1
|
Abstract
Oncolytic virotherapy uses replication-competent virus as a means of treating cancer. Whereas this field has shown great promise as a viable treatment method, the limited spread of these viruses throughout the tumor microenvironment remains a major challenge. To overcome this issue, researchers have begun looking at syncytia formation as a novel method of increasing viral spread. Several naturally occurring fusogenic viruses have been shown to possess strong oncolytic potential and have since been studied to gain insight into how this process benefits oncolytic virotherapy. Whereas these naturally fusogenic viruses have been beneficial, there are still challenges associated with their regular use. Because of this, engineered/recombinant fusogenic viruses have also been created that enhance nonfusogenic oncolytic viruses with the beneficial property of syncytia formation. The purpose of this review is to examine the existing body of literature on syncytia formation in oncolytics and offer direction for potential future studies.
Collapse
Affiliation(s)
- Chase Burton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Shi B, Abrams M. Technologies for investigating the physiological barriers to efficient lipid nanoparticle-siRNA delivery. J Histochem Cytochem 2013; 61:407-20. [PMID: 23504369 PMCID: PMC3715328 DOI: 10.1369/0022155413484152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/20/2013] [Indexed: 11/22/2022] Open
Abstract
Small interfering RNA (siRNA) therapeutics have advanced from bench to clinical trials in recent years, along with new tools developed to enable detection of siRNA delivered at the organ, cell, and subcellular levels. Preclinical models of siRNA delivery have benefitted from methodologies such as stem-loop quantitative polymerase chain reaction, histological in situ immunofluorescent staining, endosomal escape assay, and RNA-induced silencing complex loading assay. These technologies have accelerated the detection and optimization of siRNA platforms to overcome the challenges associated with delivering therapeutic oligonucleotides to the cytosol of specific target cells. This review focuses on the methodologies and their application in the biodistribution of siRNA delivered by lipid nanoparticles.
Collapse
Affiliation(s)
- Bin Shi
- Department of RNA Therapeutics, Merck Research Laboratories, Merck & Co., Inc., West Point, Pennsylvania, USA.
| | | |
Collapse
|
3
|
Infection of lymphoblastoid cell lines by Kaposi's sarcoma-associated herpesvirus: critical role of cell-associated virus. J Virol 2011; 85:9767-77. [PMID: 21795352 DOI: 10.1128/jvi.05136-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) displays strong lymphotropism in vivo, but paradoxically, established B cell lines have largely been refractory to infection by soluble KSHV virions. Here we show that this block can be overcome by exposure to cell-associated virus. Doxycycline-inducible recombinant KSHV.219 (rKSHV.219)-harboring SLK (iSLK.219) cells were employed as KSHV donors. Cocultivation of lymphoid cell lines with reactivated iSLK.219 cells resulted in readily demonstrable viral entry into each cell line; similar observations were made in primary tonsillar B cell cultures. Moreover, infected lymphoid cells were able to outgrow upon puromycin selection, indicating development of persistent infection. Infected BJAB cells display signatures of latent infection, including classical latency-associated transcripts, a punctate pattern of LANA expression, and episomal maintenance of the KSHV genome. However, when lytically activated by various chemical stimuli, infected BJAB cells were able to produce only low levels of infectious virions. These data demonstrate that (i) cell-associated viruses can bypass viral entry blocks in most lymphoid cell lines, (ii) the determinants of cell-associated virus entry differ from those of soluble virion infection, and (iii) immortalized lymphoblastoid lines have partial postentry blocks to efficient lytic reactivation.
Collapse
|
4
|
Aranda FJ, Teruel JA, Ortiz A. Interaction of a synthetic peptide corresponding to the N terminus of canine distemper virus fusion protein with phospholipid vesicles: a biophysical study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2003; 1618:51-8. [PMID: 14643933 DOI: 10.1016/j.bbamem.2003.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The F protein of canine distemper virus (CDV) is a classic type I glycoprotein formed by two polypeptides, F1 and F2. The N-terminal regions of the F1 polypeptides of CDV, measles virus and other paramyxoviruses present moderate to high homology, supporting the existence of a high conservation within these structures, which emphasises its role in viral-host cell membrane fusion. This N-terminal polypeptide is usually termed the fusion peptide. The fusion peptides of most viral fusion-mediating glycoproteins contain a high proportion of hydrophobic amino acids, which facilitates its insertion into target membranes during fusion. In this work we report on the interaction of a 31-residue synthetic peptide (FP31) corresponding to the N terminus of CDV F1 protein with phospholipid membranes composed of various phospholipids, as studied by means of various biophysical techniques. FTIR investigation of FP31 secondary structure in aqueous medium and in membranes resulted in a major proportion of alpha-helical structure which increased upon membrane insertion. Differential scanning calorimetry (DSC) showed that the presence of concentrations of FP31 as low as 0.1 mol%, in mixtures with L-alpha-dimyristoylphosphatidylcholine (DMPC), L-alpha-dipalmitoylphosphatidylcholine (DPPC) and L-alpha-distearoylphosphatidylcholine (DSPC), already affected the thermotropic properties of the gel to liquid-crystalline phase transition. In mixtures with the three lipids, increasing the concentration of peptide made the pretransition to disappear, and lowered and broadened the main transition. This effect was slightly stronger as the acyl chain length of the phospholipid grew larger. In the corresponding partial phase diagrams, no immiscibilities or critical points were observed. FTIR showed that incorporation of 1 mol% of peptide in DPPC shifted the antisymmetric and symmetric CH2 stretching bands to higher values, indicating the existence of an additional disordering of the acyl chain region of the fluid bilayer. FTIR studies of the Cz=O stretching band indicated that incorporation of FP31 into phosphatidylcholine membranes produced a strong dehydration of the polar part of the bilayer. In mixtures with L-alpha-dielaidoylphosphatidylethanolamine (DEPE), increasing FP31 concentrations broadened and shifted to lower temperatures the lamellar to hexagonal-HII phase transition, indicating that this peptide destabilized the bilayer and promoted formation of the hexagonal-HII phase. The results are discussed in terms of lipid-peptide hydrophobic mismatch and its influence on the role of the N-terminal polypeptide of CDV F1 protein in viral membrane fusion.
Collapse
Affiliation(s)
- Francisco J Aranda
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, E-30100 Espinardo, Murcia, Spain
| | | | | |
Collapse
|
5
|
Blumenthal R, Gallo SA, Viard M, Raviv Y, Puri A. Fluorescent lipid probes in the study of viral membrane fusion. Chem Phys Lipids 2002; 116:39-55. [PMID: 12093534 DOI: 10.1016/s0009-3084(02)00019-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fluorescent lipid probes are widely used in the observation of viral membrane fusion, providing a sensitive method to study fusion mechanism(s). Due to the wealth of data concerning liposome fusion, a variety of fusion assays has been designed including fluorescent probe redistribution, fluorescence dequenching, fluorescence resonance energy transfer and photosensitized labeling. These methods can be tailored for different virus fusion assays. For instance, virions can be loaded with membrane dye which dequenches at the moment of membrane merger. This allows for continuous observation of fusion and therefore kinetic information can be acquired. In the case of cells expressing viral envelope proteins, dye redistribution studies of lipidic and water-soluble fluorophores yield information about fusion intermediates. Lipid probes can be metabolically incorporated into cell membranes, allowing observation of membrane fusion in vitro with minimal chance of flip flop, non-specific transfer and formation of microcrystals. Fluorescent lipid probes have been incorporated into liposomes and/or reconstituted viral envelopes, which provide a well-defined membrane environment for fusion to occur. Interactions of the viral fusion machinery with the membrane can be observed through the photosensitized labeling of the interacting segments of envelope proteins with a hydrophobic probe. Thus, fluorescent lipid probes provide a broad repertoire of fusion assays and powerful tools to produce precise, quantitative data in real time required for the elucidation of the complex process of viral fusion.
Collapse
Affiliation(s)
- Robert Blumenthal
- Laboratory of Experimental and Computational Biology, Center for Cancer Research, SAIC, P.O. Box B, Bldg. 469, Rm. 216A, Miller Drive, NCI-Frederick, MD 21702-1201, USA.
| | | | | | | | | |
Collapse
|
6
|
Rocheleau JV, Petersen NO. The Sendai virus membrane fusion mechanism studied using image correlation spectroscopy. ACTA ACUST UNITED AC 2001; 268:2924-30. [PMID: 11358509 DOI: 10.1046/j.1432-1327.2001.02181.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism of Sendai virus membrane fusion to cultured cell membranes was studied. Viral lipids were labeled with the lipophilic dye, 4-(4-(dihexadecylamino)styryl-N-methylquinolinium iodine) (DiQ), and viral proteins were labeled using fluorescein isothiocyanate (FITC). The redistribution of these probes from the virus to cultured cells was followed using the technique of image correlation spectroscopy. This technique assayed the intensity change and the redistribution of these probes as fusion progressed from a more to less aggregated state. The lipid probe DiQ dispersed into the membrane of the target membrane at both 22 and 37 degrees C, while the FITC-labeled proteins dispersed only at 37 degrees C. Simultaneous labeling of virus with both of these probes showed that at 37 degrees C their redistribution proceeded at different rates. These data were consistent with the formation of a hemifusion intermediate during the fusion process.
Collapse
Affiliation(s)
- J V Rocheleau
- Department of Chemistry, Chemistry Building, University of Western Ontario, London, Canada
| | | |
Collapse
|
7
|
Kliger Y, Gallo SA, Peisajovich SG, Munoz-Barroso I, Avkin S, Blumenthal R, Shai Y. Mode of action of an antiviral peptide from HIV-1. Inhibition at a post-lipid mixing stage. J Biol Chem 2001; 276:1391-7. [PMID: 11027678 DOI: 10.1074/jbc.m004113200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DP178, a synthetic peptide corresponding to a segment of the transmembrane envelope glycoprotein (gp41) of human immunodeficiency virus, type 1 (HIV-1), is a potent inhibitor of viral infection and virus-mediated cell-cell fusion. Nevertheless, DP178 does not contain gp41 coiled-coil cavity binding residues postulated to be essential for inhibiting HIV-1 entry. We find that DP178 inhibits phospholipid redistribution mediated by the HIV-1 envelope glycoprotein at a concentration 8 times greater than that of solute redistribution (the IC(50) values are 43 and 335 nm, respectively). In contrast, C34, a synthetic peptide which overlaps with DP178 but contains the cavity binding residues, did not show this phenomenon (11 and 25 nm, respectively). The ability of DP178 to inhibit membrane fusion at a post-lipid mixing stage correlates with its ability to bind and oligomerize on the surface of membranes. Furthermore, our results are consistent with a model in which DP178 inhibits the formation of gp41 viral hairpin structure at low affinity, whereas C34 inhibits its formation at high affinity: the failure to form the viral hairpin prevents both lipid and solute from redistributing between cells. However, our data also suggest an additional membrane-bound inhibitory site for DP178 in the ectodomain of gp41 within a region immediately adjacent to the membrane-spanning domain. By binding to this higher affinity site, DP178 inhibits the recruitment of several gp41-membrane complexes, thus inhibiting fusion pore formation.
Collapse
Affiliation(s)
- Y Kliger
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | | | | | | | |
Collapse
|
8
|
Weidmann A, Maisner A, Garten W, Seufert M, ter Meulen V, Schneider-Schaulies S. Proteolytic cleavage of the fusion protein but not membrane fusion is required for measles virus-induced immunosuppression in vitro. J Virol 2000; 74:1985-93. [PMID: 10644371 PMCID: PMC111676 DOI: 10.1128/jvi.74.4.1985-1993.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/1999] [Accepted: 11/22/1999] [Indexed: 11/20/2022] Open
Abstract
Immunosuppression induced by measles virus (MV) is associated with unresponsiveness of peripheral blood lymphocytes (PBL) to mitogenic stimulation ex vivo and in vitro. In mixed lymphocyte cultures and in an experimental animal model, the expression of the MV glycoproteins on the surface of UV-inactivated MV particles, MV-infected cells, or cells transfected to coexpress the MV fusion (F) and the hemagglutinin (H) proteins was found to be necessary and sufficient for this phenomenon. We now show that MV fusion-inhibitory peptides do not interfere with the induction of immunosuppression in vitro, indicating that MV F-H-mediated fusion is essentially not involved in this process. Proteolytic cleavage of MV F(0) protein by cellular proteases, such as furin, into the F(1)-F(2) subunits is, however, an absolute requirement, since (i) the inhibitory activity of MV-infected BJAB cells was significantly impaired in the presence of a furin-inhibitory peptide and (ii) cells expressing or viruses containing uncleaved F(0) proteins revealed a strongly reduced inhibitory activity which was improved following trypsin treatment. The low inhibitory activity of effector structures containing mainly F(0) proteins was not due to an impaired F(0)-H interaction, since both surface expression and cocapping efficiencies were similar to those found with the authentic MV F and H proteins. These results indicate that the fusogenic activity of the MV F-H complexes can be uncoupled from their immunosuppressive activity and that the immunosuppressive domains of these proteins are exposed only after proteolytic activation of the MV F(0) protein.
Collapse
Affiliation(s)
- A Weidmann
- Institute for Virology and Immunobiology, University of W]urzburg, D-97078 W]urzburg, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Chang DK, Cheng SF, Trivedi VD. Biophysical characterization of the structure of the amino-terminal region of gp41 of HIV-1. Implications on viral fusion mechanism. J Biol Chem 1999; 274:5299-309. [PMID: 10026137 DOI: 10.1074/jbc.274.9.5299] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A peptide of 51 amino acids corresponding to the NH2-terminal region (5-55) of the glycoprotein gp41 of human immunodeficiency virus type 1 was synthesized to study its conformation and assembly. Nuclear magnetic resonance experiments indicated the sequence NH2-terminal to the leucine zipper-like domain of gp41 was induced into helix in the micellar solution, in agreement with circular dichroism data. Light scattering experiment showed that the peptide molecules self-assembled in water into trimeric structure on average. That the peptide molecules oligomerize in aqueous solution was supported by gel filtration and diffusion coefficient experiments. Molecular dynamics simulation based on the NMR data revealed a flexible region adjacent to the hydrophobic NH2 terminus of gp41. The biological significance of the present findings on the conformational flexibility and the propensity of oligomerization of the peptide may be envisioned by a proposed model for the interaction of gp41 with membranes during fusion process.
Collapse
Affiliation(s)
- D K Chang
- Institute of Chemistry, Academia Sinica, Taipei, 11529 Taiwan, Republic of China.
| | | | | |
Collapse
|
10
|
Abstract
Non-lamellar-forming lipids play an important role in determining the physical properties of membranes. They affect the activity of membrane proteins and peptides. In addition, peptides which lyse membranes as well as those which promote membrane fusion facilitate the formation of non-lamellar phases, either micelles, cubic or hexagonal phases. The relationship of these diverse effects on membrane curvature is discussed in relation to the function of certain peptides and proteins. Specific examples of ionophoric peptides, cytotoxic peptides and viral fusion peptides are given. In addition, we compare the modulation of the rate of photoisomerisation of an integral membrane protein, rhodopsin, by non-lamellar-forming lipids with the effects of these lipids on an amphitropic protein, protein kinase C. Among these diverse systems it is frequently observed that the modulation of biological activity can be described in terms of the effect of the peptide or protein on the relative stability of lamellar and non-lamellar structures.
Collapse
Affiliation(s)
- R M Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, Ont. L8N 3Z5, Canada.
| |
Collapse
|
11
|
Dutch RE, Joshi SB, Lamb RA. Membrane fusion promoted by increasing surface densities of the paramyxovirus F and HN proteins: comparison of fusion reactions mediated by simian virus 5 F, human parainfluenza virus type 3 F, and influenza virus HA. J Virol 1998; 72:7745-53. [PMID: 9733810 PMCID: PMC110082 DOI: 10.1128/jvi.72.10.7745-7753.1998] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The membrane fusion reaction promoted by the paramyxovirus simian virus 5 (SV5) and human parainfluenza virus type 3 (HPIV-3) fusion (F) proteins and hemagglutinin-neuraminidase (HN) proteins was characterized when the surface densities of F and HN were varied. Using a quantitative content mixing assay, it was found that the extent of SV5 F-mediated fusion was dependent on the surface density of the SV5 F protein but independent of the density of SV5 HN protein, indicating that HN serves only a binding function in the reaction. However, the extent of HPIV-3 F protein promoted fusion reaction was found to be dependent on surface density of HPIV-3 HN protein, suggesting that the HPIV-3 HN protein is a direct participant in the fusion reaction. Analysis of the kinetics of lipid mixing demonstrated that both initial rates and final extents of fusion increased with rising SV5 F protein surface densities, suggesting that multiple fusion pores can be active during SV5 F protein-promoted membrane fusion. Initial rates and extent of lipid mixing were also found to increase with increasing influenza virus hemagglutinin protein surface density, suggesting parallels between the mechanism of fusion promoted by these two viral fusion proteins.
Collapse
Affiliation(s)
- R E Dutch
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | |
Collapse
|
12
|
Colotto A, Martin I, Ruysschaert JM, Sen A, Hui SW, Epand RM. Structural study of the interaction between the SIV fusion peptide and model membranes. Biochemistry 1996; 35:980-9. [PMID: 8547281 DOI: 10.1021/bi951991+] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has been shown that there is a correlation between the fusogenecity of synthetic peptides corresponding to the N-terminal segment of wild-type and mutant forms of simian immunodeficiency virus gp32 (SIV) and their mode of insertion into lipid bilayers. Fusogenic activity is only observed when the peptide inserts into the bilayer with an oblique orientation. Since bilayer destabilization is a necessary step in membrane fusion, we investigate how fusion peptides, which insert at different orientations into lipid bilayers, structurally affect model membranes. We use X-ray diffraction to investigate the structural effects of two synthetic peptides on three different lipid systems. One peptide corresponds to the wild-type sequence (SIVwt), which inserts into the membrane at an oblique angle and is fusogenic. The other peptide has a rearranged sequence (SIVmutV), inserts into the membrane along the bilayer normal, and is nonfusogenic. Our results are expressed through different structural effects, which depend on the lipid system: for example, (i) disordering of the L alpha phase as evidenced by the broadening of the diffraction peaks, (ii) morphological convertion of multilamellar vesicles into unilamellar vesicles, (iii) decrease of the hexagonal phase cell parameter when SIVwt is added, and (iv) change in the conditions for the formation of cubic phases as well as its kinetic stability over a range of temperatures. Some of these observations are explicable based on the fact that the SIVwt destabilizes bilayers by inducing a negative monolayer curvature, while the SIVmutV destabilizes bilayers by inducing a positive monolayer curvature. Finally, we present a model which describes how these findings correlate with fusogenic activity and fusion inhibitory activity, respectively.
Collapse
Affiliation(s)
- A Colotto
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Blumenthal R, Pak CC, Raviv Y, Krumbiegel M, Bergelson LD, Morris SJ, Lowy RJ. Transient domains induced by influenza haemagglutinin during membrane fusion. Mol Membr Biol 1995; 12:135-42. [PMID: 7767373 DOI: 10.3109/09687689509038509] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During low pH-induced fusion of influenza virus with erythrocytes we have observed differential dispersion of viral lipid and haemagglutinin (HA) into the erythrocyte membrane, and viral RNA into the erythrocyte using fluorescence video microscopy. The movement of both viral lipid and HA from virus to cell was restricted during the initial stages of fusion relative to free diffusion. This indicates the existence of relatively long-lived barriers to diffusion subsequent to fusion pore formation. Fluorescence anisotropy of phospholipid analogues incorporated into the viral membrane decreased when the pH was lowered to levels required for optimum fusion. This indicates that the restricted motion of viral membrane components was not due to rigidification of membrane lipids. The movement of HA from the fusion site was also assessed by photosensitized labelling by means of a fluorescent substrate (NBD-taurine) passing through the band 3 sialoglycoprotein (the erythrocyte anion transporter). We also examined the flow of lipid and aqueous markers during fusion of HA-expressing cells with labelled erythrocytes. During this cell-cell fusion, movement of lipid between fusing membranes begins before the fusion pore is wide enough to allow diffusion of aqueous molecules (M(r) > 500). The data indicate that HA is capable of creating domains in the membrane and controlling continuity of aqueous compartments which are bounded by such domains.
Collapse
|
14
|
Pak C, Krumbiegel M, Blumenthal R, Raviv Y. Detection of influenza hemagglutinin interaction with biological membranes by photosensitized activation of [125I]iodonaphthylazide. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36668-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
15
|
Aroeti B, Gutman O, Henis Y. Transient alterations in the lateral mobility of erythrocyte membrane components during Sendai virus-mediated fusion. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42206-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|