1
|
Ito M, Ye X, Wang Q, Guo L, Hao D, Howatt D, Daugherty A, Cai L, Temel R, Li XA. SR-BI (Scavenger Receptor BI), Not LDL (Low-Density Lipoprotein) Receptor, Mediates Adrenal Stress Response-Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:1830-1837. [PMID: 32522007 DOI: 10.1161/atvbaha.120.314506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Adrenal gland secretes stress-induced glucocorticoids (iGCs) to coping with stress. Previous study showed that SR-BI (scavenger receptor BI) null (SR-BI-/-) mice failed to generate iGC in stress conditions, suggesting that SR-BI-mediated cholesterol uptake from HDL (high-density lipoprotein) is a key regulator for iGC production. However, the LDL (low-density lipoprotein)/LDLr (LDL receptor) pathway can also provide cholesterol for iGC synthesis, but rodents have limited LDL levels in circulation. Here, we generated SR-BI-/-ApoBtg (apolipoprotein B transgenic) mice with normal LDL levels in circulation to determine the relative contribution of the HDL/SR-BI and LDL/LDLr pathways to iGC production in stress conditions. Approach and Results: To obtain mouse models with normal LDL levels, SR-BI-/- mice were bred to ApoBtg mice. Then, the F1 SR-BI±ApoBtg mice were backcrossed to SR-BI-/- to obtain SR-BI-/-ApoBtg, SR-BI-/-ApoBwt (apolipoprotein B wild type), and SR-BI+/+ApoBtg mice. We first examined the lipoprotein profile, which shows a 6.5-fold increase in LDL levels in SR-BI-/-ApoBtg mice compared with SR-BI-/-ApoBwt mice. Then, we induced stress with adrenocorticotropic hormone and cecal ligation and puncture. One hour after adrenocorticotropic hormone stimulation, SR-BI+/+ApoBtg control mice produced iGC (14.9-fold), but both SR-BI-/-ApoBwt and SR-BI-/-ApoBtg showed no iGC production (P<0.001). Three hours after cecal ligation and puncture treatment, SR-BI+/+ApoBtg control mice showed iGC production (6.4-fold), but both SR-BI-/-ApoBwt and SR-BI-/-ApoBtg mice showed no iGC production (P<0.001). CONCLUSIONS SR-BI-/-ApoBtg mice fail to produce iGC in stress conditions even though with restored LDL levels in circulation. These findings clarify that the HDL/SR-BI, not LDL/LDLr, pathway is responsible for iGC production in stress conditions.
Collapse
Affiliation(s)
- Misa Ito
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Pharmacology and Nutritional Sciences (M.I., D. Hao, A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Xiang Ye
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Qian Wang
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Ling Guo
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Dan Hao
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Pharmacology and Nutritional Sciences (M.I., D. Hao, A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Deborah Howatt
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Pharmacology and Nutritional Sciences (M.I., D. Hao, A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Physiology (A.D., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Lei Cai
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Ryan Temel
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Physiology (A.D., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| | - Xiang-An Li
- From the Saha Cardiovascular Research Center (M.I., X.Y., Q.W., L.G., D. Hao, D. Howatt, A.D., L.C., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Pharmacology and Nutritional Sciences (M.I., D. Hao, A.D., X.-A.L.), University of Kentucky College of Medicine, Lexington.,Department of Physiology (A.D., R.T., X.-A.L.), University of Kentucky College of Medicine, Lexington
| |
Collapse
|
2
|
Tsujita M, Akita N, Yokota T, Kobayashi F, Yokoyama S. Selective Correction of Genotype Yield by Probucol in HDL-Deficient Mice Propagation. J Atheroscler Thromb 2019; 27:25-37. [PMID: 31092744 PMCID: PMC6976725 DOI: 10.5551/jat.48967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aim: Probucol is a controversial drug to inhibit ATP-binding cassette transporter A1 (ABCA1) and to exhibit some positive clinical effects such as regression of xanthomas. It reportedly rescues female infertility in scavenger receptor BI-deficient mice. Here, we investigated the effect of probucol on propagation in HDL-deficient mice as alternative models for impaired HDL-mediated cholesterol delivery. Methods: Propagation of ABCA1-deficient (Abca1−/−) mice and lecithin: cholesterol acyltransferase (LCAT)-deficient (Lcat−/−) mice were quantitatively observed under the probucol treatment. Results:Abca1−/− and Lcat−/− mice appear with negligible plasma HDL concentration. Upon backcrossing Abc1+/− with the Abc1−/− mice and cross-breeding between Abc1+/− mice, the numbers of Abc1−/− weaned pups were reduced to 54.7% and to 57.1% from those expected by Mendelian genetics, respectively. Similarly, Lcat-/-weaned pups decreased to 67.7% and to 35.9% but only in the male. Probucol severely reduced plasma HDL-cholesterol to 5% in the wild-type mice, but showed no effects on their propagation. Probucol corrected the deflections of the genotype distribution in the weaned pups recovery in the LCAT-deficient mice propagation but not in the ABCA1-deficient mice while plasma HDL was kept negligible. Probucol had no effect on cholesterol content in the steroidogenic organs of the HDL-deficient mice, while it somewhat increased plasma corticosterone and expression of adrenal cortex HMG-CoA reductase, StAR, cytochrome P450scc, and VKORC1 indicating increase in the synthesis of cholesterol and steroid hormones and in vitamin K turn-over. However, no evident mechanistic background was indicated. Conclusions: Probucol corrected deflection of genotype distribution in propagation of the LCAT-deficient mice but not the ABCA1-deficient mice at the weaning stage, apparently not through normalization of hypoalphalipo-proteinemia.
Collapse
Affiliation(s)
- Maki Tsujita
- Biochemistry, Nagoya City University Graduate School of Medical Sciences
| | - Nobukatsu Akita
- Biochemistry, Nagoya City University Graduate School of Medical Sciences.,Cardio-Renal Medicine and Hypertension, Nagoya City University Graduate School of Medical Sciences
| | - Tomo Yokota
- Biochemistry, Nagoya City University Graduate School of Medical Sciences
| | - Fumihiko Kobayashi
- Biochemistry, Nagoya City University Graduate School of Medical Sciences
| | | |
Collapse
|
3
|
Bai J, Chow BKC. Secretin is involved in sodium conservation through the renin-angiotensin-aldosterone system. FASEB J 2017; 31:1689-1697. [PMID: 28082350 DOI: 10.1096/fj.201600911r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/03/2017] [Indexed: 01/22/2023]
Abstract
Secretin (SCT) and its receptor (SCTR) are important in fluid regulation at multiple levels via the modulation of expression and translocation of renal aquaporin 2 and functions of central angiotensin II (ANGII). The functional interaction of SCT with peripheral ANGII, however, remains unknown. As the ANGII-aldosterone axis dominates the regulation of renal epithelial sodium channel (ENaC) function, we therefore tested whether SCT/SCTR can regulate sodium homeostasis via the renin-angiotensin-aldosterone system. SCTR-knockout (SCTR-/-) mice showed impaired aldosterone synthase (CYP11B2) expression and, consequently, aldosterone release upon intraperitoneal injection of ANGII. Endogenous ANGII production induced by dietary sodium restriction was higher in SCTR-/- than in C57BL/6N [wild-type (WT)] mice, but CYP11B2 and aldosterone synthesis were not elevated. Reduced accumulation of cholesteryl ester-the precursor of aldosterone-was observed in adrenal glands of SCTR-/- mice that were fed a low-sodium diet. Absence of SCTR resulted in elevated basal transcript levels of adrenal CYP11B2 and renal ENaCs. Although transcript and protein levels of ENaCs were similar in WT and SCTR-/- mice under sodium restriction, ENaCs in SCTR-/- mice were less sensitive to amiloride hydrochloride. In summary, the SCT/SCTR axis is involved in aldosterone precursor uptake, and the knockout of SCTR results in defective aldosterone biosynthesis/release and altered sensitivity of ENaCs to amiloride.-Bai, J., Chow, B. K. C. Secretin is involved in sodium conservation through the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Juan Bai
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Billy K C Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| |
Collapse
|
4
|
Abstract
The adrenal gland is one of the prominent sites for steroid hormone synthesis. Lipoprotein-derived cholesterol esters (CEs) delivered via SR-B1 constitute the dominant source of cholesterol for steroidogenesis, particularly in rodents. Adrenocorticotropic hormone (ACTH) stimulates steroidogenesis through downstream actions on multiple components involved in steroidogenesis. Both acute and chronic ACTH treatments can modulate SR-B1 function, including its transcription, posttranscriptional stability, phosphorylation and dimerization status, as well as the interaction with other protein partners, all of which result in changes in the ability of SR-B1 to mediate HDL-CE uptake and the supply of cholesterol for conversion to steroids. Here, we provide a review of the recent findings on the regulation of adrenal SR-B1 function by ACTH.
Collapse
Affiliation(s)
- Wen-Jun Shen
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Salman Azhar
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Fredric B. Kraemer
- The Division of Endocrinology, Stanford University, Stanford, CA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- *Correspondence: Fredric B. Kraemer,
| |
Collapse
|
5
|
van der Sluis RJ, Van Eck M, Hoekstra M. Adrenocortical LDL receptor function negatively influences glucocorticoid output. J Endocrinol 2015; 226:145-54. [PMID: 26136384 DOI: 10.1530/joe-15-0023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2015] [Indexed: 12/17/2022]
Abstract
Over 50% of the cholesterol needed by adrenocortical cells for the production of glucocorticoids is derived from lipoproteins. However, the overall contribution of the different lipoproteins and associated uptake pathways to steroidogenesis remains to be determined. Here we aimed to show the importance of LDL receptor (LDLR)-mediated cholesterol acquisition for adrenal steroidogenesis in vivo. Female total body LDLR knockout mice with a human-like lipoprotein profile were bilaterally adrenalectomized and subsequently provided with one adrenal either expressing or genetically lacking the LDLR under their renal capsule to solely modulate adrenocortical LDLR function. Plasma total cholesterol levels and basal plasma corticosterone levels were identical in the two types of adrenal transplanted mice. Strikingly, restoration of adrenal LDLR function significantly reduced the ACTH-mediated stimulation of adrenal steroidogenesis (P<0.001), with plasma corticosterone levels that were respectively 44-59% lower (P<0.01) as compared to adrenal LDLR negative controls. In addition, LDLR positive adrenal transplanted mice exhibited a significant decrease (-39%; P<0.001) in their plasma corticosterone level under fasting stress conditions. Biochemical analysis did not show changes in the expression of genes involved in cholesterol mobilization. However, LDLR expressing adrenal transplants displayed a marked 62% reduction (P<0.05) in the transcript level of the key steroidogenic enzyme HSD3B2. In conclusion, our studies in a mouse model with a human-like lipoprotein profile provide the first in vivo evidence for a novel inhibitory role of the LDLR in the control of adrenal glucocorticoid production.
Collapse
Affiliation(s)
- Ronald J van der Sluis
- Division of BiopharmaceuticsCluster BioTherapeutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Miranda Van Eck
- Division of BiopharmaceuticsCluster BioTherapeutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BiopharmaceuticsCluster BioTherapeutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
6
|
DeAngelis AM, Roy-O'Reilly M, Rodriguez A. Genetic alterations affecting cholesterol metabolism and human fertility. Biol Reprod 2014; 91:117. [PMID: 25122065 DOI: 10.1095/biolreprod.114.119883] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility.
Collapse
Affiliation(s)
| | | | - Annabelle Rodriguez
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
7
|
Hu Z, Hu J, Zhang Z, Shen WJ, Yun CC, Berlot CH, Kraemer FB, Azhar S. Regulation of expression and function of scavenger receptor class B, type I (SR-BI) by Na+/H+ exchanger regulatory factors (NHERFs). J Biol Chem 2013; 288:11416-35. [PMID: 23482569 DOI: 10.1074/jbc.m112.437368] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor class B, type I (SR-BI) binds HDL and mediates selective delivery of cholesteryl esters (CEs) to the liver, adrenals, and gonads for product formation (bile acids and steroids). Because relatively little is known about SR-BI posttranslational regulation in steroidogenic cells, we examined the roles of Na(+)/H(+) exchanger regulatory factors (NHERFs) in regulating SR-BI expression, SR-BI-mediated selective CE uptake, and steroidogenesis. NHERF1 and NHERF2 mRNA and protein are expressed at varying levels in model steroidogenic cell lines and the adrenal, with only low expression of PDZK1 (NHERF3) and NHERF4. Dibutyryl cyclic AMP decreased NHERF1 and NHERF2 and increased SR-BI mRNA expression in primary rat granulosa cells and MLTC-1 cells, whereas ACTH had no effect on NHERF1 and NHERF2 mRNA levels but decreased their protein levels in rat adrenals. Co-immunoprecipitation, colocalization, bimolecular fluorescence complementation, and mutational analysis indicated that SR-BI associates with NHERF1 and NHERF2. NHERF1 and NHERF2 down-regulated SR-BI protein expression through inhibition of its de novo synthesis. NHERF1 and NHERF2 also inhibited SR-BI-mediated selective CE transport and steroidogenesis, which were markedly attenuated by partial deletions of the PDZ1 or PDZ2 domain of NHERF1, the PDZ2 domain of NHERF2, or the MERM domains of NHERF1/2 or by gene silencing of NHERF1/2. Moreover, an intact COOH-terminal PDZ recognition motif (EAKL) in SR-BI is needed. Transient transfection of hepatic cell lines with NHERF1 or NHERF2 caused a significant reduction in endogenous protein levels of SR-BI. Collectively, these data establish NHERF1 and NHERF2 as SR-BI protein binding partners that play a negative role in the regulation of SR-BI expression, selective CE transport, and steroidogenesis.
Collapse
Affiliation(s)
- Zhigang Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hoekstra M, Korporaal SJA, van der Sluis RJ, Hirsch-Reinshagen V, Bochem AE, Wellington CL, Van Berkel TJC, Kuivenhoven JA, Van Eck M. LCAT deficiency in mice is associated with a diminished adrenal glucocorticoid function. J Lipid Res 2012. [PMID: 23178225 DOI: 10.1194/jlr.m030080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In vitro studies have suggested that HDL and apoB-containing lipoproteins can provide cholesterol for synthesis of glucocorticoids. Here we assessed adrenal glucocorticoid function in LCAT knockout (KO) mice to determine the specific contribution of HDL-cholesteryl esters to adrenal glucocorticoid output in vivo. LCAT KO mice exhibit an 8-fold higher plasma free cholesterol-to-cholesteryl ester ratio (P < 0.001) and complete HDL-cholesteryl ester deficiency. ApoB-containing lipoprotein and associated triglyceride levels are increased in LCAT KO mice as compared with C57BL/6 control mice (44%; P < 0.05). Glucocorticoid-producing adrenocortical cells within the zona fasciculata in LCAT KO mice are devoid of neutral lipids. However, adrenal weights and basal corticosterone levels are not significantly changed in LCAT KO mice. In contrast, adrenals of LCAT KO mice show compensatory up-regulation of genes involved in cholesterol synthesis (HMG-CoA reductase; 516%; P < 0.001) and acquisition (LDL receptor; 385%; P < 0.001) and a marked 40-50% lower glucocorticoid response to adrenocorticotropic hormone exposure, endotoxemia, or fasting (P < 0.001 for all). In conclusion, our studies show that HDL-cholesteryl ester deficiency in LCAT KO mice is associated with a 40-50% lower adrenal glucocorticoid output. These findings further highlight the important novel role for HDL as cholesterol donor for the synthesis of glucocorticoids by the adrenals.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Saha S, Bornstein SR, Graessler J, Kopprasch S. Very-low-density lipoprotein mediates transcriptional regulation of aldosterone synthase in human adrenocortical cells through multiple signaling pathways. Cell Tissue Res 2012; 348:71-80. [PMID: 22331364 DOI: 10.1007/s00441-012-1346-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/25/2012] [Indexed: 12/19/2022]
Abstract
Diabetic dyslipidemia is characterized by increased circulatory very-low-density lipoprotein (VLDL) levels. Aldosterone, apart from its role in fluid and electrolyte homeostasis, has also been implicated in insulin resistance and myocardial fibrosis. The impact of VLDL as a potential risk factor for aldosterone-mediated cardiovascular injury in diabetes mellitus, however, remains to be investigated. We have therefore studied native and modified VLDL-mediated steroidogenesis and its underlying molecular mechanisms in human adrenocortical carcinoma cells, NCI H295R. Native VLDL (natVLDL), isolated from healthy volunteers, was subjected to in vitro modification with glucose (200 mmol/l) or sodium hypochlorite (1.5 mmol/l) for preparation of glycoxidized and oxidized VLDL, respectively. VLDL treatment induced steroidogenesis in both a concentration- and time-dependent manner. Native and glycoxidized VLDL (50 μg/ml) were almost two-fold more potent in adrenocortical aldosterone release than angiotensin II (100 nmol/l). These forms of VLDL significantly augmented transcriptional regulation of aldosterone synthase (Cyp11B2), partially through scavenger receptor class B type I, as evident from the effect of BLT-1. In contrast to glycoxidized VLDL, oxidized VLDL significantly attenuated the stimulatory effect of natVLDL on adrenocortical hormone synthesis. Moreover, treatment with specific pharmacological inhibitors (H89, U0126, AG490) provided supporting evidence that VLDL, irrespective of modification, presumably recruited PKA, ERK1/2 and Jak-2 for steroid hormone release through modulation of Cyp11B2 mRNA level. In conclusion, this study demonstrates a novel insight into intracellular mechanism of VLDL-mediated aldosterone synthesis through transcriptional regulation of steroidogenic acute regulatory protein (StAR) and Cyp11B2 expression in human adrenocortical carcinoma cell line.
Collapse
Affiliation(s)
- Sarama Saha
- Department of Internal Medicine III, Carl Gustav Carus Medical School, Technical University of Dresden, Dresden, Germany.
| | | | | | | |
Collapse
|
10
|
Xing Y, Cohen A, Rothblat G, Sankaranarayanan S, Weibel G, Royer L, Francone OL, Rainey WE. Aldosterone production in human adrenocortical cells is stimulated by high-density lipoprotein 2 (HDL2) through increased expression of aldosterone synthase (CYP11B2). Endocrinology 2011; 152:751-63. [PMID: 21239432 PMCID: PMC3040046 DOI: 10.1210/en.2010-1049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adrenal aldosterone production is regulated by physiological agonists at the level of early and late rate-limiting steps. Numerous studies have focused on the role of lipoproteins including high-density lipoprotein (HDL) as cholesterol providers in this process; however, recent research suggests that HDL can also act as a signaling molecule. Herein, we used the human H295R adrenocortical cell model to study the effects of HDL on adrenal aldosterone production and CYP11B2 expression. HDL, especially HDL2, stimulated aldosterone synthesis by increasing expression of CYP11B2. HDL treatment increased CYP11B2 mRNA in both a concentration- and time-dependent manner, with a maximal 19-fold increase (24 h, 250 μg/ml of HDL). Effects of HDL on CYP11B2 were not additive with natural agonists including angiotensin II or K(+). HDL effects were likely mediated by a calcium signaling cascade, because a calcium channel blocker and a calmodulin kinase inhibitor abolished the CYP11B2-stimulating effects. Of the two subfractions of HDL, HDL2 was more potent than HDL3 in stimulating aldosterone and CYP11B2. Further studies are needed to identify the active components of HDL, which regulate aldosterone production.
Collapse
MESH Headings
- Adrenal Cortex/cytology
- Adrenal Cortex/metabolism
- Aldosterone/metabolism
- Calcium/metabolism
- Calcium Signaling/physiology
- Cell Line
- Cholesterol, HDL/pharmacology
- Cytochrome P-450 CYP11B2/genetics
- Cytochrome P-450 CYP11B2/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Humans
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/metabolism
Collapse
Affiliation(s)
- Yewei Xing
- Department of Physiology, Medical College of Georgia, 1120 15th Street, CA-3094, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hoekstra M, Korporaal SJA, Li Z, Zhao Y, Van Eck M, Van Berkel TJC. Plasma lipoproteins are required for both basal and stress-induced adrenal glucocorticoid synthesis and protection against endotoxemia in mice. Am J Physiol Endocrinol Metab 2010; 299:E1038-43. [PMID: 20858753 DOI: 10.1152/ajpendo.00431.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipoprotein-associated cholesterol has been suggested to make a significant contribution to adrenal steroidogenesis in vivo. To determine whether lipoproteins indeed contribute to optimal adrenal steroidogenesis in mice, in the current study we have determined the effect of relative lipoprotein deficiency on adrenal steroidogenesis in C57BL/6 wild-type mice. Feeding C57BL/6 mice the lipid-lowering drug probucol (0.25% wt/wt) for 2 wk induced a 90% decrease in plasma high-density lipoprotein (HDL) cholesterol levels and a 77% reduction in low-density lipoprotein (LDL) cholesterol levels. Neutral lipid stores were depleted upon probucol treatment specifically in the glucocorticoid-producing zona fasciculata of the adrenal, leading to a 44% decreased plasma corticosterone level under basal conditions. Exposure to lipopolysaccharide (LPS) induced a 37% increase in the adrenal uptake of HDL cholesteryl esters. Probucol-treated mice could induce only a relatively minor corticosterone response upon a LPS challenge compared with controls, which coincided with an approximately twofold increased hepatic expression level of interleukin-6 and tumor necrosis factor (TNF)α and an 89% higher TNFα response in plasma. Furthermore, a compensatory two- to fivefold upregulation of LDL receptor (cholesterol uptake) and HMG-CoA reductase (cholesterol synthesis) expression was noticed in the adrenals of probucol-treated mice. In conclusion, we have shown that lipoprotein deficiency in mice as a result of probucol feeding is associated with decreased adrenal cortex cholesterol levels, a lower basal and stress-induced plasma glucocorticoid level, and an increased susceptibility to LPS-induced inflammation. Therefore, it is suggested that plasma lipoproteins are required for optimal adrenal steroidogenesis and protection against endotoxemia in mice.
Collapse
Affiliation(s)
- Menno Hoekstra
- Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Mavridou S, Venihaki M, Rassouli O, Tsatsanis C, Kardassis D. Feedback inhibition of human scavenger receptor class B type I gene expression by glucocorticoid in adrenal and ovarian cells. Endocrinology 2010; 151:3214-24. [PMID: 20463057 DOI: 10.1210/en.2009-1302] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Scavenger receptor class B type I (SR-BI) facilitates the reverse transport of excess cholesterol from peripheral tissues to the liver via high-density lipoproteins. In steroidogenic tissues, SR-BI supplies cholesterol for steroid hormone production. We show here that the transcription of the human SR-BI gene is subject to feedback inhibition by glucocorticoid in adrenal and ovarian cells. SR-BI mRNA levels were increased in adrenals from corticosterone-insufficient Crh(-/-) mice, whereas corticosterone replacement by oral administration inhibited SR-BI gene expression in these mice. SR-BI mRNA levels were increased in adrenals from wild-type mice treated with metyrapone, a drug that blocks corticosterone synthesis. Experiments in adrenocortical H295R and ovarian SKOV-3 cells using cycloheximide and siRNA-mediated gene silencing revealed that glucocorticoid-mediated inhibition of SR-BI gene transcription requires de novo protein synthesis and the glucocorticoid receptor (GR). No direct binding of GR to the SR-BI promoter could be demonstrated in vitro and in vivo, suggesting an indirect mechanism of repression of SR-BI gene transcription by GR in adrenal cells. Deletion analysis established that the region of the human SR-BI promoter between nucleotides -201 and -62 is sufficient to mediate repression by glucocorticoid. This region contains putative binding sites for transcriptional repressors that could play a role in SR-BI gene regulation in response to glucocorticoid. In summary, this is the first report showing that glucocorticoid suppress SR-BI expression suggesting that steroidogenic tissues maintain steroid hormone homeostasis by prohibiting SR-BI-mediated high-density lipoprotein cholesterol uptake when the endogenous levels of glucocorticoid are elevated.
Collapse
Affiliation(s)
- Sofia Mavridou
- Department of Basic Sciences, Foundation of Research and Technology-Hellas, Heraklion 71003, Greece
| | | | | | | | | |
Collapse
|
13
|
Gamliel-Lazarovich A, Gantman A, Shiner M, Coleman R, Aviram M, Keidar S. Paraoxonase 1 deficiency in mice is associated with reduced steroid biosynthesis: Effects on HDL binding, cholesteryl ester accumulation and scavenger receptor type BI expression. Atherosclerosis 2010; 211:130-5. [DOI: 10.1016/j.atherosclerosis.2010.01.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/14/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
|
14
|
Sezer K, Emral R, Corapcioglu D, Gen R, Akbay E. Effect of very low LDL-cholesterol on cortisol synthesis. J Endocrinol Invest 2008; 31:1075-8. [PMID: 19246973 DOI: 10.1007/bf03345655] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cardiovascular disease is the most common cause of mortality around the world. The relationship between coronary artery disease and serum LDL-cholesterol levels has become obvious in recent years and statin treatment has been used more commonly. However, influence of intensive statin treatment on steroidal hormonal functions has remained unclear. In this paper, we evaluated the effect of very low LDL levels (<70 mg/dl) on serum cortisol concentrations, which is mainly synthesized from cholesterol. SUBJECTS AND METHODS Forty-one patients with serum LDL-cholesterol levels below 70 mg/dl were included in the study. The control group consisted of 38 healthy people. Adrenal axis was evaluated by means of cortisol response to 1 microg ACTH test. RESULTS The mean age of patients was 52.45+/-10.74 yr. Of 41 patients, 19 (46.9%) were female. There were statistically significant differences between the study and control group according to their serum cholesterol and LDL levels. Main serum LDL levels were 58+/-11.4 mg/dl and 131+/-25.8 mg/dl in the study and control group, respectively. There were no statistically significant differences in response to 1 microg ACTH stimulation test at basal, 30 min and 60 min among both study and control group. Atorvastatin treatment was generally well tolerated. CONCLUSIONS Our data reflect that having serum LDL-cholesterol levels below 70 mg/dl did not affect the adrenal axis function in terms of cortisol.
Collapse
Affiliation(s)
- K Sezer
- Department of Endocrinology and Metabolic Diseases, Mersin University, School of Medicine, Mersin, Turkey.
| | | | | | | | | |
Collapse
|
15
|
Murao K, Imachi H, Yu X, Cao WM, Muraoka T, Dobashi H, Hosomi N, Haba R, Iwama H, Ishida T. The transcriptional factor prolactin regulatory element-binding protein mediates the gene transcription of adrenal scavenger receptor class B type I via 3',5'-cyclic adenosine 5'-monophosphate. Endocrinology 2008; 149:6103-12. [PMID: 18755803 DOI: 10.1210/en.2008-0380] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prolactin regulatory element-binding (PREB) protein is a transcription factor that regulates prolactin promoter activity in the rat anterior pituitary. The PREB protein is not only expressed in the anterior pituitary but also in the adrenal gland. However, the role of PREB in the adrenal gland is not clearly understood. Scavenger receptor class B type I (SR-BI) is a receptor for high-density lipoprotein that mediates the cellular uptake of high-density lipoprotein-cholesteryl ester and is a major route for cholesterol delivery to the steroidogenic pathway in the adrenal gland. In the present study, we have examined the role of PREB in regulating SR-BI. SR-BI expression was found to be regulated by cAMP, which stimulated the expression of PREB in a dose-dependent manner. Conversely, overexpression of PREB using a PREB-expressing adenovirus increased the expression of the SR-BI protein in the adrenocortical cell line Y-1. In addition, PREB induced the expression of the luciferase reporter protein that was under the control of the SR-BI promoter. EMSA showed that PREB mediates its transcriptional effect by binding to the PREB-responsive cis-element of the SR-BI promoter. Finally, we used small interfering RNA to inhibit PREB expression in the Y-1 cells and demonstrated that the knockdown of PREB expression attenuated the effects of cAMP on SR-BI expression. In summary, our data showed that in the adrenal gland, PREB regulates the transcription of the SR-BI gene via cAMP.
Collapse
Affiliation(s)
- Koji Murao
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Miki-CHO, Kita-gun, Kagawa 761-0793, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Parathath S, Darlington YF, de la Llera Moya M, Drazul-Schrader D, Williams DL, Phillips MC, Rothblat GH, Connelly MA. Effects of amino acid substitutions at glycine 420 on SR-BI cholesterol transport function. J Lipid Res 2007; 48:1386-95. [PMID: 17372332 DOI: 10.1194/jlr.m700086-jlr200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI) facilitates the uptake of HDL cholesteryl esters (CEs) in a two-step process involving binding of HDL to its extracellular domain and transfer of HDL core CEs to a metabolically active membrane pool, where they are subsequently hydrolyzed by a neutral CE hydrolase. Recently, we characterized a mutant, G420H, which replaced glycine 420 in the extracellular domain of SR-BI with a histidine residue and had a profound effect on SR-BI function. The G420H mutant receptor exhibited a reduced ability to mediate selective HDL CE uptake and was unable to deliver HDL CE for hydrolysis, despite the fact that it retained the ability to bind HDL. This did not hold true if glycine 420 was replaced with an alanine residue; G420A maintained wild-type HDL binding and cholesterol transport activity. To further understand the role that glycine 420 plays in SR-BI function and why there was a disparity between replacing glycine 420 with a histidine versus an alanine, we generated a battery of point mutants by substituting glycine 420 with amino acids possessing side chains that were charged, hydrophobic, polar, or bulky and tested the resulting mutants for their ability to support HDL binding, HDL cholesterol transport, and delivery for hydrolysis. The results indicated that substitution with a negatively charged residue or a proline impaired cell surface expression of SR-BI or its interaction with HDL, respectively. Furthermore, substitution of glycine 420 with a positively charged residue reduced HDL CE uptake as well as its subsequent hydrolysis.
Collapse
Affiliation(s)
- Saj Parathath
- Department of Pharmacological Sciences, University Medical Center, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Maloberti P, Cornejo Maciel F, Castillo AF, Castilla R, Duarte A, Toledo MF, Meuli F, Mele P, Paz C, Podestá EJ. Enzymes involved in arachidonic acid release in adrenal and Leydig cells. Mol Cell Endocrinol 2007; 265-266:113-20. [PMID: 17207922 DOI: 10.1016/j.mce.2006.12.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stimulation of receptors and subsequent signal transduction results in the activation of arachidonic acid (AA) release. Once AA is released from phospholipids or others esters, it may be metabolized via the cycloxygenase or the lipoxygenase pathways. How the cells drive AA to these pathways is not elucidated yet. It is reasonable to speculate that each pathway will have different sources of free AA triggered by different signal transduction pathways. Several reports have shown that AA and its lipoxygenase-catalyzed metabolites play essential roles in the regulation of steroidogenesis by influencing cholesterol transport from the outer to the inner mitochondrial membrane, the rate-limiting step in steroid hormone biosynthesis. Signals that stimulate steroidogenesis also cause the release of AA from phospholipids or other esters by mechanisms that are not fully understood. This review focuses on the enzymes of AA release that impact on steroidogenesis.
Collapse
Affiliation(s)
- P Maloberti
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Paraguay 2155, 5 degrees (C1121ABG), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kraemer FB, Shen WJ, Patel S, Osuga JI, Ishibashi S, Azhar S. The LDL receptor is not necessary for acute adrenal steroidogenesis in mouse adrenocortical cells. Am J Physiol Endocrinol Metab 2007; 292:E408-12. [PMID: 16985254 DOI: 10.1152/ajpendo.00428.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Steroid hormones are synthesized using cholesterol as precursor. To determine the functional importance of the low density lipoprotein (LDL) receptor and hormone-sensitive lipase (HSL) in adrenal steroidogenesis, adrenal cells were isolated from control, HSL(-/-), LDLR(-/-), and double LDLR/HSL(-/-) mice. The endocytic and selective uptake of apolipoprotein E-free human high density lipoprotein (HDL)-derived cholesteryl esters did not differ among the mice, with selective uptake accounting for >97% of uptake. In contrast, endocytic uptake of either human LDL- or rat HDL-derived cholesteryl esters was reduced 80-85% in LDLR(-/-) and double-LDLR/HSL(-/-) mice. There were no differences in the selective uptake of either human LDL- or rat HDL-derived cholesteryl esters among the mice. Maximum corticosterone production induced by ACTH or dibutyryl cyclic AMP and lipoproteins was not altered in LDLR(-/-) mice but was reduced 80-90% in HSL(-/-) mice. Maximum corticosterone production was identical in HSL(-/-) and double-LDLR/HSL(-/-) mice. These findings suggest that, although the LDL receptor is responsible for endocytic delivery of cholesteryl esters from LDL and rat HDL to mouse adrenal cells, it appears to play a negligible role in the delivery of cholesterol for acute adrenal steroidogenesis in the mouse. In contrast, HSL occupies a vital role in adrenal steroidogenesis because of its link to utilization of selectively delivered cholesteryl esters from lipoproteins.
Collapse
|
19
|
Murao K, Imachi H, Cao W, Yu X, Li J, Yoshida K, Ahmed RAM, Matsumoto K, Nishiuchi T, Wong NCW, Ishida T. High-density lipoprotein is a potential growth factor for adrenocortical cells. Biochem Biophys Res Commun 2006; 344:226-32. [PMID: 16600185 DOI: 10.1016/j.bbrc.2006.03.131] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 03/20/2006] [Indexed: 01/02/2023]
Abstract
The entry of cholesterol contained within high-density lipoprotein (HDL) into adrenocortical cells is mediated by a human homologue of SR-BI, CD36, and LIMPII Analogous-1 (CLA-1) and thus augmenting their growth. To address the role of CLA-1, we created a mutant mCLA that lacked the C-terminal tail. HDL CE selective uptake by cells carrying the mCLA-1 receptor was fully active and equivalent to those transfected with full-length CLA-1 (fCLA-1). Expression of mCLA inhibited the proliferation of an adrenocortical cell line and the incorporation of [(3)H]thymidine into the cells. This effect was sensitive to wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K). Our transcriptional studies revealed that the inhibitory action of mCLA required the transcriptional factor AP-1 and the effect of HDL on AP-1 activation was also abrogated by wortmannin. These findings raise the possibility that the inhibitors of the effects of HDL may be of therapeutic value for adrenocortical tumor.
Collapse
Affiliation(s)
- Koji Murao
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe Miki-cho, Kita-gun, Kagawa, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Enríquez de Salamanca A, García R. Response of rat fasciculata-reticularis cells in primary culture to bacterial lipopolysaccharide. Microbes Infect 2006; 7:1077-86. [PMID: 16023882 DOI: 10.1016/j.micinf.2005.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 02/02/2005] [Accepted: 02/15/2005] [Indexed: 01/09/2023]
Abstract
The aim of this study was to determine the direct effect of a wide range of concentrations of lipopolysaccharide (LPS) of Escherichia coli O111:B4 on fasciculata-reticularis cells in primary cultures. In short-term cultures of fasciculata-reticularis cells, the presence of low (1-10 microg/ml) doses of LPS in the medium produced a decrease in ACTH-induced corticosterone secretion, in a dose-dependent manner and independent of the culture medium. The corticosterone production stimulated by db-cAMP was slightly decreased by the presence of LPS in culture medium, while the pregnenolone induced corticosterone biosynthesis was not modified. LPS modified the binding of [125I]-Tyr23-ACTH to the fasciculata-reticularis cell membrane and the signal transduction pathway, as LPS reduced ACTH-induced cAMP production. In long-term cultures, the presence of LPS in the medium produces a decrease in the specific binding of [125I]-Tyr23-ACTH, while the presence of ACTH in the culture medium produced an increase in its specific binding. The use of high doses of LPS (100-250 microg/ml) has helped to clarify some aspects of the LPS action. These doses of LPS severely inhibited ACTH-induced corticosterone production, and clearly reduced the corticosterone production stimulated by db-cAMP and the binding of ACTH to its receptors. In long-term cultures, LPS decreased the number of ACTH receptors, an effect that was reversed by subsequent exposure to ACTH. These results indicate that LPS exerts a direct action on fasciculata-reticularis cells and a model of the mechanism of LPS action is proposed.
Collapse
Affiliation(s)
- Amalia Enríquez de Salamanca
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | | |
Collapse
|
21
|
Castilla R, Maloberti P, Castillo F, Duarte A, Cano F, Cornejo Maciel F, Neuman I, Mendez CF, Paz C, Podestá EJ. Arachidonic acid regulation of steroid synthesis: new partners in the signaling pathway of steroidogenic hormones. Endocr Res 2004; 30:599-606. [PMID: 15666797 DOI: 10.1081/erc-200043765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although the role of arachidonic acid (AA) in trophic hormone-stimulated steroid production in various steroidogenic cells is well documented, the mechanism responsible for AA release remains unknown. We have previously shown evidence of an alternative pathway of AA generation in steroidogenic tissues. Our results are consistent with the hypothesis that, in steroidogenic cells, AA is released by the action of a mitochondrial acyl-CoA thioesterase (MTE-I). We have shown that recombinant MTE-I hydrolyses arachidonoyl-CoA to release free AA. An acyl-CoA synthetase specific for AA, acyl-CoA synthetase 4, has also been described in steroidogenic tissues. In the present study we investigate the new concept in the regulation of intracellular levels of AA, in which trophic hormones can release AA by mechanisms different from the classical PLA2-mediated pathway. Inhibition of ACS4 and MTE-I activity by triacsin C and NDGA, respectively results in a reduction of StAR mRNA and protein abundance. When both inhibitors are added together there is a synergistic effect in the inhibition of StAR mRNA, StAR protein levels and ACTH-stimulated steroid synthesis. The inhibition of steroidogenesis produced by the NDGA and triacsin C can be overcome by the addition of exogenous AA. In summary, results shown here demonstrate a critical role of the acyl-CoA synthetase and the acyl-CoA thioesterase in the regulation of AA release, StAR induction, and steroidogenesis. This further suggests a new concept in the regulation of intracellular distribution of AA through a mechanism different from the classical PLA2-mediated pathway that involves a hormone-induced acyl-CoA synthetase and a hormone-regulated acyl-CoA thioesterase.
Collapse
Affiliation(s)
- R Castilla
- Department of Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Parathath S, Connelly MA, Rieger RA, Klein SM, Abumrad NA, De La Llera-Moya M, Iden CR, Rothblat GH, Williams DL. Changes in plasma membrane properties and phosphatidylcholine subspecies of insect Sf9 cells due to expression of scavenger receptor class B, type I, and CD36. J Biol Chem 2004; 279:41310-8. [PMID: 15280390 DOI: 10.1074/jbc.m404952200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells scavenger receptor class B, type I (SR-BI), mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester into hepatic and steroidogenic cells. In addition, SR-BI has a variety of effects on plasma membrane properties including stimulation of the bidirectional flux of free cholesterol (FC) between cells and HDL and changes in the organization of plasma membrane FC as indicated by increased susceptibility to exogenous cholesterol oxidase. Recent studies in SR-BI-deficient mice and in SR-BI-expressing Sf9 insect cells showed that SR-BI has significant effects on plasma membrane ultrastructure. The present study was designed to test the range of SR-BI effects in Sf9 insect cells that typically have very low cholesterol content and a different phospholipid profile compared with mammalian cells. The results showed that, as in mammalian cells, SR-BI expression increased HDL cholesteryl ester selective uptake, cellular cholesterol mass, FC efflux to HDL, and the sensitivity of membrane FC to cholesterol oxidase. These activities were diminished or absent upon expression of the related scavenger receptor CD36. Thus, SR-BI has fundamental effects on cholesterol flux and membrane properties that occur in cells of evolutionarily divergent origins. Profiling of phospholipid species by electrospray ionization mass spectrometry showed that scavenger receptor expression led to the accumulation of phosphatidylcholine species with longer mono- or polyunsaturated acyl chains. These changes would be expected to decrease phosphatidylcholine/cholesterol interactions and thereby enhance cholesterol desorption from the membrane. Scavenger receptor-mediated changes in membrane phosphatidylcholine may contribute to the increased flux of cholesterol and other lipids elicited by these receptors.
Collapse
Affiliation(s)
- Saj Parathath
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, New York 11794-8651, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Eckhardt ERM, Cai L, Sun B, Webb NR, van der Westhuyzen DR. High density lipoprotein uptake by scavenger receptor SR-BII. J Biol Chem 2004; 279:14372-81. [PMID: 14726519 DOI: 10.1074/jbc.m313793200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Scavenger receptor class B, type I (SR-BI) mediates selective uptake of high density lipoprotein (HDL) lipids. It is unclear whether this process occurs at the cell membrane or via endocytosis. Our group previously identified an alternative mRNA splicing variant of SR-BI, named SR-BII, with an entirely different, yet highly conserved cytoplasmic C terminus. In this study we aimed to compare HDL uptake by both isoforms. Whereas SR-BI was mainly ( approximately 70%) localized on the surface of transfected Chinese hamster ovary cells, as determined by biotinylation, HDL binding at 4 degrees C, and studies of enhanced green fluorescent protein-tagged SR-BI/II fusion proteins, the majority of SR-BII ( approximately 80-90%) was expressed intracellularly. The cellular distribution of SR-BI was not affected by deletion of the C terminus, which suggests that the distinct C terminus of SR-BII is responsible for its intracellular expression. Pulse-chase experiments showed that SR-BII rapidly internalized HDL protein, whereas in the case of SR-BI most HDL protein remained surface bound. Like its ligand, SR-BII was more rapidly endocytosed compared with SR-BI. Despite more rapid HDL uptake by SR-BII than SR-BI, selective cholesteryl ether uptake was significantly lower. Relative to their levels of expression at the cell surface, however, both isoforms mediated selective uptake with similar efficiency. HDL protein that was internalized by SR-BII largely co-localized with transferrin in the endosomal recycling compartment. Within the endosomal recycling compartment of SR-BII cells, there was extensive co-localization of internalized HDL lipid and protein. These results do not support a model that selective lipid uptake by SR-BI requires receptor/ligand recycling within the cell. We conclude that SR-BII may influence cellular cholesterol trafficking and homeostasis in a manner that is distinct from SR-BI.
Collapse
Affiliation(s)
- Erik R M Eckhardt
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
24
|
Parathath S, Sahoo D, Darlington YF, Peng Y, Collins HL, Rothblat GH, Williams DL, Connelly MA. Glycine 420 near the C-terminal transmembrane domain of SR-BI is critical for proper delivery and metabolism of high density lipoprotein cholesteryl ester. J Biol Chem 2004; 279:24976-85. [PMID: 15060063 DOI: 10.1074/jbc.m402435200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor BI, SR-BI, is a physiologically relevant receptor for high density lipoprotein (HDL) that mediates the uptake of cholesteryl esters and delivers them to a metabolically active membrane pool where they are subsequently hydrolyzed. A previously characterized SR-BI mutant, A-VI, with an epitope tag inserted into the extracellular domain near the C-terminal transmembrane segment, revealed a separation-of-function between SR-BI-mediated HDL cholesteryl ester uptake and cholesterol efflux to HDL, on one hand, and cholesterol release to small unilamellar phospholipid vesicle acceptors and an increased cholesterol oxidase-sensitive pool of membrane free cholesterol on the other. To further elucidate amino acid residues responsible for this separation-of-function phenotype, we engineered alanine substitutions and point mutations in and around the site of epitope tag insertion, and tested these for various cholesterol transport functions. We found that changing amino acid 420 from glycine to histidine had a profound effect on SR-BI function. Despite the ability to mediate selective HDL cholesteryl ester uptake, the G420H receptor had a greatly reduced ability to: 1) enlarge the cholesterol oxidase-sensitive pool of membrane free cholesterol, 2) mediate cholesterol efflux to HDL, even at low concentrations of HDL acceptor where binding-dependent cholesterol efflux predominates, and 3) accumulate cholesterol mass within the cell. Most importantly, the G420H mutant was unable to deliver the HDL cholesteryl ester to a metabolically active membrane compartment for efficient hydrolysis. These observations have important implications regarding SR-BI function as related to its structure near the C-terminal transmembrane domain.
Collapse
Affiliation(s)
- Saj Parathath
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Peng Y, Akmentin W, Connelly MA, Lund-Katz S, Phillips MC, Williams DL. Scavenger receptor BI (SR-BI) clustered on microvillar extensions suggests that this plasma membrane domain is a way station for cholesterol trafficking between cells and high-density lipoprotein. Mol Biol Cell 2003; 15:384-96. [PMID: 14528013 PMCID: PMC307555 DOI: 10.1091/mbc.e03-06-0445] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Receptor-mediated trafficking of cholesterol between lipoproteins and cells is a fundamental biological process at the organismal and cellular levels. In contrast to the well-studied pathway of LDL receptor-mediated endocytosis, little is known about the trafficking of high-density lipoprotein (HDL) cholesterol by the HDL receptor, scavenger receptor BI (SR-BI). SR-BI mediates HDL cholesteryl ester uptake in a process in which HDL lipids are selectively transferred to the cell membrane without the uptake and degradation of the HDL particle. We report here the cell surface locale where the trafficking of HDL cholesterol occurs. Fluorescence confocal microscopy showed SR-BI in patches and small extensions of the cell surface that were distinct from sites of caveolin-1 expression. Electron microscopy showed SR-BI in patches or clusters primarily on microvillar extensions of the plasma membrane. The organization of SR-BI in this manner suggests that this microvillar domain is a way station for cholesterol trafficking between HDL and cells. The types of phospholipids in this domain are unknown, but SR-BI is not strongly associated with classical membrane rafts rich in detergent-resistant saturated phospholipids. We speculate that SR-BI is in a more fluid membrane domain that will favor rapid cholesterol flux between the membrane and HDL.
Collapse
Affiliation(s)
- Yinan Peng
- Department of Pharmacological Sciences, University Medical Center, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | | | |
Collapse
|
26
|
Zabalawi M, Bhat S, Loughlin T, Thomas MJ, Alexander E, Cline M, Bullock B, Willingham M, Sorci-Thomas MG. Induction of fatal inflammation in LDL receptor and ApoA-I double-knockout mice fed dietary fat and cholesterol. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1201-13. [PMID: 12937162 PMCID: PMC1868257 DOI: 10.1016/s0002-9440(10)63480-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Atherogenic response to dietary fat and cholesterol challenge was evaluated in mice lacking both the LDL receptor (LDLr(-/-)) and apoA-I (apoA-I(-/-)) gene, LDLr(-/-)/apoA-I(-/-) or double-knockout mice. Gender- and age-matched LDLr(-/-)/apoA-I(-/-) mice were fed a diet consisting of 0.1% cholesterol and 10% palm oil for 16 weeks and compared to LDLr(-/-) mice or single-knockout mice. The LDLr(-/-) mice showed a 6- to 7-fold increase in total plasma cholesterol (TPC) compared to their chow-fed mice counterparts, while LDLr(-/-)/apoA-I(-/-) mice showed only a 2- to 3-fold increase in TPC compared to their chow-fed controls. This differential response to the atherogenic diet was unanticipated, since chow-fed LDLr(-/-) and LDLr(-/-)/apoA-I(-/-) mice began the study with similar LDL levels and differed primarily in their HDL concentration. The 6-fold diet-induced increase in TPC observed in the LDLr(-/-) mice occurred mainly in VLDL/LDL and not in HDL. Mid-study plasma samples taken after 8 weeks of diet feeding showed that LDLr(-/-) mice had TPC concentrations approximately 60% of their 16-week level, while the LDLr(-/-)/apoA-I(-/-) mice had reached 100% of their 16-week TPC concentration after only 8 weeks of diet. Male LDLr(-/-) mice showed similar aortic cholesterol levels to male LDLr(-/-)/apoA-I(-/-) mice despite a 4-fold higher VLDL/LDL concentration in the LDLr(-/-) mice. A direct comparison of the severity of aortic atherosclerosis between female LDLr(-/-) and LDLr(-/-)/apoA-I(-/-) mice was compromised due to the loss of female LDLr(-/-)/apoA-I(-/-) mice between 10 and 14 weeks into the study. Diet-fed female and, with time, male LDLr(-/-)/apoA-I(-/-) mice suffered from severe ulcerated cutaneous xanthomatosis. This condition, combined with a complete depletion of adrenal cholesterol, manifested in fatal wasting of the affected mice. In conclusion, LDLr(-/-) and LDLr(-/-)/apoA-I(-/-) mice showed dramatic TPC differences in response to dietary fat and cholesterol challenge, while despite these differences both genotypes accumulated similar levels of aortic cholesterol.
Collapse
Affiliation(s)
- Manal Zabalawi
- Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Connelly MA, De La Llera-Moya M, Peng Y, Drazul-Schrader D, Rothblat GH, Williams DL. Separation of lipid transport functions by mutations in the extracellular domain of scavenger receptor class B, type I. J Biol Chem 2003; 278:25773-82. [PMID: 12730208 DOI: 10.1074/jbc.m302820200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor class B, type I (SR-BI) shows a variety of effects on cellular cholesterol metabolism, including increased selective uptake of high density lipoprotein (HDL) cholesteryl ester, stimulation of free cholesterol (FC) efflux from cells to HDL and phospholipid vesicles, and changes in the distribution of plasma membrane FC as evidenced by increased susceptibility to exogenous cholesterol oxidase. Previous studies showed that these multiple effects require the extracellular domain of SR-BI, but not the transmembrane and cytoplasmic domains. To test whether 1) the extracellular domain of SR-BI mediates multiple activities by virtue of discrete functional subdomains, or 2) the multiple activities are, in fact, secondary to and driven by changes in cholesterol flux, the extracellular domain of SR-BI was subjected to insertional mutagenesis by strategically placing an epitope tag into nine sites. These experiments identified four classes of mutants with disruptions at different levels of function. Class 4 mutants showed a clear separation of function between HDL binding, HDL cholesteryl ester uptake, and HDL-dependent FC efflux on one hand and FC efflux to small unilamellar vesicles and an increased cholesterol oxidase-sensitive pool of membrane FC on the other. Selective disruption of the latter two functions provides evidence for multiple functional subdomains in the extracellular receptor domain. Furthermore, these findings uncover a difference in the SR-BI-mediated efflux pathways for FC transfer to HDL acceptors versus phospholipid vesicles. The loss of the cholesterol oxidase-sensitive FC pool and FC efflux to small unilamellar vesicle acceptors in Class 4 mutants suggests that these activities may be mechanistically related.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biological Transport
- CD36 Antigens/chemistry
- CD36 Antigens/genetics
- CD36 Antigens/metabolism
- COS Cells
- Cell Membrane/metabolism
- Cholesterol/metabolism
- Cholesterol Oxidase/metabolism
- Densitometry
- Dose-Response Relationship, Drug
- Epitopes/chemistry
- Flow Cytometry
- Lipid Metabolism
- Lipoproteins, HDL/metabolism
- Membrane Proteins
- Mice
- Microscopy, Fluorescence
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Plasmids/metabolism
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Immunologic
- Receptors, Lipoprotein
- Receptors, Scavenger
- Scavenger Receptors, Class B
- Transfection
Collapse
Affiliation(s)
- Margery A Connelly
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | | | | | |
Collapse
|
28
|
Williams DL. Selecting selective suppressors of selective uptake. CHEMISTRY & BIOLOGY 2003; 10:202-4. [PMID: 12670532 DOI: 10.1016/s1074-5521(03)00054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Scavenger receptor BI (SR-BI) is a high-density lipoprotein (HDL) receptor that mediates the selective uptake of HDL cholesteryl ester (CE) and the bidirectional flux of free cholesterol (FC). The identification of selective uptake inhibitors holds promise for mechanistic studies of SR-BI and for discovery of pharmaceuticals useful in therapy of atherosclerosis.
Collapse
Affiliation(s)
- David L Williams
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, NY 11794, USA
| |
Collapse
|
29
|
Connelly MA, Kellner-Weibel G, Rothblat GH, Williams DL. SR-BI-directed HDL-cholesteryl ester hydrolysis. J Lipid Res 2003; 44:331-41. [PMID: 12576515 DOI: 10.1194/jlr.m200186-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have examined the metabolic fate of HDL cholesteryl ester (CE) delivered to cells expressing scavenger receptor class B type I (SR-BI). Comparison of SR-BI with a related class B scavenger receptor, CD36, showed a greater uptake and a more rapid and extensive hydrolysis of HDL-CE when delivered by SR-BI. In addition, hydrolysis of HDL-CE delivered by both receptors was via a neutral CE hydrolase. These data indicate that SR-BI, but not CD36, can efficiently direct HDL-CE to a neutral CE hydrolytic pathway. In contrast, LDL-CE was delivered and hydrolyzed equally well by SR-BI and CD36. Hydrolysis of LDL-CE delivered by SR-BI was via a neutral CE hydrolase but that delivered by CD36 occurred via an acidic CE hydrolase, indicating that SR-BI and CD36 deliver LDL-CE to different metabolic pathways. Comparison of inhibitor sensitivities in Y1-BS1 adrenal, Fu5AH hepatoma, and transfected cells suggests that hydrolysis of HDL-CE delivered by SR-BI occurs via cell type-specific neutral CE hydrolases. Furthermore, HDL-CE hydrolytic activity was recovered in a membrane fraction of Y1-BS1 cells. These findings suggest that SR-BI efficiently delivers HDL-CE to a metabolically active membrane compartment where CE is hydrolyzed by a neutral CE hydrolase.
Collapse
Affiliation(s)
- Margery A Connelly
- Department of Pharmacological Sciences, University Medical Center, State University of New York at Stony Brook, Stony Brook, NY 11794-8651, USA.
| | | | | | | |
Collapse
|
30
|
Lozano RC, Maloberti P, Mendez CF, Paz C, Podestá EJ. ACTH regulation of mitochondrial acyl-CoA thioesterase activity in Y1 adrenocortical tumour cells. Endocr Res 2002; 28:331-7. [PMID: 12530634 DOI: 10.1081/erc-120016805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have previously purified and cloned a phosphoprotein, Arachidonic acid-Related Thioesterase Involved in Steroidogenesis (ARTISt), involved in steroid synthesis through Arachidonic Acid (AA) release. Arachidonic acid-related thioesterase involved in steroidogenesis resulted to be a member of a new family of acyl-CoA thioesterases. The protein was identified by its biocapacity to increase mitochondrial steroidogenesis in a cell free bioassay. In the present study we measure the activity of ARTISt using arachidonoyl-CoA (AA-CoA) as substrate. We demonstrate that ACTH significantly stimulates endogenous mitochondrial thioesterase activity as early as 5 min after ACTH stimulation of Y1 cells. Nordihydroguaiaretic acid (NDGA), an inhibitor of AA release known to affect steroidogenesis, affects the in vitro activity of recombinant ARTISt and also the endogenous mitochondrial acyl-CoA thioesterases. ACTH activation of the enzyme protected ARTISt to the inhibitory effect of NDGA. These results show that an enzyme that release AA from AA-CoA can be regulated in intact cells by steroidogenic hormones.
Collapse
|
31
|
Maloberti P, Lozano RC, Mele PG, Cano F, Colonna C, Mendez CF, Paz C, Podestá EJ. Concerted regulation of free arachidonic acid and hormone-induced steroid synthesis by acyl-CoA thioesterases and acyl-CoA synthetases in adrenal cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5599-607. [PMID: 12423359 DOI: 10.1046/j.1432-1033.2002.03267.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the role of arachidonic acid (AA) in the regulation of steroidogenesis is well documented, the mechanism for AA release is not clear. Therefore, the aim of this study was to characterize the role of an acyl-CoA thioesterase (ARTISt) and an acyl-CoA synthetase as members of an alternative pathway in the regulation of the intracellular levels of AA in steroidogenesis. Purified recombinant ARTISt releases AA from arachidonoyl-CoA (AA-CoA) with a Km of 2 micro m. Antibodies raised against recombinant acyl-CoA thioesterase recognize the endogenous protein in both adrenal tissue and Y1 adrenal tumor cells by immunohistochemistry and immunocytochemistry and Western blot. Stimulation of Y1 cells with ACTH significantly stimulated endogenous mitochondrial thioesterases activity (1.8-fold). Nordihydroguaiaretic acid (NDGA), an inhibitor of AA release known to affect steroidogenesis, affects the in vitro activity of recombinant ARTISt and also the endogenous mitochondrial acyl-CoA thioesterases. ACTH-stimulated steroid synthesis in Y1 cells was significantly inhibited by a synergistic effect of NDGA and triacsin C an inhibitor of the AA-CoA synthetase. The apparent IC50 for NDGA was reduced from 50 micro m to 25, 7.5 and 4.5 micro m in the presence of 0.1, 0.5 and 2 micro m triacsin C, respectively. Our results strongly support the existence of a new pathway of AA release that operates in the regulation of steroid synthesis in adrenal cells.
Collapse
Affiliation(s)
- Paula Maloberti
- Department of Biochemistry, School of Medicine, University of Buenos Aires
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ishii T, Hasegawa T, Pai CI, Yvgi-Ohana N, Timberg R, Zhao L, Majdic G, Chung BC, Orly J, Parker KL. The roles of circulating high-density lipoproteins and trophic hormones in the phenotype of knockout mice lacking the steroidogenic acute regulatory protein. Mol Endocrinol 2002; 16:2297-309. [PMID: 12351695 DOI: 10.1210/me.2001-0320] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The steroidogenic acute regulatory protein (StAR) is essential for the regulated production of steroid hormones, mediating the translocation of intracellular cholesterol to the inner mitochondrial membrane where steroidogenesis begins. Steroidogenic cells lacking StAR have impaired steroidogenesis and progressively accumulate lipid, ultimately causing cytopathic changes and deterioration of steroidogenic capacity. Developmental studies of StAR knockout (KO) mice have correlated gonadal lipid deposits with puberty, suggesting that trophic hormones contribute to this lipid accumulation. To delineate the role of gonadotropins in this process, we examined double mutant mice deficient in both StAR and gonadotropins [StAR KO/hpg (hypogonadal)]. Lipid accumulation was ameliorated considerably in StAR KO/hpg mice but was restored by treatment with exogenous gonadotropins, directly linking trophic hormones with gonadal lipid accumulation. To define the relative roles of exogenous vs. endogenous cholesterol in the lipid accumulation, we also examined mice lacking both StAR and apolipoprotein A-I (StAR KO/Apo A-I KO). Steroidogenic tissues of StAR KO/Apo A-I KO mice had markedly decreased lipid deposits, supporting the predominant role of high-density lipoprotein-derived cholesterol in the lipid accumulation caused by StAR deficiency. Finally, we used electron microscopy to compare mitochondrial ultrastructure in StAR KO and cholesterol side-chain cleavage enzyme (Cyp11a1) KO mice; despite comparable lipid accumulation within adrenocortical cells, the effects of StAR deficiency and Cyp11a1 deficiency on mitochondrial ultrastructure were markedly different. These findings extend our understanding of steroidogenic cell dysfunction in StAR KO mice and highlight key roles of trophic hormones and high-density lipoprotein-derived cholesterol in lipid deposits within StAR-deficient steroidogenic cells.
Collapse
Affiliation(s)
- Tomohiro Ishii
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8857, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Azhar S, Reaven E. Scavenger receptor class BI and selective cholesteryl ester uptake: partners in the regulation of steroidogenesis. Mol Cell Endocrinol 2002; 195:1-26. [PMID: 12354669 DOI: 10.1016/s0303-7207(02)00222-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The steroidogenic tissues have a special requirement for cholesterol, which is used as a substrate for steroid hormone biosynthesis. In many species this cholesterol is obtained from plasma lipoproteins by a unique pathway in which circulating lipoproteins bind to the surface of the steroidogenic cells and contribute their cholesteryl esters to the cells by a 'selective' process in which the whole lipoprotein particle does not enter the cell. This review describes the lipoprotein selective cholesteryl ester uptake process and its specific partnership with the HDL receptor, scavenger receptor class BI (SR-BI). It describes the characteristics of the selective pathway, and the molecular properties, localization, regulation, anchoring sites and potential mechanisms of action of SR-BI in facilitating cholesteryl ester uptake by steroidogenic cells.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education and Clinical Center, GRECC-182B, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| | | |
Collapse
|
34
|
Temel RE, Walzem RL, Banka CL, Williams DL. Apolipoprotein A-I is necessary for the in vivo formation of high density lipoprotein competent for scavenger receptor BI-mediated cholesteryl ester-selective uptake. J Biol Chem 2002; 277:26565-72. [PMID: 12000760 DOI: 10.1074/jbc.m203014200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The severe depletion of cholesteryl ester (CE) in steroidogenic cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays a specific role in the high density lipoprotein (HDL) CE-selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. The nature of this role, however, is unclear because a variety of apolipoproteins bind to SR-BI expressed in transfected cells. In this study the role of apoA-I in SR-BI-mediated HDL CE-selective uptake was tested via analyses of the biochemical properties of apoA-I(-/-) HDL and its interaction with SR-BI on adrenocortical cells, hepatoma cells, and cells expressing a transfected SR-BI. apoA-I(-/-) HDL are large heterogeneous particles with a core consisting predominantly of CE and a surface enriched in phospholipid, free cholesterol, apoA-II, and apoE. Functional analysis showed apoA-I(-/-) HDL to bind to SR-BI with the same or higher affinity as compared with apoA-I(+/+) HDL, but apoA-I(-/-) HDL showed a 2-3-fold decrease in the V(max) for CE transfer from the HDL particle to adrenal cells. These results indicate that the absence of apoA-I results in HDL particles with a reduced capacity for SR-BI-mediated CE-selective uptake. The reduced V(max) illustrates that HDL properties necessary for binding to SR-BI are distinct from those properties necessary for the transfer of HDL CE from the core of the HDL particle to the plasma membrane. The reduced V(max) for HDL CE-selective uptake likely contributes to the severe reduction in CE accumulation in steroidogenic cells of apoA-I(-/-) mice.
Collapse
Affiliation(s)
- Ryan E Temel
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
35
|
Gälman C, Angelin B, Rudling M. Prolonged stimulation of the adrenals by corticotropin suppresses hepatic low-density lipoprotein and high-density lipoprotein receptors and increases plasma cholesterol. Endocrinology 2002; 143:1809-16. [PMID: 11956163 DOI: 10.1210/endo.143.5.8816] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary ACTH has been shown to strongly stimulate adrenal receptors for low-density lipoprotein (LDL) and high-density lipoprotein (HDL) scavenger receptor class B type 1(SR-BI) to provide precursor cholesterol for glucocorticoid synthesis. The present study aimed to determine the effects of ACTH on hepatic cholesterol metabolism and plasma lipoproteins. Treatment of Sprague Dawley rats or normal C57BL/6J mice with ACTH for 3.5 d reduced hepatic SR-BI and LDL receptors. Simultaneously, cholesterol in plasma LDL and HDL was increased. None of these effects could be reproduced using glucocorticoids instead of ACTH, and they were abolished in adrenalectomized rats, indicating an obligate role of the adrenals for the effects of ACTH observed in the liver. When ACTH was given to LDL receptor-deficient mice, plasma LDL did not increase and the increase in HDL cholesterol remained, as did the suppression of hepatic SR-BI. Our data show that prolonged ACTH treatment suppresses hepatic SR-BI and LDL receptors in vivo in rodents, resulting in elevated plasma HDL and LDL. The adrenals are obligate for these effects, suggesting that ACTH releases some factor(s) that suppresses hepatic LDL and SR-BI receptors. Hypothetically, this novel mechanism would further promote channeling of cholesterol to the adrenals in situations of prolonged stress.
Collapse
Affiliation(s)
- Cecilia Gälman
- Metabolism Unit, Center for Metabolism and Endocrinology, Department of Medicine, NOVUM, Karolinska Institute at Huddinge University Hospital, 141 86 Stockholm, Sweden
| | | | | |
Collapse
|
36
|
Thuahnai ST, Lund-Katz S, Williams DL, Phillips MC. Scavenger receptor class B, type I-mediated uptake of various lipids into cells. Influence of the nature of the donor particle interaction with the receptor. J Biol Chem 2001; 276:43801-8. [PMID: 11564739 DOI: 10.1074/jbc.m106695200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor (SR)-BI is the first molecularly defined receptor for high density lipoprotein (HDL) and it can mediate the selective uptake of cholesteryl ester into cells. To elucidate the molecular mechanisms by which SR-BI facilitates lipid uptake, we examined the connection between lipid donor particle binding and lipid uptake using kidney COS-7 cells transiently transfected with SR-BI. We systematically compared the uptake of [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]sphingomyelin (SM) from apolipoprotein (apo) A-I-containing reconstituted HDL (rHDL) particles and apo-free lipid donor particles. Although both types of lipid donor could bind to SR-BI, only apo-containing lipid donors exhibited preferential delivery of CE over SM (i.e. nonstoichiometric lipid uptake). In contrast, apo-free lipid donor particles (phospholipid unilamellar vesicles, lipid emulsion particles) gave rise to stoichiometric lipid uptake due to interaction with SR-BI. This apparent whole particle uptake was not due to endocytosis, but rather fusion of the lipid components of the lipid donor with the cell plasma membrane; this process is perhaps mediated by a fusogenic motif in the extracellular domain of SR-BI. The interaction of apoA-I with SR-BI not only prevents fusion of the lipid donor with the plasma membrane but also allows the optimal selective lipid uptake. A comparison of rHDL particles containing apoA-I and apoE-3 showed that while both particles bound equally well to SR-BI, the apoA-I particle gave approximately 2-fold greater CE selective uptake. Catabolism of all major HDL lipids can occur via SR-BI with the relative selective uptake rate constants for CE, free cholesterol, triglycerides (triolein), and phosphatidylcholine being 1, 1.6, 0.7, and 0.2, respectively. It follows that a putative nonpolar channel created by SR-BI between the bound HDL particle and the cell plasma membrane is better able to accommodate the uptake of neutral lipids (e.g. cholesterol) relative to polar phospholipids.
Collapse
Affiliation(s)
- S T Thuahnai
- GI/Nutrition Division, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4318, USA
| | | | | | | |
Collapse
|
37
|
Connelly MA, de la Llera-Moya M, Monzo P, Yancey PG, Drazul D, Stoudt G, Fournier N, Klein SM, Rothblat GH, Williams DL. Analysis of chimeric receptors shows that multiple distinct functional activities of scavenger receptor, class B, type I (SR-BI), are localized to the extracellular receptor domain. Biochemistry 2001; 40:5249-59. [PMID: 11318648 DOI: 10.1021/bi002825r] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scavenger receptor BI (SR-BI) mediates the selective uptake of high-density lipoprotein (HDL) cholesteryl ester (CE), a process by which HDL CE is taken into the cell without degradation of the HDL particle. In addition, SR-BI stimulates the bi-directional flux of free cholesterol (FC) between cells and lipoproteins, an activity that may be responsible for net cholesterol efflux from peripheral cells as well as the rapid hepatic clearance of FC from plasma HDL. SR-BI also increases cellular cholesterol mass and alters cholesterol distribution in plasma membrane domains as judged by the enhanced sensitivity of membrane cholesterol to extracellular cholesterol oxidase. In contrast, CD36, a closely related class B scavenger receptor, has none of these activities despite binding HDL with high affinity. In the present study, analyses of chimeric SR-BI/CD36 receptors and domain-deleted SR-BI have been used to test the various domains of SR-BI for functional activities related to HDL CE selective uptake, bi-directional FC flux, and the alteration of membrane cholesterol mass and distribution. The results show that each of these activities localizes to the extracellular domain of SR-BI. The N-terminal cytoplasmic tail and transmembrane domains appear to play no role in these activities other than targeting the receptor to the plasma membrane. The C-terminal tail of SR-BI is dispensable for activity as well for targeting to the plasma membrane. Thus, multiple distinct functional activities are localized to the SR-BI extracellular domain.
Collapse
Affiliation(s)
- M A Connelly
- Department of Pharmacological Sciences, University Medical Center, State University of New York at Stony Brook, 11794-8651, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ganguly A. Aldosterone. Compr Physiol 2000. [DOI: 10.1002/cphy.cp070305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Williams DL, Temel RE, Connelly MA. Roles of scavenger receptor BI and APO A-I in selective uptake of HDL cholesterol by adrenal cells. Endocr Res 2000; 26:639-51. [PMID: 11196441 DOI: 10.3109/07435800009048584] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adrenal cells obtain cholesterol for steroid production via the selective uptake of cholesteryl ester (CE) from HDL particles, a process in which CE is transferred to the plasma membrane without degradation of the HDL particle. Although this process has been studied for two decades, only recently have the receptor and the HDL ligand been identified. Scavenger class B, type I, (SR-BI) is regulated by ACTH in adrenocortical cells in parallel with steroid production. Antibody to SR-BI blocks the uptake and utilization of HDL CE for steroid production in Y1-BS1 adrenal cells. The adrenal glands of SR-BI knockout mice are depleted in cholesterol providing complementary evidence that SR-BI is responsible for HDL CE accumulation in adrenal cells. SR-BI-mediated HDL CE selective uptake is a two-step process in which SR-BI first interacts with multiple sites in apoA-I with the amphipathic inverted alpha-helical repeat units of apoA-I serving as recognition motifs. This is followed by efficient CE transfer down its concentration gradient to the plasma membrane, a process requiring the extracellular domain of SR-BI. Other scavenger receptors bind HDL but do not afford the CE transfer step. Adrenal glands from apoA-I knockout mice lack CE stores, indicating that apoAI is essential for HDL selective uptake in vivo. ApoA-I knockout HDL particles bind normally to SR-BI but do not permit efficient CE transfer to the cell. These findings suggest that apoA-I has an important role in the transfer of HDL CE that goes beyond its function as a ligand for interaction with SR-BI.
Collapse
Affiliation(s)
- D L Williams
- Department of Pharmacological Sciences, University Medical Center, State University of New York at Stony Brook, 11794, USA
| | | | | |
Collapse
|
40
|
Krieger M. Charting the fate of the "good cholesterol": identification and characterization of the high-density lipoprotein receptor SR-BI. Annu Rev Biochem 2000; 68:523-58. [PMID: 10872459 DOI: 10.1146/annurev.biochem.68.1.523] [Citation(s) in RCA: 408] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Risk for cardiovascular disease due to atherosclerosis increases with increasing concentrations of low-density lipoprotein (LDL) cholesterol and is inversely proportional to the levels of high-density lipoprotein (HDL) cholesterol. The receptor-mediated control of plasma LDL levels has been well understood for over two decades and has been a focus for the pharmacologic treatment of hypercholesterolemia. In contrast, the first identification and characterization of a receptor that mediates cellular metabolism of HDL was only recently reported. This receptor, called scavenger receptor class B type I (SR-BI), is a fatty acylated glycoprotein that can cluster in caveolae-like domains on the surfaces of cultured cells. SR-BI mediates selective lipid uptake from HDL to cells. The mechanism of selective lipid uptake is fundamentally different from that of classic receptor-mediated endocytic uptake via coated pits and vesicles (e.g. the LDL receptor pathway) in that it involves efficient receptor-mediated transfer of the lipids, but not the outer shell proteins, from HDL to cells. In mice, SR-BI plays a key role in determining the levels of plasma HDL cholesterol and in mediating the regulated, selective delivery of HDL-cholesterol to steroidogenic tissues and the liver. Significant alterations in SR-BI expression can result in cardiovascular and reproductive disorders. SR-BI may play a similar role in humans; thus, modulation of its activity may provide the basis of future approaches to the treatment and prevention of atherosclerotic disease.
Collapse
Affiliation(s)
- M Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| |
Collapse
|
41
|
Williams DL, de La Llera-Moya M, Thuahnai ST, Lund-Katz S, Connelly MA, Azhar S, Anantharamaiah GM, Phillips MC. Binding and cross-linking studies show that scavenger receptor BI interacts with multiple sites in apolipoprotein A-I and identify the class A amphipathic alpha-helix as a recognition motif. J Biol Chem 2000; 275:18897-904. [PMID: 10858447 DOI: 10.1074/jbc.m002411200] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Scavenger receptor, class B, type I (SR-BI) mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester without the uptake and degradation of the particle. In transfected cells SR-BI recognizes HDL, low density lipoprotein (LDL) and modified LDL, protein-free lipid vesicles containing anionic phospholipids, and recombinant lipoproteins containing apolipoprotein (apo) A-I, apoA-II, apoE, or apoCIII. The molecular basis for the recognition of such diverse ligands by SR-BI is unknown. We have used direct binding analysis and chemical cross-linking to examine the interaction of murine (m) SR-BI with apoA-I, the major protein of HDL. The results show that apoA-I in apoA-I/palmitoyl-oleoylphosphatidylcholine discs, HDL(3), or in a lipid-free state binds to mSR-BI with high affinity (K(d) congruent with 5-8 microgram/ml). ApoA-I in each of these forms was efficiently cross-linked to cell surface mSR-BI, indicating that direct protein-protein contacts are the predominant feature that drives the interaction between HDL and mSR-BI. When complexed with dimyristoylphosphatidylcholine, the N-terminal and C-terminal CNBr fragments of apoA-I each bound to SR-BI in a saturable, high affinity manner, and each cross-linked efficiently to mSR-BI. Thus, mSR-BI recognizes multiple sites in apoA-I. A model class A amphipathic alpha-helix, 37pA, also showed high affinity binding and cross-linking to mSR-BI. These studies identify the amphipathic alpha-helix as a recognition motif for SR-BI and lead to the hypothesis that mSR-BI interacts with HDL via the amphipathic alpha-helical repeat units of apoA-I. This hypothesis explains the interaction of SR-BI with a wide variety of apolipoproteins via a specific secondary structure, the class A amphipathic alpha-helix, that is a common structural motif in the apolipoproteins of HDL, as well as LDL.
Collapse
Affiliation(s)
- D L Williams
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, New York 11794, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The scavenger receptor class B, type I (SR-BI) is an HDL receptor that mediates selective cholesterol uptake from HDL to cells. In rodents, SR-BI has a critical influence on plasma HDL-cholesterol concentration and structure, the delivery of cholesterol to steroidogenic tissues, female fertility, and biliary cholesterol concentration. SR-BI can also serve as a receptor for non-HDL lipoproteins and appears to play an important role in reverse cholesterol transport. Recent studies involving the manipulation of SR-BI expression in mice, either using adenovirus-mediated or transgenic hepatic overexpression or using homologous recombination for complete functional ablation, indicate that the expression of SR-BI protects against atherosclerosis. If SR-BI has a similar activity in humans, it may become an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- M Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | |
Collapse
|
43
|
Williams DL, Connelly MA, Temel RE, Swarnakar S, Phillips MC, de la Llera-Moya M, Rothblat GH. Scavenger receptor BI and cholesterol trafficking. Curr Opin Lipidol 1999; 10:329-39. [PMID: 10482136 DOI: 10.1097/00041433-199908000-00007] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Scavenger receptor BI (SR-BI) mediates the selective uptake of HDL cholesteryl ester into steroidogenic cells and the liver and is a major determinant of the plasma HDL concentration in the mouse. Recent studies indicate that SR-BI also alters the metabolism of apolipoprotein B-containing particles and influences the development of atherosclerosis in several animal models. These results and the similar pattern of SR-BI expression in humans emphasize that it is important to learn how this receptor influences lipoprotein metabolism and atherosclerosis in people.
Collapse
Affiliation(s)
- D L Williams
- Department of Pharmacological Sciences, University Medical Centre, State University of New York at Stony Brook, 11794, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Rodrigueza WV, Thuahnai ST, Temel RE, Lund-Katz S, Phillips MC, Williams DL. Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells. J Biol Chem 1999; 274:20344-50. [PMID: 10400657 DOI: 10.1074/jbc.274.29.20344] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite extensive studies and characterizations of the high density lipoprotein-cholesteryl ester (HDL-CE)-selective uptake pathway, the mechanisms by which the hydrophobic CE molecules are transferred from the HDL particle to the plasma membrane have remained elusive, until the discovery that scavenger receptor BI (SR-BI) plays an important role. To elucidate the molecular mechanism, we examined the quantitative relationships between the binding of HDL and the selective uptake of its CE in the murine adrenal Y1-BS1 cell line. A comparison of concentration dependences shows that half-maximal high affinity cell association of HDL occurs at 8.7 +/- 4.7 micrograms/ml and the Km of HDL-CE-selective uptake is 4.5 +/- 1.5 micrograms/ml. These values are similar, and there is a very high correlation between these two processes (r2 = 0.98), suggesting that they are linked. An examination of lipid uptake from reconstituted HDL particles of defined composition and size shows that there is a non-stoichiometric uptake of HDL lipid components, with CE being preferred over the major HDL phospholipids, phosphatidylcholine and sphingomyelin. Comparison of the rates of selective uptake of different classes of phospholipid in this system gives the ranking: phosphatidylserine > phosphatidylcholine approximately phosphatidylinositol > sphingomyelin. The rate of CE-selective uptake from donor particles is proportional to the amount of CE initially present in the particles, suggesting a mechanism in which CE moves down its concentration gradient from HDL particles docked on SR-BI into the cell plasma membrane. The activation energy for CE uptake from either HDL3 or reconstituted HDL is about 9 kcal/mol, indicating that HDL-CE uptake occurs via a non-aqueous pathway. HDL binding to SR-BI allows access of CE molecules to a "channel" formed by the receptor from which water is excluded and along which HDL-CE molecules move down their concentration gradient into the cell plasma membrane.
Collapse
Affiliation(s)
- W V Rodrigueza
- Department of Biochemistry, MCP Hahnemann University, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | |
Collapse
|
45
|
Connelly MA, Klein SM, Azhar S, Abumrad NA, Williams DL. Comparison of class B scavenger receptors, CD36 and scavenger receptor BI (SR-BI), shows that both receptors mediate high density lipoprotein-cholesteryl ester selective uptake but SR-BI exhibits a unique enhancement of cholesteryl ester uptake. J Biol Chem 1999; 274:41-7. [PMID: 9867808 DOI: 10.1074/jbc.274.1.41] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scavenger receptor BI (SR-BI) mediates the selective uptake of high density lipoprotein (HDL) cholesteryl ester (CE), a process by which HDL CE is taken into the cell without internalization and degradation of the HDL particle. The biochemical mechanism by which SR-BI mediates the selective uptake of HDL CE is poorly understood. Given that CE transfer will occur to some extent from HDL to protein-free synthetic membranes, one hypothesis is that the role of SR-BI is primarily to tether HDL close to the cell surface to facilitate CE transfer from the particle to the plasma membrane. In the present study, this hypothesis was tested by comparing the selective uptake of HDL CE mediated by mouse SR-BI (mSR-BI) with that mediated by rat CD36 (rCD36), a closely related class B scavenger receptor. Both mSR-BI and rCD36 bind HDL with high affinity, and both receptors mediate HDL CE selective uptake. However, SR-BI mediates selective uptake of HDL CE with a 7-fold greater efficiency than rCD36. HDL CE selective uptake mediated by rCD36 is dependent on HDL binding to the receptor, since a mutation that blocks HDL binding also blocks HDL CE selective uptake. These data lead us to hypothesize that one component of HDL CE selective uptake is the tethering of HDL particles to the cell surface. To explore the molecular domains responsible for the greater efficiency of selective uptake by mSR-BI, we compared binding and selective uptake among mSR-BI, scavenger receptor BII, and various chimeric receptors formed from mSR-BI and rCD36. The results show that the extracellular domain of mSR-BI is essential for efficient HDL CE uptake, but the C-terminal cytoplasmic tail also has a major influence on the selective uptake process.
Collapse
Affiliation(s)
- M A Connelly
- Department of Pharmacological Sciences, University Medical Center, State University at Stony Brook, Stony Brook, New York, 11794-8651, USA
| | | | | | | | | |
Collapse
|
46
|
Yaguchi H, Tsutsumi K, Shimono K, Omura M, Sasano H, Nishikawa T. Involvement of high density lipoprotein as substrate cholesterol for steroidogenesis by bovine adrenal fasciculo-reticularis cells. Life Sci 1998; 62:1387-95. [PMID: 9585166 DOI: 10.1016/s0024-3205(98)00077-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adrenocorticosteroids are known to be synthesized from cholesterol which may arise from de novo synthesis or from the uptake of low-density lipoproteins (LDL) or high-density lipoproteins (HDL). LDL is reported to be a main substrate for corticosteroid synthesis by bovine adrenocortical cells, although the role of HDL, which is well known to be used for steroid biosynthesis in rat adrenals, is still obscure. Therefore, we examined the role of HDL in the regulation of corticosteroidogenesis in bovine adrenals in order to clarify whether or not HDL was selectively utilized for corticosteroid synthesis in vitro. The present data demonstrated that HDL and LDL increased cortisol production in a dose-dependent manner in bovine adrenocortical cells in vitro, and also that HDL cholesterol increased cortisol production significantly higher than LDL cholesterol did. Addition of adrenocorticotrophic hormone (ACTH) with HDL to the incubation media enhanced much higher cortisol production than that with LDL in short time incubation. The present data also demonstrated that uptake of 125I-HDL was significantly greater than that of 125I-LDL. Thus, HDL rather than LDL is thought to be the preferred lipoprotein as a source of steroidogenic substrate cholesterol in bovine adrenal fasciculo-reticularis cells.
Collapse
MESH Headings
- Animals
- Cattle
- Cells, Cultured
- Cholesterol/metabolism
- Cholesterol/pharmacology
- Cholesterol, HDL/metabolism
- Cholesterol, HDL/pharmacology
- Cholesterol, LDL/metabolism
- Cholesterol, LDL/pharmacology
- Hydrocortisone/biosynthesis
- Iodine Radioisotopes
- Kinetics
- Lipoproteins, HDL/metabolism
- Lipoproteins, HDL/pharmacokinetics
- Lipoproteins, HDL/pharmacology
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/pharmacokinetics
- Lipoproteins, LDL/pharmacology
- Zona Reticularis/drug effects
- Zona Reticularis/metabolism
Collapse
Affiliation(s)
- H Yaguchi
- Otsuka Pharmaceutical Factory, Inc., Naruto Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Swarnakar S, Reyland ME, Deng J, Azhar S, Williams DL. Selective uptake of low density lipoprotein-cholesteryl ester is enhanced by inducible apolipoprotein E expression in cultured mouse adrenocortical cells. J Biol Chem 1998; 273:12140-7. [PMID: 9575160 DOI: 10.1074/jbc.273.20.12140] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein (apo) E is expressed at high levels by steroidogenic cells of the adrenal gland, ovary, and testis. The cell surface location of apoE in adrenocortical cells suggests that apoE may facilitate the uptake of lipoprotein cholesterol by either the endocytic or the selective uptake pathways, or both. To examine these possibilities, the human apoE gene was expressed in murine Y1 adrenocortical cells under control of an inducible tetracycline-regulated promoter. The results show that induction of apoE yielded a 2-2.5-fold increase in the uptake of low density lipoprotein-cholesteryl ester (LDL-CE) but had little effect on high density lipoprotein-CE uptake. Analysis of lipoprotein uptake pathways showed that apoE increased LDL-CE uptake by both endocytic and selective uptake pathways. In terms of cholesterol delivery to the adrenal cell, the apoE-mediated enhancement of LDL-CE selective uptake was quantitatively more important. Furthermore, the predominant effect of apoE expression was on the low affinity component of LDL-CE selective uptake. LDL particles incubated with apoE-expressing cells contained 0.92 +/- 0.11 apoE molecules/apoB after gel filtration chromatography, indicating stable complex formation between apoE and LDL. ApoE expression by Y1 cells was necessary for enhanced LDL-CE selective uptake. This result may indicate an interaction between apoE-containing LDL and cell surface apoE. These data suggest that apoE produced locally by steroidogenic cells facilitates cholesterol acquisition by the LDL selective uptake pathway.
Collapse
Affiliation(s)
- S Swarnakar
- Department of Pharmacological Sciences, University Medical Center, State University of New York, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
48
|
Temel RE, Trigatti B, DeMattos RB, Azhar S, Krieger M, Williams DL. Scavenger receptor class B, type I (SR-BI) is the major route for the delivery of high density lipoprotein cholesterol to the steroidogenic pathway in cultured mouse adrenocortical cells. Proc Natl Acad Sci U S A 1997; 94:13600-5. [PMID: 9391072 PMCID: PMC28352 DOI: 10.1073/pnas.94.25.13600] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/1997] [Accepted: 10/08/1997] [Indexed: 02/05/2023] Open
Abstract
The class B, type I scavenger receptor, SR-BI, binds high density lipoprotein (HDL) and mediates the selective uptake of HDL cholesteryl ester (CE) by cultured transfected cells. The high levels of SR-BI expression in steroidogenic cells in vivo and its regulation by tropic hormones provides support for the hypothesis that SR-BI is a physiologically relevant HDL receptor that supplies substrate cholesterol for steroid hormone synthesis. This hypothesis was tested by determining the ability of antibody directed against murine (m) SR-BI to inhibit the selective uptake of HDL CE in Y1-BS1 adrenocortical cells. Anti-mSR-BI IgG inhibited HDL CE-selective uptake by 70% and cell association of HDL particles by 50% in a dose-dependent manner. The secretion of [3H]steroids derived from HDL containing [3H]CE was inhibited by 78% by anti-mSR-BI IgG. These results establish mSR-BI as the major route for the selective uptake of HDL CE and the delivery of HDL cholesterol to the steroidogenic pathway in cultured mouse adrenal cells.
Collapse
Affiliation(s)
- R E Temel
- Department of Pharmacological Sciences, University Medical Center, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
ApoA-I knockout mice: characterization of HDL metabolism in homozygotes and identification of a post-RNA mechanism of apoA-I up-regulation in heterozygotes. J Lipid Res 1997. [DOI: 10.1016/s0022-2275(20)37227-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|