1
|
Esmaeilnejad-Ahranjani P, Shahali Y, Dadar M. Detoxification techniques for bacterial toxins: A pathway to effective toxoid vaccines. Toxicon 2025; 260:108365. [PMID: 40246205 DOI: 10.1016/j.toxicon.2025.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Bacterial toxins play a critical role in the virulence of many pathogens, leading to serious diseases such as tetanus, diphtheria, botulism, and entrotoxemia. As key virulence factors, these toxins cause significant tissue damage and disease manifestations in infected hosts. Vaccination against these toxins through toxoid vaccines, composed of inactivated forms of the toxins, represents a vital strategy for preventing toxin-mediated diseases. However, creating effective toxoid vaccines necessitates meticulous detoxification processes that ensure the loss of toxicity while retaining the immunogenic properties inherent in the native toxins. This review offers a comprehensive evaluation of the diverse methodologies employed for detoxifying bacterial toxins, highlighting their advantages, limitations, and implications for vaccine development. By detailing comparisons of efficacy, stability, residual toxicity, and clinical applicability, we demonstrate that while traditional methods utilizing chemical reagents (such as formaldehyde) remain widely used, emerging technologies like genetic inactivation and protein engineering present significant advantages. These innovations promise to advance the development of durable and irreversible toxoid vaccines that protect public health and contribute to future vaccine formulation improvements. Ultimately, this knowledge synthesis aims to guide future research efforts and facilitate the design of safer and more effective toxoid vaccines to combat the public health threats posed by toxin-producing bacteria.
Collapse
Affiliation(s)
- Parvaneh Esmaeilnejad-Ahranjani
- Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Youcef Shahali
- Centre Hospitalier Universitaire de Besançon, Besançon, France
| | | |
Collapse
|
2
|
Wang Y, Liu Y, Xiang G, Jian Y, Yang Z, Chen T, Ma X, Zhao N, Dai Y, Lv Y, Wang H, He L, Shi B, Liu Q, Liu Y, Otto M, Li M. Post-translational toxin modification by lactate controls Staphylococcus aureus virulence. Nat Commun 2024; 15:9835. [PMID: 39537625 PMCID: PMC11561239 DOI: 10.1038/s41467-024-53979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Diverse post-translational modifications have been shown to play important roles in regulating protein function in eukaryotes. By contrast, the roles of post-translational modifications in bacteria are not so well understood, particularly as they relate to pathogenesis. Here, we demonstrate post-translational protein modification by covalent addition of lactate to lysine residues (lactylation) in the human pathogen Staphylococcus aureus. Lactylation is dependent on lactate concentration and specifically affects alpha-toxin, in which a single lactylated lysine is required for full activity and virulence in infection models. Given that lactate levels typically increase during infection, our results suggest that the pathogen can use protein lactylation as a mechanism to increase toxin-mediated virulence during infection.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanfeng Liu
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyu Yang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianchi Chen
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Ma
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Na Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingxin Dai
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Lv
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei He
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bisheng Shi
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yao Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Faculty of Medical Laboratory Science, College of Health Science and Technology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Goldmann O, Lang JC, Rohde M, May T, Molinari G, Medina E. Alpha-hemolysin promotes internalization of Staphylococcus aureus into human lung epithelial cells via caveolin-1- and cholesterol-rich lipid rafts. Cell Mol Life Sci 2024; 81:435. [PMID: 39412594 PMCID: PMC11488825 DOI: 10.1007/s00018-024-05472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Staphylococcus aureus is a pathogen associated with severe respiratory infections. The ability of S. aureus to internalize into lung epithelial cells complicates the treatment of respiratory infections caused by this bacterium. In the intracellular environment, S. aureus can avoid elimination by the immune system and the action of circulating antibiotics. Consequently, interfering with S. aureus internalization may represent a promising adjunctive therapeutic strategy to enhance the efficacy of conventional treatments. Here, we investigated the host-pathogen molecular interactions involved in S. aureus internalization into human lung epithelial cells. Lipid raft-mediated endocytosis was identified as the main entry mechanism. Thus, bacterial internalization was significantly reduced after the disruption of lipid rafts with methyl-β-cyclodextrin. Confocal microscopy confirmed the colocalization of S. aureus with lipid raft markers such as ganglioside GM1 and caveolin-1. Adhesion of S. aureus to α5β1 integrin on lung epithelial cells via fibronectin-binding proteins (FnBPs) was a prerequisite for bacterial internalization. A mutant S. aureus strain deficient in the expression of alpha-hemolysin (Hla) was significantly impaired in its capacity to enter lung epithelial cells despite retaining its capacity to adhere. This suggests a direct involvement of Hla in the bacterial internalization process. Among the receptors for Hla located in lipid rafts, caveolin-1 was essential for S. aureus internalization, whereas ADAM10 was dispensable for this process. In conclusion, this study supports a significant role of lipid rafts in S. aureus internalization into human lung epithelial cells and highlights the interaction between bacterial Hla and host caveolin-1 as crucial for the internalization process.
Collapse
Affiliation(s)
- Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Julia C Lang
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, 171 77, Sweden
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Tobias May
- InSCREENeX GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Gabriella Molinari
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
| |
Collapse
|
4
|
Paul S, Todd OA, Eichelberger KR, Tkaczyk C, Sellman BR, Noverr MC, Cassat JE, Fidel PL, Peters BM. A fungal metabolic regulator underlies infectious synergism during Candida albicans-Staphylococcus aureus intra-abdominal co-infection. Nat Commun 2024; 15:5746. [PMID: 38982056 PMCID: PMC11233573 DOI: 10.1038/s41467-024-50058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) demonstrates that synergistic lethality is driven by Candida-induced upregulation of functional S. aureus α-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken revealing that zcf13Δ/Δ fails to drive augmented α-toxin or lethal synergism during co-infection. A combination of transcriptional and phenotypic profiling approaches shows that ZCF13 regulates genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments reveal that ribose inhibits the staphylococcal agr quorum sensing system and concomitantly represses toxicity. Unlike wild-type C. albicans, zcf13Δ/Δ did not effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13Δ/Δ mutant fully restores pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.
Collapse
Affiliation(s)
- Saikat Paul
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Olivia A Todd
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kara R Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christine Tkaczyk
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Bret R Sellman
- Early Vaccines and Immune Therapies, AstraZeneca, Gaithersburg, MD, USA
| | - Mairi C Noverr
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - James E Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paul L Fidel
- Department of Oral and Craniofacial Biology, Louisiana State University Health - School of Dentistry, New Orleans, LA, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
5
|
Paul S, Todd OA, Eichelberger KR, Tkaczyk C, Sellman BR, Noverr MC, Cassat JE, Fidel PL, Peters BM. A fungal metabolic regulator underlies infectious synergism during Candida albicans - Staphylococcus aureus intra-abdominal co-infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580531. [PMID: 38405692 PMCID: PMC10888754 DOI: 10.1101/2024.02.15.580531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Candida albicans and Staphylococcus aureus are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) uncovered synergistic lethality that was driven by Candida -induced upregulation of functional S. aureus ⍺-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of C. albicans transcription factor mutants was undertaken and revealed that zcf13 Δ/Δ failed to drive augmented ⍺-toxin or lethal synergism during co-infection. Using a combination of transcriptional and phenotypic profiling approaches, ZCF13 was shown to regulate genes involved in pentose metabolism, including RBK1 and HGT7 that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments revealed that ribose inhibited the staphylococcal agr quorum sensing system and concomitantly repressed toxicity. Unlike wild-type C. albicans , zcf13 Δ/Δ was unable to effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and agr repression. Forced expression of RBK1 and HGT7 in the zcf13 Δ/Δ mutant fully restored pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.
Collapse
|
6
|
Liu CC, Wolf M, Ortego R, Grencewicz D, Sadler T, Eng C. Characterization of immunomodulating agents from Staphylococcus aureus for priming immunotherapy in triple-negative breast cancers. Sci Rep 2024; 14:756. [PMID: 38191648 PMCID: PMC10774339 DOI: 10.1038/s41598-024-51361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024] Open
Abstract
Immunotherapy, specifically immune checkpoint blockade (ICB), has revolutionized the treatment paradigm of triple-negative breast cancers (TNBCs). However, a subset of TNBCs devoid of tumor-infiltrating T cells (TILs) or PD-L1 expression generally has a poor response to immunotherapy. In this study, we aimed to sensitize TNBCs to ICB by harnessing the immunomodulating potential of S. aureus, a breast-resident bacterium. We show that intratumoral injection of spent culture media from S. aureus recruits TILs and suppresses tumor growth in a preclinical TNBC model. We further demonstrate that α-hemolysin (HLA), an S. aureus-produced molecule, increases the levels of CD8+ T cells and PD-L1 expression in tumors, delays tumor growth, and triggers tumor necrosis. Mechanistically, while tumor cells treated with HLA display Gasdermin E (GSDME) cleavage and a cellular phenotype resembling pyroptosis, splenic T cells incubated with HLA lead to selective expansion of CD8+ T cells. Notably, intratumoral HLA injection prior to ICB augments the therapeutic efficacy compared to ICB alone. This study uncovers novel immunomodulatory properties of HLA and suggests that intratumoral administration of HLA could be a potential priming strategy to expand the population of TNBC patients who may respond to ICB.
Collapse
Affiliation(s)
- Chin-Chih Liu
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Matthew Wolf
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Ruth Ortego
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Dennis Grencewicz
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Tammy Sadler
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA
| | - Charis Eng
- Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, 9500 Euclid Avenue NE50, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland, OH, 44195, USA.
- Cleveland Clinic, Taussig Cancer Institute, Cleveland, OH, 44195, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
7
|
Zhu Z, Hu Z, Li S, Fang R, Ono HK, Hu DL. Molecular Characteristics and Pathogenicity of Staphylococcus aureus Exotoxins. Int J Mol Sci 2023; 25:395. [PMID: 38203566 PMCID: PMC10778951 DOI: 10.3390/ijms25010395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Staphylococcus aureus stands as one of the most pervasive pathogens given its morbidity and mortality worldwide due to its roles as an infectious agent that causes a wide variety of diseases ranging from moderately severe skin infections to fatal pneumonia and sepsis. S. aureus produces a variety of exotoxins that serve as important virulence factors in S. aureus-related infectious diseases and food poisoning in both humans and animals. For example, staphylococcal enterotoxins (SEs) produced by S. aureus induce staphylococcal foodborne poisoning; toxic shock syndrome toxin-1 (TSST-1), as a typical superantigen, induces toxic shock syndrome; hemolysins induce cell damage in erythrocytes and leukocytes; and exfoliative toxin induces staphylococcal skin scalded syndrome. Recently, Panton-Valentine leucocidin, a cytotoxin produced by community-associated methicillin-resistant S. aureus (CA-MRSA), has been reported, and new types of SEs and staphylococcal enterotoxin-like toxins (SEls) were discovered and reported successively. This review addresses the progress of and novel insights into the molecular structure, biological activities, and pathogenicity of both the classic and the newly identified exotoxins produced by S. aureus.
Collapse
Affiliation(s)
- Zhihao Zhu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zuo Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| | - Shaowen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China;
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
| | - Hisaya K. Ono
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| | - Dong-Liang Hu
- Department of Zoonoses, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan; (Z.Z.); (Z.H.); (H.K.O.)
| |
Collapse
|
8
|
Jiang JH, Cameron DR, Nethercott C, Aires-de-Sousa M, Peleg AY. Virulence attributes of successful methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Rev 2023; 36:e0014822. [PMID: 37982596 PMCID: PMC10732075 DOI: 10.1128/cmr.00148-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of severe and often fatal infections. MRSA epidemics have occurred in waves, whereby a previously successful lineage has been replaced by a more fit and better adapted lineage. Selection pressures in both hospital and community settings are not uniform across the globe, which has resulted in geographically distinct epidemiology. This review focuses on the mechanisms that trigger the establishment and maintenance of current, dominant MRSA lineages across the globe. While the important role of antibiotic resistance will be mentioned throughout, factors which influence the capacity of S. aureus to colonize and cause disease within a host will be the primary focus of this review. We show that while MRSA possesses a diverse arsenal of toxins including alpha-toxin, the success of a lineage involves more than just producing toxins that damage the host. Success is often attributed to the acquisition or loss of genetic elements involved in colonization and niche adaptation such as the arginine catabolic mobile element, as well as the activity of regulatory systems, and shift metabolism accordingly (e.g., the accessory genome regulator, agr). Understanding exactly how specific MRSA clones cause prolonged epidemics may reveal targets for therapies, whereby both core (e.g., the alpha toxin) and acquired virulence factors (e.g., the Panton-Valentine leukocidin) may be nullified using anti-virulence strategies.
Collapse
Affiliation(s)
- Jhih-Hang Jiang
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David R Cameron
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Cara Nethercott
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Marta Aires-de-Sousa
- Laboratory of Molecular Genetics, Institutode Tecnologia Químicae Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
- Escola Superior de Saúde da Cruz Vermelha Portuguesa-Lisboa (ESSCVP-Lisboa), Lisbon, Portugal
| | - Anton Y Peleg
- Department of Microbiology, Infection Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Goc A, Sumera W, Rath M, Niedzwiecki A. Inhibition of α-hemolysin activity of Staphylococcus aureus by theaflavin 3,3'-digallate. PLoS One 2023; 18:e0290904. [PMID: 37651426 PMCID: PMC10470925 DOI: 10.1371/journal.pone.0290904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
The ongoing rise in antibiotic resistance, and a waning of the introduction of new antibiotics, has resulted in limited treatment options for bacterial infections, including these caused by methicillin-resistant Staphylococcus aureus, leaving the world in a post-antibiotic era. Here, we set out to examine mechanisms by which theaflavin 3,3'-digallate (TF3) might act as an anti-hemolytic compound. In the presented study, we found that TF3 has weak bacteriostatic and bactericidal effects on Staphylococcus aureus, and strong inhibitory effect towards the hemolytic activity of its α-hemolysin (Hla) including its production and secretion. A supportive SPR assay reinforced these results and further revealed binding of TF3 to Hla with KD = 4.57×10-5 M. Interestingly, TF3 was also able to protect human primary keratinocytes from Hla-induced cell death, being at the same time non-toxic for them. Further analysis of TF3 properties revealed that TF3 blocked Hla-prompting immune reaction by inhibiting production and secretion of IL1β, IL6, and TNFα in vitro and in vivo, through affecting NFκB activity. Additionally, we observed that TF3 also markedly attenuated S. aureus-induced barrier disruption, by inhibiting Hla-triggered E-cadherin and ZO-1 impairment. Overall, by blocking activity of Hla, TF3 subsequently subdued the inflammation and protected the epithelial barrier, which is considered as beneficial to relieving skin injury.
Collapse
Affiliation(s)
- Anna Goc
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| | - Waldemar Sumera
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| | - Matthias Rath
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| | - Aleksandra Niedzwiecki
- Department of Infectious Diseases, Dr. Rath Research Institute, San Jose, California, United States of America
| |
Collapse
|
10
|
Chang G, Luo Z, Zhang Y, Xu X, Zhou T, Chen D, Li L, Wang X. Electron beam irradiation degrades the toxicity and alters the protein structure of Staphylococcus aureus alpha-hemolysin. Int J Biol Macromol 2023; 246:125608. [PMID: 37392914 DOI: 10.1016/j.ijbiomac.2023.125608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
α-Hemolysin (Hla) is a potent pore-forming toxin (PFT) produced by Staphylococcus aureus that exacerbates the pathogenesis of S. aureus enterotoxicity and plays a role in population food poisoning. Hla lyses cells by binding to host cell membranes and oligomerizing to form heptameric structures, thereby disrupting the cell barrier. Although the broad bactericidal effect of electron beam irradiation (EBI) has been demonstrated whether it has a damaging or degrading effect on Hla's remains unknown. In this study, EBI was found to have the effect of altering the secondary structure of Hla proteins, verifying that the damaging effect of EBI-treated Hla on intestinal and skin epithelial cell barriers was significantly reduced. It was noted by hemolysis and protein interactions that EBI treatment significantly disrupted the binding of Hla to its high-affinity receptor, but did not affect the binding between Hla monomers to form heptamers. Thus, EBI can effectively reduce the threat of Hla to food safety.
Collapse
Affiliation(s)
- Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zonghong Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - DiShi Chen
- Sichuan Animal Disease Prevention and Control Center, Chengdu 610041, China
| | - Li Li
- Sichuan Animal Disease Prevention and Control Center, Chengdu 610041, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Zhang H, Cao J, He Z, Zong X, Sun B. Molecular Epidemiology of Staphylococcus aureus in a Tertiary Hospital in Anhui, China: ST59 Remains a Serious Threat. Infect Drug Resist 2023; 16:961-976. [PMID: 36814828 PMCID: PMC9940498 DOI: 10.2147/idr.s395220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/21/2023] [Indexed: 02/17/2023] Open
Abstract
Purpose This study aimed to investigate the molecular characteristics, antimicrobial resistance and hemolytic phenotype of Staphylococcus aureus isolated from Anhui, China. Results From August 2021 to January 2022, 214 S. aureus isolates were collected from the Anhui Provincial Hospital. This study identified 117 methicillin-resistant S. aureus and 97 methicillin-sensitive S. aureus isolates, and the detection rate of methicillin-resistant isolates was 1.8-fold higher than the average isolates reported in China (53.9% vs 30.5%). S. aureus isolates share identity at five or more of the seven MLST-based housekeeping loci, referred to as the clonal complex (CC). Forty ST types were found in 214 clinical S. aureus isolates, with the most extensive distribution of ST59 and ST6697 typing numbers and higher CC5 detection rates than any other clonal group. (The ST typing is the result of the MLST typing website query.) To detect the virulence of ST types of S. aureus, hemolysis experiments were performed on 214 clinical isolates, and it was concluded that ST59 had a relatively robust hemolytic capacity. Conclusion Anhui S. aureus isolates have unique molecular and antibiotic resistance profiles. The antibiotic resistance profile may be related to the random use of antibiotics.
Collapse
Affiliation(s)
- Huimin Zhang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
| | - Jiaxin Cao
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
| | - Zhien He
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China,School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Xianchun Zong
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, People’s Republic of China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital, University of Science and Technology of China, Hefei, People’s Republic of China,School of Life Science and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China,Correspondence: Baolin Sun, Email
| |
Collapse
|
12
|
Gao P, Wei Y, Wan RE, Wong KW, Iu HTV, Tai SSC, Li Y, Yam HCB, Halebeedu Prakash P, Chen JHK, Ho PL, Yuen KY, Davies J, Kao RYT. Subinhibitory Concentrations of Antibiotics Exacerbate Staphylococcal Infection by Inducing Bacterial Virulence. Microbiol Spectr 2022; 10:e0064022. [PMID: 35758685 PMCID: PMC9431598 DOI: 10.1128/spectrum.00640-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/17/2022] [Indexed: 01/24/2023] Open
Abstract
Antibiotics are widely used for the treatment of bacterial infections. However, injudicious use of antibiotics based on an empirical method may lead to the emergence of resistant strains. Despite appropriate administration of antibiotics, their concentrations may remain subinhibitory in the body, due to individual variations in tissue distribution and metabolism rates. This may promote bacterial virulence and complicate the treatment strategies. To investigate whether the administration of certain classes of antibiotics will induce bacterial virulence and worsen the infection under in vivo conditions. Different classes of antibiotics were tested in vitro for their ability to induce virulence in a methicillin-resistant S. aureus strain Mu3 and clinical isolates. Antibiotic-induced pathogenicity was assessed in vivo using mouse peritonitis and bacteremia models. In vitro, β-lactam antibiotics and tetracyclines induced the expression of multiple surface-associated virulence factors as well as the secretion of toxins. In peritonitis and bacteremia models, mice infected with MRSA and treated with ampicillin, ceftazidime, or tetracycline showed enhanced bacterial pathogenicity. The release of induced virulence factors in vivo was confirmed in a histological examination. Subinhibitory concentrations of antibiotics belonging to β-lactam and tetracycline aggravated infection by inducing staphylococcal virulence in vivo. Thus, when antibiotics are required, it is preferable to employ combination therapy and to initiate the appropriate treatment plan, following diagnosis. Our findings emphasize the risks associated with antibiotic-based therapy and underline the need for alternative therapeutic options. IMPORTANCE Antibiotics are widely applied to treat infectious diseases. Empirically treatment with incorrect antibiotics, or even correct antibiotics always falls into subinhibitory concentrations, due to dosing, distribution, or secretion. In this study, we have systematically evaluated in vitro virulence induction effect of antibiotics and in vivo exacerbated infection. The major highlight of this work is to prove the β-lactam and tetracyclines antibiotics exacerbated disease is due to their induction effect on staphylococcal virulence. This phenomenon is common and suggests that if β-lactam antibiotics remain the first line of defense during empirical therapy, we either need to increase patient reliability or the treatment approach may improve in the future when paired with anti-virulence drugs.
Collapse
Affiliation(s)
- Peng Gao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yuanxin Wei
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rachel Evelyn Wan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ka Wing Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ho Ting Venice Iu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Sherlock Shing Chiu Tai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yongli Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hin Cheung Bill Yam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pradeep Halebeedu Prakash
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jonathan Hon Kwan Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Department of Microbiology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Pak Leung Ho
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Department of Microbiology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases and the Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kwok Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Department of Microbiology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases and the Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Julian Davies
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard Yi Tsun Kao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases and the Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
13
|
Tuft S, Somerville TF, Li JPO, Neal T, De S, Horsburgh MJ, Fothergill JL, Foulkes D, Kaye S. Bacterial keratitis: identifying the areas of clinical uncertainty. Prog Retin Eye Res 2021; 89:101031. [PMID: 34915112 DOI: 10.1016/j.preteyeres.2021.101031] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Bacterial keratitis is a common corneal infection that is treated with topical antimicrobials. By the time of presentation there may already be severe visual loss from corneal ulceration and opacity, which may persist despite treatment. There are significant differences in the associated risk factors and the bacterial isolates between high income and low- or middle-income countries, so that general management guidelines may not be appropriate. Although the diagnosis of bacterial keratitis may seem intuitive there are multiple uncertainties about the criteria that are used, which impacts the interpretation of investigations and recruitment to clinical studies. Importantly, the concept that bacterial keratitis can only be confirmed by culture ignores the approximately 50% of cases clinically consistent with bacterial keratitis in which investigations are negative. The aetiology of these culture-negative cases is unknown. Currently, the estimation of bacterial susceptibility to antimicrobials is based on data from systemic administration and achievable serum or tissue concentrations, rather than relevant corneal concentrations and biological activity in the cornea. The provision to the clinician of minimum inhibitory concentrations of the antimicrobials for the isolated bacteria would be an important step forward. An increase in the prevalence of antimicrobial resistance is a concern, but the effect this has on disease outcomes is yet unclear. Virulence factors are not routinely assessed although they may affect the pathogenicity of bacteria within species and affect outcomes. New technologies have been developed to detect and kill bacteria, and their application to bacterial keratitis is discussed. In this review we present the multiple areas of clinical uncertainty that hamper research and the clinical management of bacterial keratitis, and we address some of the assumptions and dogma that have become established in the literature.
Collapse
Affiliation(s)
- Stephen Tuft
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK.
| | - Tobi F Somerville
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Ji-Peng Olivia Li
- Moorfields Eye Hospital NHS Foundation Trust, 162 City Road, London, EC1V 2PD, UK.
| | - Timothy Neal
- Department of Clinical Microbiology, Liverpool Clinical Laboratories, Liverpool University Hospital NHS Foundation Trust, Prescot Street, Liverpool, L7 8XP, UK.
| | - Surjo De
- Department of Clinical Microbiology, University College London Hospitals NHS Foundation Trust, 250 Euston Road, London, NW1 2PG, UK.
| | - Malcolm J Horsburgh
- Department of Infection and Microbiomes, University of Liverpool, Crown Street, Liverpool, L69 7BX, UK.
| | - Joanne L Fothergill
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Daniel Foulkes
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Stephen Kaye
- Department of Eye and Vision Sciences, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
14
|
Moriano A, Serra DO, Hoard A, Montaña S, Degrossi J, Bonomo RA, Papp-Wallace KM, Ramirez MS. Staphylococcus aureus Potentiates the Hemolytic Activity of Burkholderia cepacia Complex (Bcc) Bacteria. Curr Microbiol 2021; 78:1864-1870. [PMID: 33770213 PMCID: PMC10026353 DOI: 10.1007/s00284-021-02458-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Abstract
Polymicrobial lung infections in individuals with Cystic Fibrosis (CF) contribute to the complexity of this disease and are a major cause of morbidity and mortality in the CF community. The microorganisms most commonly associated with severe airway infections in individuals with CF are the opportunistic pathogens S. aureus, P. aeruginosa and bacteria from the Burkholderia cepacia complex (Bcc), particularly B. cenocepacia and B. multivorans. Three Bcc strains, two S. aureus wild-type strains, and two derivative mutants were used to investigate the interplay between S. aureus and Bcc with a focus on the hemolytic activity of Bcc. Our results revealed that extracellular products from S. aureus potentiated the hemolysis of Bcc strains. Moreover, this effect was influenced by the composition of the medium in which S. aureus is grown. These findings contribute towards the understanding of the impact of interactions between S. aureus and Bcc and their possible implications in the context of co-infections by these pathogens in individuals with CF.
Collapse
Affiliation(s)
- Alessandro Moriano
- Department of Biological Science, California State University, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Diego O Serra
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Amparo Hoard
- Department of Biological Science, California State University, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Sabrina Montaña
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
| | - Jose Degrossi
- Cátedra de Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Robert A Bonomo
- Research Service Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Krisztina M Papp-Wallace
- Research Service Medical Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Maria Soledad Ramirez
- Department of Biological Science, California State University, 800 N State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
15
|
Major Determinants of Airway Epithelial Cell Sensitivity to S. aureus Alpha-Toxin: Disposal of Toxin Heptamers by Extracellular Vesicle Formation and Lysosomal Degradation. Toxins (Basel) 2021; 13:toxins13030173. [PMID: 33668237 PMCID: PMC7996177 DOI: 10.3390/toxins13030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Alpha-toxin is a major virulence factor of Staphylococcus aureus. Monomer binding to host cell membranes results in the formation of heptameric transmembrane pores. Among human model airway epithelial cell lines, A549 cells were most sensitive toward the toxin followed by 16HBE14o- and S9 cells. In this study we investigated the processes of internalization of pore-containing plasma membrane areas as well as potential pathways for heptamer degradation (lysosomal, proteasomal) or disposal (formation of exosomes/micro-vesicles). The abundance of toxin heptamers upon applying an alpha-toxin pulse to the cells declined both in extracts of whole cells and of cellular membranes of S9 cells, but not in those of 16HBE14o- or A549 cells. Comparisons of heptamer degradation rates under inhibition of lysosomal or proteasomal degradation revealed that an important route of heptamer degradation, at least in S9 cells, seems to be the lysosomal pathway, while proteasomal degradation appears to be irrelevant. Exosomes prepared from culture supernatants of toxin-exposed S9 cells contained alpha-toxin as well as low amounts of exosome and micro-vesicle markers. These results indicate that lysosomal degradation of internalized toxin heptamers may be the most important determinant of toxin-resistance of some types of airway epithelial cells.
Collapse
|
16
|
Ambite I, Butler D, Wan MLY, Rosenblad T, Tran TH, Chao SM, Svanborg C. Molecular determinants of disease severity in urinary tract infection. Nat Rev Urol 2021; 18:468-486. [PMID: 34131331 PMCID: PMC8204302 DOI: 10.1038/s41585-021-00477-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
The most common and lethal bacterial pathogens have co-evolved with the host. Pathogens are the aggressors, and the host immune system is responsible for the defence. However, immune responses can also become destructive, and excessive innate immune activation is a major cause of infection-associated morbidity, exemplified by symptomatic urinary tract infections (UTIs), which are caused, in part, by excessive innate immune activation. Severe kidney infections (acute pyelonephritis) are a major cause of morbidity and mortality, and painful infections of the urinary bladder (acute cystitis) can become debilitating in susceptible patients. Disease severity is controlled at specific innate immune checkpoints, and a detailed understanding of their functions is crucial for strategies to counter microbial aggression with novel treatment and prevention measures. One approach is the use of bacterial molecules that reprogramme the innate immune system, accelerating or inhibiting disease processes. A very different outcome is asymptomatic bacteriuria, defined by low host immune responsiveness to bacteria with attenuated virulence. This observation provides the rationale for immunomodulation as a new therapeutic tool to deliberately modify host susceptibility, control the host response and avoid severe disease. The power of innate immunity as an arbitrator of health and disease is also highly relevant for emerging pathogens, including the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Ines Ambite
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniel Butler
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Murphy Lam Yim Wan
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Therese Rosenblad
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thi Hien Tran
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sing Ming Chao
- Nephrology Service, Department of Paediatrics, KK Hospital, Singapore, Singapore
| | - Catharina Svanborg
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Abstract
Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. The opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca2+ increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca2+ concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca2+ rise led to an increase in mitochondrial Ca2+ concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca2+ homeostasis and induces cytoplasmic Ca2+ overload, which results in both apoptotic and necrotic cell death in parallel or succession.
Collapse
|
18
|
Möller N, Ziesemer S, Hildebrandt P, Assenheimer N, Völker U, Hildebrandt JP. S. aureus alpha-toxin monomer binding and heptamer formation in host cell membranes - Do they determine sensitivity of airway epithelial cells toward the toxin? PLoS One 2020; 15:e0233854. [PMID: 32470006 PMCID: PMC7259691 DOI: 10.1371/journal.pone.0233854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
Alpha-toxin (Hla) is a major virulence factor of Staphylococcus aureus (S. aureus) and plays an important role in S. aureus-induced pneumonia. It binds as a monomer to the cell surface of eukaryotic host cells and forms heptameric transmembrane pores. Sensitivities toward the toxin of various types of potential host cells have been shown to vary substantially, and the reasons for these differences are unclear. We used three human model airway epithelial cell lines (16HBE14o-, S9, A549) to correlate cell sensitivity (measured as rate of paracellular gap formation in the cell layers) with Hla monomer binding, presence of the potential Hla receptors ADAM10 or α5β1 integrin, presence of the toxin-stabilizing factor caveolin-1 as well as plasma membrane lipid composition (phosphatidylserine/choline, sphingomyelin). The abundance of ADAM10 correlated best with gap formation or cell sensitivities, respectively, when the three cell types were compared. Caveolin-1 or α5β1 integrin did not correlate with toxin sensitivity. The relative abundance of sphingomyelin in plasma membranes may also be used as a proxi for cellular sensitivity against alpha-toxin as sphingomyelin abundances correlated well with the intensities of alpha-toxin mediated gap formation in the cell layers.
Collapse
Affiliation(s)
- Nils Möller
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabine Ziesemer
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nadine Assenheimer
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
19
|
Kim JY, Lee YM, Kim DW, Min T, Lee SJ. Nanosphere Loaded with Curcumin Inhibits the Gastrointestinal Cell Death Signaling Pathway Induced by the Foodborne Pathogen Vibrio vulnificus. Cells 2020; 9:cells9030631. [PMID: 32151068 PMCID: PMC7140471 DOI: 10.3390/cells9030631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 01/28/2023] Open
Abstract
Curcumin, a hydrophobic polyphenol of turmeric, has a variety of biological functions as a herbal supplement, but its poor gastric absorption rate is one of the major factors limiting its oral bioavailability. In the present study, we have investigated the functional role of a nanosphere loaded with curcumin (CN) during host cell death elicited by the Gram-negative bacterium V. vulnificus in human gastrointestinal epithelial HT-29 cells and an ileal-ligated mouse model. The recombinant protein (r) VvhA produced by V. vulnificus significantly reduced the viability of HT-29 cells. The cytotoxic effect of rVvhA was restored upon a treatment with CN (100 ng/mL), which had shown 1000-fold higher anti-apoptotic efficacy than curcumin. CN inhibited the phosphorylation of c-Src and PKC mediated by intracellular ROS responsible for the distinctive activation of the MAPKs in rVvhA-treated HT-29 cells. Interestingly, CN significantly restored the expression of Bax, Bcl-2, and cleaved caspase-3 as regulated by the phosphorylation of NF-κB. In mouse models of V. vulnificus infection, treatment with CN had a blocking effect that elevated the levels of TUNEL-positive DNA fragmentation and apoptosis-related proteins. These results indicate that CN is a functional agent that manipulates the V. vulnificus VvhA signaling pathway responsible for gastrointestinal cell death.
Collapse
Affiliation(s)
- Ji-Yun Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Young-Min Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Do-Wan Kim
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
| | - Taesun Min
- Department of Animal Biotechnology, Faculty of Biotechnology, SARI, Jeju National University, Jeju 63243, Korea
- Correspondence: (T.M.); (S.-J.L.); Tel.: +82-54-819-1806 (S.-J.L.)
| | - Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Korea
- Correspondence: (T.M.); (S.-J.L.); Tel.: +82-54-819-1806 (S.-J.L.)
| |
Collapse
|
20
|
von Hoven G, Qin Q, Neukirch C, Husmann M, Hellmann N. Staphylococcus aureus α-toxin: small pore, large consequences. Biol Chem 2020; 400:1261-1276. [PMID: 30951494 DOI: 10.1515/hsz-2018-0472] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/26/2019] [Indexed: 12/14/2022]
Abstract
The small β-pore-forming α-toxin, also termed α-hemolysin or Hla is considered to be an important virulence factor of Staphylococcus aureus. Perforation of the plasma membrane (PM) by Hla leads to uncontrolled flux of ions and water. Already a small number of toxin pores seems to be sufficient to induce complex cellular responses, many of which depend on the efflux of potassium. In this article, we discuss the implications of secondary membrane lesions, for example, by endogenous channels, for Hla-mediated toxicity, for calcium-influx and membrane repair. Activation of purinergic receptors has been proposed to be a major contributor to the lytic effects of various pore forming proteins, but new findings raise doubts that this holds true for Hla. However, the recently discovered cellular pore forming proteins gasdermin D and Mixed lineage kinase domain-like pseudokinase (MLKL) which perforate the PM from the cytosolic side might contribute to both calcium-influx-dependent damage and membrane repair. Activation of endogenous pore forming proteins by Hla above a threshold concentration could explain the apparent dependence of pore characteristics on toxin concentrations. If secondary membrane damage in the aftermath of Hla-attack contributes significantly to overall PM permeability, it might be an interesting target for new therapeutic approaches.
Collapse
Affiliation(s)
- Gisela von Hoven
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Qianqian Qin
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Claudia Neukirch
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Matthias Husmann
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Straße 67, 55131 Mainz, Germany
| | - Nadja Hellmann
- Institute for Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, Johann-Joachim Becher-Weg 30, 55128 Mainz, Germany
| |
Collapse
|
21
|
Tsuiji M, Shiohara K, Takei Y, Shinohara Y, Nemoto S, Yamaguchi S, Kanto M, Itoh S, Oku T, Miyashita M, Seyama Y, Kurihara M, Tsuji T. Selective Cytotoxicity of Staphylococcal α-Hemolysin (α-Toxin) against Human Leukocyte Populations. Biol Pharm Bull 2019; 42:982-988. [PMID: 31155595 DOI: 10.1248/bpb.b18-01024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus produces a variety of exoproteins that interfere with host immune systems. We attempted to purify cytotoxins against human leukocytic cells from the culture supernatant of S. aureus by a combination of ammonium sulfate precipitation, ion-exchange chromatography on a CM-cellulose column and HPLC on a Mono S 5/50 column. A major protein possessing cytotoxicity to HL60 human promyelocytic leukemia cells was purified, and the protein was identified as α-hemolysin (Hla, α-toxin) based on its molecular weight (34 kDa) and N-terminal amino acid sequence. Flow cytometric analysis suggested differential cytotoxicity of Hla against different human peripheral blood leukocyte populations. After cell fractionation with density-gradient centrifugation, we found that peripheral blood mononuclear cells (PBMCs) were more susceptible to Hla than polymorphonuclear leukocytes. Moreover, cell surface marker analysis suggested that Hla exhibited slightly higher cytotoxicity against CD14-positive PBMCs (mainly monocytes) than CD3- or CD19-positive cells (T or B lymphocytes). From these results, we conclude that human leukocytes have different susceptibility to Hla depending on their cell lineages, and thereby the toxin may modulate the host immune response.
Collapse
Affiliation(s)
- Makoto Tsuiji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Kazuyuki Shiohara
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Yoshinori Takei
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Yoshinori Shinohara
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Shigeyoshi Nemoto
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Satoshi Yamaguchi
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Masanori Kanto
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Saotomo Itoh
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Teruaki Oku
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Masahiro Miyashita
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | - Yoshiyuki Seyama
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | | | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| |
Collapse
|
22
|
Wilson JW, Rolland AD, Klausen GM, Prell JS. Ion Mobility-Mass Spectrometry Reveals That α-Hemolysin from Staphylococcus aureus Simultaneously Forms Hexameric and Heptameric Complexes in Detergent Micelle Solutions. Anal Chem 2019; 91:10204-10211. [PMID: 31282652 DOI: 10.1021/acs.analchem.9b02243] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many soluble and membrane proteins form symmetrical homooligomeric complexes. However, determining the oligomeric state of protein complexes can be difficult. Alpha-hemolysin (αHL) from Staphylococcus aureus is a symmetrical homooligomeric protein toxin that forms transmembrane β-barrel pores in host cell membranes. The stable pore structure of αHL has also been exploited in vitro as a nanopore tool. Early structural experiments suggested αHL forms a hexameric pore, while more recent X-ray crystal structure and solution studies have identified a heptameric pore structure. Here, using native ion mobility-mass spectrometry (IM-MS) we find that αHL simultaneously forms hexameric and heptameric oligomers in both tetraethylene glycol monooctyl ether (C8E4) and tetradecylphosphocholine (FOS-14) detergent solutions. We also analyze intact detergent micelle-embedded αHL porelike complexes by native IM-MS without the need to fully strip the detergent micelle, which can cause significant gas-phase unfolding. The highly congested native mass spectra are deconvolved using Fourier- and Gábor-transform (FT and GT) methods to determine charge states and detergent stoichiometry distributions. The intact αHL micelle complexes are found to contain oligomeric state-proportional numbers of detergent molecules. This evidence, combined with IM data and results from vacuum molecular dynamics simulations, is consistent with both the hexamer and the heptamer forming porelike complexes. The ability of αHL to form both oligomeric states simultaneously has implications for its use as a nanopore tool and its pore formation mechanism in vivo. This study also demonstrates more generally the power of FT and GT to deconvolve the charge state and stoichiometry distributions of polydisperse ions.
Collapse
Affiliation(s)
- Jesse W Wilson
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403-1253 , United States
| | - Amber D Rolland
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403-1253 , United States
| | - Grant M Klausen
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403-1253 , United States
| | - James S Prell
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403-1253 , United States.,Materials Science Institute , University of Oregon , 1252 University of Oregon , Eugene , Oregon 97403-1252 , United States
| |
Collapse
|
23
|
Li K, Han X, Li R, Xu Z, Pan T, Liu J, Li B, Wang S, Diao Y, Liu X. Composition, Antivirulence Activity, and Active Property Distribution of the Fruit of Terminalia chebula Retz. J Food Sci 2019; 84:1721-1729. [PMID: 31206192 DOI: 10.1111/1750-3841.14655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 01/21/2023]
Abstract
The fruit of Terminalia chebula Retz., or Tibet Olive, is widely used as a food supplement in China. It possesses some natural antimicrobial properties; however, its chemical composition and antivirulence effects have not been identified. In this work, 29 compounds were identified from the peel of T. chebula fruit by ultra-high-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Both the extract of T. chebula and its phenolic acid, corilagin, showed antivirulent activity against Staphylococcus aureus. Specifically, they inhibited biofilm formation. The half maximal inhibitory concentration was 0.13 and 3.18 µg/mL for the extract and corilagin, respectively, whereas for α-hemolysin secretion, the respective concentrations were 30 and 10 µg/mL. Its mechanism of action may be due to reducing the transcription of genes related to quorum sensing. These genes included staphylococcal accessory regulator A, intercellular adhesion accessory gene regulator A, and RNAIII. These findings provide evidence that this food supplement could be an effective antivirulent with corilagin as its active ingredient. PRACTICAL APPLICATION: Corilagin from the fruit of Terminalia chebula Retz. may be used as an antibacterial for its antivirulent activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Kun Li
- College of Chemistry and Chemical Engineering, Liaoning Normal Univ., Dalian, P.R. China
| | - Xianwei Han
- College of Chemistry and Chemical Engineering, Liaoning Normal Univ., Dalian, P.R. China
| | - Ruzhuo Li
- College of Chemistry and Chemical Engineering, Liaoning Normal Univ., Dalian, P.R. China
| | - Zhongren Xu
- College of Pharmacy, Dalian Medical Univ., Dalian, P.R. China
| | - Taowen Pan
- Inst. of Integrative Medicine, Dalian Medical Univ., Dalian, P.R. China
| | - Jing Liu
- College of Pharmacy, Dalian Medical Univ., Dalian, P.R. China
| | - Bin Li
- College of Pharmacy, Dalian Medical Univ., Dalian, P.R. China
| | - Shouyu Wang
- The First Affiliated Hospital of Dalian Medical Univ., Dalian, P.R. China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical Univ., Dalian, P.R. China
| | - Xinguang Liu
- Inst. of Integrative Medicine, Dalian Medical Univ., Dalian, P.R. China
| |
Collapse
|
24
|
The Role of Streptococcal and Staphylococcal Exotoxins and Proteases in Human Necrotizing Soft Tissue Infections. Toxins (Basel) 2019; 11:toxins11060332. [PMID: 31212697 PMCID: PMC6628391 DOI: 10.3390/toxins11060332] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Necrotizing soft tissue infections (NSTIs) are critical clinical conditions characterized by extensive necrosis of any layer of the soft tissue and systemic toxicity. Group A streptococci (GAS) and Staphylococcus aureus are two major pathogens associated with monomicrobial NSTIs. In the tissue environment, both Gram-positive bacteria secrete a variety of molecules, including pore-forming exotoxins, superantigens, and proteases with cytolytic and immunomodulatory functions. The present review summarizes the current knowledge about streptococcal and staphylococcal toxins in NSTIs with a special focus on their contribution to disease progression, tissue pathology, and immune evasion strategies.
Collapse
|
25
|
Koo S, Cheley S, Bayley H. Redirecting Pore Assembly of Staphylococcal α-Hemolysin by Protein Engineering. ACS CENTRAL SCIENCE 2019; 5:629-639. [PMID: 31041382 PMCID: PMC6487460 DOI: 10.1021/acscentsci.8b00910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 05/03/2023]
Abstract
α-Hemolysin (αHL), a β-barrel pore-forming toxin (βPFT), is secreted as a water-soluble monomer by Staphylococcus aureus. Upon binding to receptors on target cell membranes, αHL assembles to form heptameric membrane-spanning pores. We have previously engineered αHL to create a protease-activatable toxin that is activated by site-specific proteolysis including by tumor proteases. In this study, we redesigned αHL so that it requires 2-fold activation on target cells through (i) binding to specific receptors, and (ii) extracellular proteolytic cleavage. To assess our strategy, we constructed a fusion protein of αHL with galectin-1 (αHLG1, αHL-Galectin-1 chimera). αHLG1 was cytolytic toward cells that lack a receptor for wild-type αHL. We then constructed protease-activatable mutants of αHLG1 (PAMαHLG1s). PAMαHLG1s were activated by matrix metalloproteinase 2 (MMP-2) and had approximately 50-fold higher cytolytic activity toward MMP-2 overexpressing cells (HT-1080 cells) than toward non-overexpressing cells (HL-60 cells). Our approach provides a novel strategy for tailoring pore-forming toxins for therapeutic applications.
Collapse
Affiliation(s)
- Sunwoo Koo
- Department
of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, 8447 Riverside Parkway, Bryan, Texas 77807, United States
- E-mail: . Phone: 1-979-436-0381
| | - Stephen Cheley
- Department
of Pharmacology, Alberta Diabetes Institute, University of Alberta, Edmonton, T6G 2E1 Alberta, Canada
| | - Hagan Bayley
- Department
of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield
Road, Oxford, OX1 3TA England, United Kingdom
- E-mail: . Phone: +44 1865 285101
| |
Collapse
|
26
|
Ziesemer S, Möller N, Nitsch A, Müller C, Beule AG, Hildebrandt JP. Sphingomyelin Depletion from Plasma Membranes of Human Airway Epithelial Cells Completely Abrogates the Deleterious Actions of S. aureus Alpha-Toxin. Toxins (Basel) 2019; 11:toxins11020126. [PMID: 30791542 PMCID: PMC6409578 DOI: 10.3390/toxins11020126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Interaction of Staphylococcus aureus alpha-toxin (hemolysin A, Hla) with eukaryotic cell membranes is mediated by proteinaceous receptors and certain lipid domains in host cell plasma membranes. Hla is secreted as a 33 kDa monomer that forms heptameric transmembrane pores whose action compromises maintenance of cell shape and epithelial tightness. It is not exactly known whether certain membrane lipid domains of host cells facilitate adhesion of Ha monomers, oligomerization, or pore formation. We used sphingomyelinase (hemolysin B, Hlb) expressed by some strains of staphylococci to pre-treat airway epithelial model cells in order to specifically decrease the sphingomyelin (SM) abundance in their plasma membranes. Such a pre-incubation exclusively removed SM from the plasma membrane lipid fraction. It abrogated the formation of heptamers and prevented the formation of functional transmembrane pores. Hla exposure of rHlb pre-treated cells did not result in increases in [Ca2+]i, did not induce any microscopically visible changes in cell shape or formation of paracellular gaps, and did not induce hypo-phosphorylation of the actin depolymerizing factor cofilin as usual. Removal of sphingomyelin from the plasma membranes of human airway epithelial cells completely abrogates the deleterious actions of Staphylococcus aureus alpha-toxin.
Collapse
Affiliation(s)
- Sabine Ziesemer
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| | - Nils Möller
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| | - Andreas Nitsch
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| | - Christian Müller
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| | - Achim G Beule
- Department of Otorhinolaryngology, University Hospital, Münster, Germany and Department of Otorhinolaryngology, Head and Neck Surgery, Greifswald University Hospital, D-17489 Greifswald, Germany.
| | - Jan-Peter Hildebrandt
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| |
Collapse
|
27
|
Krueger E, Brown AC. Inhibition of bacterial toxin recognition of membrane components as an anti-virulence strategy. J Biol Eng 2019; 13:4. [PMID: 30820243 PMCID: PMC6380060 DOI: 10.1186/s13036-018-0138-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
Over recent years, the development of new antibiotics has not kept pace with the rate at which bacteria develop resistance to these drugs. For this reason, many research groups have begun to design and study alternative therapeutics, including molecules to specifically inhibit the virulence of pathogenic bacteria. Because many of these pathogenic bacteria release protein toxins, which cause or exacerbate disease, inhibition of the activity of bacterial toxins is a promising anti-virulence strategy. In this review, we describe several approaches to inhibit the initial interactions of bacterial toxins with host cell membrane components. The mechanisms by which toxins interact with the host cell membrane components have been well-studied over the years, leading to the identification of therapeutic targets, which have been exploited in the work described here. We review efforts to inhibit binding to protein receptors and essential membrane lipid components, complex assembly, and pore formation. Although none of these molecules have yet been demonstrated in clinical trials, the in vitro and in vivo results presented here demonstrate their promise as novel alternatives and/or complements to traditional antibiotics.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015 USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015 USA
| |
Collapse
|
28
|
The Small RNA Teg41 Regulates Expression of the Alpha Phenol-Soluble Modulins and Is Required for Virulence in Staphylococcus aureus. mBio 2019; 10:mBio.02484-18. [PMID: 30723124 PMCID: PMC6428751 DOI: 10.1128/mbio.02484-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The alpha phenol-soluble modulins (αPSMs) are among the most potent toxins produced by Staphylococcus aureus. Their biological role during infection has been studied in detail; however, the way they are produced by the bacterial cell is not well understood. In this work, we identify a small RNA molecule called Teg41 that plays an important role in αPSM production by S. aureus. Teg41 positively influences αPSM production. The importance of Teg41 is highlighted by the fact that a strain containing a deletion in the 3′ end of Teg41 produces significantly less αPSMs and is attenuated for virulence in a mouse abscess model of infection. As the search for new therapeutic strategies to combat S. aureus infection proceeds, Teg41 may represent a novel target. Small RNAs (sRNAs) remain an understudied class of regulatory molecules in bacteria in general and in Gram-positive bacteria in particular. In the major human pathogen Staphylococcus aureus, hundreds of sRNAs have been identified; however, only a few have been characterized in detail. In this study, we investigate the role of the sRNA Teg41 in S. aureus virulence. We demonstrate that Teg41, an sRNA divergently transcribed from the locus that encodes the cytolytic alpha phenol-soluble modulin (αPSM) peptides, plays a critical role in αPSM production. Overproduction of Teg41 leads to an increase in αPSM levels and a corresponding increase in hemolytic activity from S. aureus cells and cell-free culture supernatants. To identify regions of Teg41 important for its function, we performed an in silico RNA-RNA interaction analysis which predicted an interaction between the 3′ end of Teg41 and the αPSM transcript. Deleting a 24-nucleotide region from the S. aureus genome, corresponding to the 3′ end of Teg41, led to a 10-fold reduction in αPSM-dependent hemolytic activity and attenuation of virulence in a murine abscess model of infection. Restoration of hemolytic activity in the Teg41Δ3′ strain was possible by expressing full-length Teg41 in trans. Restoration of hemolytic activity was also possible by expressing the 3′ end of Teg41, suggesting that this region of Teg41 is necessary and sufficient for αPSM-dependent hemolysis. Our results show that Teg41 is positively influencing αPSM production, demonstrating for the first time regulation of the αPSM peptides by an sRNA in S. aureus.
Collapse
|
29
|
Buchan KD, Foster SJ, Renshaw SA. Staphylococcus aureus: setting its sights on the human innate immune system. MICROBIOLOGY-SGM 2019; 165:367-385. [PMID: 30625113 DOI: 10.1099/mic.0.000759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus has colonized humans for at least 10 000 years, and today inhabits roughly a third of the population. In addition, S. aureus is a major pathogen that is responsible for a significant disease burden, ranging in severity from mild skin and soft-tissue infections to life-threatening endocarditis and necrotizing pneumonia, with treatment often hampered by resistance to commonly available antibiotics. Underpinning its versatility as a pathogen is its ability to evade the innate immune system. S. aureus specifically targets innate immunity to establish and sustain infection, utilizing a large repertoire of virulence factors to do so. Using these factors, S. aureus can resist phagosomal killing, impair complement activity, disrupt cytokine signalling and target phagocytes directly using proteolytic enzymes and cytolytic toxins. Although most of these virulence factors are well characterized, their importance during infection is less clear, as many display species-specific activity against humans or against animal hosts, including cows, horses and chickens. Several staphylococcal virulence factors display species specificity for components of the human innate immune system, with as few as two amino acid changes reducing binding affinity by as much as 100-fold. This represents a major issue for studying their roles during infection, which cannot be examined without the use of humanized infection models. This review summarizes the major factors S. aureus uses to impair the innate immune system, and provides an in-depth look into the host specificity of S. aureus and how this problem is being approached.
Collapse
Affiliation(s)
- Kyle D Buchan
- 1The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Simon J Foster
- 2Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Stephen A Renshaw
- 1The Bateson Centre and Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
30
|
Divyakolu S, Chikkala R, Ratnakar KS, Sritharan V. Hemolysins of <i>Staphylococcus aureus</i>—An Update on Their Biology, Role in Pathogenesis and as Targets for Anti-Virulence Therapy. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/aid.2019.92007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Dupin A, Simmel FC. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat Chem 2018; 11:32-39. [PMID: 30478365 PMCID: PMC6298583 DOI: 10.1038/s41557-018-0174-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/19/2018] [Indexed: 01/18/2023]
Abstract
Multicellularity enables the growth of complex life forms as it allows for specialization of cell types, differentiation, and large scale spatial organization. In a similar way, modular construction of synthetic multicellular systems will lead to dynamic biomimetic materials that can respond to their environment in complex ways. In order to achieve this goal, artificial cellular communication and developmental programs still have to be established. Here, we create geometrically controlled spatial arrangements of emulsion-based artificial cellular compartments containing synthetic in vitro gene circuitry, separated by lipid bilayer membranes. We quantitatively determine the membrane pore-dependent response of the circuits to artificial morphogen gradients, which are established via diffusion from dedicated organizer cells. Utilizing different types of feed-forward and feedback in vitro gene circuits, we then implement artificial signaling and differentiation processes, demonstrating the potential for the realization of complex spatiotemporal dynamics in artificial multicellular systems.
Collapse
Affiliation(s)
- Aurore Dupin
- Physics Department E14 and ZNN, Technical University Munich, Garching, Germany
| | - Friedrich C Simmel
- Physics Department E14 and ZNN, Technical University Munich, Garching, Germany.
| |
Collapse
|
32
|
Venkatasubramaniam A, Kanipakala T, Ganjbaksh N, Mehr R, Mukherjee I, Krishnan S, Bae T, Aman MJ, Adhikari RP. A Critical Role for HlgA in Staphylococcus aureus Pathogenesis Revealed by A Switch in the SaeRS Two-Component Regulatory System. Toxins (Basel) 2018; 10:E377. [PMID: 30231498 PMCID: PMC6162840 DOI: 10.3390/toxins10090377] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/18/2022] Open
Abstract
Cytolytic pore-forming toxins including alpha hemolysin (Hla) and bicomponent leukotoxins play an important role in the pathogenesis of Staphylococcus aureus. These toxins kill the polymorphonuclear phagocytes (PMNs), disrupt epithelial and endothelial barriers, and lyse erythrocytes to provide iron for bacterial growth. The expression of these toxins is regulated by the two-component sensing systems Sae and Agr. Here, we report that a point mutation (L18P) in SaeS, the histidine kinase sensor of the Sae system, renders the S. aureus Newman hemolytic activity fully independent of Hla and drastically increases the PMN lytic activity. Furthermore, this Hla-independent activity, unlike Hla itself, can lyse human erythrocytes. The Hla-independent activity towards human erythrocytes was also evident in USA300, however, under strict agr control. Gene knockout studies revealed that this Hla-independent Sae-regulated activity was entirely dependent on gamma hemolysin A subunit (HlgA). In contrast, hemolytic activity of Newman towards human erythrocytes from HlgAB resistant donors was completely dependent on agr. The culture supernatant from Newman S. aureus could be neutralized by antisera against two vaccine candidates based on LukS and LukF subunits of Panton-Valentine leukocidin but not by an anti-Hla neutralizing antibody. These findings display the complex involvement of Sae and Agr systems in regulating the virulence of S. aureus and have important implications for vaccine and immunotherapeutics development for S. aureus disease in humans.
Collapse
Affiliation(s)
| | | | | | - Rana Mehr
- Integrated Biotherapeutics Inc., Rockville, MD 20850, USA.
| | | | | | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.
| | - M Javad Aman
- Integrated Biotherapeutics Inc., Rockville, MD 20850, USA.
| | | |
Collapse
|
33
|
Patočka J, Středa L. Protein Biotoxins of Military Significance. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2017.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
There is a spectrum of several threat agents, ranging from nerve agents and mustard agents to natural substances, such as biotoxins and new, synthetic, bioactive molecules produced by the chemical industry, to the classical biological warfare agents. The new, emerging threat agents are biotoxins produced by animals, plants, fungi, and bacteria. Many types of organisms produce substances that are toxic to humans. Examples of such biotoxins are botulinum toxin, tetanus toxin, and ricin. Several bioactive molecules produced by the pharmaceutical industry can be even more toxic than are the classical chemical warfare agents. Such new agents, like the biotoxins and bioregulators, often are called mid-spectrum agents. The threat to humans from agents developed by modern chemical synthesis and by genetic engineering also must be considered, since such agents may be more toxic or more effective in causing death or incapacitation than classical warfare agents. By developing effective medical protection and treatment against the most likely chemical and mid-spectrum threat agents, the effects of such agents in a war scenario or following a terrorist attack can be reduced. Toxin-mediated diseases have made humans ill for millennia. Unfortunately, the use of biological agents as weapons of terror has now been realized, and separating naturally occurring disease from bioterroristic events has become an important public health goal. The key to timely identification of such attacks relies on education of primary care physicians, first responders, and public health officials.
Collapse
|
34
|
Staphylococcus aureus Toxins and Their Molecular Activity in Infectious Diseases. Toxins (Basel) 2018; 10:toxins10060252. [PMID: 29921792 PMCID: PMC6024779 DOI: 10.3390/toxins10060252] [Citation(s) in RCA: 270] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/04/2022] Open
Abstract
Staphylococcus aureus is a microorganism resident in the skin and nasal membranes with a dreadful pathogenic potential to cause a variety of community and hospital-acquired infections. The frequency of these infections is increasing and their treatment is becoming more difficult. The ability of S. aureus to form biofilms and the emergence of multidrug-resistant strains are the main reasons determining the challenge in dealing with these infections. S. aureus' infectious capacity and its success as a pathogen is related to the expression of virulence factors, among which the production of a wide variety of toxins is highlighted. For this reason, a better understanding of S. aureus toxins is needed to enable the development of new strategies to reduce their production and consequently improve therapeutic approaches. This review focuses on understanding the toxin-based pathogenesis of S. aureus and their role on infectious diseases.
Collapse
|
35
|
Lee SJ, Lee HJ, Jung YH, Kim JS, Choi SH, Han HJ. Melatonin inhibits apoptotic cell death induced by Vibrio vulnificus VvhA via melatonin receptor 2 coupling with NCF-1. Cell Death Dis 2018; 9:48. [PMID: 29352110 PMCID: PMC5833450 DOI: 10.1038/s41419-017-0083-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
Melatonin, an endogenous hormone molecule, has a variety of biological functions, but a functional role of melatonin in the infection of Gram-negative bacterium Vibrio vulnificus has yet to be described. In this study, we investigated the molecular mechanism of melatonin in the apoptosis of human intestinal epithelial (HCT116) cells induced by the hemolysin (VvhA) produced by V. vulnificus. Melatonin (1 μM) significantly inhibited apoptosis induced by the recombinant protein (r) VvhA, which had been inhibited by the knockdown of MT2. The rVvhA recruited caveolin-1, NCF-1, and Rac1 into lipid rafts to facilitate the production of ROS responsible for the phosphorylation of PKC and JNK. Interestingly, melatonin recruited NCF-1 into non-lipid rafts to prevent ROS production via MT2 coupling with Gαq. Melatonin inhibited the JNK-mediated phosphorylation of c-Jun responsible for Bax expression, the release of mitochondrial cytochrome c, and caspase-3/-9 activation during its promotion of rVvhA-induced apoptotic cell death. In addition, melatonin inhibited JNK-mediated phosphorylation of Bcl-2 responsible for the release of Beclin-1 and Atg5 expression during its promotion of rVvhA-induced autophagic cell death. These results demonstrate that melatonin signaling via MT2 triggers recruitment of NCF-1 into non-lipid rafts to block ROS production and JNK-mediated apoptotic and autophagic cell deaths induced by rVvhA in intestinal epithelial cells.
Collapse
Affiliation(s)
- Sei-Jung Lee
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan, 38610, South Korea
| | - Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul, 08826, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
36
|
Schwiering M, Husmann M, Hellmann N. P2X-Receptor Antagonists Inhibit the Interaction of S. aureus Hemolysin A with Membranes. Toxins (Basel) 2017; 9:toxins9100332. [PMID: 29048353 PMCID: PMC5666378 DOI: 10.3390/toxins9100332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/08/2017] [Accepted: 10/15/2017] [Indexed: 11/21/2022] Open
Abstract
The pore forming hemolysin A, Hla, is a major virulence factor of Staphylococcus aureus. Apparently, 1–2 pore(s) per cell suffice(s) to cause cell death. Accumulated experimental evidence points towards a major role of ATP-gated purinergic receptors (P2XR) for hemolysis caused by Hla, complement and other pore forming proteins, presumably by increasing membrane permeability. Indeed, in experiments employing rabbit erythrocytes, inhibitory concentrations of frequently employed P2XR-antagonists were in a similar range as previously reported for erythrocytes of other species and other toxins. However, Hla-dependent hemolysis was not enhanced by extracellular ATP, and oxidized adenosinetriphosphate (oxATP) had only a minor inhibitory effect. Unexpectedly, P2XR-inhibitors also prevented Hla-induced lysis of pure lipid membranes, demonstrating that the inhibition did not even depend on the presence of P2XR. Fluorescence microscopy and gel-electrophoresis clearly revealed that P2XR-inhibitors interfere with binding and subsequent oligomerisation of Hla with membranes. Similar results were obtained employing HaCaT-cells. Furthermore, calorimetric data and hemolysis experiments with Hla pre-treated with pyridoxal phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) showed that this compound directly binds to Hla. Our results call for a critical re-assessment of the appealing concept, which suggests that P2XR are general amplifiers of damage by pore-forming proteins.
Collapse
Affiliation(s)
- Markus Schwiering
- Institute for Molecular Biophysics, Jakob-Welder-Weg 26, University of Mainz, 55128 Mainz, Germany.
| | - Matthias Husmann
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, 55131 Mainz, Germany.
| | - Nadja Hellmann
- Institute for Molecular Biophysics, Jakob-Welder-Weg 26, University of Mainz, 55128 Mainz, Germany.
| |
Collapse
|
37
|
Söderström CM, Fagerberg SK, Brogaard MB, Leipziger J, Skals M, Praetorius HA. Loop Diuretics Diminish Hemolysis Induced by α-Hemolysin from Escherichia coli. J Membr Biol 2017; 250:301-313. [DOI: 10.1007/s00232-017-9963-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
38
|
Seilie ES, Bubeck Wardenburg J. Staphylococcus aureus pore-forming toxins: The interface of pathogen and host complexity. Semin Cell Dev Biol 2017; 72:101-116. [PMID: 28445785 DOI: 10.1016/j.semcdb.2017.04.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/22/2017] [Accepted: 04/18/2017] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is a prominent human pathogen capable of infecting a variety of host species and tissue sites. This versatility stems from the pathogen's ability to secrete diverse host-damaging virulence factors. Among these factors, the S. aureus pore-forming toxins (PFTs) α-toxin and the bicomponent leukocidins, have garnered much attention for their ability to lyse cells at low concentrations and modulate disease severity. Although many of these toxins were discovered nearly a century ago, their host cell specificities have only been elucidated over the past five to six years, starting with the discovery of the eukaryotic receptor for α-toxin and rapidly followed by identification of the leukocidin receptors. The identification of these receptors has revealed the species- and cell type-specificity of toxin binding, and provided insight into non-lytic effects of PFT intoxication that contribute to disease pathogenesis.
Collapse
Affiliation(s)
- E Sachiko Seilie
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, United States; Department of Microbiology, The University of Chicago, Chicago, IL 60637, United States
| | | |
Collapse
|
39
|
Baaske R, Richter M, Möller N, Ziesemer S, Eiffler I, Müller C, Hildebrandt JP. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin. Toxins (Basel) 2016; 8:toxins8120365. [PMID: 27929417 PMCID: PMC5198559 DOI: 10.3390/toxins8120365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
Airway epithelial cells reduce cytosolic ATP content in response to treatment with S. aureus alpha-toxin (hemolysin A, Hla). This study was undertaken to investigate whether this is due to attenuated ATP generation or to release of ATP from the cytosol and extracellular ATP degradation by ecto-enzymes. Exposure of cells to rHla did result in mitochondrial calcium uptake and a moderate decline in mitochondrial membrane potential, indicating that ATP regeneration may have been attenuated. In addition, ATP may have left the cells through transmembrane pores formed by the toxin or through endogenous release channels (e.g., pannexins) activated by cellular stress imposed on the cells by toxin exposure. Exposure of cells to an alpha-toxin mutant (H35L), which attaches to the host cell membrane but does not form transmembrane pores, did not induce ATP release from the cells. The Hla-mediated ATP-release was completely blocked by IB201, a cyclodextrin-inhibitor of the alpha-toxin pore, but was not at all affected by inhibitors of pannexin channels. These results indicate that, while exposure of cells to rHla may somewhat reduce ATP production and cellular ATP content, a portion of the remaining ATP is released to the extracellular space and degraded by ecto-enzymes. The release of ATP from the cells may occur directly through the transmembrane pores formed by alpha-toxin.
Collapse
Affiliation(s)
- Romina Baaske
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Mandy Richter
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Nils Möller
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Sabine Ziesemer
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Ina Eiffler
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Christian Müller
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| |
Collapse
|
40
|
Zhang H, Zheng Y, Gao H, Xu P, Wang M, Li A, Miao M, Xie X, Deng Y, Zhou H, Du H. Identification and Characterization of Staphylococcus aureus Strains with an Incomplete Hemolytic Phenotype. Front Cell Infect Microbiol 2016; 6:146. [PMID: 27917374 PMCID: PMC5114236 DOI: 10.3389/fcimb.2016.00146] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/25/2016] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus aureus is a common pathogen causing both hospital and community-acquired infections. Hemolysin is one of the important virulence factors for S. aureus and causes the typical β-hemolytic phenotype which is called complete hemolytic phenotype as well. Recently, S. aureus with an incomplete hemolytic phenotype (SIHP) was isolated from clinical samples. To study the microbiologic characteristics of SIHP, the special hemolytic phenotype of SIHP was verified on the sheep blood agar plates supplied by different manufacturers. Expression of hemolysin genes hla, hlb, hlgC, and hld of SIHP was detected by qRT-PCR and it was showed that expression of hlb in SIHP was obviously increased compared to the control S. aureus strains with complete hemolytic phenotype (SCHP), while the expression of hla, hlgC, and hld in SIHP was significantly decreased. In addition, the α-hemolysin encoded by gene hla was decreased obviously in SIHP compared to SCHP by western blot. All 60 SIHP strains were identified to be the methicillin resistant S. aureus (MRSA), and moreover these SIHP strains all contains mecA gene. The virulence gene tst were all present in SIHP, and the intracellular survival ability of SIHP was much greater than that of the gene tst negative S. aureus. We also found that IL-2, IL-6, and IL-17A secreted in the supernatant of SIHP infected macrophages increased significantly compared to tst negative control strains infected ones. MLST analysis showed that all of SIHP strains were classified into ST5 clone. To our knowledge, this study firstly showed that SIHP strains are a kind of methicillin resistant strains which express β-hemolysin highly and possess a potential high virulence, and it was suggested that SIHP should be paid more attention in hospital.
Collapse
Affiliation(s)
- Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Yi Zheng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Huasheng Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Ping Xu
- Department of Clinical Laboratory, The Fifth People's Hospital of Suzhou Suzhou, China
| | - Min Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Aiqing Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Minhui Miao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Yimai Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Huiqin Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University Suzhou, China
| |
Collapse
|
41
|
Eiffler I, Behnke J, Ziesemer S, Müller C, Hildebrandt JP. Staphylococcus aureus α-toxin-mediated cation entry depolarizes membrane potential and activates p38 MAP kinase in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L676-85. [PMID: 27496896 DOI: 10.1152/ajplung.00090.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022] Open
Abstract
Membrane potential (Vm)-, Na(+)-, or Ca(2+)-sensitive fluorescent dyes were used to analyze changes in Vm or intracellular ion concentrations in airway epithelial cells treated with Staphylococcus aureus α-toxin (Hla), a major virulence factor of pathogenic strains of these bacteria. Gramicidin, a channel-forming peptide causing membrane permeability to monovalent cations, a mutated form of Hla, rHla-H35L, which forms oligomers in the plasma membranes of eukaryotic cells but fails to form functional transmembrane pores, or the cyclodextrin-derivative IB201, a blocker of the Hla pore, were used to investigate the permeability of the pore. Na(+) as well as Ca(2+) ions were able to pass the Hla pore and accumulated in the cytosol. The pore-mediated influx of calcium ions was blocked by IB201. Treatment of cells with recombinant Hla resulted in plasma membrane depolarization as well as in increases in the phosphorylation levels of paxillin (signaling pathway mediating disruption of the actin cytoskeleton) and p38 MAP kinase (signaling pathway resulting in defensive actions). p38 MAP kinase phosphorylation, but not paxillin phosphorylation, was elicited by treatment of cells with gramicidin. Although treatment of cells with rHla-H35L resulted in the formation of membrane-associated heptamers, none of these cellular effects were observed in our experiments. This indicates that formation of functional Hla-transmembrane pores is required to induce the cell physiological changes mediated by α-toxin. Specifically, the changes in ion equilibria and plasma membrane potential are important activators of p38 MAP kinase, a signal transduction module involved in host cell defense.
Collapse
Affiliation(s)
- Ina Eiffler
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| | - Jane Behnke
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| | - Sabine Ziesemer
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| |
Collapse
|
42
|
Dissecting the role of ADAM10 as a mediator of Staphylococcus aureus α-toxin action. Biochem J 2016; 473:1929-40. [DOI: 10.1042/bcj20160062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/28/2016] [Indexed: 01/26/2023]
Abstract
This work elucidates the role of the transmembrane protease ADAM10 (a disintegrin and metalloprotease 10) for the action of Staphylococcus aureus α-toxin, by showing that the cytotoxicity of α-toxin does not depend on ADAM10’s catalytic activity but on the chaperone function of its prodomain.
Collapse
|
43
|
Ouyang P, Chen J, Sun M, Yin Z, Lin J, Fu H, Shu G, He C, Lv C, Deng X, Wang K, Geng Y, Yin L. Imperatorin inhibits the expression of alpha-hemolysin in Staphylococcus aureus strain BAA-1717 (USA300). Antonie van Leeuwenhoek 2016; 109:915-22. [PMID: 27043440 DOI: 10.1007/s10482-016-0690-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
Abstract
Both community-associated and hospital-acquired infections with methicillin-resistant Staphylococcus aureus (MRSA) have been increasingly reported around the world in the past 20 years. In 2006, the Centers for Disease Control and Prevention reported that 64 % of MRSA isolates were of the USA300 clonal type in infected patients in USA. The aim of our study was to estimate the in vitro effect of imperatorin on MRSA strain BAA-1717 (USA300). The effects of imperatorin on alpha-hemolysin (Hla) production, when strain BAA-1717 was co-cultured with sub-inhibitory concentrations of imperatorin, were analysed using susceptibility testing, hemolysis assays, western blotting and real-time PCR. Live/Dead analysis and cytotoxicity assays were employed to examine the protective effect of imperatorin against the strain BAA-1717-mediated injury of human alveolar epithelial cells (A549). The results showed that imperatorin has no anti-S. aureus activity at the tested concentrations in vitro. However, imperatorin can observably inhibit the production of Hla in culture supernatants and reduce the transcriptional levels of hla (the gene encoding Hla) and arg (the accessory gene regulator). Imperatorin prevented Hla-mediated A549 epithelial cell injury in a co-culture system. In conclusion, our results suggested that imperatorin has the potential to be developed as a new anti-virulence drug candidate for managing S. aureus infection.
Collapse
Affiliation(s)
- Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Junjie Chen
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Mao Sun
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Zhongqiong Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Juchun Lin
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Hualin Fu
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Cheng Lv
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Xuming Deng
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kaiyu Wang
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Chengdu, China.
| |
Collapse
|
44
|
Lim JY, Choi SI, Choi G, Hwang SW. Atypical sensors for direct and rapid neuronal detection of bacterial pathogens. Mol Brain 2016; 9:26. [PMID: 26960533 PMCID: PMC4784462 DOI: 10.1186/s13041-016-0202-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
Bacterial infection can threaten the normal biological functions of a host, often leading to a disease. Hosts have developed complex immune systems to cope with the danger. Preceding the elimination of pathogens, selective recognition of the non-self invaders is necessary. At the forefront of the body’s defenses are the innate immune cells, which are equipped with particular sensor molecules that can detect common exterior patterns of invading pathogens and their secreting toxins as well as with phagocytic machinery. Inflammatory mediators and cytokines released from these innate immune cells and infected tissues can boost the inflammatory cascade and further recruit adaptive immune cells to maximize the elimination and resolution. The nervous system also seems to interact with this process, mostly known to be affected by the inflammatory mediators through the binding of neuronal receptors, consequently activating neural circuits that tune the local and systemic inflammatory states. Recent research has suggested new contact points: direct interactions of sensory neurons with pathogens. Latest findings demonstrated that the sensory neurons not only share pattern recognition mechanisms with innate immune cells, but also utilize endogenous and exogenous electrogenic components for bacterial pathogen detection, by which the electrical firing prompts faster information flow than what could be achieved when the immune system is solely involved. As a result, rapid pain generation and active accommodation of the immune status occur. Here we introduced the sensory neuron-specific detector molecules for directly responding to bacterial pathogens and their signaling mechanisms. We also discussed extended issues that need to be explored in the future.
Collapse
Affiliation(s)
- Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 136-705, Korea. .,Department of Physiology, Korea University College of Medicine, Seoul, 136-705, Korea.
| | - Seung-In Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 136-705, Korea. .,Department of Physiology, Korea University College of Medicine, Seoul, 136-705, Korea.
| | - Geunyeol Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 136-705, Korea. .,Department of Physiology, Korea University College of Medicine, Seoul, 136-705, Korea.
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 136-705, Korea. .,Department of Physiology, Korea University College of Medicine, Seoul, 136-705, Korea.
| |
Collapse
|
45
|
Reyes-Robles T, Torres VJ. Staphylococcus aureus Pore-Forming Toxins. Curr Top Microbiol Immunol 2016; 409:121-144. [PMID: 27406190 DOI: 10.1007/82_2016_16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a formidable foe equipped with an armamentarium of virulence factors to thwart host defenses and establish a successful infection. Among these virulence factors, S. aureus produces several potent secreted proteins that act as cytotoxins, predominant among them the beta-barrel pore-forming toxins. These toxins play several roles in pathogenesis, including disruption of cellular adherens junctions at epithelial barriers, alteration of intracellular signaling events, modulation of host immune responses, and killing of eukaryotic immune and non-immune cells. This chapter provides an updated overview on the S. aureus beta-barrel pore-forming cytotoxins, the identification of toxin receptors on host cells, and their roles in pathogenesis.
Collapse
Affiliation(s)
- Tamara Reyes-Robles
- Department of Microbiology, Microbial Pathogenesis Program, New York University School of Medicine, 522 First Avenue, Smilow Research Building, Room 1010, New York, NY, 10016, USA
| | - Victor J Torres
- Department of Microbiology, Microbial Pathogenesis Program, New York University School of Medicine, 522 First Avenue, Smilow Research Building, Room 1010, New York, NY, 10016, USA.
| |
Collapse
|
46
|
Spaan AN, Reyes-Robles T, Badiou C, Cochet S, Boguslawski KM, Yoong P, Day CJ, de Haas CJC, van Kessel KPM, Vandenesch F, Jennings MP, Le Van Kim C, Colin Y, van Strijp JAG, Henry T, Torres VJ. Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes. Cell Host Microbe 2015; 18:363-70. [PMID: 26320997 DOI: 10.1016/j.chom.2015.08.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/02/2015] [Accepted: 08/03/2015] [Indexed: 12/30/2022]
Abstract
In order for Staphylococcus aureus to thrive inside the mammalian host, the bacterium has to overcome iron scarcity. S. aureus is thought to produce toxins that lyse erythrocytes, releasing hemoglobin, the most abundant iron source in mammals. Here we identify the Duffy antigen receptor for chemokines (DARC) as the receptor for the S. aureus hemolytic leukocidins LukED and HlgAB. By assessing human erythrocytes with DARC polymorphisms, we determined that HlgAB- and LukED-mediated lysis directly relates to DARC expression. DARC is required for S. aureus-mediated lysis of human erythrocytes, and DARC overexpression is sufficient to render cells susceptible to toxin-mediated lysis. HlgA and LukE bind directly to DARC through different regions, and by targeting DARC, HlgAB and LukED support S. aureus growth in a hemoglobin-acquisition-dependent manner. These findings elucidate how S. aureus targets and lyses erythrocytes to release one of the scarcest nutrients within the mammalian host.
Collapse
Affiliation(s)
- András N Spaan
- CIRI, Inserm U1111, CNRS UMR 5308, Lyon, France; Université Claude Bernard Lyon-1, Ecole Normale Supérieure, 69007 Lyon, France; Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Tamara Reyes-Robles
- Department of Microbiology, New York University School of Medicine, NY 10016, USA
| | - Cédric Badiou
- CIRI, Inserm U1111, CNRS UMR 5308, Lyon, France; Université Claude Bernard Lyon-1, Ecole Normale Supérieure, 69007 Lyon, France
| | - Sylvie Cochet
- Inserm U1134, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, Paris, France; Institut National de la Transfusion Sanguine, F-75739 Paris, France; Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | | | - Pauline Yoong
- Department of Microbiology, New York University School of Medicine, NY 10016, USA
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Carla J C de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Kok P M van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - François Vandenesch
- CIRI, Inserm U1111, CNRS UMR 5308, Lyon, France; Université Claude Bernard Lyon-1, Ecole Normale Supérieure, 69007 Lyon, France; Hospices Civils de Lyon, 69007 Lyon, France
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Caroline Le Van Kim
- Inserm U1134, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, Paris, France; Institut National de la Transfusion Sanguine, F-75739 Paris, France; Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Yves Colin
- Inserm U1134, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UMR_S1134, Paris, France; Institut National de la Transfusion Sanguine, F-75739 Paris, France; Laboratoire d'Excellence GR-Ex, 75238 Paris, France
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Thomas Henry
- CIRI, Inserm U1111, CNRS UMR 5308, Lyon, France; Université Claude Bernard Lyon-1, Ecole Normale Supérieure, 69007 Lyon, France.
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, NY 10016, USA.
| |
Collapse
|
47
|
Polymer antidotes for toxin sequestration. Adv Drug Deliv Rev 2015; 90:81-100. [PMID: 26026975 DOI: 10.1016/j.addr.2015.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/09/2015] [Accepted: 05/21/2015] [Indexed: 12/24/2022]
Abstract
Toxins delivered by envenomation, secreted by microorganisms, or unintentionally ingested can pose an immediate threat to life. Rapid intervention coupled with the appropriate antidote is required to mitigate the threat. Many antidotes are biological products and their cost, methods of production, potential for eliciting immunogenic responses, the time needed to generate them, and stability issues contribute to their limited availability and effectiveness. These factors exacerbate a world-wide challenge for providing treatment. In this review we evaluate a number of polymer constructs that may serve as alternative antidotes. The range of toxins investigated includes those from sources such as plants, animals and bacteria. The development of polymeric heavy metal sequestrants for use as antidotes to heavy metal poisoning faces similar challenges, thus recent findings in this area have also been included. Two general strategies have emerged for the development of polymeric antidotes. In one, the polymer acts as a scaffold for the presentation of ligands with a known affinity for the toxin. A second strategy is to generate polymers with an intrinsic affinity, and in some cases selectivity, to a range of toxins. Importantly, in vivo efficacy has been demonstrated for each of these strategies, which suggests that these approaches hold promise as an alternative to biological or small molecule based treatments.
Collapse
|
48
|
Wei H, Yuan H, Zhu Z, Liu Z, Xin J, Wu X, Cao Z. Staphylococcal enterotoxin burden determines the type of T helper cell response and pathology of the maxillary sinus mucosa in rabbits. Int Immunopharmacol 2015; 23:633-41. [PMID: 25466272 DOI: 10.1016/j.intimp.2014.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/02/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
Staphylococcal enterotoxin (SE) induces T lymphocyte activation along with nasal allergic inflammation during rhinosinusitis, but it is under debate on which types of T helper (Th) cells respond exclusively or whether they respond synergically. We hypothesize that their responses may vary based on dose of SE. To test this hypothesis, we initiated to determine the nature of the T cell response and pathological feature upon repeated exposure to staphylococcal enterotoxin A (SEA) at different doses in the maxillary sinus of rabbits. SEA (0.6 or 60 ng) was instilled daily into the left maxillary sinus of rabbits for 28 days. The right maxillary sinus receiving normal saline was used as control. Mucosal histological changes were examined by hematoxylin-eosin and toluidine blue staining. Tissue expression of myeloperoxidase (MPO), eosinophil cationic protein (ECP), T-box expressed in T cells (T-bet), and GATA binding protein 3 (GATA-3) were examined using immunohistochemistry. Mucosal levels of representative pro-inflammatory cytokines were measured using ELISA. SEA at 60 ng/day induced acute rhinosinusitis, as confirmed by CT scan. Histopathologic examination revealed epithelial disruption, subepithelial edema, and inflammatory cell infiltration. MPO and T-bet expression, as well as interleukin (IL)-2 and interferon (IFN)-γ levels, were up-regulated. However, 0.6 ng/day SEA did not cause discharge. Histological examination revealed prominent eosinophilic infiltration. ECP and GATA-3 expression, as well as IL-4 and IL-5 levels, were increased at this lower dose. In conclusion, SEA induces acute rhinosinusitis associated with a Th1-type immune response at high dose, and a predominantly Th2-biased allergic inflammation at low dose.
Collapse
|
49
|
Vibrio vulnificus VvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production in intestinal epithelial cells. Cell Death Dis 2015; 6:1655. [PMID: 25695598 PMCID: PMC4669806 DOI: 10.1038/cddis.2015.19] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 01/29/2023]
Abstract
The Gram-negative bacterium Vibrio vulnificus produces hemolysin (VvhA), which induces cytotoxicity in mammalian cells. However, our understanding of the cytotoxic mechanism and the modes of action of VvhA are still fragmentary and incomplete. The recombinant protein (r) VvhA (50 pg/ml) significantly induces necrotic cell death and apoptosis in human intestinal epithelial (INT-407) cells. The apoptotic cell death induced by rVvhA is highly susceptible to the sequestration of cholesterol by methyl-β-cyclodextrin, whereas for necrotic cell death, this shows a marginal effect. We found that rVvhA induces the aggregation of lipid raft components coupled with NADPH oxidase enzymes, in which rVvhA increased the interaction of NADPH oxidase 2 (NOX2, gp91phox) with a cytosolic protein NCF1 (p47phox) to facilitate the production of reactive oxygen species (ROS). rVvhA uniquely stimulated a conventional PKC isoform PKCα and induced the phosphorylation of both ERK and JNK, which are responsible for the activation of transcription factor NF-κB. rVvhA induced an NF-κB-dependent imbalance of the Bcl-2/Bax ratio, the release of mitochondrial cytochrome c, and caspase-3/-9 activation during its promotion of apoptotic cell death. In addition, rVvhA has the ability to inhibit the expression of cell cycle-related proteins, such as CDK2, CDK4, cyclin D1, and cyclin E. These results demonstrate that rVvhA induces NF-κB-dependent mitochondrial cell death via lipid raft-mediated ROS production by the distinct activation of PKCα and ERK/JNK in intestinal epithelial cells.
Collapse
|
50
|
Mozola CC, Magassa N, Caparon MG. A novel cholesterol-insensitive mode of membrane binding promotes cytolysin-mediated translocation by Streptolysin O. Mol Microbiol 2014; 94:675-87. [PMID: 25196983 DOI: 10.1111/mmi.12786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2014] [Indexed: 11/30/2022]
Abstract
Cytolysin-mediated translocation (CMT), performed by Streptococcus pyogenes, utilizes the cholesterol-dependent cytolysin Streptolysin O (SLO) to translocate the NAD(+) -glycohydrolase (SPN) into the host cell during infection. SLO is required for CMT and can accomplish this activity without pore formation, but the details of SLO's interaction with the membrane preceding SPN translocation are unknown. Analysis of binding domain mutants of SLO and binding domain swaps between SLO and homologous cholesterol-dependent cytolysins revealed that membrane binding by SLO is necessary but not sufficient for CMT, demonstrating a specific requirement for SLO in this process. Despite being the only known receptor for SLO, this membrane interaction does not require cholesterol. Depletion of cholesterol from host membranes and mutation of SLO's cholesterol recognition motif abolished pore formation but did not inhibit membrane binding or CMT. Surprisingly, SLO requires the coexpression and membrane localization of SPN to achieve cholesterol-insensitive membrane binding; in the absence of SPN, SLO's binding is characteristically cholesterol-dependent. SPN's membrane localization also requires SLO, suggesting a co-dependent, cholesterol-insensitive mechanism of membrane binding occurs, resulting in SPN translocation.
Collapse
Affiliation(s)
- Cara C Mozola
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110-1093, USA
| | | | | |
Collapse
|