1
|
Odiatis C, Savva I, Pieri M, Ioannou P, Petrou P, Papagregoriou G, Antoniadou K, Makrides N, Stefanou C, Ljubanović DG, Nikolaou G, Borza DB, Stylianou K, Gross O, Deltas C. A glycine substitution in the collagenous domain of Col4a3 in mice recapitulates late onset Alport syndrome. Matrix Biol Plus 2020; 9:100053. [PMID: 33718859 PMCID: PMC7930875 DOI: 10.1016/j.mbplus.2020.100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Alport syndrome (AS) is a severe inherited glomerulopathy caused by mutations in the genes encoding the α-chains of type-IV collagen, the most abundant component of the extracellular glomerular basement membrane (GBM). Currently most AS mouse models are knockout models for one of the collagen-IV genes. In contrast, about half of AS patients have missense mutations, with single aminoacid substitutions of glycine being the most common. The only mouse model for AS with a homozygous knockin missense mutation, Col4a3-p.Gly1332Glu, was partly described before by our group. Here, a detailed in-depth description of the same mouse is presented, along with another compound heterozygous mouse that carries the glycine substitution in trans with a knockout allele. Both mice recapitulate essential features of AS, including shorten lifespan by 30–35%, increased proteinuria, increased serum urea and creatinine, pathognomonic alternate GBM thinning and thickening, and podocyte foot process effacement. Notably, glomeruli and tubuli respond differently to mutant collagen-IV protomers, with reduced expression in tubules but apparently normal in glomeruli. However, equally important is the fact that in the glomeruli the mutant α3-chain as well as the normal α4/α5 chains seem to undergo a cleavage at, or near the point of the mutation, possibly by the metalloproteinase MMP-9, producing a 35 kDa C-terminal fragment. These mouse models represent a good tool for better understanding the spectrum of molecular mechanisms governing collagen-IV nephropathies and could be used for pre-clinical studies aimed at better treatments for AS. Two mouse models were generated that recapitulate essential features of AS patients. Glomeruli and tubuli respond differently to mutant collagen IV protomers. The mutant colIV protomers in glomeruli probably undergo a cleavage process by MMP9. The two AS mouse models represent a good tool for studying collagen-IV nephropathies. These models could be used for pre-clinical studies aimed at better treatments.
Collapse
Key Words
- ARAS, autosomal recessive alport syndrome
- AS, alport syndrome
- Alport syndrome
- BSA, bovine serum albumin
- Collagen-IV
- EM, electron microscopy
- ESRD, end stage renal disease
- GBM, glomerular basement membrane
- Glomerular basement membrane
- Glycine missense mutation
- Kidney disease
- Mouse model
- PAS, periodic acid schiff
- TBM, tubular basement membrane
- TGF-b1, transforming growth factor beta1
- UPR, unfolded protein response
Collapse
Affiliation(s)
- Christoforos Odiatis
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Isavella Savva
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Myrtani Pieri
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Cyprus
| | - Pavlos Ioannou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Petros Petrou
- Department of Biochemistry, The Cyprus Institute of Neurology and Genetics, Cyprus
| | - Gregory Papagregoriou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Kyriaki Antoniadou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | - Neoklis Makrides
- Department of Developmental Functional Genetics, The Cyprus Institute of Neurology and Genetics, Cyprus
| | - Charalambos Stefanou
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| | | | - Georgios Nikolaou
- Veterinary diagnostic laboratory, Vet ex Machina LTD, Nicosia, Cyprus
| | - Dorin-Bogdan Borza
- Dept. of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States of America
| | - Kostas Stylianou
- Department of Nephrology, University of Crete Medical School, Greece
| | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, Germany
| | - Constantinos Deltas
- Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus Medical School, Cyprus
| |
Collapse
|
2
|
McCann CC, Viner ME, Donkin SS, White HM. Hepatic patatin-like phospholipase domain-containing protein 3 sequence, single nucleotide polymorphism presence, protein confirmation, and responsiveness to energy balance in dairy cows. J Dairy Sci 2014; 97:5167-75. [PMID: 24931521 DOI: 10.3168/jds.2014-7910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/02/2014] [Indexed: 12/24/2022]
Abstract
Patatin-like phospholipase domain-containing protein 3 (PNPLA3), commonly known as adiponutrin, is part of a novel subfamily of triglyceride lipase enzymes with potential effects on triglyceride metabolism in adipose and hepatic tissues. The predicted bovine PNPLA3 sequence has been identified, but expression of the gene had not been examined. The objectives of this study were to confirm the predicted bovine PNPLA3 gene sequence, determine expression of the bovine PNPLA3 gene in response to whole-animal energy balance, identify single nucleotide polymorphisms present in dairy cows, and verify the presence of the protein in the liver. Using liver biopsy samples collected from cows at +28d relative to calving (DRTC), RNA was isolated and used to generate a cDNA template for amplification of the entire predicted coding sequence of PNPLA3 via PCR. To determine if energy balance alters the expression of PNPLA3, RNA was isolated and mRNA expression quantified in liver samples from mid-lactation cows after a 5-d ad libitum period (n=5) and after a subsequent 5-d 50% feed restriction period (n=5), and in samples collected from cows at -14, +1, +14, and +28 DRTC (n=16). The presence of PNPLA3 protein was detected by Western blot in liver protein samples collected at +28 DRTC. Expression of hepatic PNPLA3 was decreased after a period of feed restriction (8.14 vs. 1.08±2.17 arbitrary units, ad libitum vs. fasted). Expression of PNPLA3 mRNA was decreased at +1 and +14 DRTC compared with -14 DRTC (23.35, 7.28, 10.17, and 14.5±4.9 arbitrary units, -14, +1, +14, and +28 DRTC, respectively). The presence of PNPLA3 protein was detected as a 55-kDa band in hepatic protein isolations from liver tissue collected at +28 DRTC. These data confirm the presence and sequence of the bovine hepatic PNPLA3 gene and single nucleotide polymorphisms. Furthermore, these data indicate responsiveness of bovine hepatic PNPLA3 to energy balance.
Collapse
Affiliation(s)
| | - Molly E Viner
- Department of Animal Science, University of Connecticut, Storrs 06269
| | - Shawn S Donkin
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - H M White
- Department of Dairy Science, University of Wisconsin, Madison 53706.
| |
Collapse
|
3
|
Skeletal diseases caused by mutations that affect collagen structure and function. Int J Biochem Cell Biol 2013; 45:1556-67. [DOI: 10.1016/j.biocel.2013.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/15/2022]
|
4
|
Mirigian LS, Makareeva E, Koistinen H, Itkonen O, Sorsa T, Stenman UH, Salo T, Leikin S. Collagen degradation by tumor-associated trypsins. Arch Biochem Biophys 2013; 535:111-4. [PMID: 23541862 PMCID: PMC3683366 DOI: 10.1016/j.abb.2013.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
Abstract
In normal soft tissues, collagen is degraded primarily by collagenases from the matrix metalloproteinase family. Yet, collagenase-like activity of tumor-associated isoforms of other enzymes might be involved in cancer invasion as well. In the present study, we systematically examined collagen degradation by non-sulfated isoforms of trypsins, which were proposed to possess such an activity. We found that non-sulfated trypsin-1, -2, and -3 were able to cleave non-helical and unfolded regions of collagen chains but not the intact triple helix, similar to sulfated trypsins produced by the pancreas. Trypsin-2 sulfation did not affect the cleavage rate either. An apparent triple helix cleavage by tumor-associated trypsin-2 reported earlier likely occurred after triple helix unfolding during sample denaturation for gel electrophoresis. Nevertheless, tumor-associated trypsins might be important for releasing collagen from fibers through telopeptide cleavage as well as for degrading unfolded collagen chains, e.g. after initial cleavage and destabilization of triple helices by collagenases.
Collapse
Affiliation(s)
- Lynn S. Mirigian
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Elena Makareeva
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland and Helsinki University Central Hospital, Helsinki, Finland
| | - Outi Itkonen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland and Helsinki University Central Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Institute of Dentistry, Helsinki University Central Hospital (HUCH), University of Helsinki, Helsinki, Finland and Institute of Dentistry, Helsinki University, Helsinki, Finland
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland and Helsinki University Central Hospital, Helsinki, Finland
| | - Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, and the Oulu Center for Cell-Matrix-Research, University of Oulu, Oulu, Finland; Oulu University Hospital, Oulu, Finland; Institute of Dentistry, University of Helsinki, Helsinki, Finland
| | - Sergey Leikin
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
Huilaja L, Hurskainen T, Autio-Harmainen H, Sormunen R, Tu H, Hofmann SC, Pihlajaniemi T, Bruckner-Tuderman L, Tasanen K. Glycine substitution mutations cause intracellular accumulation of collagen XVII and affect its post-translational modifications. J Invest Dermatol 2009; 129:2302-6. [PMID: 19340010 DOI: 10.1038/jid.2009.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Chung HJ, Jensen DA, Gawron K, Steplewski A, Fertala A. R992C (p.R1192C) Substitution in collagen II alters the structure of mutant molecules and induces the unfolded protein response. J Mol Biol 2009; 390:306-18. [PMID: 19433093 PMCID: PMC2749300 DOI: 10.1016/j.jmb.2009.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/30/2009] [Accepted: 05/05/2009] [Indexed: 11/18/2022]
Abstract
We investigated the molecular bases of spondyloepiphyseal dysplasia (SED) associated with the R992C (p.R1192C) substitution in collagen II. At the protein level, we analyzed the structure and integrity of mutant molecules, and at the cellular level, we specifically studied the effects of the presence of the R992C collagen II on the biological processes taking place in host cells. Our studies demonstrated that mutant collagen II molecules were characterized by altered electrophoretic mobility, relatively low thermostability, the presence of atypical disulfide bonds, and slow rates of secretion into the extracellular space. Analyses of cellular responses to the presence of the mutant molecules showed that excessive accumulation of thermolabile collagen II was associated with the activation of an "unfolded protein response" and an increase in apoptosis of host cells. Collectively, these data suggest that molecular mechanisms of SED may be driven not only by structural changes in the architecture of extracellular collagenous matrices, but also by intracellular processes activated by the presence of mutant collagen II molecules.
Collapse
Affiliation(s)
- Hye Jin Chung
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
7
|
Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 2009; 15:657-64. [DOI: 10.1038/nm.1985] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 05/05/2009] [Indexed: 11/09/2022]
|
8
|
Bodian DL, Chan TF, Poon A, Schwarze U, Yang K, Byers PH, Kwok PY, Klein TE. Mutation and polymorphism spectrum in osteogenesis imperfecta type II: implications for genotype-phenotype relationships. Hum Mol Genet 2008; 18:463-71. [PMID: 18996919 PMCID: PMC2638801 DOI: 10.1093/hmg/ddn374] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osteogenesis imperfecta (OI), also known as brittle bone disease, is a clinically and genetically heterogeneous disorder primarily characterized by susceptibility to fracture. Although OI generally results from mutations in the type I collagen genes, COL1A1 and COL1A2, the relationship between genotype and phenotype is not yet well understood. To provide additional data for genotype–phenotype analyses and to determine the proportion of mutations in the type I collagen genes among subjects with lethal forms of OI, we sequenced the coding and exon-flanking regions of COL1A1 and COL1A2 in a cohort of 63 subjects with OI type II, the perinatal lethal form of the disease. We identified 61 distinct heterozygous mutations in type I collagen, including five non-synonymous rare variants of unknown significance, of which 43 had not been seen previously. In addition, we found 60 SNPs in COL1A1, of which 17 were not reported previously, and 82 in COL1A2, of which 18 are novel. In three samples without collagen mutations, we found inactivating mutations in CRTAP and LEPRE1, suggesting a frequency of these recessive mutations of ∼5% in OI type II. A computational model that predicts the outcome of substitutions for glycine within the triple helical domain of collagen α1(I) chains predicted lethality with ∼90% accuracy. The results contribute to the understanding of the etiology of OI by providing data to evaluate and refine current models relating genotype to phenotype and by providing an unbiased indication of the relative frequency of mutations in OI-associated genes.
Collapse
Affiliation(s)
- Dale L Bodian
- Genetics Department, School of Medicine, Stanford University, Stanford, CA 94305-5120, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bodian DL, Madhan B, Brodsky B, Klein TE. Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations. Biochemistry 2008; 47:5424-32. [PMID: 18412368 DOI: 10.1021/bi800026k] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Osteogenesis imperfecta (OI), or brittle bone disease, often results from missense mutation of one of the conserved glycine residues present in the repeating Gly-X-Y sequence characterizing the triple-helical region of type I collagen. A composite model was developed for predicting the clinical lethality resulting from glycine mutations in the alpha1 chain of type I collagen. The lethality of mutations in which bulky amino acids are substituted for glycine is predicted by their position relative to the N-terminal end of the triple helix. The effect of a Gly --> Ser mutation is modeled by the relative thermostability of the Gly-X-Y triplet on the carboxy side of the triplet containing the substitution. This model also predicts the lethality of Gly --> Ser and Gly --> Cys mutations in the alpha2 chain of type I collagen. The model was validated with an independent test set of six novel Gly --> Ser mutations. The hypothesis derived from the model of an asymmetric interaction between a Gly --> Ser mutation and its neighboring residues was tested experimentally using collagen-like peptides. Consistent with the prediction, a significant decrease in stability, calorimetric enthalpy, and folding time was observed for a peptide with a low-stability triplet C-terminal to the mutation compared to a similar peptide with the low-stability triplet on the N-terminal side. The computational and experimental results together relate the position-specific effects of Gly --> Ser mutations to the local structural stability of collagen and lend insight into the etiology of OI.
Collapse
Affiliation(s)
- Dale L Bodian
- Genetics Department, School of Medicine, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
10
|
Makareeva E, Mertz EL, Kuznetsova NV, Sutter MB, DeRidder AM, Cabral WA, Barnes AM, McBride DJ, Marini JC, Leikin S. Structural heterogeneity of type I collagen triple helix and its role in osteogenesis imperfecta. J Biol Chem 2007; 283:4787-98. [PMID: 18073209 DOI: 10.1074/jbc.m705773200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We investigated regions of different helical stability within human type I collagen and discussed their role in intermolecular interactions and osteogenesis imperfecta (OI). By differential scanning calorimetry and circular dichroism, we measured and mapped changes in the collagen melting temperature (DeltaTm) for 41 different Gly substitutions from 47 OI patients. In contrast to peptides, we found no correlations of DeltaTm with the identity of the substituting residue. Instead, we observed regular variations in DeltaTm with the substitution location in different triple helix regions. To relate the DeltaTm map to peptide-based stability predictions, we extracted the activation energy of local helix unfolding (DeltaG) from the reported peptide data. We constructed the DeltaG map and tested it by measuring the H-D exchange rate for glycine NH residues involved in interchain hydrogen bonds. Based on the DeltaTm and DeltaG maps, we delineated regional variations in the collagen triple helix stability. Two large, flexible regions deduced from the DeltaTm map aligned with the regions important for collagen fibril assembly and ligand binding. One of these regions also aligned with a lethal region for Gly substitutions in the alpha1(I) chain.
Collapse
Affiliation(s)
- Elena Makareeva
- Section on Physical Biochemistry, Bone and Extracellular Matrix Branch, NICHD, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tysoe C, Saunders J, White L, Hills N, Nicol M, Evans G, Cole T, Chapman S, Pope FM. A glycine to aspartic acid substitution of COL2A1 in a family with the Strudwick variant of spondyloepimetaphyseal dysplasia. QJM 2003; 96:663-71. [PMID: 12925722 DOI: 10.1093/qjmed/hcg112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Spondyloepimetaphyseal dysplasia (SEMD) is one of a clinically heterogeneous group of skeletal disorders, characterized by defective growth and modelling of the spine and long bones. Common clinical features include disproportionate short stature, malformed vertebrae and abnormal epiphyses or metaphyses. Some cases have been associated with mutations in the COL2A1 gene. AIM To determine whether the autosomal dominant Strudwick-type SEMD in a three-generation family, showing specific phenotypical features such as chest deformity, limb shortening, myopia and early-onset degenerative osteoarthrosis, might be caused by a novel COL2A1 mutation. DESIGN Genetic testing and clinical examination of family members. METHODS Direct sequencing of PCR-amplified genomic DNA from the COL2A1 gene. RESULTS A point mutation within exon 20 of the COL2A1 gene was identified that substituted a glycine for an aspartic acid residue at codon 262. DISCUSSION All previously reported autosomal dominant mutations causing SEMD have substituted an obligate glycine within the triple helix, in particular at codons 292, 304 and 709 in the three reported Strudwick-type patients. Additionally, a recurrent glycine substitution at codon 154 has been identified in two unrelated Finnish cases with radiological features consistent with the Strudwick subtype. Our sixth helical glycine substitution extends the mutational spectrum and genotype/phenotype correlations of Strudwick-type SEMD.
Collapse
Affiliation(s)
- C Tysoe
- Connective Tissue Genetics Group, Institute of Medical Genetics, University of Wales College of Medicine, Cardiff, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Majsterek I, McAdams E, Adachi E, Dhume ST, Fertala A. Prospects and limitations of the rational engineering of fibrillar collagens. Protein Sci 2003; 12:2063-72. [PMID: 12931004 PMCID: PMC2324002 DOI: 10.1110/ps.0385103] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recombinant collagens are attractive proteins for a number of biomedical applications. To date, significant progress was made in the large-scale production of nonmodified recombinant collagens; however, engineering of novel collagen-like proteins according to customized specifications has not been addressed. Herein we investigated the possibility of rational engineering of collagen-like proteins with specifically assigned characteristics. We have genetically engineered two DNA constructs encoding multi-D4 collagens defined as collagen-like proteins, consisting primarily of a tandem of the collagen II D4 periods that correspond to the biologically active region. We have also attempted to decrease enzymatic degradation of novel collagen by mutating a matrix metalloproteinase 1 cleavage site present in the D4 period. We demonstrated that the recombinant collagen alpha-chains consisting predominantly of the D4 period but lacking most of the other D periods found in native collagen fold into a typical collagen triple helix, and the novel procollagens are correctly processed by procollagen N-proteinase and procollagen C-proteinase. The nonmutated multi-D4 collagen had a normal melting point of 41 degrees C and a similar carbohydrate content as that of control. In contrast, the mutant multi-D4 collagen had a markedly lower thermostability of 36 degrees C and a significantly higher carbohydrate content. Both collagens were cleaved at multiple sites by matrix metalloproteinase 1, but the rate of hydrolysis of the mutant multi-D4 collagen was lower. These results provide a basis for the rational engineering of collagenous proteins and identifying any undesirable consequences of altering the collagenous amino acid sequences.
Collapse
Affiliation(s)
- Ireneusz Majsterek
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
13
|
Arnold WV, Fertala A, Sieron AL, Hattori H, Mechling D, Bächinger HP, Prockop DJ. Recombinant procollagen II: Deletion of D period segments identifies sequences that are required for helix stabilization and generates a temperature-sensitive N-proteinase cleavage site. J Biol Chem 1998; 273:31822-8. [PMID: 9822649 DOI: 10.1074/jbc.273.48.31822] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cDNA cassette system was used to synthesize recombinant versions of procollagen II in which one of the four blocks of 234 amino acids that define a repeating D periods of the collagen triple helix were deleted. All the proteins were triple helical and all underwent a helix-to-coil transition between 25 and 42 degreesC as assayed by circular dichroism. However, the details of the melting curves varied. The procollagen lacking the D1 period unfolded 3 degreesC lower than a full-length molecule. With the procollagen lacking the D4 period, the first 25% of unfolding occurred at a lower temperature than the full-length molecule, but the rest of the structure unfolded at the same temperature. With the procollagen lacking the terminal D0.4 period, the protein unfolded 3 degreesC lower than the full-length molecule and a smaller fraction of the protein was secreted by stably transfected clones than with the other recombinant procollagens. The results confirmed previous suggestions that the collagen triple helix contains regions of varying stability and they demonstrated that the two D periods at the end of the molecule contain sequences that serve as clamps for folding and for stabilizing the triple helix. Reaction of the recombinant procollagens with procollagen N-proteinase indicated that in the procollagen lacking the sequences, the D1 period assumed an unusual temperature-sensitive conformation at 35 degreesC that allowed cleavage at an otherwise resistant Gly-Ala bond between residues 394 and 395 of the alpha1(II) chain.
Collapse
Affiliation(s)
- W V Arnold
- Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Boye E, Mollet G, Forestier L, Cohen-Solal L, Heidet L, Cochat P, Grünfeld JP, Palcoux JB, Gubler MC, Antignac C. Determination of the genomic structure of the COL4A4 gene and of novel mutations causing autosomal recessive Alport syndrome. Am J Hum Genet 1998; 63:1329-40. [PMID: 9792860 PMCID: PMC1377543 DOI: 10.1086/302106] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Autosomal recessive Alport syndrome is a progressive hematuric glomerulonephritis characterized by glomerular basement membrane abnormalities and associated with mutations in either the COL4A3 or the COL4A4 gene, which encode the alpha3 and alpha4 type IV collagen chains, respectively. To date, mutation screening in the two genes has been hampered by the lack of genomic structure information. We report here the complete characterization of the 48 exons of the COL4A4 gene, a comprehensive gene screen, and the subsequent detection of 10 novel mutations in eight patients diagnosed with autosomal recessive Alport syndrome. Furthermore, we identified a glycine to alanine substitution in the collagenous domain that is apparently silent in the heterozygous carriers, in 11.5% of all control individuals, and in one control individual homozygous for this glycine substitution. There has been no previous finding of a glycine substitution that is not associated with any obvious phenotype in homozygous individuals.
Collapse
Affiliation(s)
- E Boye
- INSERM U423, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ripley CR, Bienkowski RS. Localization of procollagen I in the lysosome/endosome system of human fibroblasts. Exp Cell Res 1997; 236:147-54. [PMID: 9344594 DOI: 10.1006/excr.1997.3707] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A significant amount of newly synthesized collagen is degraded intracellularly rather than secreted, but there is controversy about whether this process occurs in the lysosomes. We addressed this problem using confocal microscopy and immunofluorescence imaging to study the distribution of procollagen I in the Golgi and the lysosome/endosome system of cultured human fibroblasts. Cells were incubated under basal conditions and then permeabilized and exposed to fluorescently tagged probes for procollagen, Golgi markers (Helix pomatia binding protein or beta-coatamer protein), and lysosome/endosome markers (cathepsin B or LAMP-2). Strong signals for procollagen codistributed with the Golgi and lysosome/endosome markers. Of note, many structures were positive for procollagen and lysosome/endosome markers but not for Golgi markers. When cells were incubated with the proline analog cis-hydroxyproline, which inhibits correct triple helix formation and increases intracellular degradation, the amount of procollagen codistributing with the lysosome/endosome markers increased greatly. Similar results were obtained in I-cells, which do not have functioning lysosomal hydrolases. These findings strongly indicate that the lysosome/endosome system participates in the intracellular degradation of newly synthesized procollagen and that trafficking of procollagen to the lysosome/endosome system does not depend on the cells having active lysosomal hydrolases. We present a model that integrates our findings with other work and resolves inconsistencies in the literature. This model postulates the existence of three separate degradation paths for newly synthesized procollagen. In addition to the endosome/lysosome system, degradation also takes place in the proximal region of the secretory pathway such as the endoplasmic reticulum, cis-Golgi network, or cis-Golgi and in a distal region of the secretory pathway such as the trans-Golgi or trans-Golgi network.
Collapse
Affiliation(s)
- C R Ripley
- Department of Biology, Queens College of the City University of New York, Flushing 11367, USA
| | | |
Collapse
|
16
|
Arnold WV, Sieron AL, Fertala A, Bächinger HP, Mechling D, Prockop DJ. A cDNA cassette system for the synthesis of recombinant procollagens. Variants of procollagen II lacking a D-period are secreted as triple-helical monomers. Matrix Biol 1997; 16:105-16. [PMID: 9314160 DOI: 10.1016/s0945-053x(97)90039-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Currently there is a lack of experimental systems for defining the functional domains of the fibrillar collagens. Here we describe an experimental strategy that employs the polymerase chain reaction (PCR) to create a series of cDNA cassettes coding for seven separate domains of procollagen II. The system was used to prepare novel recombinant procollagens II from which one of the four repetitive D-periods of the triple helix was deleted. Four constructs, each lacking a different D-period, were expressed in stably transfected mammalian cells (HT-1080). Truncated procollagens of the predicted size were recovered from the medium. All were triple-helical as assayed by circular dichroism. Therefore, deletion of a complete D-period containing 234 amino acids does not destabilize the triple helix of homotrimeric collagen II as much as some naturally occurring mutations in the heterotrimeric monomer of collagen I that delete shorter sequences or that convert obligate glycine residues to residues with bulkier side chains. Moreover, the results suggest that the strategy developed here can be used to map in detail the binding sites on fibrillar collagens for other components of the extracellular matrix and for the binding, spreading and signaling of cells.
Collapse
Affiliation(s)
- W V Arnold
- Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
17
|
Yang W, Battineni ML, Brodsky B. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides. Biochemistry 1997; 36:6930-5. [PMID: 9188687 DOI: 10.1021/bi970051h] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ostoegenesis imperfecta (OI) or "brittle bone" disease is associated with mutations in the genes for type I collagen chains and produces variable phenotypes, ranging from lethal cases at birth to mild cases with increased bone fractures. The most common OI mutations are single base substitutions leading to replacement of Gly by another residue, breaking the typical (Gly-X-Y)n repeating sequence pattern of the collagen triple-helix. Triple-helical peptides were designed to focus on residues 892-921 of the alpha1 chain of type I collagen, where two OI Gly-->Ser mutations are found in close proximity, a mild mutation at site 901 and a lethal mutation at site 913. Peptides were designed to include amino acid sequences around these mutation sites, and were synthesized with the normal sequence or with the Gly-->Ser mutated sequence. The peptide including the normal sequence residues 892-909 with four Gly-Pro-Hyp triplets at the C-terminus formed a stable triple-helix, and introduction of a Ser residue for Gly at the 901 mutation site led to a 50% loss of triple-helix content and a decrease in thermal stability, with little effect on folding. A peptide including residues 904-921 again formed a stable triple-helix, but the introduction of the Gly-->Ser substitution at site 913 led to a much greater decrease in thermal stability. These studies demonstrate the impact of local sequences flanking the Gly substitution on structural consequences and support the concept of variability and regional effects along the collagen molecule.
Collapse
Affiliation(s)
- W Yang
- Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
18
|
Affiliation(s)
- C E Kashtan
- University of Minnesota Medical School, Department of Pediatrics, Minneapolis 55455, USA.
| | | |
Collapse
|
19
|
Naito I, Kawai S, Nomura S, Sado Y, Osawa G. Relationship between COL4A5 gene mutation and distribution of type IV collagen in male X-linked Alport syndrome. Japanese Alport Network. Kidney Int 1996; 50:304-11. [PMID: 8807602 DOI: 10.1038/ki.1996.316] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The renal immunohistochemical distribution of collagen IV chains was studied with a monoclonal antibody series recognizing the alpha 1(IV) to alpha 6(IV) chains in nine males with X-linked Alport syndrome whose COL4A5 mutation had been already identified. Two patients had a deletional mutation, six patients had a missense mutation and one patient had a splicing site mutation. The alpha 3(IV) to alpha 6(IV) chains were completely absent in the renal basement membrane of the two patients with a deletional mutation. On the contrary, in four of six patients with a missense mutation (substitution of a glycine within collagenous domain), antigenecity of the alpha 3(IV) to alpha 5(IV) chains was recognized in the glomerular basement membrane although it was weak. In addition, one of the remaining patients showed a normal histochemical pattern of all type IV collagen chains, while the rest one showed completely absent of the alpha 3(IV) to alpha 5(IV) chains at the same pattern of deletional mutation. One patient with a splice site mutation showed complete absence of the alpha 3(IV) to alpha 5(IV) chains from the glomerular basement membrane, but weak staining of the alpha 5(IV) and alpha 6(IV) chains from the Bowman's capsular basement membrane. Our observations indicated that there is variety in the staining of the alpha 3(IV) to alpha 6(IV) antibodies among male patients with COL4A5, mutations.
Collapse
Affiliation(s)
- I Naito
- Department of Medicine, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | |
Collapse
|
20
|
Nuytinck L, Dalgleish R, Spotila L, Renard JP, Van Regemorter N, De Paepe A. Substitution of glycine-661 by serine in the alpha1(I) and alpha2(I) chains of type I collagen results in different clinical and biochemical phenotypes. Hum Genet 1996; 97:324-9. [PMID: 8786074 DOI: 10.1007/bf02185764] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have characterised a point mutation causing the substitution of serine for glycine at position 661 of the alpha1(I) chain of type I collagen in a child with a severe form of osteogenesis imperfecta. An identical glycine substitution in the alpha2(I) chain was previously detected in a woman with post-menopausal osteoporosis. Two of her sons were heterozygous for the mutation and the third son was homozygous as a result of uniparental isodisomy. Biochemical profiles of the type I collagen heterotrimers were studied in each of the patients and compared with a control. Medium and cell-layer collagens were overmodified in all patients. Overmodification was obvious in the patient with the alpha 1(I) mutation but mild in the patients with the alpha 2(I) mutation, being slightly less evident in the heterozygote than in the homozygote. Investigation of the melting curves of the mutant collagen trimers in all three patients showed the same slight decrease in thermal stability and, hence, a lack of correlation with phenotypic severity. In contrast, the degree of overmodification of the collagen alpha chains was correlated with the phenotypic severity. The clinical observations in these patients illustrate the possibly predominant role of mutations in the collagen alpha1(I) chains over the same mutations in the alpha2(I) chains in determining the clinical outcome.
Collapse
Affiliation(s)
- L Nuytinck
- Centre for Medical Genetics, University Hospital Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Ritvaniemi P, Körkkö J, Bonaventure J, Vikkula M, Hyland J, Paassilta P, Kaitila I, Kääriäinen H, Sokolov BP, Hakala M. Identification of COL2A1 gene mutations in patients with chondrodysplasias and familial osteoarthritis. ARTHRITIS AND RHEUMATISM 1995; 38:999-1004. [PMID: 7612049 DOI: 10.1002/art.1780380717] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To use a recently developed procedure for analysis of blood leukocyte DNA to detect mutations in the gene for type II procollagen (COL2A1) in patients with cartilage diseases ranging from early-onset familial osteoarthritis (OA) to lethal chondrodysplasias. METHODS The technique of denaturing gradient gel electrophoresis was used to scan polymerase chain reaction (PCR) products from 45 exons and exon-flanking sequences of the COL2A1 gene in more than 70 patients with cartilage diseases whose severity ranged from mild to lethal. PCR products with abnormal migrations were then sequenced. RESULTS Among the 3 patients with lethal hypochondrogenesis who were analyzed, all 3 were found to have a mutation in the COL2A1 gene. Among 17 patients with spondyloepiphyseal or spondyloepimetaphyseal dysplasia, 2 well-defined and 2 probable mutations were found. Among 15 patients with the Wagner-Stickler syndrome, 2 well-defined and 2 probable mutations were found. Among 45 patients with early-onset familial OA, 1 probable mutation was found. CONCLUSION Using the procedure developed for analysis of the COL2A1 gene, mutations were detected in > 20% of patients with chondrodysplasias and up to 2% of patients with early-onset familial OA. However, these percentages are only minimal estimates because all possible mutations in the gene cannot be detected with this procedure.
Collapse
Affiliation(s)
- P Ritvaniemi
- Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Perinatal lethal osteogenesis imperfecta is the result of heterozygous mutations of the COL1A1 and COL1A2 genes that encode the alpha 1(I) and alpha 2(I) chains of type I collagen, respectively. Point mutations resulting in the substitution of Gly residues in Gly-X-Y amino acid triplets of the triple helical domain of the alpha 1(I) or alpha 2(I) chains are the most frequent mutations. They interrupt the repetitive Gly-X-Y structure that is mandatory for the formation of a stable triple helix. Most babies have their own private de novo mutation. However, the recurrence rate is about 7% owing to germline mosaicism in one parent. The mutations act in a dominant negative manner as the mutant pro alpha chains are incorporated into type I procollagen molecules that also contain normal pro alpha chains. The abnormal molecules are poorly secreted, more susceptible to degradation, and impair the formation of the extracellular matrix. The collagen fibres are abnormally organised and mineralisation is impaired. The severity of the clinical phenotype appears to be related to the type of mutation, its location in the alpha chain, the surrounding amino acid sequences, and the level of expression of the mutant allele.
Collapse
Affiliation(s)
- W G Cole
- Department of Medical Genetics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
23
|
Cole WG. Collagen genes: mutations affecting collagen structure and expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 47:29-80. [PMID: 8016323 DOI: 10.1016/s0079-6603(08)60249-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is to be expected that more collagen genes will be identified and that additional heritable connective tissue diseases will be shown to arise from collagen mutations. Further progress will be fostered by the coordinated study of naturally occurring and induced heritable connective tissues diseases. In some instances, human mutations will be studied in more detail using transgenic mice, while in others, transgenic studies will be used to determine the type of human phenotype that is likely to result from mutations of a given collagen gene. Further studies of transcriptional regulation of the collagen genes will provide the prospect for therapeutic control of expression of specific collagen genes in patients with genetically determined collagen disorders as well as in a wide range of common human diseases in which abnormal formation of the connective tissues is a feature.
Collapse
Affiliation(s)
- W G Cole
- Division of Orthopaedics, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Abstract
Alport syndrome is a genetic disorder of basement membranes manifested clinically by a progressive nephropathy and, in many families, sensorineural hearing loss and ocular lesions. During the 1980s evidence was amassed indicating type IV (basement membrane) collagen as the defective protein in Alport This hypothesis was confirmed in 1990 by the cloning of the X-chromosomal gene COL4A5, which encodes the alpha 5 chain of type IV collagen, and the discovery of mutations in this gene in many Alport kindreds. The results of results of recent studies suggest that the alpha 5(IV) chain forms a distinct collagenous network with the alpha 3 and alpha 4 chains of type IV collagen and that mutations in alpha 5(IV) may prevent the normal incorporation of alpha 3(IV) and alpha 4(IV) into basement membranes. Renal biopsy remains an important modality for making the diagnosis of Alport syndrome, but may eventually be replaced by molecular genetic techniques. Posttransplant anti-glomerular basement membrane nephritis occurs rarely in Alport patients and may be restricted to a subgroup with particular COL4A5 mutations. It is not clear why COL4A5 mutations result in glomerulosclerosis and renal failure, or whether this process may be slowed through dietary or pharmacologic intervention.
Collapse
Affiliation(s)
- C E Kashtan
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis 55455
| | | |
Collapse
|
25
|
Deletion of a large domain in recombinant human procollagen II does not alter the thermal stability of the triple helix. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36915-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
26
|
Marini J, Lewis M, Wang Q, Chen K, Orrison B. Serine for glycine substitutions in type I collagen in two cases of type IV osteogenesis imperfecta (OI). Additional evidence for a regional model of OI pathophysiology. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53826-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Bächinger HP, Morris NP, Davis JM. Thermal stability and folding of the collagen triple helix and the effects of mutations in osteogenesis imperfecta on the triple helix of type I collagen. AMERICAN JOURNAL OF MEDICAL GENETICS 1993; 45:152-62. [PMID: 8456797 DOI: 10.1002/ajmg.1320450204] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Osteogenesis imperfecta (OI) is an inherited disease in which 90% of the cases result from mutations in the 2 genes, pro alpha 1 and pro alpha 2, coding for type I collagen. Type I collagen is a trimeric molecule, (alpha 1)2 alpha 2, which is dominated both structurally and functionally by the 300 nm triple-helical domain. Most OI mutations occur in this domain and almost all point mutations result in the substitution of other amino acids for the obligate glycine which occurs at every third residue. The phenotypic effects of these mutations are frequently attributed in part to alterations in the stability and rate of folding of the triple helix. In order to better understand the relationship between glycine substitutions and stability we review current concepts of the forces governing triple helical stability, denaturational and predenaturational unfolding, and the techniques of measuring stability. From observations on the stability of several collagen types as well as synthetic tripeptides, we present a model for stability based on the contribution of individual and neighboring tripeptide units to the local stability. Although in preliminary form, this empirical model can account for the observed shifts in the Tm of many of the point mutations described. The folding of the triple helix is reviewed. The involvement of peptidyl prolyl cis-trans isomerase in this process in vivo is demonstrated by the inhibition of collagen folding in fibroblasts by cyclosporin A. An hypothesis based on the relationship between the thermal stability at the site of mutation and the propensity for renucleation of folding is proposed.
Collapse
Affiliation(s)
- H P Bächinger
- Shriners Hospital for Crippled Children, Research Department, Portland, OR 97201
| | | | | |
Collapse
|
28
|
Mottes M, Gomez Lira MM, Valli M, Scarano G, Lonardo F, Forlino A, Cetta G, Pignatti PF. Paternal mosaicism for a COL1A1 dominant mutation (alpha 1 Ser-415) causes recurrent osteogenesis imperfecta. Hum Mutat 1993; 2:196-204. [PMID: 8364588 DOI: 10.1002/humu.1380020308] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe a dominant point mutation in the COL1A1 gene causing extremely severe osteogenesis imperfecta (OI type II/III) which was detected in the dermal fibroblasts of a proband, diagnosed by ultrasonography at 24 weeks of gestation. Type I collagen secretion was reduced and pro alpha 1(I) chains were overmodified. The mutation was localised in one COL1A1 allele by chemical cleavage of mismatched bases in normal cDNA/proband's mRNA heteroduplexes, and identified by cloning and sequencing. A G-to-A transition which causes the substitution of Gly-415 with serine in the alpha 1(I) triple helical domain was found. The same mutation was detected in the father's spermatozoa and lymphocytes. Mosaicism in the father's germline explains the occurrence in the family of two additional OI pregnancies, which were documented by X-ray and ultrasound investigations.
Collapse
Affiliation(s)
- M Mottes
- Istituto di Scienze Biologiche, Università di Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Incorporation of type I collagen molecules that contain a mutant alpha 2(I) chain (Gly580–>Asp) into bone matrix in a lethal case of osteogenesis imperfecta. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50063-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Torre-Blanco A, Adachi E, Romanic A, Prockop D. Copolymerization of normal type I collagen with three mutated type I collagens containing substitutions of cysteine at different glycine positions in the alpha 1 (I) chain. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42925-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
31
|
Abstract
Mammalian collagenases cleave all three alpha chains of native, triple-helical types I, II, and III collagens after the Gly residue of the partial sequence Gly-[Ile or Leu]-[Ala or Leu] at a single locus approximately three-fourths from the amino terminus. There are an additional 31 sites in the triple-helical regions of types I, II, III, and IV collagens that contain the same partial sequence but are not hydrolyzed. A model has been developed to explain this remarkable specificity. The mammalian collagenase cleavage site in interstitial collagens is distinguished by: (a) a low side-chain molal volume-, high imino acid (greater than 33%)-containing region that is tightly triple-helical, consisting of four Gly-X-Y triplets preceding the cleavage site, (b) a low imino acid-containing (less than 17%), loosely triple-helical region consisting of four Gly-X-Y triplets following the cleavage site, and (c) a maximum of one charged residue for the entire 25 residue cleavage site region, which is always an Arg that follows the cleavage site in subsite P'5 or P'8. In addition, the high imino acid-containing region cannot have an imino acid adjacent to the cleaved Gly-[Ile or Leu] bond (i.e. in subsite P2). Careful scrutiny of the 31 non-cleaved sequences reveals that none of those sites shares all of the characteristics of the cleavage site. The criterion of this model thus explain both cleaved and non-cleaved sequences in the triple-helical regions of types I, II, III, and IV collagen, and are supported by all known experimental and theoretical results on collagen catabolism and structure.
Collapse
Affiliation(s)
- G B Fields
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455
| |
Collapse
|
32
|
Transgenic mice that express a mini-gene version of the human gene for type I procollagen (COL1A1) develop a phenotype resembling a lethal form of osteogenesis imperfecta. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54506-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
The substitution of arginine for glycine 85 of the alpha 1(I) procollagen chain results in mild osteogenesis imperfecta. The mutation provides direct evidence for three discrete domains of cooperative melting of intact type I collagen. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54712-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Tsuneyoshi T, Westerhausen A, Constantinou C, Prockop D. Substitutions for glycine alpha 1-637 and glycine alpha 2-694 of type I procollagen in lethal osteogenesis imperfecta. The conformational strain on the triple helix introduced by a glycine substitution can be transmitted along the helix. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98449-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Prockop D. Mutations that alter the primary structure of type I collagen. The perils of a system for generating large structures by the principle of nucleated growth. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)55398-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|