1
|
Allister EM, Mulvihill EE, Barrett PHR, Edwards JY, Carter LP, Huff MW. Inhibition of apoB secretion from HepG2 cells by insulin is amplified by naringenin, independent of the insulin receptor. J Lipid Res 2008; 49:2218-29. [PMID: 18587069 DOI: 10.1194/jlr.m800297-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hepatic overproduction of apolipoprotein B (apoB)-containing lipoproteins is characteristic of the dyslipidemia associated with insulin resistance. Recently, we demonstrated that the flavonoid naringenin, like insulin, decreased apoB secretion from HepG2 cells by activation of both the phosphoinositide-3-kinase (PI3-K) pathway and the mitogen-activated protein kinase/extracellular-regulated kinase (MAPK(erk)) pathway. In the present study, we determined whether naringenin-induced signaling required the insulin receptor (IR) and sensitized the cell to the effects of insulin, and whether the kinetics of apoB assembly and secretion in cells exposed to naringenin were similar to those of insulin. Immunoblot analysis revealed that insulin stimulated maximal phosphorylation of IR and IR substrate-1 after 10 min, whereas naringenin did not affect either at any time point up to 60 min. The combination of naringenin and submaximal concentrations of insulin potentiated extracellular-regulated kinase 1/2 activation and enhanced upregulation of the LDL receptor, downregulation of microsomal triglyceride transfer protein expression, and inhibition of apoB-100 secretion. Multicompartmental modeling of apoB pulse-chase studies revealed that attenuation of secreted radiolabeled apoB in naringenin- or insulin-treated cells was similar under lipoprotein-deficient or oleate-stimulated conditions. Naringenin and insulin both stimulated intracellular apoB degradation via a kinetically defined rapid pathway. Therefore, naringenin, like insulin, inhibits apoB secretion through activation of both PI3-K and MAPK(erk) signaling, resulting in similar kinetics of apoB secretion. However, the mechanism for naringenin-induced signaling is independent of the IR. Naringenin represents a possible strategy for reduction of hepatic apoB secretion, particularly in the setting of insulin resistance.
Collapse
Affiliation(s)
- Emma M Allister
- Robarts Research Institute, Departments of Medicine and Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
2
|
Matsusue K, Kusakabe T, Noguchi T, Takiguchi S, Suzuki T, Yamano S, Gonzalez FJ. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab 2008; 7:302-11. [PMID: 18396136 PMCID: PMC2587176 DOI: 10.1016/j.cmet.2008.03.003] [Citation(s) in RCA: 280] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 12/18/2007] [Accepted: 03/05/2008] [Indexed: 12/11/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is induced in leptin-deficient (ob/ob) mouse liver and is critical for the development of hepatic steatosis. The present study shows that fat-specific protein 27 (Fsp27) in ob/ob liver is a direct target gene of PPARgamma and can elevate hepatic triglyceride levels. FSP27 belongs to the CIDE family, composed of CIDE A, CIDE B, and FSP27/CIDE C, all of which contain a conserved CIDE-N domain. FSP27 was recently reported to be a lipid droplet-binding protein and to promote lipid accumulation in adipocytes. The Fsp27 gene was expressed at high levels in ob/ob liver and at markedly lower levels in ob/ob livers lacking PPARgamma. Forced expression of FSP27 by adenovirus in hepatocytes in vitro or in vivo led to increased triglyceride levels. Knockdown by adenovirus expressing FSP27 shRNA resulted in lower accumulation of hepatic triglycerides compared to control adenovirus-infected liver. Taken together, these results indicate that FSP27 is a direct mediator of PPARgamma-dependent hepatic steatosis.
Collapse
Affiliation(s)
- Kimihiko Matsusue
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
3
|
Jackson KG, Maitin V, Leake DS, Yaqoob P, Williams CM. Saturated fat-induced changes in Sf 60-400 particle composition reduces uptake of LDL by HepG2 cells. J Lipid Res 2005; 47:393-403. [PMID: 16278492 DOI: 10.1194/jlr.m500382-jlr200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of human postprandial triacylglycerol-rich lipoproteins (TRLs), isolated after meals enriched in saturated fatty acids (SFAs), n-6 PUFAs, and MUFAs, to inhibit the uptake of 125I-labeled LDL by the LDL receptor was investigated in HepG2 cells. Addition of TRLs resulted in a dose-dependent inhibition of heparin-releasable binding, cell-associated radioactivity, and degradation products of 125I-labeled LDL (P < 0.001). SFA-rich Svedberg flotation rate (Sf) 60-400 resulted in significantly greater inhibition of cell-associated radioactivity than PUFA-rich particles (P = 0.016) and total uptake of 125I-labeled LDL compared with PUFA- and MUFA-rich particles (P < 0.02). Normalization of the apolipoprotein (apo)E but not apoC-III content of the TRLs removed the effect of meal fatty acid composition, and addition of an anti-apoE antibody reversed the inhibitory effect of TRLs on the total uptake of 125I-labeled LDL. Real time RT-PCR showed that the SFA-rich Sf 60-400 increased the expression of genes involved in hepatic lipid synthesis (P < 0.05) and decreased the expression of the LDL receptor-related protein 1 compared with MUFAs (P = 0.008). In conclusion, these findings suggest an alternative or additional mechanism whereby acute fat ingestion can influence LDL clearance via competitive apoE-dependent effects of TRL on the LDL receptor.
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal/pharmacology
- Apolipoprotein B-100
- Apolipoprotein B-48
- Apolipoprotein C-III
- Apolipoproteins B/analysis
- Apolipoproteins B/genetics
- Apolipoproteins C/analysis
- Apolipoproteins E/analysis
- Apolipoproteins E/immunology
- Binding, Competitive
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cholesterol/analysis
- Chylomicrons/chemistry
- Chylomicrons/metabolism
- Dietary Fats/metabolism
- Dietary Fats, Unsaturated/metabolism
- Endocytosis/drug effects
- Fatty Acid Synthases/genetics
- Fatty Acids/administration & dosage
- Fatty Acids/isolation & purification
- Fatty Acids/pharmacology
- Gene Expression/drug effects
- Gene Expression/genetics
- Humans
- Hydroxymethylglutaryl CoA Reductases/genetics
- Intracellular Signaling Peptides and Proteins
- Lipoproteins, LDL/pharmacokinetics
- Lipoproteins, VLDL/chemistry
- Lipoproteins, VLDL/metabolism
- Low Density Lipoprotein Receptor-Related Protein-1/genetics
- Male
- Membrane Proteins/genetics
- Middle Aged
- Proprotein Convertases/genetics
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Serine Endopeptidases/genetics
- Sterol O-Acyltransferase/genetics
- Sterol Regulatory Element Binding Protein 1/genetics
- Triglycerides/analysis
Collapse
Affiliation(s)
- Kim G Jackson
- School of Food Biosciences, University of Reading, Reading, Berkshire, United Kingdom.
| | | | | | | | | |
Collapse
|
4
|
Argmann CA, Edwards JY, Sawyez CG, O'Neil CH, Hegele RA, Pickering JG, Huff MW. Regulation of Macrophage Cholesterol Efflux through Hydroxymethylglutaryl-CoA Reductase Inhibition. J Biol Chem 2005; 280:22212-21. [PMID: 15817453 DOI: 10.1074/jbc.m502761200] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cholesterol biosynthetic pathway produces numerous signaling molecules. Oxysterols through liver X receptor (LXR) activation regulate cholesterol efflux, whereas the non-sterol mevalonate metabolite, geranylgeranyl pyrophosphate (GGPP), was recently demonstrated to inhibit ABCA1 expression directly, through antagonism of LXR and indirectly through enhanced RhoA geranylgeranylation. We used HMG-CoA reductase inhibitors (statins) to test the hypothesis that reduced synthesis of mevalonate metabolites would enhance cholesterol efflux and attenuate foam cell formation. Preincubation of THP-1 macrophages with atorvastatin, dose dependently (1-10 microm) stimulated cholesterol efflux to apolipoprotein AI (apoAI, 10-60%, p < 0.05) and high density lipoprotein (HDL(3)) (2-50%, p < 0.05), despite a significant decrease in cholesterol synthesis (2-90%). Atorvastatin also increased ABCA1 and ABCG1 mRNA abundance (30 and 35%, p < 0.05). Addition of mevalonate, GGPP or farnesyl pyrophosphate completely blocked the statin-induced increase in ABCA1 expression and apoAI-mediated cholesterol efflux. A role for RhoA was established, because two inhibitors of Rho protein activity, a geranylgeranyl transferase inhibitor and C3 exoenzyme, increased cholesterol efflux to apoAI (20-35%, p < 0.05), and macrophage expression of dominant-negative RhoA enhanced cholesterol efflux to apoAI (20%, p < 0.05). In addition, atorvastatin increased the RhoA levels in the cytosol fraction and decreased the membrane localization of RhoA. Atorvastatin treatment activated peroxisome proliferator activated receptor gamma and increased LXR-mediated gene expression suggesting that atorvastatin induces cholesterol efflux through a molecular cascade involving inhibition of RhoA signaling, leading to increased peroxisome proliferator activated receptor gamma activity, enhanced LXR activation, increased ABCA1 expression, and cholesterol efflux. Finally, statin treatment inhibited cholesteryl ester accumulation in macrophages challenged with atherogenic hypertriglyceridemic very low density lipoproteins indicating that statins can regulate foam cell formation.
Collapse
Affiliation(s)
- Carmen A Argmann
- Robarts Research Institute, Vascular Biology Group, and the Departments of Medicine and Biochemistry, the University of Western Ontario, London, Ontario N6A 5K8, Canada
| | | | | | | | | | | | | |
Collapse
|
5
|
Allister EM, Borradaile NM, Edwards JY, Huff MW. Inhibition of microsomal triglyceride transfer protein expression and apolipoprotein B100 secretion by the citrus flavonoid naringenin and by insulin involves activation of the mitogen-activated protein kinase pathway in hepatocytes. Diabetes 2005; 54:1676-83. [PMID: 15919788 DOI: 10.2337/diabetes.54.6.1676] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microsomal triglyceride transfer protein (MTP) is necessary for hepatocyte assembly and secretion of apolipoprotein (apo)B100-containing lipoproteins. The citrus flavonoid naringenin, like insulin, decreased MTP expression in HepG2 cells, resulting in inhibition of apoB100 secretion; however, the mechanism for naringenin is independent of insulin receptor substrate-1/2. Recently, it was reported that insulin decreased MTP expression in HepG2 cells via the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) (MAPK(erk)) pathway. We hypothesized that naringenin acts via a similar mechanism. Inhibition of MAPK kinase (MEK) 1/2 in HepG2 cells significantly attenuated the naringenin- and insulin-induced reduction in MTP expression. Both naringenin and insulin increased ERK1/2 phosphorylation, which was completely inhibited by MEK1/2 inhibition and enhanced by inhibition of MAPK(p38), a negative regulator of MAPK(erk) activity. Inhibition of MEK1/2 significantly attenuated both the naringenin- and insulin-induced decrease in apoB100 secretion demonstrating a direct link between MAPK(erk) activation and apoB100 secretion. Furthermore, both compounds increased MAPK(p38) activation, and therefore inhibition of MAPK(p38) amplified thenaringenin- and insulin-induced decrease in apoB100 secretion. We conclude that MAPK(erk) signaling in hepatocytes is critical for inhibition of apoB100 secretion by naringenin and insulin. Therefore, naringenin may prove useful for activating insulin-signaling pathways important for regulation of hepatocyte lipid homeostasis.
Collapse
Affiliation(s)
- Emma M Allister
- Robarts Research Institute, 4-16, 100 Perth Dr., London, Ontario, Canada
| | | | | | | |
Collapse
|
6
|
Borradaile NM, de Dreu LE, Barrett PHR, Huff MW. Inhibition of hepatocyte apoB secretion by naringenin: enhanced rapid intracellular degradation independent of reduced microsomal cholesteryl esters. J Lipid Res 2002; 43:1544-54. [PMID: 12235187 DOI: 10.1194/jlr.m200115-jlr200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The grapefruit flavonoid, naringenin, is hypocholesterolemic in vivo, and inhibits basal apolipoprotein B (apoB) secretion and the expression and activities of both ACAT and microsomal triglyceride transfer protein (MTP) in human hepatoma cells (HepG2). In this report, we examined the effects of naringenin on apoB kinetics in oleate-stimulated HepG2 cells and determined the contribution of microsomal lumen cholesteryl ester (CE) availability to apoB secretion. Pulse-chase studies of apoB secretion and intracellular degradation were analyzed by multicompartmental modeling. The model for apoB metabolism in HepG2 cells includes an intracellular compartment from which apoB can be either secreted or degraded by both rapid and slow pathways. In the presence of 0.1 mM oleic acid, naringenin (200 micro M) reduced the secretion of newly synthesized apoB by 52%, due to a 56% reduction in the rate constant for secretion. Intracellular degradation was significantly increased due to a selective increase in rapid degradation, while slow degradation was unaffected. Incubation with either N-acetyl-leucinyl-leucinyl-norleucinal (ALLN) or lactacystin showed that degradation via the rapid pathway was largely proteasomal. Although these changes in apoB metabolism were accompanied by significant reductions in CE synthesis and mass, subcellular fractionation experiments comparing naringenin to specific ACAT and HMG-CoA reductase inhibitors revealed that reduced accumulation of newly synthesized CE in the microsomal lumen is not consistently associated with reduced apoB secretion. However, naringenin, unlike the ACAT and HMG-CoA reductase inhibitors, significantly reduced lumenal TG accumulation. We conclude that naringenin inhibits apoB secretion in oleate-stimulated HepG2 cells and selectively increases intracellular degradation via a largely proteasomal, rapid kinetic pathway. Although naringenin inhibits ACAT, CE availability in the endoplasmic reticulum (ER) lumen does not appear to regulate apoB secretion in HepG2 cells. Rather, inhibition of TG accumulation in the ER lumen via inhibition of MTP is the primary mechanism blocking apoB secretion.
Collapse
Affiliation(s)
- Nica M Borradaile
- Department of Medicine and Biochemistry, John P. Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
7
|
Argmann CA, Van Den Diepstraten CH, Sawyez CG, Edwards JY, Hegele RA, Wolfe BM, Huff MW. Transforming growth factor-beta1 inhibits macrophage cholesteryl ester accumulation induced by native and oxidized VLDL remnants. Arterioscler Thromb Vasc Biol 2001; 21:2011-8. [PMID: 11742878 DOI: 10.1161/hq1201.099426] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transforming growth factor beta1 (TGF-beta1) is secreted by various cells, including macrophages, smooth muscle cells, and endothelial cells. TGF-beta1 is present in atherosclerotic lesions, but its role in regulating macrophage foam cell formation is not understood. Hypertriglyceridemic very low density lipoprotein (VLDL) remnants (VLDL-REMs) in their native or oxidized form will induce cholesteryl ester (CE) and triglyceride (TG) accumulation in macrophages. Therefore, we examined whether TGF-beta1 can modulate the macrophage uptake of native or oxidized VLDL-REMs (oxVLDL-REMs). Incubation of J774A.1 macrophages with VLDL-REMs and oxVLDL-REMs compared with control cells increased cellular CE (13- and 21-fold, respectively) and TG mass (21-and 18-fold, respectively). Preincubation with TGF-beta1 before incubation with VLDL-REMs or oxVLDL-REMs significantly decreased CE (73% and 54%, respectively) and TG mass (42% and 41%, respectively). TGF-beta1 inhibited the activity and expression of 2 key components needed for VLDL-REM uptake: lipoprotein lipase and low density lipoprotein receptor. TGF-beta1 inhibited CE mass induced by oxVLDL-REMs in part by decreasing the expression of scavenger receptor type AI/II and CD36. Furthermore, TGF-beta1 enhanced cholesterol efflux through upregulation of the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Thus, TGF-beta1 inhibits macrophage foam cell formation induced by VLDL-REMs or oxVLDL-REMs, which suggests an antiatherogenic role for this cytokine.
Collapse
Affiliation(s)
- C A Argmann
- Department of Medicine, University of Western Ontario, London, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Secretion of hepatocyte apoB is inhibited by the flavonoids, naringenin and hesperetin, via reduced activity and expression of ACAT2 and MTP. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31634-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Charest MC, Rhainds D, Falstrault L, Matzouranis T, Brissette L. Selective uptake of cholesteryl ester from low density lipoprotein is involved in HepG2 cell cholesterol homeostasis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:402-9. [PMID: 10406948 DOI: 10.1046/j.1432-1327.1999.00527.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Low density lipoprotein (LDL) can follow either a holoparticle uptake pathway, initiated by the LDL receptor (LDLr), and be completely degraded, or it can deliver its cholesteryl esters (CE) selectively to HepG2 cells. Although high density lipoprotein-CE selective uptake has been shown to be linked to cell cholesterol homeostasis in nonhepatic cells, there is no available information on the effect of LDL-CE selective uptake on hepatic cell cholesterol homeostasis. In order to define the role of the LDL-CE selective uptake pathway in hepatic cell cholesterol homeostasis, we used a cellular model that expresses constitutively a LDLr antisense mRNA and that shows LDLr activity at 31% the normal level (HepG2-all cells). The addition of a specific antibody anti-LDLr (IgG-C7) reduces LDL protein degradation (LDLr activity) to 7%. This cellular model therefore reflects, above all, LDL-CE selective uptake activity when incubated with LDL. The inactivation of LDLr reduces LDL-protein association by 78% and LDL-CE association by only 43%. The LDL-CE selective uptake was not reduced by the inactivation of LDLr. The activities of the various enzymes involved in cell cholesterol homeostasis were measured in normal and LDLr-deficient cells during incubation in the absence or presence of LDL as a cholesterol source. Essentially, 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A:cholesterol acyltransferase (ACAT) activities responded to LDL in LDLr-deficient cells as well as in normal HepG2 cells. Inhibition of lysosomal hydrolysis with chloroquine abolished the effect measured on ACAT activity in the presence of LDL, suggesting that CE of LDL, but not free cholesterol, maintains cell cholesterol homeostasis. Thus, in HepG2 cells, when LDLr function is virtually abolished, LDL-CE selective uptake is coupled to cell cholesterol homeostasis.
Collapse
Affiliation(s)
- M C Charest
- Département des Sciences Biologiques, Université du Québec à Montréal, Canada
| | | | | | | | | |
Collapse
|
10
|
Uptake of type IV hypertriglyceridemic VLDL by cultured macrophages is enhanced by interferon-γ. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33505-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Differential regulation of apolipoprotein B secretion from HepG2 cells by two HMG-CoA reductase inhibitors, atorvastatin and simvastatin. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33512-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Whitman SC, Hazen SL, Miller DB, Hegele RA, Heinecke JW, Huff MW. Modification of type III VLDL, their remnants, and VLDL from ApoE-knockout mice by p-hydroxyphenylacetaldehyde, a product of myeloperoxidase activity, causes marked cholesteryl ester accumulation in macrophages. Arterioscler Thromb Vasc Biol 1999; 19:1238-49. [PMID: 10323775 DOI: 10.1161/01.atv.19.5.1238] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Very low density lipoproteins (VLDLs) from apolipoprotein (apo) E2/E2 subjects with type III hyperlipoproteinemia, VLDL remnants, and VLDL from apoE-knockout (EKO) mice are taken up poorly by macrophages. The present study examined whether VLDL modification by the reactive aldehyde p-hydroxyphenylacetaldehyde (pHA) enhances cholesteryl ester (CE) accumulation by J774A.1 macrophages. pHA is the major product derived from the oxidation of L-tyrosine by myeloperoxidase and is a component of human atherosclerotic lesions. Incubation of J774A.1 cells with native type III VLDL, their remnants, and EKO-VLDL increased cellular CE by only 3-, 5-, and 5-fold, respectively, compared with controls. In striking contrast, cells exposed to VLDL modified by purified pHA (pHA-VLDL) exhibited marked increases in cellular CE of 38-, 47-, and 35-fold, respectively (P</=0.0001). Addition of the lipoprotein lipase inhibitor tetrahydrolipstatin decreased cellular CE accumulation induced by the 3 pHA-modified VLDL preparations by 73%, 59%, and 73%, respectively. Addition of the acyl coenzyme A:cholesterol acyltransferase inhibitor DuP 128 to cells incubated with the pHA-modified lipoproteins decreased cellular CE by 100%, 82%, and 95%, respectively, but had no effect on cellular triglycerides. To examine whether the type A scavenger receptors (SR-As) mediated the uptake of pHA-VLDL, incubations were performed in the presence of polyinosine (poly I), a polynucleotide known to block binding to SR-As (types I and II), or in cells preincubated with interferon-gamma (IFN-gamma), a cytokine known to decrease expression of SR-A type I. Coincubation of pHA-VLDL with poly I reduced cellular CE by only 38%, 44%, and 49%, respectively, whereas coincubation with IFN-gamma reduced CE by only 18%, 27%, and 65%, respectively. In marked contrast to pHA-VLDL, both poly I and IFN-gamma inhibited, by>95%, CE accumulation induced by copper-oxidized VLDL. These results demonstrate a novel mechanism for the conversion of type III VLDLs, their remnants, and EKO-VLDL into atherogenic particles and suggest that macrophage uptake of pHA-VLDL (1) requires catalytically active lipoprotein lipase, (2) involves acyl coenzyme A:cholesterol acyltransferase-mediated cholesterol esterification, and (3) involves pathways distinct from the SR-A.
Collapse
Affiliation(s)
- S C Whitman
- Department of Biochemistry, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Wilcox LJ, Barrett PH, Newton RS, Huff MW. ApoB100 secretion from HepG2 cells is decreased by the ACAT inhibitor CI-1011: an effect associated with enhanced intracellular degradation of ApoB. Arterioscler Thromb Vasc Biol 1999; 19:939-49. [PMID: 10195921 DOI: 10.1161/01.atv.19.4.939] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The concept that hepatic cholesteryl ester (CE) mass and the rate of cholesterol esterification regulate hepatocyte assembly and secretion of apoB-containing lipoproteins remains controversial. The present study was carried out in HepG2 cells to correlate the rate of cholesterol esterification and CE mass with apoB secretion by CI-1011, an acyl CoA:cholesterol acyltransferase (ACAT) inhibitor that is known to decrease apoB secretion, in vivo, in miniature pigs. HepG2 cells were incubated with CI-1011 (10 nmol/L, 1 micromol/L, and 10 micromol/L) for 24 hours. ApoB secretion into media was decreased by 25%, 27%, and 43%, respectively (P<0.0012). CI-1011 (10 micromol/L) inhibited HepG2 cell ACAT activity by 79% (P<0.002) and cellular CE mass by 32% (P<0.05). In contrast, another ACAT inhibitor, DuP 128 (10 micromol/L), decreased cellular ACAT activity and CE mass by 85% (P<0.002) and 42% (P=0.01), respectively, but had no effect on apoB secretion into media. To characterize the reduction in apoB secretion by CI-1011, pulse-chase experiments were performed and analyzed by multicompartmental modelling using SAAM II. CI-1011 did not affect the synthesis of apoB or albumin. However, apoB secretion into the media was decreased by 42% (P=0.019). Intracellular apoB degradation increased proportionately (P=0.019). The secretion of albumin and cellular reuptake of labeled lipoproteins were unchanged. CI-1011 and DuP 128 did not affect apoB mRNA concentrations. These results show that CI-1011 decreases apoB secretion by a mechanism that involves an enhanced intracellular degradation of apoB. This study demonstrates that ACAT inhibitors can exert differential effects on apoB secretion from HepG2 cells that do not reflect their efficacy in inhibiting cholesterol esterification.
Collapse
Affiliation(s)
- L J Wilcox
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
Abstract
Chylomicron and VLDL are triglyceride-rich lipoprotein particles assembled by the intestine and liver respectively. These particles are not metabolized by the liver in their native form. However, upon entry into the plasma, their triglyceride component is rapidly hydrolyzed by lipoprotein lipase and they are converted to cholesterol-rich remnant particles. The remnant particles are recognized by the liver and rapidly cleared from the plasma. This process is believed to occur in two steps. (i) An initial sequestration of remnant particles on hepatic cell surface proteoglycans, and (ii) receptor-mediated endocytosis of remnants by hepatic parenchymal cells. The initial binding to proteoglycans may be facilitated by lipoprotein lipase and hepatic lipase which possess both lipid- and heparin-binding domains. The subsequent endocytic process may be mediated by LDL receptors and/or LRP. Both receptors have a high affinity for apoE, a major apolipoprotein component of remnant particles. The lipases may also serve as ligands for these receptors. An impairment of any component of this complex process may result in an accumulation of remnant particles in the plasma leading to atherosclerosis and coronary heart disease.
Collapse
Affiliation(s)
- D A Chappell
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
15
|
Whitman SC, Sawyez CG, Miller DB, Wolfe BM, Huff MW. Oxidized type IV hypertriglyceridemic VLDL-remnants cause greater macrophage cholesteryl ester accumulation than oxidized LDL. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)33868-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Casaroli-Marano RP, García R, Vilella E, Olivecrona G, Reina M, Vilaró S. Binding and intracellular trafficking of lipoprotein lipase and triacylglycerol-rich lipoproteins by liver cells. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32567-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
17
|
Vu H, Cianflone K, Zhang Z, Kalant D, Sniderman AD. Characterization and modulation of LP(a) in human hepatoma HEPG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1349:97-108. [PMID: 9421183 DOI: 10.1016/s0005-2760(97)00125-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HepG2 cells have been widely used to study factors which affect the secretion of apoB100 lipoprotein particles. The objectives of this study were to determine if Lp(a) particles were present in conditioned medium from HepG2 cells and if so, was this accumulation affected by factors which alter apoB100 lipoprotein metabolism. The data demonstrate that Lp(a) accumulated in the medium in a time dependent manner over a 48 h incubation period. Ultracentrifugation fractionation and Western blot analysis demonstrated that lipoprotein particles containing apo(a) in complex with apoB100 were present at a density consistent with human plasma Lp(a). Incubation of the HepG2 cells with LDL or VLDL caused increases in Lp(a) accumulation in the medium (+33% +/- 14%, P NS and 56% +/- 21%, P < 0.05, respectively). In contrast, apo(a) mRNA decreased (-17% +/- 3%, P < 0.01 for both LDL and VLDL incubation). Increasing concentrations of amino acids in the medium resulted in progressively less Lp(a) and apoB100 in the medium, the effect being greater on apoB100. ApoB100 mRNA levels decreased with incubation of HepG2 cells with amino acids (-22% +/- 10%, P < 0.06) whereas apo(a) mRNA levels increased significantly (+47% +/- 14%, P < 0.005). Taken together, our data show that HepG2 cells express mRNA for apo(a), and accumulate Lp(a) in the medium. The close correlation of medium Lp(a) levels with medium apoB100 levels, and not with apo(a) mRNA levels, suggests that medium Lp(a) accumulation may be a function of lipoprotein synthesis and secretion and is consistent with extracellular assembly of Lp(a) lipoprotein particles.
Collapse
Affiliation(s)
- H Vu
- Mike Rosenbloom Laboratory for Cardiovascular Research, Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
18
|
Whitman SC, Miller DB, Wolfe BM, Hegele RA, Huff MW. Uptake of type III hypertriglyceridemic VLDL by macrophages is enhanced by oxidation, especially after remnant formation. Arterioscler Thromb Vasc Biol 1997; 17:1707-15. [PMID: 9327767 DOI: 10.1161/01.atv.17.9.1707] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We previously showed that hypertriglyceridemic VLDL (HTG-VLDL, Sf 60 to 400) from subjects with type III (E2/E2) hyperlipoproteinemia do not induce appreciable cholesteryl ester (CE) accumulation in cultured macrophages (J774A.1). In the present study, we examined whether oxidation of type III HTG-VLDL would enhance their uptake by J774A.1 cells. Type III HTG-VLDL were oxidized as measured by both conjugated-diene formation and increased electrophoretic mobility on agarose gels. Both LDL and type III HTG-VLDL undergo oxidation, albeit under different kinetic parameters. From the conjugated-diene curve, type III HTG-VLDL, compared with LDL, were found to have a 6-fold longer lag time, to take 6-fold longer to reach maximal diene production, and to produce a 2-fold greater amount of dienes but at half the rate (all P < .005). Incubation of macrophages with either native type III HTG-VLDL or LDL (50 micrograms lipoprotein cholesterol/mL media for 16 hours) caused small increases (4-fold and 2.7-fold, respectively) in cellular CE levels relative to control cells (both P = .0001). After 24 hours of CuSO4 exposure, we found that oxidized type III HTG-VLDL and LDL caused a 9.4-fold and 10.5-fold increase, respectively, in cellular CE levels (P = .0001). We next examined whether extending the exposure period for type III HTG-VLDL to CuSO4 beyond 24 hours would further enhance its ability to induce macrophage CE accumulation. After 48 hours of CuSO4 exposure, type III HTG-VLDL and LDL caused 21.3-fold and 11.6-fold increases, respectively, in cellular CE levels (P = .0001). The cellular CE loading achieved with 48 hour-oxidized type III HTG-VLDL was significantly higher than either 24 hour-oxidized type III HTG-VLDL (2.3-fold, P = .003) or 48 hour-oxidized LDL (1.8-fold, P = .012). There was no significant difference between the CE loading achieved by incubation of cells with either 24 hour-oxidized type III HTG-VLDL, 24 hour-oxidized LDL, or 48 hour-oxidized LDL (P > or = .518). In this study, we also examined whether partial lipolysis (19% to 50% triglyceride hydrolysis) of type III HTG-VLDL to produce remnants would increase the susceptibility of the lipoprotein to oxidative modification and subsequent cellular CE loading. Forty-eight hour-oxidized type III VLDL-remnants stimulated CE accumulation 30.4-fold over baseline (P = .0001). In contrast, nonoxidized type III VLDL-remnants caused the same very low level of CE loading as did native type III HTG-VLDL (P = .680). The increase in cellular CE levels achieved with 48 hour-oxidized type III VLDL-remnants was significantly higher than that achieved with 48 hour-oxidized type III HTG-VLDL (P = .047). In conclusion, we have shown that oxidized type III HTG-VLDL will induce macrophage CE accumulation well above levels achieved with oxidized LDL. In addition, we also showed that by forming a VLDL-remnant before oxidative modification, we can further enhance macrophage CE accumulation. These results provide a potential mechanism for the atherogenicity of type III HTG-VLDL and their remnants.
Collapse
Affiliation(s)
- S C Whitman
- Department of Medicine, University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
19
|
Uptake of hypertriglyceridemic very low density lipoproteins and their remnants by HepG2 cells: the role of lipoprotein lipase, hepatic triglyceride lipase, and cell surface proteoglycans. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37416-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Liu G, Excoffon KJ, Benoit P, Ginzinger DG, Miao L, Ehrenborg E, Duverger N, Denefle PP, Hayden MR, Lewis ME. Efficient adenovirus-mediated ectopic gene expression of human lipoprotein lipase in human hepatic (HepG2) cells. Hum Gene Ther 1997; 8:205-14. [PMID: 9017424 DOI: 10.1089/hum.1997.8.2-205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene therapy to deliver and express a corrective lipoprotein lipase (LPL) gene may improve the lipid profile and reduce the morbidity and potential atherogenic risk from hypertriglyceridemia and dyslipoproteinemia in patients with complete or partial LPL deficiency. We have used an E1-/E3- adenoviral vector, with an RSV-driven human LPL cDNA expression cassette (Ad-RSV-LPL), to achieve high ectopic LPL gene expression in the human hepatoma cell line HepG2, an accepted hepatocellular model of lipoprotein metabolism. Ad-RSV-LPL transduction of HepG2 cells with a multiplicity of infection (moi) between 12.5 and 100 yielded dose-dependent increments in LPL mass and activity. Peak levels of LPL protein of 2,032.1 +/- 274.5 ng/10(5) cells per ml (mol 100) correlated with increased activity of 92.7 +/- 22.6 mU/10(5) cells per ml relative to negligible LPL levels in Ad-RSV-LacZ (beta-galactosidase) controls. Exogenous LPL expression over a 5-day period peaked at day 3. Susceptibility to inhibition by 1 M NaCl and an anti-LPL monoclonal antibody confirmed that lipase activity was indeed derived from human LPL. Hydrolysis, by LPL-overexpressing HepG2 cells, of TG carried in very-low-density lipoprotein (VLDL) showed that greater than 50% of the triglycerides (TG) disappeared after 4 hr of incubation. These results were compatible with FPLC evidence of a marked reduction in VLDL-TG. These results provide strong in vitro evidence that adenoviral-mediated ectopic expression of the human LPL gene could render hepatic cells capable of VLDL catabolism and thus support the possibility for in vivo adenoviral vector-mediated liver-targeted LPL gene therapy.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenovirus E1 Proteins/genetics
- Adenovirus E3 Proteins/genetics
- Avian Sarcoma Viruses/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- DNA, Complementary/genetics
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Gene Transfer Techniques
- Genetic Vectors/genetics
- Humans
- Hydrolysis
- Lipoprotein Lipase/genetics
- Lipoprotein Lipase/metabolism
- Lipoproteins, VLDL/chemistry
- Lipoproteins, VLDL/metabolism
- Protein Processing, Post-Translational
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Triglycerides/chemistry
- Triglycerides/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- G Liu
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Murdoch SJ, Breckenridge WC. Effect of lipid transfer proteins on lipoprotein lipase induced transformation of VLDL and HDL. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1303:222-32. [PMID: 8908157 DOI: 10.1016/0005-2760(96)00105-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lipoprotein lipase-induced lipolysis of human plasma VLDL usually does not yield a complete conversion of VLDL to LDL due to insufficient loss of surface and core lipids and apolipoprotein E. In order to assess the role of lipid transfer proteins in this process human VLDL and apo E free HDL, in approximately physiologic proportions, and with sufficient albumin to bind all released fatty acids, were subjected to 90% lipolysis of triglycerides in 2 h by lipoprotein lipase in the presence or absence of partially purified human cholesteryl ester and phospholipid transfer proteins. Lipoprotein lipase caused a partial transfer of VLDL unesterified cholesterol (16%) and phospholipid (11%), apo E (19%) and almost complete transfer of apo CII and CIII to HDL. VLDL remnants possessed excess apo E and surface and core lipids when compared to plasma LDL, and densities ranging from that of VLDL/IDL to LDL. With addition of the lipid transfer proteins to the lipolysis incubation there was an increased transfer of phospholipid and unesterified cholesterol (2-fold) and apo E (1.6-fold) to HDL over that for lipoprotein lipase incubations. The source of transferred material was primarily from remnants which isolated in the LDL density range in lipoprotein lipase incubations. This transfer resulted in LDL-like particles which had a smaller particle size but lighter density compared to those in lipoprotein lipase incubation. Transfer of cholesteryl esters to VLDL from HDL in exchange for triglyceride was absent or substantially reduced in incubations containing lipoprotein lipase and lipid transfer proteins compared to incubations with only lipid transfer proteins. It is concluded that during rapid lipolysis lipid transfer proteins promote the loss of phospholipid, unesterified cholesterol and apo E from VLDL remnants but do not promote the transfer of cholesteryl ester from HDL to VLDL.
Collapse
Affiliation(s)
- S J Murdoch
- Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
22
|
Medh JD, Bowen SL, Fry GL, Ruben S, Andracki M, Inoue I, Lalouel JM, Strickland DK, Chappell DA. Lipoprotein lipase binds to low density lipoprotein receptors and induces receptor-mediated catabolism of very low density lipoproteins in vitro. J Biol Chem 1996; 271:17073-80. [PMID: 8663292 DOI: 10.1074/jbc.271.29.17073] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lipoprotein lipase (LPL), the major enzyme responsible for the hydrolysis of plasma triglycerides, promotes binding and catabolism of triglyceride-rich lipoproteins by various cultured cells. Recent studies demonstrate that LPL binds to three members of the low density lipoprotein (LDL) receptor family, including the LDL receptor-related protein (LRP), GP330/LRP-2, and very low density lipoprotein (VLDL) receptors and induces receptor-mediated lipoprotein catabolism. We show here that LDL receptors also bind LPL and mediate LPL-dependent catabolism of large VLDL with Sf 100-400. Up-regulation of LDL receptors by lovastatin treatment of normal human foreskin fibroblasts (FSF cells) resulted in an increase in LPL-induced VLDL binding and catabolism to a level that was 10-15-fold greater than in LDL receptor-negative fibroblasts, despite similar LRP activity in both cell lines. This indicates that the contribution of LRP to LPL-dependent degradation of VLDL is small when LDL receptors are maximally up-regulated. Furthermore studies in LRP-deficient murine embryonic fibroblasts showed that the level of LPL-dependent degradation of VLDL was similar to that in normal murine embryonic fibroblasts. LPL also promoted the internalization of protein-free triglyceride emulsions; lovastatin-treatment resulted in 2-fold higher uptake in FSF cells, indicating that LPL itself could bind to LDL receptors. However, the lower induction of emulsion catabolism as compared with native VLDL suggests that LPL-induced catabolism via LDL receptors is only partially dependent on receptor binding by LPL and instead is primarily due to activation of apolipoproteins such as apoE. A fusion protein between glutathione S-transferase and the catalytically inactive carboxyl-terminal domain of LPL (GST-LPLC) also induced binding and catabolism of VLDL. However GST-LPLC was not as active as native LPL, indicating that lipolysis is required for a maximal LPL effect. Mutations of critical tryptophan residues in GST-LPLC that abolished binding to VLDL converted the protein to an inhibitor of lipoprotein binding to LDL receptors. In solid-phase assays using immobilized receptors, LDL receptors bound to LPL in a dose-dependent manner. Both LPL and GST-LPLC promoted binding of VLDL to LDL receptor-coated wells. These results indicate that LPL binds to LDL receptors and suggest that the carboxyl-terminal domain of LPL contributes to this interaction.
Collapse
Affiliation(s)
- J D Medh
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The function of lipoprotein lipase (LpL) and hepatic lipase (HL) has been related to atherogenesis by several authors in the past, but convincing experimental and epidemiological evidence to support this hypothesis has been obtained only in the last years. For both enzymes, next to their role in the hydrolysis of triglyceride-rich lipoproteins, a second important function has been described recently. Both lipases can mediate the binding and subsequent uptake of lipoproteins into cells. Although this function has been clearly demonstrated in vitro for various cell types, the physiological or pathophysiological relevance remains hypothetical until final elucidation in vivo.
Collapse
Affiliation(s)
- U Beisiegel
- Medical Clinic, University Hospital Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
St-Amand J, Moorjanit S, Lupien PJ, Prud'homme D, Després JP. The relation of plasma triglyceride, apolipoprotein B, and high-density lipoprotein cholesterol to postheparin lipoprotein lipase activity is dependent on apolipoprotien E polymorphism. Metabolism 1996; 45:261-7. [PMID: 8596500 DOI: 10.1016/s0026-0495(96)90064-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Postheparin plasma (PH)-lipoprotein lipase (LPL) activity has been reported to be a significant correlate of plasma triglyceride and high-density lipoprotein cholesterol (HDL-C) levels. However, some studies have failed to observe these associations. In this regard, apolipoprotein (apo) E polymorphism may play an important role, since the apo E2 isoform has unfavorable effects on the catabolism of triglyceride-rich lipoprotein particles. We have thus examined the relationships between PH-LPL activity and plasma lipoprotein-lipid levels within groups of men classified on the basis of apo E phenotypes, to verify whether apo E polymorphism could alter these associations. In men carrying the apo E2 isoform (n = 12), PH-LPL activity showed a strong negative correlation with plasma triglyceride (r = -.72, P < .01), very-low-density lipoprotein (VLDL) triglyceride ([VLDL-TG] r = -.83, P < .001), and VLDL cholesterol ([VLDL-C] r = -.57, P < .05) levels and a positive correlation with plasma HDL-C (r = .87, P < .001) and HDL2-C (r=.90, P < .001) concentrations. These correlations were also noted for plasma apo B levels (r = -.65, P < .05), VLDL-apo B concentrations (r= -.76, P < .01), and the HDL-C to cholesterol ratio (r = .85, P < .001). In contrast, none of these associations were found in men carrying the apo E4 isoform (n = 11). In men homozygous for the apo E3 isoform (n = 29), PH-LPL activity was only significantly correlated with plasma HDL2-C levels (r = .46, P < .01). Results of the present study indicate that PH-LPL activity is related to plasma triglyceride, VLDL-TG, VLDL-C, VLDL-apo B, apo B, and HDL-C levels and the HDL-C to cholesterol ratio in men carrying the apo E2 isoform, but not in men homozygous for the apo E3 isoform or among apo E4 carriers. Thus, apo E polymorphism appears to modulate the effect of variation in PH-LPL activity on the plasma lipoprotein profile.
Collapse
Affiliation(s)
- J St-Amand
- Lipid Research Center, Laval University Medical Research Center, Quebec, Canada
| | | | | | | | | |
Collapse
|
25
|
Cianflone K, Avramoglu RK, Sawyez C, Huff MW. Inhibition of lipoprotein lipase induced cholesterol ester accumulation in human hepatoma HepG2 cells. Atherosclerosis 1996; 120:101-14. [PMID: 8645351 DOI: 10.1016/0021-9150(95)05690-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has been suggested previously that lipoprotein lipase may act as a ligand to enhance binding and uptake of lipoprotein particles. In the present study we have examined the capacity of bovine milk lipoprotein lipase to induce intracellular accumulation of triglyceride and cholesterol ester by VLDL (Sr 60-400) isolated from Type IV hypertriglyceridemic subject (HTg-VLDL) in HepG2 cells, independent of its lipolytic activity. We have also attempted to elucidate the cellular receptor mechanisms responsible for these effects. HTg-VLDL-mediated increases in intracellular triglyceride and cholesterol ester were dependent on the presence of an active lipase. Bovine milk lipoprotein lipase (LPL) increases triglyceride mass by 301% +/- 28% (P < 0.0005) and cholesterol ester mass by 176% +/- 12% (P < 0.0005). These HTg-VLDL-mediated increases in intracellular triglyceride and cholesterol ester did not occur when heat-inactivated lipase was used. Rhizopus lipase could replace LPL and cause equivalent increases in intracellular triglyceride and cholesterol ester (472% +/- 61%(P < 0.005) and 202% +/- 25% (P < 0.025) respectively vs. control). HTg-VLDL treated with LPL and reisolated also caused equivalent increases (274% +/- 18%(P < 0.01) and 177% +/- 12% (P < 0.005) for triglyceride and cholesterol ester). LDL also caused increases in intracellular cholesterol ester (189% +/- 20%(P < 0.005)), although three times more LDL cholesterol had to be added to achieve the same effect. These LDL-induced increases were effectively blocked by monoclonal antibodies directed against the B,E receptor binding domains of apo B (-97% +/- 13% (P < 0.0005) with anti-apo B 5E11 and -68% +/- 13% (P < 0.05) for anti-apo B B1B3) or by anti-B,E receptor antibodies (-77% +/- 7% (P < 0.01) antibody C7). These same antibodies had little effect on the HTg-VLDL+LPL-induced increases in cholesterol ester (+21%, +15% and -22% for 5E11, B1B3 and C7, respectively). Monoclonal anti-apo E antibodies also had no effect on LDL-mediated increases in intracellular cholesterol ester, but had a small and significant effect on VLDL-mediated increases in cholesterol ester. However, heparin, which interferes with cell surface proteoglycan interaction, was very effective at blocking HTg-VLDL-mediated increases in cholesterol ester in the presence of LPL (-86% +/- 8% P < 0.0005). Heparin was also effective in the presence of Rhizopus lipase (-79%) or lipolyzed re-isolated HTg-VLDL (-95%). These results suggest that lipoprotein lipase may enhance the uptake process beyond its role in lipolytic remodelling but does not appear to be an absolute requirement. In contrast, heparin had no effect on LDL-mediated cholesterol ester accumulation. Lactoferrin, which inhibits interaction with the low density lipoprotein receptor-related protein (LRP), was also very effective at inhibiting HTg-VLDL increases in intracellular cholesterol ester (-95% +/- 6%, P < 0.01). However, there was no effect of either heparin or lactoferrin on HTg-VLDL-mediated triglyceride accumulation. Thus cell surface heparin sulphate may facilitate intracellular lipid acquisition by providing a stabilizing bridge with the lipoproteins and enhance uptake through receptor-mediated processes such as LRP.
Collapse
Affiliation(s)
- K Cianflone
- Robarts Research Institute, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
26
|
Avramoglu R, Cianflone K, Sniderman A. Role of the neutral lipid accessible pool in the regulation of secretion of apoB-100 lipoprotein particles by HepG2 cells. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)41088-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Wu X, Sakata N, Dixon J, Ginsberg HN. Exogenous VLDL stimulates apolipoprotein B secretion from HepG2 cells by both pre- and post-translational mechanisms. J Lipid Res 1994. [DOI: 10.1016/s0022-2275(20)39963-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Cianflone K, Vu H, Zhang Z, Sniderman AD. Effects of albumin on lipid synthesis, apo B-100 secretion, and LDL catabolism in HepG2 cells. Atherosclerosis 1994; 107:125-35. [PMID: 7980689 DOI: 10.1016/0021-9150(94)90014-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study examines the effects of extracellular albumin on hepatic apo B-100 metabolism. To do so, a transformed human liver cell line, HepG2, was used as a hepatocyte model and the concentration of albumin in the medium was varied between 0 and 5 g%. Apo B-100 and apo A1 concentrations in the medium were determined by specific enzyme-linked immunoassay (ELISA) and intracellular synthesis of cholesterol ester and triglyceride were determined by addition of appropriate radiolabels to the medium. The data demonstrate that the reduction of extracellular albumin concentration resulted in increased apo B-100 concentration in the medium. Apo A1 secretion, however, was unaffected. While the differences in apo B-100 concentration in the medium were statistically significant (33% +/- 7%, P < 0.0025, 0 g% albumin compared to 5 g% albumin in the medium), the absolute magnitude of the effect under these conditions was relatively modest. Nevertheless, the changes were consistent and evident over incubation periods as long as 8 days. Of interest, although triglyceride synthesis was unaffected, cholesterol ester synthesis changed such that as albumin concentration decreased, synthesis of cholesterol ester increased paralleling the changes in apo B-100 (170% +/- 9%, P < 0.005). These findings were extended by studying interventions which altered cholesterol ester synthesis. Addition of the compound 58-035 (5 micrograms/ml, a specific inhibitor of acylcholesterol acyltransferase activity) resulted in substantial inhibition of cholesterol ester synthesis (39% to 66%, P < 0.025 and P < 0.005, respectively) and apo B-100 concentrations in the medium which decreased by 20% to 28%, P < 0.025. Triglyceride synthesis, in contrast, increased significantly by 32% P < 0.025. Therefore, addition of 58-035 confirmed the previous findings of a parallel relation between cholesterol ester synthesis and apo B-100 concentration in the medium. Nonetheless, albumin still had an additional inhibitory effect on cholesterol ester and apo B-100 secretion. Of interest, when chylomicron remnants (25 micrograms/ml cholesterol), which cause apo B-100 secretion to increase by more than threefold, were added to the medium, albumin now had a more pronounced absolute effect on apo B-100 secretion with a 48% inhibition observed as albumin was increased from 0 to 5 g% in the medium (P < 0.0125). The effect of extracellular albumin on the low density lipoprotein (LDL) pathway was also examined. No differences in non-specific cell association component were detected.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Cianflone
- McGill Unit for the Prevention of Cardiovascular Disease, Royal Victoria Hospital, Montreal, Canada
| | | | | | | |
Collapse
|
29
|
|
30
|
Evidence for a lack of regulation of the assembly and secretion of apolipoprotein B-containing lipoprotein from HepG2 cells by cholesteryl ester. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32726-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Lombardi P, Mulder M, van der Boom H, Frants RR, Havekes LM. Inefficient degradation of triglyceride-rich lipoprotein by HepG2 cells is due to a retarded transport to the lysosomal compartment. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74288-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Huff MW, Sawyez CG, Connelly PW, Maguire GF, Little JA, Hegele RA. Beta-VLDL in hepatic lipase deficiency induces apoE-mediated cholesterol ester accumulation in macrophages. ARTERIOSCLEROSIS AND THROMBOSIS : A JOURNAL OF VASCULAR BIOLOGY 1993; 13:1282-90. [PMID: 8364012 DOI: 10.1161/01.atv.13.9.1282] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hepatic lipase-deficient subjects in the Ontario kindred are compound heterozygotes for hepatic lipase mutations (Ser267-->Phe and Thr383-->Met). Cholesteryl ester-rich beta-very-low-density lipoprotein (beta-VLDL) accumulates in plasma and such subjects have premature atherosclerosis. To determine a possible mechanism, we hypothesized that hepatic lipase-deficient beta-VLDL, homozygous for apolipoprotein (apo) E3, would cause cholesteryl ester accumulation and foam cell formation in macrophages. beta-VLDL and pre-beta-VLDL were isolated by Pevikon electrophoresis and incubated with J774 macrophages, cells that do not secrete apoE. beta-VLDL increased cellular cholesteryl ester content 13-fold, whereas pre-beta-VLDL increased cholesteryl ester sevenfold. beta-VLDL increased acyl CoA:cholesterol acyltransferase activity fourfold (measured as [14C]oleate incorporation into cholesteryl ester). Preincubation of hepatic lipase-deficient beta-VLDL with the anti-apoE monoclonal antibody 1D7, which inhibits binding of apoE to low-density lipoprotein receptors, inhibited cellular cholesteryl ester accumulation by 75%, whereas the anti-apoB blocking monoclonal antibody 5E11 failed to inhibit cellular cholesteryl ester accumulation. In contrast to hepatic lipase deficiency, beta-VLDL from type III subjects (E2/E2) failed to increase cellular cholesteryl ester or acyl CoA:cholesterol acyltransferase more than 1.5-fold. Thus, hepatic lipase-deficient beta-VLDL readily induces cholesteryl ester accumulation in J774 macrophages, a process mediated by functional apoE3. This may explain the premature atherosclerosis observed in this kindred.
Collapse
Affiliation(s)
- M W Huff
- Department of Medicine, University of Western Ontario, Robarts Research Institute, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Lilly-Stauderman M, Brown TL, Balasubramaniam A, Harmony JA. Heparin releases newly synthesized cell surface-associated apolipoprotein E from HepG2 cells. J Lipid Res 1993. [DOI: 10.1016/s0022-2275(20)40746-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|