-sppA-pncA. Although digestion of the signal peptide that accumulated in the cell envelope fraction was considerably slower in the deletion mutant than in the sppA+ strain, it was still significant, suggesting the participation of another envelope protease(s) in signal peptide digestion.
Collapse
|
47
|
Cavard D, Baty D, Howard SP, Verheij HM, Lazdunski C. Lipoprotein nature of the colicin A lysis protein: effect of amino acid substitutions at the site of modification and processing. J Bacteriol 1987; 169:2187-94. [PMID: 3571165 PMCID: PMC212125 DOI: 10.1128/jb.169.5.2187-2194.1987] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The colicin A lysis protein (Cal) is required for the release of colicin A to the medium by producing bacteria. This protein is produced in a precursor form that contains a cysteine at the cleavage site (-Leu-Ala-Ala-Cys). The precursor must be modified by the addition of lipid before it can be processed. The maturation is prevented by globomycin, an inhibitor of signal peptidase II. Using oligonucleotide-directed mutagenesis, the alanine and cystein residues in the -1 and +1 positions of the cleavage site were replaced by proline and threonine residues, respectively, in two different constructs. Both substitutions prevented the normal modification and cleavage of the protein. The marked activation of the outer membrane detergent-resistant phospholipase A observed with wild-type Cal was not observed with the Cal mutants. Both Cal mutants were also defective for the secretion of colicin A. In one mutant, the signal peptide appeared to be cleaved off by an alternative pathway involving signal peptidase I. Electron microscope studies with immunogold labeling of colicin A on cryosections of pldA and cal mutant cells indicated that the colicin remains in the cytoplasm and is not transferred to the periplasmic space. These results demonstrate that Cal must be modified and processed to activate the detergent-resistant phospholipase A and to promote release of colicin A.
Collapse
|