1
|
Miyata Y, Nishida E. Evaluating CK2 activity with the antibody specific for the CK2-phosphorylated form of a kinase-targeting cochaperone Cdc37. Mol Cell Biochem 2008; 316:127-34. [PMID: 18566753 DOI: 10.1007/s11010-008-9818-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 05/29/2008] [Indexed: 11/26/2022]
Abstract
CK2-dependent phosphorylation of a kinase-specific Hsp90 co-chaperone Cdc37 on a conserved serine residue (Ser13) is essential for the function of Cdc37 [Bandhakavi S. et al. J. Biol. Chem. 278:2829-2836, 2003; Shao J. et al. J. Biol. Chem. 278:38117-38220, 2003; Miyata Y., & Nishida E. Mol. Cell. Biol. 24:4065-4074, 2004]. We have recently produced an anti-[pSer13]-Cdc37 antibody which specifically recognizes Cdc37 that is phosphorylated on Ser 13 [Miyata Y. & Nishida E. FEBS J. 274:5690-5703, 2007]. Here we investigated CK2 activity both in vitro and in cultured cells by using anti-[pSer13]-Cdc37 antibody. Immunoblotting with this antibody showed that heparin and 4,5,6,7-tetrabromobenzotriazole (TBB), known CK2 inhibitors, inhibited in vitro phosphorylation of Cdc37 on Ser13 by CK2 holoenzyme or CK2alpha, confirming the specificity of the antibody to detect CK2 activity. Treatment of cells with TBB resulted in the decrease in the phosphorylation level of endogenous Cdc37 on Ser13, as revealed by anti-[pSer13]-Cdc37, and overexpression of either CK2alpha or CK2beta subunit enhanced the Cdc37 phosphorylation level. While CK2 is suggested to be involved in cell proliferation, mitogenic stimulation of starved cells by fresh serum or insulin-like growth factor-I did not enhance phosphorylation of Cdc37 on Ser13. CK2 inhibitors are known to induce cell apoptosis, suggesting a reverse correlation between cell apoptosis and CK2 activity. However, cellular apoptotic stresses, such as anisomycin treatment and UV irradiation, were found to rather modestly increase phosphorylation of Cdc37 on Ser13. These results show that the anti-[pSer13]-Cdc37 antibody can be a promising new tool to evaluate in vivo CK2 activity.
Collapse
Affiliation(s)
- Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | | |
Collapse
|
2
|
Timofeeva OA, Plisov S, Evseev AA, Peng S, Jose-Kampfner M, Lovvorn HN, Dome JS, Perantoni AO. Serine-phosphorylated STAT1 is a prosurvival factor in Wilms' tumor pathogenesis. Oncogene 2006; 25:7555-64. [PMID: 16799645 DOI: 10.1038/sj.onc.1209742] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wilms' tumor (WT), one of the most common pediatric solid cancers, arises in the developing kidney as a result of genetic and epigenetic changes that lead to the abnormal proliferation and differentiation of the metanephric blastema. As activation of signal transducers and activators of transcription (STATs) plays an important role in the maintenance/growth and differentiation of the metanephric blastema, and constitutively activated STATs facilitate neoplastic behaviors of a variety of cancers, we hypothesized that dysregulation of STAT signaling may also contribute to WT pathogenesis. Accordingly, we evaluated STAT phosphorylation patterns in tumors and found that STAT1 was constitutively phosphorylated on serine 727 (S727) in 19 of 21 primary WT samples and two WT cell lines. An inactivating mutation of S727 to alanine reduced colony formation of WT cells in soft agar by more than 80% and induced apoptosis under conditions of growth stress. S727-phosphorylated STAT1 provided apoptotic resistance for WT cells via upregulation of expression of the heat-shock protein (HSP)27 and antiapoptotic protein myeloid cell leukemia (MCL)-1. The kinase responsible for STAT1 S727 phosphorylation in WT cells was identified based upon the use of selective inhibitors as protein kinase CK2, not p38, MAP-kinase kinase (MEK)1/2, phosphatidylinositol 3'-kinase, protein kinase C or Ca/calmodulin-dependent protein kinase II (CaMKII). The inhibition of CK2 blocked the anchorage-independent growth of WT cells and induced apoptosis under conditions of growth stress. Our findings suggest that serine-phosphorylated STAT1, as a downstream target of protein kinase CK2, plays a critical role in the pathogenesis of WT and possibly other neoplasms with similar STAT1 phosphorylation patterns.
Collapse
Affiliation(s)
- O A Timofeeva
- Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Salvi M, Sarno S, Marin O, Meggio F, Itarte E, Pinna LA. Discrimination between the activity of protein kinase CK2 holoenzyme and its catalytic subunits. FEBS Lett 2006; 580:3948-52. [PMID: 16806200 DOI: 10.1016/j.febslet.2006.06.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/08/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
The acronym CK2 denotes a highly pleiotropic Ser/Thr protein kinase whose over-expression correlates with neoplastic growth. A vexed question about the enigmatic regulation of CK2 concerns the actual existence in living cells of the catalytic (alpha and/or alpha') and regulatory beta-subunits of CK2 not assembled into the regular heterotetrameric holoenzyme. Here we take advantage of novel reagents, namely a peptide substrate and an inhibitor which discriminate between the holoenzyme and the catalytic subunits, to show that CK2 activity in CHO cells is entirely accounted for by the holoenzyme. Transfection with individual subunits moreover does not give rise to holoenzyme formation unless the catalytic and regulatory subunits are co-transfected together, arguing against the existence of free subunits in CHO cells.
Collapse
Affiliation(s)
- Mauro Salvi
- Dipartimento di Chimica Biologica, Università di Padova, viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
4
|
Parker GE, West BE, Witzmann FA, Rhodes SJ. Serine/threonine/tyrosine phosphorylation of the LHX3 LIM-homeodomain transcription factor. J Cell Biochem 2005; 94:67-80. [PMID: 15517599 DOI: 10.1002/jcb.20287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
LHX3 is a LIM homeodomain transcription factor with essential roles in pituitary and motor neuron development in mammals. Patients with mutations in the LHX3 gene have combined pituitary hormone deficiency and other symptoms. In this study, we show that the LHX3 protein can be modified post-translationally by phosphorylation. LHX3 can serve as a substrate for protein kinase C and casein kinase II. Overexpression of these kinases reduces the transcriptional capacity of LHX3 to activate target genes. Following exposure of LHX3 to cellular kinases, mass spectrometry was used to map the phosphorylation of five amino acid residues within the human LHX3a isoform. Two phosphorylated residues (threonine 63 and serine 71) lie within the first LIM domain of the protein. Three other modified amino acids (tyrosine 227, serine 234, and serine 238) are located in the carboxyl terminus. Targeted replacement of these amino acids with non-modifiable residues significantly reduced the ability of LHX3 to activate both synthetic and pituitary hormone reporter genes. However, the amino acid replacements did not significantly affect the capability of LHX3 to interact with the NLI, PIT1, and MRG1 partner proteins, or its ability to bind to a high affinity DNA site. In conclusion, we have identified unique amino acids within LHX3 that are important for its transcriptional activity and are phosphorylated.
Collapse
Affiliation(s)
- Gretchen E Parker
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202-5132, USA
| | | | | | | |
Collapse
|
5
|
Blush J, Lei J, Ju W, Silbiger S, Pullman J, Neugarten J. Estradiol reverses renal injury in Alb/TGF-beta1 transgenic mice. Kidney Int 2005; 66:2148-54. [PMID: 15569304 DOI: 10.1111/j.1523-1755.2004.66005.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Men with chronic renal disease progress more rapidly to renal failure than do women. Tranforming growth factor-beta (TGF-beta) plays a central role in promoting progressive renal injury, in part due to transcriptional effects mediated by cooperation between Smad proteins and the transcription factor Sp1. Estrogen negatively regulates Sp1 activity and reverses the stimulatory effects of TGF-beta on type IV collagen synthesis and cellular apoptosis in cultured mesangial cells. We hypothesized that the ability of estradiol to reverse the effects of TGF-beta underlies gender dimorphism in the progression of chronic renal disease. METHODS We studied Alb/TGF-beta transgenic mice, which overexpress TGF-beta1 and develop proteinuria and progressive glomerulosclerosis. We implanted a sustained-release estradiol pellet or a placebo pellet into control and Alb/TGF-beta transgenic mice at 2 weeks of age. Animals were sacrificed at 5 weeks, at which time urine, blood, and renal tissue were obtained for study. RESULTS The sustained-release estradiol pellet achieved a physiologic concentration of estradiol. TGF-beta levels were higher in estradiol-treated mice compared to placebo-treated mice. Proteinuria was reduced in estradiol-treated Alb/TGF-beta mice compared to placebo-treated transgenic mice. Mesangial expansion and closure of capillary loops with enhanced glomerular deposition of type I collagen, type IV collagen, and tissue inhibitor of metalloproteinase (TIMP-2) was observed in glomeruli of placebo-treated transgenic mice. Estrogen therapy reversed these abnormalities. CONCLUSION Administration of estradiol to Alb/TGF-beta transgenic mice, which overexpress TGF-beta, ameliorated progressive renal injury. The ability of estradiol to reverse the pro-fibrotic effects of TGF-beta, both in vitro and in vivo, may underlie the sexual dimorphism in renal disease progression observed in humans.
Collapse
Affiliation(s)
- Joel Blush
- Division of Nephrology, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10467, USA
| | | | | | | | | | | |
Collapse
|
6
|
Romero-Oliva F, Jacob G, Allende JE. Dual effect of lysine-rich polypeptides on the activity of protein kinase CK2. J Cell Biochem 2003; 89:348-55. [PMID: 12704797 DOI: 10.1002/jcb.10493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein kinase CK2 (casein kinase II) is normally a heterotetramer composed of catalytic (alpha, alpha') and regulatory subunits (beta). CK2 is able to phosphorylate a large number of protein substrates but the physiological mechanisms of its regulation are still unresolved. Lysine-rich peptides such as polylysine and histone H1 are known to stimulate the catalytic activity of the holoenzyme. This activation is mediated through the CK2beta regulatory subunit. In this communication, we report that the same concentrations of lysine-rich peptides or proteins that activate the holoenzyme cause strong inhibition of the phosphorylation of proteins catalyzed by the free catalytic CK2alpha subunit. The inhibitory effect of polylysine and histone H1 is observed with several protein substrates of CK2alpha (casein, adeno E1A, transcription factor II A, and CK2beta itself). With calmodulin, however, the inhibition of CK2alpha phosphorylation caused by polylysine is much lower while with a model peptide substrate of CK2 the inhibition caused by this polycation is negligible. The inhibition of CK2alpha by polylysine is observed only at limiting concentrations of the target substrate proteins. The dual effect of polylysine and of histone H1, which results in the inhibition of CK2alpha and stimulation of the CK2 alpha(2)beta(2) tetrameric holoenzyme, has the consequence that the addition of the CK2beta, in the presence of polylysine and low concentrations of substrate protein, can cause a 242-fold stimulation of the activity of CK2alpha. Other polycationic compounds such as polyarginine and spermine do not inhibit the phosphorylation of casein by CK2alpha, indicating that the effect is specific for lysine-rich peptides. Since there is evidence that there may be free CK2alpha subunits in the nuclei of cells, where there is abundant histone H1, the inhibition of CK2alpha by this lysine-rich protein may have physiological relevance.
Collapse
Affiliation(s)
- Francisco Romero-Oliva
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
7
|
Huang T, Deng H, Wolkoff AW, Stockert RJ. Phosphorylation-dependent interaction of the asialoglycoprotein receptor with molecular chaperones. J Biol Chem 2002; 277:37798-803. [PMID: 12167617 DOI: 10.1074/jbc.m204786200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A membrane protein trafficking mutant (Trf1) of HuH-7 alters the asialoglycoprotein (ASGPR) and transferrin receptor subcellular distribution. Expression cloning of a cDNA complementing the trf1 mutation led to the discovery of a novel casein Kinase 2 catalytic subunit (CK2alpha"). To purify potential CK2alpha" phosphorylation-dependent sorting proteins from cytosol, the ASGPR cytoplasmic domain was expressed as a GST fusion protein and immobilized on glutathione-agarose. In the absence of phosphorylation, only trace amounts of cytosol protein were bound and eluted. When the fusion protein was phosphorylated, a heterocomplex of potential sorting proteins was recovered. Mass spectrometer and immunoblot analysis identified five of these proteins as gp96, HSP70, HSP90, cyclophilin-A, and FKBP18. Treatment of HuH-7 with rapamycin to disrupt the heterocomplex reduced surface ASGPR binding activity by 65 +/- 5.7%. In Trf1 cells, surface-binding activity was 48 +/- 7% of that in HuH-7 and was not further reduced by rapamycin treatment. Immunoanalysis showed significantly fewer surface receptors on rapamycin-treated HuH7 cells than on nontreated cells, with no affect on the level of surface receptors in Trf1 cells. The data presented provide evidence that phosphorylation of the ASGPR cytoplasmic domain is required for the binding of specific molecular chaperones with the potential to regulate receptor trafficking.
Collapse
Affiliation(s)
- Tianmin Huang
- Marion Bessin Liver Research Center and the Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
8
|
Zdunek M, Silbiger S, Lei J, Neugarten J. Protein kinase CK2 mediates TGF-beta1-stimulated type IV collagen gene transcription and its reversal by estradiol. Kidney Int 2001; 60:2097-108. [PMID: 11737584 DOI: 10.1046/j.1523-1755.2001.00041.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We have previously shown that the transcription factor Sp1 mediates the stimulatory effects of transforming growth factor-beta1 (TGF-beta1) on type IV collagen gene transcription and protein synthesis, and that estradiol reverses these effects by down-regulating Sp1 activity. Protein kinase casein kinase II (CK2) phosphorylates Egr-1 and prevents its binding to Sp1. We hypothesized that TGF-beta1 stimulates CK2 activity, which in turn activates type IV collagen gene transcription via increased availability of free Sp1. METHODS The effects of TGF-beta1 and of estradiol on murine mesangial cell type IV collagen gene transcription were measured using a reporter mini gene construct and on collagen IV protein synthesis by Western blotting. Nuclear Egr-1, phosphorylated Egr-1, Sp1, Egr-1/Sp1 complexes and unbound Sp1 were measured using co-immunoprecipitation and Western blotting techniques. RESULTS TGF-beta1 stimulated CK2 activity in murine mesangial cells. Although TGF-beta1 failed to alter total Egr-1 protein, it increased phosphorylated Egr-1. This led to decreased Egr-1/Sp1 complex formation, increased unbound Sp1, increased binding of nuclear extracts to the collagen IV promoter, and increased type IV collagen gene transcription and protein synthesis. Physiologic concentrations of estradiol reversed these effects. CONCLUSIONS These studies suggest that activation of CK2 mediates the stimulatory effect of TGF-beta1 on type IV collagen gene transcription. Moreover, the ability of estradiol to reverse TGF-beta1-stimulated type IV collagen synthesis is mediated by down-regulating CK2 activity, which ultimately limits the availability of unbound Sp1 to activate gene transcription.
Collapse
Affiliation(s)
- M Zdunek
- Nephrology Division, Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10467, USA
| | | | | | | |
Collapse
|
9
|
Glover CV. On the physiological role of casein kinase II in Saccharomyces cerevisiae. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 59:95-133. [PMID: 9427841 DOI: 10.1016/s0079-6603(08)61030-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Casein kinase II (CKII) is a highly conserved serine/threonine protein kinase that is ubiquitous in eukaryotic organisms. This review summarizes available data on CKII of the budding yeast Saccharomyces cerevisiae, with a view toward defining the possible physiological role of the enzyme. Saccharomyces cerevisiae CKII is composed of two catalytic and two regulatory subunits encoded by the CKA1, CKA2, CKB1, and CKB2 genes, respectively. Analysis of null and conditional alleles of these genes identifies a requirement for CKII in at least four biological processes: flocculation (which may reflect an effect on gene expression), cell cycle progression, cell polarity, and ion homeostasis. Consistent with this, isolation of multicopy suppressors of conditional cka mutations has identified three genes that have a known or potential role in either the cell cycle or cell polarity: CDC37, which is required for cell cycle progression in both G1 and G2/M; ZDS1 and 2, which appear to have a function in cell polarity; and SUN2, which encodes a protein of the regulatory component of the 26S protease. The identity and properties of known CKII substrates in S. cerevisiae are also reviewed, and advantage is taken of the complete genomic sequence to predict globally the substrates of CKII in this organism. Although the combined data do not yield a definitive picture of the physiological role of CKII, it is proposed that CKII serves a signal transduction function in sensing and/or communicating information about the ionic status of the cell to the cell cycle machinery.
Collapse
Affiliation(s)
- C V Glover
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| |
Collapse
|
10
|
Shi X, Potvin B, Huang T, Hilgard P, Spray DC, Suadicani SO, Wolkoff AW, Stanley P, Stockert RJ. A novel casein kinase 2 alpha-subunit regulates membrane protein traffic in the human hepatoma cell line HuH-7. J Biol Chem 2001; 276:2075-82. [PMID: 11038365 DOI: 10.1074/jbc.m008583200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previously isolated endocytic trafficking mutant (TRF1) isolated from HuH-7 cells is defective in the distribution of subpopulations of cell-surface receptors for asialoorosomucoid (asialoglycoprotein receptor (ASGR)), transferrin, and mannose-terminating glycoproteins. The pleiotropic phenotype of TRF1 also includes an increased sensitivity to Pseudomonas toxin and deficient assembly and function of gap junctions. HuH-7xTRF1 hybrids exhibited a normal subcellular distribution of ASGR, consistent with the TRF1 mutation being recessive. A cDNA expression library derived from HuH-7 mRNA was transfected into TRF1 cells, which were subsequently selected for resistance to Pseudomonas toxin. Sequence analysis of a recovered cDNA revealed a unique isoform of casein kinase 2 (CK2), CK2alpha". Western blot analysis of TRF1 proteins revealed a 60% reduction in total CK2alpha expression. Consistent with this finding, the hybrids HuH-7xHuH-7 and HuH-7xTRF1 expressed equivalent amounts of total CK2alpha. Immunoblots using antibodies against peptides unique to the previously described CK2 isoforms CK2alpha and CK2alpha' and the novel CK2alpha" isoform showed that, although TRF1 and parental HuH-7 cells expressed comparable amounts of CK2alpha and CK2alpha', the mutant did not express CK2alpha". Based on the genomic DNA sequence, RNA transcripts encoding CK2alpha" apparently originate from alternative splicing of a primary transcript. Protein overexpression following transfection of TRF1 cells with cDNAs encoding either CK2alpha or the newly cloned CK2alpha" restored the parental HuH-7 phenotype, including Pseudomonas toxin resistance, cell-surface ASGR binding activity, phosphorylation, and the assembly of gap junctions. This study suggests that HuH-7 cells express at least three CK2alpha isoforms and that the pleiotropic TRF1 phenotype is a consequence of a reduction in total CK2 expression.
Collapse
Affiliation(s)
- X Shi
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Protein kinase CK2 is a ubiquitous and pleiotropic seryl/threonyl protein kinase which is highly conserved in evolution indicating a vital cellular role for this kinase. The holoenzyme is generally composed of two catalytic (alpha and/or alpha') and two regulatory (beta) subunits, but the free alpha/alpha' subunits are catalytically active by themselves and can be present in cells under some circumstances. Special attention has been devoted to phosphorylation status and structure of these enzymic molecules, however, their regulation and roles remain intriguing. Until recently, CK2 was believed to represent a kinase especially required for cell cycle progression in non-neural cells. At present, with respect to recent findings, four essential features suggest potentially important roles for this enzyme in specific neural functions: (1) CK2 is much more abundant in brain than in any other tissue; (2) there appear to be a myriad of substrates for CK2 in both synaptic and nuclear compartments that have clear implications in development, neuritogenesis, synaptic transmission, synaptic plasticity, information storage and survival; (3) CK2 seems to be associated with mechanisms underlying long-term potentiation in hippocampus; and (4) neurotrophins stimulate activity of CK2 in hippocampus. In addition, some data are suggestive that CK2 might play a role in processes underlying progressive disorders due to Alzheimer's disease, ischemia, chronic alcohol exposure or immunodeficiency virus HIV. The present review focuses mainly on the latest data concerning the regulatory mechanisms and the possible neurophysiological functions of this enzyme.
Collapse
Affiliation(s)
- P R Blanquet
- Unité de Recherche de Physiopharmacologie du Système Nerveux, U-161 INSERM, Paris, France.
| |
Collapse
|
12
|
Li D, Dobrowolska G, Aicher LD, Chen M, Wright JH, Drueckes P, Dunphy EL, Munar ES, Krebs EG. Expression of the casein kinase 2 subunits in Chinese hamster ovary and 3T3 L1 cells provides information on the role of the enzyme in cell proliferation and the cell cycle. J Biol Chem 1999; 274:32988-96. [PMID: 10551866 DOI: 10.1074/jbc.274.46.32988] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In order to investigate the in vivo functions of protein kinase CK2 (CK2), the expression of Myc-tagged versions of the subunits, Myc-CK2alpha and Myc-CK2beta, was carried out in Chinese hamster ovary cells (CHO cells) and in 3T3 L1 fibroblasts. Cell proliferation in these cells was examined. CHO cells that transiently overexpressed the Myc-CK2beta subunit exhibited a severe growth defect, as shown by a much lower value of [(3)H]thymidine incorporation than the vector controls, and a rounded shrunken morphology. In contrast, cells overexpressing Myc-tagged CK2alpha showed a slightly but consistently higher value of [(3)H]thymidine incorporation than the controls. The defect in cell growth and changes in morphology caused by Myc-CK2beta overexpression were partially rescued by coexpression of Myc-tagged CK2alpha. In parallel to the studies in CHO cells, the stable transfection of Myc-CK2alpha and Myc-CK2beta subunits was achieved in 3T3 L1 fibroblast cells. Similarly, the ectopic expression of Myc-CK2beta, but not Myc-CK2alpha, caused a growth defect. By measuring [(3)H]thymidine incorporation, it was found that expression of Myc-CK2beta prolonged the G(1) phase and inhibited up-regulation of cyclin D1 expression during G(1). In addition, a lower mitotic index and lower mitotic cyclin-dependent kinase activities were detected in Myc-CK2beta-expressing cells. Detailed analysis of stable cells that were synchronously released into the cell cycle revealed that the expression of Myc-CK2beta inhibited cells entering into mitosis and prevented the activation of mitotic cyclin-dependent kinases. Taken together, results from both transient and stable expression of CK2 subunits strongly suggest that CK2 may be involved in the control of cell growth and progression of the cell cycle.
Collapse
Affiliation(s)
- D Li
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sugano S, Andronis C, Ong MS, Green RM, Tobin EM. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc Natl Acad Sci U S A 1999; 96:12362-6. [PMID: 10535927 PMCID: PMC22922 DOI: 10.1073/pnas.96.22.12362] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A wide range of processes in plants, including expression of certain genes, is regulated by endogenous circadian rhythms. The circadian clock-associated 1 (CCA1) and the late elongated hypocotyl (LHY) proteins have been shown to be closely associated with clock function in Arabidopsis thaliana. The protein kinase CK2 can interact with and phosphorylate CCA1, but its role in the regulation of the circadian clock remains unknown. Here we show that plants overexpressing CKB3, a regulatory subunit of CK2, display increased CK2 activity and shorter periods of rhythmic expression of CCA1 and LHY. CK2 is also able to interact with and phosphorylate LHY in vitro. Additionally, overexpression of CKB3 shortened the periods of four known circadian clock-controlled genes with different phase angles, demonstrating that many clock outputs are affected. This overexpression also reduced phytochrome induction of an Lhcb gene. Finally, we found that the photoperiodic flowering response, which is influenced by circadian rhythms, was diminished in the transgenic lines, and that the plants flowered earlier on both long-day and short-day photoperiods. These data demonstrate that CK2 is involved in regulation of the circadian clock in Arabidopsis.
Collapse
Affiliation(s)
- S Sugano
- Department of Molecular Biology, University of California, Los Angeles, CA 90095-1606, USA
| | | | | | | | | |
Collapse
|
14
|
Yu S, Davis AT, Guo C, Green JE, Ahmed K. Differential targeting of protein kinase CK2 to the nuclear matrix upon transient overexpression of its subunits. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19990701)74:1<127::aid-jcb14>3.0.co;2-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Ouyang L, Chen X, Bieker JJ. Regulation of erythroid Krüppel-like factor (EKLF) transcriptional activity by phosphorylation of a protein kinase casein kinase II site within its interaction domain. J Biol Chem 1998; 273:23019-25. [PMID: 9722526 DOI: 10.1074/jbc.273.36.23019] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF) is a red cell-specific activator whose presence is crucial for establishing high levels of adult beta-globin expression in definitive cells during erythroid ontogeny. However, its simple presence within the erythroid lineage is not sufficient to activate the beta-globin promoter. One explanation that may account for this is that post-translational modification of EKLF differs within erythroid cell populations and regulates its activity. We have therefore addressed whether phosphorylation plays a role in modulating EKLF action. First, in vivo analyses implicate serine/threonine kinases as important players in the terminal differentiation of MEL cells, and demonstrate that EKLF is phosphorylated at serine and threonine residues within its transactivation region. Second, directed disruption of a protein kinase casein kinase (CK) II site, located within the EKLF interaction domain, abolishes EKLF transactivation and in vivo competition activity. Third, in vitro assays demonstrate that CKIIalpha interacts with EKLF, and that the EKLF interaction domain is phosphorylated by CKII only at Thr-41; however, the CKII-site mutant is not phosphorylated. Finally, the transactivation capability of EKLF is augmented by co-transfection of CKIIalpha. We conclude that EKLF is a phosphoprotein whose ability to transcriptionally activate an adjacent promoter is critically dependent on the phosphorylation status of a specific site located within the EKLF interaction domain, and that serine/threonine kinases play an important role in this process.
Collapse
Affiliation(s)
- L Ouyang
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
16
|
Abstract
Correct temporal control of the beta-like globin cluster is generated in part by the binding of tissue-restricted transcriptional regulators to their cognate sites. Erythroid Krüppel-like Factor (EKLF) is one of these red cell-specific activators that is particularly important for switching on adult beta-globin gene expression. However, its simple presence is not sufficient to activate the beta-globin promoter, as primitive erythroid cells and a number of erythroid cell lines express EKLF yet do not express adult beta-globin. One explanation that may account for these observations is that post-translational modification of EKLF differs within these cell populations. To address this issue, we are investigating whether phosphorylation plays a role in modulating EKLF activity. In vitro and in vivo approaches have been used to demonstrate that EKLF is a phosphoprotein whose ability to bind DNA and transcriptionally activate an adjacent promoter is critically dependent on its phosphorylation status. Of particular interest is a casein kinase II site within the EKLF minimal transactivation domain.
Collapse
Affiliation(s)
- J J Bieker
- Mount Sinai School of Medicine, Brookdale Center for Molecular Biology, New York, New York 10029, USA.
| | | | | |
Collapse
|
17
|
Pinna LA, Meggio F. Protein kinase CK2 ("casein kinase-2") and its implication in cell division and proliferation. PROGRESS IN CELL CYCLE RESEARCH 1998; 3:77-97. [PMID: 9552408 DOI: 10.1007/978-1-4615-5371-7_7] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein kinase CK2 (also termed casein kinase-2 or -II) is a ubiquitous Ser/Thr-specific protein kinase required for viability and for cell cycle progression. CK2 is especially elevated in proliferating tissues, either normal or transformed, and the expression of its catalytic subunit in transgenic mice is causative of lymphomas. CK2 is highly pleiotropic: more than 160 proteins phosphorylated by it at sites specified by multiple acidic residues are known. Despite its heterotetrameric structure generally composed by two catalytic (alpha and/or alpha') and two non catalytic beta-subunits, the regulation of CK2 is still enigmatic. A number of functional features of the beta-subunit which could cooperate to the modulation of CK2 targeting/activity will be discussed.
Collapse
Affiliation(s)
- L A Pinna
- Dipartimento di Chimica Biologica, Università di Padova, Italy
| | | |
Collapse
|
18
|
Scotto C, Mély Y, Ohshima H, Garin J, Cochet C, Chambaz E, Baudier J. Cysteine oxidation in the mitogenic S100B protein leads to changes in phosphorylation by catalytic CKII-alpha subunit. J Biol Chem 1998; 273:3901-8. [PMID: 9461574 DOI: 10.1074/jbc.273.7.3901] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The glial-derived calcium-binding protein S100B can be secreted to act as a neurotrophic factor or a mitogen, stimulating proliferation of glial cells. The extracellular S100B activities rely on the oxidation of the protein cysteine residues (Kligman, D., and Marshak, D. R. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 7136-7139; Winningham-Major, F., Staecker, J. L., Barger, S. W., Coats, S., and Van Eldik, L. J. (1989) J. Cell Biol. 109, 3063-3071). Here we show that oxidation of the S100B cysteine residues, Cys-68 and Cys-84, induces a conformational change in the protein structure, unmasking a canonical CKII phosphorylation site located within the typical EF-hand calcium-binding site IIbeta. Intrasubunit disulfide-bridged S100B monomer and disulfide-bonded S100B dimer are phosphorylated by the catalytic CKII-alpha subunit on Ser-62 with a Km of 0.5 microM and a Vmax of 10 pmol/min/100 pmol of S100B. Oxidized S100B is the best in vitro CKII-alpha substrate identified so far. Next we show that intrasubunit disulfide-bridged S100B monomer is the most potent S100B species to stimulate [3H]thymidine uptake by C6 glial cells in culture. In addition, the phosphorylated intrasubunit disulfide-bridged S100B monomer retains apparent mitogenic activity toward C6 glial cells, and hence, 32P-labeled S100B should be a useful probe for characterizing the mechanisms by which extracellular oxidized S100B functions. Finally, we show that formation of intrasubunit disulfide-bridged S100B monomer is stimulated by peroxynitrite anion, suggesting that production of mitogenic S100B species could be enhanced in neuropathology associated with peroxynitrite anion production.
Collapse
Affiliation(s)
- C Scotto
- Département de Biologie Moléculaire et Structurale du CEA, DBMS-BRCE INSERM Unité 244, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Allende C, Allende J. Promiscuous subunit interactions: A possible mechanism for the regulation of protein kinase CK2. J Cell Biochem 1998; 72 Suppl 30-31:129-136. [DOI: 10.1002/(sici)1097-4644(1998)72:30/31+<129::aid-jcb17>3.0.co;2-p] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/1998] [Accepted: 09/04/1998] [Indexed: 01/10/2023]
|
20
|
Hériché JK, Lebrin F, Rabilloud T, Leroy D, Chambaz EM, Goldberg Y. Regulation of protein phosphatase 2A by direct interaction with casein kinase 2alpha. Science 1997; 276:952-5. [PMID: 9139659 DOI: 10.1126/science.276.5314.952] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Timely deactivation of kinase cascades is crucial to the normal control of cell signaling and is partly accomplished by protein phosphatase 2A (PP2A). The catalytic (alpha) subunit of the serine-threonine kinase casein kinase 2 (CK2) bound to PP2A in vitro and in mitogen-starved cells; binding required the integrity of a sequence motif common to CK2alpha and SV40 small t antigen. Overexpression of CK2alpha resulted in deactivation of mitogen-activated protein kinase kinase (MEK) and suppression of cell growth. Moreover, CK2alpha inhibited the transforming activity of oncogenic Ras, but not that of constitutively activated MEK. Thus, CK2alpha may regulate the deactivation of the mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- J K Hériché
- Commissariat à l'Energie Atomique, Département de Biologie Moléculaire et Structurale, Laboratoire de Biochimie des Régulations Cellulaires Endocrines, Unité 244, F-38054 Grenoble Cédex 9, France
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Karki S, Tokito MK, Holzbaur EL. Casein kinase II binds to and phosphorylates cytoplasmic dynein. J Biol Chem 1997; 272:5887-91. [PMID: 9038206 DOI: 10.1074/jbc.272.9.5887] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have isolated a 27-kDa protein that binds to cytoplasmic dynein. Microsequencing of a 17-amino acid peptide of this polypeptide yielded a sequence which completely matched the predicted sequence of the beta subunit of casein kinase II, a highly conserved serine/threonine kinase. Affinity chromatography using a dynein column indicates that both the alpha and beta subunits of casein kinase II are retained by the column from rat brain cytosol. Although dynactin is also bound to the column, casein kinase II is not a dynactin subunit. Casein kinase II does not co-immunoprecipitate with dynactin, and it binds to a dynein intermediate chain column which has been preblocked with excess p150(Glued), a treatment that inhibits the binding of dynactin from cytosol. Bacterially expressed and purified rat dynein intermediate chain can be phosphorylated by casein kinase II in vitro. Further, native cytoplasmic dynein purified from rat brain can also be phosphorylated by casein kinase II in vitro. We propose that CKII may be involved in the regulation of dynein function possibly by altering its cargo specificity or its ability to interact with dynactin.
Collapse
Affiliation(s)
- S Karki
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
23
|
Zhang S, Kim KH. Protein kinase CK2 down-regulates glucose-activated expression of the acetyl-CoA carboxylase gene. Arch Biochem Biophys 1997; 338:227-32. [PMID: 9028876 DOI: 10.1006/abbi.1996.9809] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has been suggested that, in pancreatic beta-cells, acetyl-CoA carboxylase (ACC) is a key enzyme in glucose signal transduction leading to glucose-induced insulin secretion. The PII promoter is the only active promoter for the ACC gene in the beta-cell. Here we report that, in the pancreatic beta-cell, high glucose levels (above 20 mm) activate Sp1 binding to the glucose response element of the PII promoter, which leads to a dose-dependent increase in PII transcription. The expression of a gene coding protein kinase CK2 (CK2) alpha subunit, or the presence of okadaic acid (a serine/threonine protein phosphatase inhibitor), partially blocks the glucose activation of PII transcription. The inhibitory effect of CK2 alpha, or okadaic acid, was not observed in the absence of glucose or at low glucose concentrations. Phosphorylation of Sp1 by CK2 alpha leads to the inactivation of Sp1 binding to PII. Dephosphorylation of the phosphorylated Sp1 by protein phosphatase 1 (PP1) activates the binding of Sp1 to PII. Inhibition of PP1-catalyzed Sp1 dephosphorylation by okadaic acid, or PP1 specific inhibitor 2, decreases Sp1 binding to PII. These results suggest that the phosphorylation/dephosphorylation of Sp1 by CK2/PP1 may be the underlying mechanism by which the expression of the PII promoter of ACC is controlled in the process of glucose-mediated insulin secretion in pancreatic beta-cells.
Collapse
Affiliation(s)
- S Zhang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | | |
Collapse
|
24
|
Jain N, Mahendran R, Philp R, Guy GR, Tan YH, Cao X. Casein kinase II associates with Egr-1 and acts as a negative modulator of its DNA binding and transcription activities in NIH 3T3 cells. J Biol Chem 1996; 271:13530-6. [PMID: 8662759 DOI: 10.1074/jbc.271.23.13530] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Although the activation domains within early growth response gene protein 1 (Egr-1) have been mapped, little is known of the kinases which phosphorylate Egr-1 and how phosphorylation correlates with the transcriptional activity of Egr-1. In this study we report that casein kinase II (CKII) co-immunoprecipitates with Egr-1 from NIH 3T3 cell lysates. The association of Egr-1 and CKII requires the C terminus of Egr-1 and CKII phosphorylates Egr-1 in vitro. The in vitro phosphorylation of Egr-1 by CKII and that induced by serum in vivo was compared by examining the CNBr-digested fragments of the phosphorylated Egr-1. CKII strongly phosphorylates fragments 7 and 10 which cover part of the activation/nuclear localization and DNA binding domains of Egr-1. CKII also phosphorylates, albeit weakly, fragments 5 and 8 which cover part of activation domain and the entire repression domain of Egr-1, respectively. Strong phosphorylation on fragment 10 as well as fragment 5 was also observed in Egr-1 immunoprecipitated from serum-induced, 32P-labeled cells. CKII phosphorylation of Egr-1 resulted in a decrease of its DNA binding as well as its transcriptional activities.
Collapse
Affiliation(s)
- N Jain
- Signal Transduction Laboratory, Institute of Molecular and Cell Biology, National University of Singapore, Singapore 119260, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
25
|
Chester N, Yu IJ, Marshak DR. Identification and characterization of protein kinase CKII isoforms in HeLa cells. Isoform-specific differences in rates of assembly from catalytic and regulatory subunits. J Biol Chem 1995; 270:7501-14. [PMID: 7706297 DOI: 10.1074/jbc.270.13.7501] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Protein kinase CKII (formerly casein kinase II) can be isolated as a heterotetramer, containing two catalytic (alpha or alpha') and two regulatory (beta) subunits. We have characterized the forms of CKII in HeLa cells using antibodies specific for the alpha or alpha' subunits. Following metabolic labeling with [35S]methionine, whole cell soluble extracts were analyzed by immunoprecipitation and gel electrophoresis. Both alpha and alpha' coprecipitate with beta and with each other. However, when extracts are depleted of alpha, a pool of CKII containing only alpha' and beta is identified. Similarly, depletion of alpha' revealed a pool exclusively of alpha and beta. Therefore, we propose that there are three distinct isoforms of CKII within HeLa cells with different catalytic subunit stoichiometries (alpha 2 beta 2, alpha alpha' beta 2, and alpha' 2 beta 2). With our immunodepletion procedure we have characterized the isoforms by activity analysis, turnover of pulse-labeled subunits, and by localization in subcellular fractions obtained from labeled cells. We have also analyzed complex formation between the catalytic and regulatory subunits by examining the differences in the rate of signal incorporation into subunits in immunoprecipitates obtained from continuously labeled and pulse-labeled cells. We have found that the alpha 2 beta 2 and alpha alpha' beta 2 isoforms assemble relatively slowly (12-16 h), whereas complex formation of the alpha' 2 beta 2 isoform occurs more rapidly (2-4 h). Analysis of isoform complex formation in subcellular fractions from pulse-labeled cells revealed that the majority of nuclear CKII is assembled in the nucleus from free catalytic and regulatory subunit polypeptides.
Collapse
Affiliation(s)
- N Chester
- W. M. Keck Structural Biology Laboratory, Arnold and Mabel Beckman Neuroscience Center, Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | |
Collapse
|
26
|
Affiliation(s)
- O K ole-MoiYoi
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| |
Collapse
|
27
|
Pepperkok R, Lorenz P, Ansorge W, Pyerin W. Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37471-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Bodenbach L, Fauss J, Robitzki A, Krehan A, Lorenz P, Lozeman FJ, Pyerin W. Recombinant human casein kinase II. A study with the complete set of subunits (alpha, alpha' and beta), site-directed autophosphorylation mutants and a bicistronically expressed holoenzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:263-73. [PMID: 8119294 DOI: 10.1111/j.1432-1033.1994.tb18622.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human casein kinase II (CKII) is a ubiquitous and multipotential Ser/Thr kinase involved in the regulation of cell growth and differentiation. Biochemically, two characteristics are particularly notable; first, the tetrameric composition of two catalytic subunits (alpha and/or alpha') and two regulatory subunits (beta); second, the autophosphorylation of the holoenzyme at the N-terminus of CKII beta, suspected to be involved in tuning of the kinase activity. Whether CKII alpha and CKII alpha' reconstitute comparably with CKII beta to form holoenzyme is unclear. For a systematic investigation, the complete set of recombinant CKII subunits and of autophosphorylation mutants of CKII beta were expressed in Escherichia coli and comparative reconstitutions carried out. At 1:1 molar ratio, CKII beta stimulated both catalytic subunits roughly fivefold with phosvitin as a substrate. The level of activity reached with both of the reconstituted CKII isoforms was of the same order of magnitude as that of holoenzyme isolated from human placenta. It was also similar to a recombinant alpha 2 beta 2 holoenzyme whose expression had been attained in E. coli with a bicistronic construct containing the coding regions of CKII beta and CKII alpha in a tandem arrangement. Both Ser2 and Ser3 were identified as the autophosphorylation sites; replacement of one of these with Ala by oligonucleotide-mediated site-directed mutagenesis influenced only the extent of CKII beta autophosphorylation, replacement of both resulted in a loss of autophosphorylation. Despite these differences, the stimulatory effect of all the CKII beta mutants was comparable both to each other and to that of wild-type CKII beta. This was also obtained when substrates other than phosvitin were employed such as tubulin, or upstream-binding factor (UBF). However, the degree of stimulation was substrate specific and ranged from 2-5-fold with no major differences between CKII alpha and CKII alpha' stimulation. Calmodulin phosphorylation by both CKII alpha and CKII alpha' was decreased similarly by CKII beta and the CKII beta mutants. Proteins such as cAMP-responsive-element-binding protein (CREB), HPV16 E7 or Jun were not phosphorylated by either catalytic subunit but became substrates of both in the presence of CKII beta or CKII beta mutants. The data suggest that CKII alpha and CKII alpha' form similar CKII holoenzymes and that the tuning of holoenzyme activity is independent of the autophosphorylation status of CKII beta.
Collapse
|
29
|
Diarra A, Wang R, Garneau L, Gallo-Payet N, Sauvé R. Histamine-evoked Ca2+ oscillations in HeLa cells are sensitive to methylxanthines but insensitive to ryanodine. Pflugers Arch 1994; 426:129-38. [PMID: 7511800 DOI: 10.1007/bf00374680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The relative contribution of inositol-trisphosphate(InsP3)-sensitive and InsP3-insensitive Ca2+ stores to the agonist-evoked oscillatory release of Ca2+ in HeLa cells was investigated using fura-2 cytosolic Ca2+ measurements and whole-cell recordings of Ca(2+)-activated K+ currents [K(Ca2+)]. The experimental approach chosen consisted in studying the effects on Ca2+ oscillations of a variety of pharmacological agents such as ryanodine, ruthenium red, caffeine and theophylline, which are known to affect the Ca2+ channels responsible for Ca(2+)-induced Ca2+ release (CICR) in excitable cells. The results obtained essentially indicate (a) that neither ryanodine nor ruthenium red affects the generation of periodic K(Ca2+) current pulses in whole-cell experiments, and (b) that histamine-induced Ca2+ oscillations are inhibited by caffeine and theophylline in a dose-dependent manner. However, these methylxanthines were unable, at concentrations ranging from 0.1 mM to 10 mM, either to mobilize Ca2+ from internal stores or to block the initial Ca2+ rise evoked by histamine. In addition, both methylxanthines showed at high concentrations (10-20 mM) a moderate inhibitory action on the production of InsP3 induced by histamine. This effect was not essential to the action of caffeine on the oscillatory release of Ca2+, since an inhibition by caffeine of InsP3-induced Ca2+ oscillations was still observed in whole-cell experiments where the InsP3 concentration was kept constant. The results also show (c) that the application of either caffeine or theophylline during histamine stimulation leads systematically to an increased Ca2+ sequestration in InsP3-sensitive Ca2+ pools, the effect observed with theophylline being stronger than that resulting from the application of caffeine, and finally (d) that the action of caffeine and theophylline is not related to an increase in cAMP concentration since neither forskolin (10-50 microM) nor 8-Br-cAMP (1 mM) caused an inhibition of the InsP3-induced Ca2+ oscillations. It is concluded on the basis of these results that the agonist-evoked Ca2+ oscillations in HeLa cells do not involve directly or indirectly a ryanodine-sensitive Ca(2+)-release channel with CICR properties, but rather arise from a control by Ca2+ of the InsP3 Ca(2+)-release process.
Collapse
Affiliation(s)
- A Diarra
- Département de Physiologie, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
30
|
Litchfield DW, Lüscher B. Casein kinase II in signal transduction and cell cycle regulation. Mol Cell Biochem 1993; 127-128:187-99. [PMID: 7935350 DOI: 10.1007/bf01076770] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Casein kinase II is a protein serine/threonine kinase that is ubiquitously distributed in eukaryotes. Molecular cloning studies and protein sequence analysis of purified proteins have demonstrated the existence of two related, but distinct, isoenzymic forms of its catalytic subunit in mammals and birds. At present, the precise role of the individual casein kinase II isoforms in biological responses is poorly understood. However, a great deal of evidence indicates that casein kinase II is an important component of signalling pathways that control the growth and division of cells. In particular, casein kinase II is known to phosphorylate, and in several cases, regulate the activity of a variety of regulatory nuclear proteins including nuclear oncoproteins, transcription factors, and enzymes involved in other aspects of DNA metabolism. In this review, we will summarize evidence relating to the involvement of casein kinase II in signal transduction events that are relevant to cell proliferation.
Collapse
|
31
|
Human casein kinase II. The subunit alpha protein activates transcription of the subunit beta gene. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53374-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Lorenz P, Pepperkok R, Ansorge W, Pyerin W. Cell biological studies with monoclonal and polyclonal antibodies against human casein kinase II subunit beta demonstrate participation of the kinase in mitogenic signaling. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53835-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Abstract
The present review on casein kinases focuses mainly on the possible metabolic role of CK-2, with special emphasis on its behavior in pathological tissues. From these data at least three ways to regulate CK-2 activity emerge: (i) CK-2 activity changes during embryogenesis, being high at certain stages of development and showing basal activity values at others; (ii) CK-2 activity can be enhanced in vitro by treatment of tissue culture cells with various growth factors and serum and (iii) CK-2 activity is constitutively enhanced in rapidly proliferating cells. The regulated CK-2 activity changes during embryogenesis cannot be explained as yet. In the case of the constitutive high expression of CK-2 in tumors, genetic changes may be responsible, e.g. through alterations of the regulatory genetic elements and/or regulation by specific transcription factors. In the case of serum induction, no genetic changes are necessarily involved; the observed changes may be entirely due to a signal transduction pathway where CK-2 could be phosphorylated by another kinase(s). CK-2 cDNAs from various organisms have been isolated and characterized. From the deduced amino acid sequence it turns out that CK-2 subunits are highly conserved during evolution. The relationship between CK-2 alpha from humans and plants is still 73%. Similar relationships are reported for the beta-subunit. Chromosomal assignment of CK-2 alpha shows two gene loci, one of which is a pseudogene. They are located on different chromosomes. Expression of the CK-2 subunits in Escherichia coli and the Baculo expression system is shown. The recombinant subunits can self-assemble to a functional holoenzyme in vitro. Biochemical and biophysical analysis of the recombinant beta-subunit suggests it to be trifunctional in association with the alpha-subunit affecting: (i) stability, (ii) enzyme specificity and (iii) enzyme activity. The question where CK-2 and its subunits are located throughout the cell cycle has also been addressed, mainly because of the large discrepancies that still exist between results obtained by different investigators. Tissue-specific expression of CK-2 at the mRNA and at the protein level has also been given attention. The fact that the enzyme activity is surprisingly high in brain and low in heart and lung may be indicative of involvement of CK-2 in processes other than proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- O G Issinger
- Medizinische Fakultät, Universität des Saarlandes, Homburg (Saar), Germany
| |
Collapse
|
34
|
Seth A, Gonzalez F, Gupta S, Raden D, Davis R. Signal transduction within the nucleus by mitogen-activated protein kinase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35834-4] [Citation(s) in RCA: 206] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Diarra A, Sauvé R. Effect of thapsigargin and caffeine on Ca2+ homeostasis in HeLa cells: implications for histamine-induced Ca2+ oscillations. Pflugers Arch 1992; 422:40-7. [PMID: 1279518 DOI: 10.1007/bf00381511] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several studies have already established that the stimulation of H1 receptors by exogenous histamine induces intracellular Ca2+ oscillations in HeLa cells. The molecular mechanism underlying this oscillatory process remains, however, unclear. A series of fura-2 experiments was undertaken in which the nature of the Ca2+ pools involved in the histamine-induced Ca2+ oscillations was investigated using the tumour promoter agent thapsigargin (TG) and the Ca(2+)-induced Ca(2+)-release promoter, caffeine. The results obtained indicate first that TG causes a gradual increase in cytosolic Ca2+ without inducing internal Ca2+ oscillations, and second that TG and histamine share common internal Ca2+ storage sites. The latter conclusion was derived from experiments performed in the absence of external Ca2+, where the addition of TG before histamine resulted in a total inhibition of the Ca2+ response linked to H1 receptor stimulation, whereas the addition of histamine before TG decreased by more than 90% the TG-induced Ca2+ release. Finally; TG was found to inhibit irreversibly histamine-induced Ca2+ oscillations when added to the bathing medium during the oscillatory process. The effect of caffeine at concentrations ranging from 1 mM to 10 mM on intracellular Ca2+ homeostasis was also investigated. The results obtained show that caffeine does not affect systematically the internal Ca2+ concentration in resting and TG-stimulated HeLa cells, but increases the Ca2+ sequestration ability of inositol-trisphosphate (InsP3)-related Ca2+ stores.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Diarra
- Département de physiologie, Université de Montréal, Québec, Canada
| | | |
Collapse
|
36
|
Purification and characterization of casein kinase II (CKII) from delta cka1 delta cka2 Saccharomyces cerevisiae rescued by Drosophila CKII subunits. The free catalytic subunit of casein kinase II is not toxic in vivo. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37030-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|