1
|
Zappia J, Joiret M, Sanchez C, Lambert C, Geris L, Muller M, Henrotin Y. From Translation to Protein Degradation as Mechanisms for Regulating Biological Functions: A Review on the SLRP Family in Skeletal Tissues. Biomolecules 2020; 10:E80. [PMID: 31947880 PMCID: PMC7023458 DOI: 10.3390/biom10010080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix can trigger cellular responses through its composition and structure. Major extracellular matrix components are the proteoglycans, which are composed of a core protein associated with glycosaminoglycans, among which the small leucine-rich proteoglycans (SLRPs) are the largest family. This review highlights how the codon usage pattern can be used to modulate cellular response and discusses the biological impact of post-translational events on SLRPs, including the substitution of glycosaminoglycan moieties, glycosylation, and degradation. These modifications are listed, and their impacts on the biological activities and structural properties of SLRPs are described. We narrowed the topic to skeletal tissues undergoing dynamic remodeling.
Collapse
Affiliation(s)
- Jérémie Zappia
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Marc Joiret
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Christelle Sanchez
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Cécile Lambert
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
| | - Liesbet Geris
- Biomechanics Research Unit, B34 GIGA-R, In Silico Medicine, Liège University, CHU Sart-Tilman, 4000 Liège, Belgium; (M.J.); (L.G.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA-Research, Liège University, Avenue de l’Hôpital, B-4000 Liège, Belgium;
| | - Yves Henrotin
- Bone and Cartilage Research Unit, Arthropôle Liège, Center for Interdisciplinary research on Medicines (CIRM) Liège, Liège University, Institute of Pathology, CHU Sart-Tilman, 4000 Liège, Belgium; (J.Z.); (C.S.); (C.L.)
- Physical therapy and Rehabilitation department, Princess Paola Hospital, Vivalia, B-6900 Marche-en-Famenne, Belgium
- Artialis SA, GIGA Tower, Level 3, CHU Sart-Tilman, 4000 Liège, Belgium
| |
Collapse
|
2
|
Hayes AJ, Melrose J. Keratan Sulphate in the Tumour Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:39-66. [PMID: 32266652 DOI: 10.1007/978-3-030-40146-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose β1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue-associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia. .,Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW, Australia. .,Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards, NSW, Australia.
| |
Collapse
|
3
|
Zheng Z, Zhang X, Dang C, Beanes S, Chang GX, Chen Y, Li CS, Lee KS, Ting K, Soo C. Fibromodulin Is Essential for Fetal-Type Scarless Cutaneous Wound Healing. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2824-2832. [PMID: 27665369 DOI: 10.1016/j.ajpath.2016.07.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/11/2016] [Accepted: 07/22/2016] [Indexed: 12/21/2022]
Abstract
In contrast to adult and late-gestation fetal skin wounds, which heal with scar, early-gestation fetal skin wounds display a remarkable capacity to heal scarlessly. Although the underlying mechanism of this transition from fetal-type scarless healing to adult-type healing with scar has been actively investigated for decades, in utero restoration of scarless healing in late-gestation fetal wounds has not been reported. In this study, using loss- and gain-of-function rodent fetal wound models, we identified that fibromodulin (Fm) is essential for fetal-type scarless wound healing. In particular, we found that loss of Fm can eliminate the ability of early-gestation fetal rodents to heal without scar. Meanwhile, administration of fibromodulin protein (FM) alone was capable of restoring scarless healing in late-gestation rat fetal wounds, which naturally heal with scar, as characterized by dermal appendage restoration and organized collagen architectures that were virtually indistinguishable from those in age-matched unwounded skin. High Fm levels correlated with decreased transforming growth factor (TGF)-β1 expression and scarless repair, while low Fm levels correlated with increased TGF-β1 expression and scar formation. This study represents the first successful in utero attempt to induce scarless repair in late-gestation fetal wounds by using a single protein, Fm, and highlights the crucial role that the FM-TGF-β1 nexus plays in fetal-type scarless skin repair.
Collapse
Affiliation(s)
- Zhong Zheng
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, the Department of Orthopaedic Surgery, and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California
| | - Xinli Zhang
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Catherine Dang
- Saul & Joyce Brandman Breast Center, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Grace X Chang
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Yao Chen
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Chen-Shuang Li
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Kevin S Lee
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California
| | - Kang Ting
- Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, California; UCLA Division of Plastic and Reconstructive Surgery, the Department of Orthopaedic Surgery, and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California; Department of Bioengineering, School of Engineering, University of California, Los Angeles, Los Angeles, California.
| | - Chia Soo
- UCLA Division of Plastic and Reconstructive Surgery, the Department of Orthopaedic Surgery, and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
4
|
Chen L, Liao J, Klineberg E, Leung VYL, Huang S. Small leucine-rich proteoglycans (SLRPs): characteristics and function in the intervertebral disc. J Tissue Eng Regen Med 2015; 11:602-608. [PMID: 26370612 DOI: 10.1002/term.2067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/16/2015] [Accepted: 06/12/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Lili Chen
- Research Centre for Human Tissues and Organs Degeneration; Shenzhen Institute of Advanced Technology, Chinese Academy of Science; Shenzhen 518055 China
| | - Jingwen Liao
- School of Materials Science and Engineering; South China University of Technology; Guangzhou China
| | - Eric Klineberg
- Department of Orthopaedics; University of California at Davis; Sacramento California USA
| | - Victor YL Leung
- Department of Orthopaedics and Traumatology; Li Ka Shing Faculty of Medicine, The University of Hong Kong; Hong Kong
| | - Shishu Huang
- Department of Orthopaedic Surgery; West China Hospital; State Key Laboratory of Oral Diseases, Sichuan University; Chengdu China
- Research Centre for Human Tissues and Organs Degeneration; Shenzhen Institute of Advanced Technology, Chinese Academy of Science; Shenzhen 518055 China
| |
Collapse
|
5
|
Ishii R, Kami D, Toyoda M, Makino H, Gojo S, Ishii T, Umezawa A. Placenta to cartilage: direct conversion of human placenta to chondrocytes with transformation by defined factors. Mol Biol Cell 2012; 23:3511-21. [PMID: 22833560 PMCID: PMC3442400 DOI: 10.1091/mbc.e11-10-0869] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A combination of only five genes—BCL6, T, c-MYC, MITF, and BAF60C—rapidly and efficiently converts postnatal human amnion into chondrocytes. This direct conversion system from noncartilage tissue to cartilaginous tissue is a major advance toward understanding cartilage development, cell-based therapy, and oncogenesis of chondrocytes. Cellular differentiation and lineage commitment are considered to be robust and irreversible processes during development. Recent work has shown that mouse and human fibroblasts can be reprogrammed to a pluripotent state with a combination of four transcription factors. We hypothesized that combinatorial expression of chondrocyte-specific transcription factors could directly convert human placental cells into chondrocytes. Starting from a pool of candidate genes, we identified a combination of only five genes (5F pool)—BCL6, T (also called BRACHYURY), c-MYC, MITF, and BAF60C (also called SMARCD3)—that rapidly and efficiently convert postnatal human chorion and decidual cells into chondrocytes. The cells generated expressed multiple cartilage-specific genes, such as Collagen type II α1, LINK PROTEIN-1, and AGGRECAN, and exhibited characteristics of cartilage both in vivo and in vitro. Expression of the endogenous genes for T and MITF was initiated, implying that the cell conversion is due to not only the forced expression of the transgenes, but also to cellular reprogramming by the transgenes. This direct conversion system from noncartilage tissue to cartilaginous tissue is a substantial advance toward understanding cartilage development, cell-based therapy, and oncogenesis of chondrocytes.
Collapse
Affiliation(s)
- Ryuga Ishii
- Department of Reproductive Biology and Pathology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Dellett M, Hu W, Papadaki V, Ohnuma SI. Small leucine rich proteoglycan family regulates multiple signalling pathways in neural development and maintenance. Dev Growth Differ 2012; 54:327-40. [DOI: 10.1111/j.1440-169x.2012.01339.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Margaret Dellett
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Wanzhou Hu
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Vasiliki Papadaki
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| | - Shin-ichi Ohnuma
- University College London (UCL) Institute of Ophthalmology; UCL; London; UK
| |
Collapse
|
7
|
Honardoust D, Eslami A, Larjava H, Häkkinen L. Localization of small leucine-rich proteoglycans and transforming growth factor-β in human oral mucosal wound healing. Wound Repair Regen 2008; 16:814-23. [DOI: 10.1111/j.1524-475x.2008.00435.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Csiszar A, Wiebe C, Larjava H, Häkkinen L. Distinctive molecular composition of human gingival interdental papilla. J Periodontol 2007; 78:304-14. [PMID: 17274720 DOI: 10.1902/jop.2007.060165] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Gingiva is composed of attached and marginal (free) gingiva and interdental papilla. Increasing esthetic demands in dentistry have created a need to restore all parts of the gingiva. However, the interdental papilla has limited regeneration potential compared to other parts of the gingiva. It also is more susceptible to gingival overgrowth, suggesting that it has distinct cellular and molecular properties from other parts of the gingiva. Very little is known about the possible differences in the molecular composition of different parts of the gingiva. METHODS We compared the expression of a set of key molecules in interdental papilla and marginal gingiva from seven healthy subjects by immunohistochemical staining. RESULTS In the interdental papilla, immunoreactivity for integrin alphavbeta6 and cytokeratin 19 in the oral epithelium was significantly higher than in marginal gingiva. Expression of type I procollagen, extra domain A (EDA) and extra domain B (EDB) fibronectin isoforms, tenascin-C, transforming growth factor-beta (TGF-beta), connective tissue growth factor (CTGF), and the signaling molecule son-of-sevenless (SOS)-1 also were increased in the interdental papilla. The expression of small leucine-rich proteoglycans decorin, biglycan, fibromodulin, and lumican in the interdental papilla was partially different from the marginal gingiva. CONCLUSIONS Molecular composition of the interdental papilla is distinct from marginal gingiva. Increased expression of molecules normally induced in wound healing (alphavbeta6 integrin, fibronectin-EDB and -EDA, tenascin-C, type I procollagen, TGF-beta, CTGF, and SOS-1) suggests that the cells in the interdental papilla are in an activated state and/or inherently display a specific phenotype resembling wound healing.
Collapse
Affiliation(s)
- Andrea Csiszar
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, Laboratory of Periodontal Biology, University of British Columbia, Vancouver, BC
| | | | | | | |
Collapse
|
9
|
Yang X, Yip J, Anastassiades T, Harrison M, Brockhausen I. The action of TNFα and TGFβ include specific alterations of the glycosylation of bovine and human chondrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:264-72. [PMID: 17079030 DOI: 10.1016/j.bbamcr.2006.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 09/05/2006] [Accepted: 09/13/2006] [Indexed: 11/27/2022]
Abstract
Joint destruction in arthritis is often associated with high levels of inflammatory cytokines. Previous work has shown that inflammatory conditions can alter the activities of glycosyltransferases that synthesize the glycan chains of glycoproteins, and that these changes in turn can influence the functions of glycoproteins. We therefore examined glycosyltransferases involved in glycoprotein biosynthesis in primary cultures of bovine articular chondrocytes and human chondrocytes isolated from knee cartilage of osteoarthritis patients. Bovine chondrocytes exhibited enzyme activities involved in the synthesis of bi-antennary complex Asn-linked N-glycans, as well as the enzymes involved in the synthesis of GalNAc-Ser/Thr-linked O-glycans with the core 1 structure. Human chondrocytes, in addition, were able to synthesize more complex O-glycans with core 2 structures. TNFalpha was found to induce apoptosis in chondrocytes, and this process was associated with significant changes in lectin binding to chondrocyte cell surface glycans. TGFbeta increased cell proliferation, and had significant effects on cell surface glycosylation in bovine but not in human cells. These cytokine-specific effects were partially correlated with changes in glycosyltransferase activities. Thus, chondrocytes have many of the enzymes necessary for the synthesis of N- and O-glycan chains of glycoproteins. The O-glycosylation pathways and the effects of TNFalpha and TGFbeta on glycosylation differed between bovine and human chondrocytes. These alterations are of potential importance for the regulation of the functions of cell surface receptors on chondrocytes, and for an understanding of the pathophysiology of arthritis.
Collapse
Affiliation(s)
- X Yang
- Department of Medicine, Division of Rheumatology, Human Mobility Research Centre, Queen's University, Etherington Hall, Kingston, ON, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
10
|
Viola M, Bartolini B, Sonaggere M, Giudici C, Tenni R, Tira ME. Fibromodulin interactions with type I and II collagens. Connect Tissue Res 2007; 48:141-8. [PMID: 17522997 DOI: 10.1080/03008200701276133] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fibromodulin is a keratan-sulfate small leucine-rich proteoglycan (SLRP) regulating collagen I and II fibril formation. In vivo studies suggest that, alongside decorin, fibromodulin plays an important role in the maintenance of mature tissues. To characterize fibromodulin/decorin differences in binding to type I and II collagen, we tested the collagen CNBr peptides in solid-phase assays. Only one peptide from collagen II and several peptides from collagen I interacted with fibromodulin, pointing to multiple binding sites in the collagen I molecule. By Scatchard-type analysis, the fibromodulin molecule showed only one class of binding sites for collagen I and both low and high affinity (classes of) binding sites for collagen II. Lys/Hyl residues in both collagens are essential for the interaction. Fibril formation assays showed the concomitant presence of fibromodulin and decorin in fibrils and a cumulative inhibitory effect. In solid-phase assays decorin seems to inhibit fibromodulin binding, whereas the contrary does not occur. We found fibromodulin and decorin have similarities and differences that may represent the biochemical basis of redundancy in SLRP function with compensation between different (classes of) SLRPs.
Collapse
Affiliation(s)
- Manuela Viola
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università dell'Insubria. Varese. Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Matheson S, Larjava H, Häkkinen L. Distinctive localization and function for lumican, fibromodulin and decorin to regulate collagen fibril organization in periodontal tissues. J Periodontal Res 2005; 40:312-24. [PMID: 15966909 DOI: 10.1111/j.1600-0765.2005.00800.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Small leucine-rich proteoglycans (SLRPs) decorin, biglycan, fibromodulin and lumican are secreted extracellular matrix molecules that associate with fibrillar collagens and regulate collagen fibrillogenesis. Collagens are the major extracellular matrix components of periodontal connective tissues where they provide mechanical attachment of the tooth to the bone and gingiva and mediate signals that regulate cell functions, including remodeling of the periodontal ligament and bone. Structural organization of collagen may also be important for the defense against periodontal disease, because in certain conditions abnormal collagen fibrils associate with increased susceptibility to periodontal disease. OBJECTIVES The purpose of this study was to find out the role of SLRPs to regulate collagen fibril and fibril bundle formation in periodontal tissues. METHODS The localization of SLRPs in human and mouse periodontal tissues was studied using immunohistochemical methods. To assess the function of SLRPs we studied periodontal tissues of mice harboring targeted deletions of decorin, fibromodulin or lumican genes and lumican and fibromodulin double knockout mice using histological and electronmicroscopical methods. RESULTS The SLRPs were coexpressed in human and mouse gingival and periodontal ligament connective tissues where they colocalized with collagen fibril bundles. Teeth in the knockout animals were fully erupted and showed normal gross morphology. Targeted deletion of decorin, fibromodulin, lumican or both lumican and fibromodulin resulted in abnormal collagen fibril and fibril bundle morphology that was most evident in the periodontal ligament. Each of the gene deletions resulted in a unique fibril and fibril bundle phenotype. CONCLUSIONS These findings indicate that decorin, fibromodulin and lumican coordinately regulate the fibrillar and suprafibrillar organization of collagen in the periodontal ligament.
Collapse
Affiliation(s)
- S Matheson
- Department of Oral Biological and Medical Sciences, Laboratory of Periodontal Biology, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
12
|
Alimohamad H, Habijanac T, Larjava H, Häkkinen L. Colocalization of the collagen-binding proteoglycans decorin, biglycan, fibromodulin and lumican with different cells in human gingiva. J Periodontal Res 2005; 40:73-86. [PMID: 15613083 DOI: 10.1111/j.1600-0765.2004.00776.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Decorin, biglycan, fibromodulin and lumican are structurally related molecules that belong to the family of small leucine-rich proteoglycans (SLRPs). These SLRPs are secreted extracellular matrix molecules that interact with type I collagen and regulate collagen fibrillogenesis. They may also modulate cell functions that are important in maintenance of connective tissue structure. The aim of this study was to localize decorin, biglycan, fibromodulin and lumican in human gingiva. METHODS Localization of decorin and its proform (prodecorin), biglycan, fibromodulin and lumican and mature and proform of type I collagen was studied by immunohistochemical staining of frozen tissue sections from healthy human attached gingiva. Double immunostaining with anti-SLRP or anti-type I procollagen antibodies and specific markers for different connective tissue cells was used to study association of these molecules with cells. RESULTS The mature and proforms of decorin and collagen and biglycan, fibromodulin and lumican showed distinct localization in the extracellular matrix, where they associated with type I collagen fiber bundles. Prodecorin also localized to the epithelial basement membrane zone. Fibroblasts, myofibroblasts, endothelial cells and pericytes showed immunoreactivity for procollagen, prodecorin, biglycan and fibromodulin, whereas lumican associated with fibroblasts and myofibroblasts only. Biglycan and fibromodulin were also associated with macrophages. Basal epithelial cells of the gingival epithelium showed immunoreactivity for biglycan, fibromodulin and lumican. CONCLUSIONS Decorin, biglycan, fibromodulin and lumican associate with type I collagen and may collaborate to regulate collagen fibrillogenesis in human gingiva. Each of the SLRPs showed a distinct association with different connective tissue cells, suggesting that the cells produce these molecules and/or that the cells interact with them. Localization of biglycan, fibromodulin and lumican at the epithelial cells suggests novel functions for these SLRPs in human gingival epithelium.
Collapse
Affiliation(s)
- H Alimohamad
- Department of Oral Biological and Medical Sciences, Laboratory of Periodontal Biology, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
13
|
Vranka J, Mokashi A, Keene DR, Tufa S, Corson G, Sussman M, Horton WA, Maddox K, Sakai L, Bächinger HP. Selective intracellular retention of extracellular matrix proteins and chaperones associated with pseudoachondroplasia. Matrix Biol 2001; 20:439-50. [PMID: 11691584 DOI: 10.1016/s0945-053x(01)00148-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mutations in the cartilage oligomeric matrix protein (COMP) gene result in pseudoachondroplasia (PSACH), which is a chondrodysplasia characterized by early-onset osteoarthritis and short stature. COMP is a secreted pentameric glycoprotein that belongs to the thrombospondin family of proteins. We have identified a novel missense mutation which substitutes a glycine for an aspartic acid residue in the thrombospondin (TSP) type 3 calcium-binding domain of COMP in a patient diagnosed with PSACH. Immunohistochemistry and immunoelectron microscopy both show abnormal retention of COMP within characteristically enlarged rER inclusions of PSACH chondrocytes, as well as retention of fibromodulin, decorin and types IX, XI and XII collagen. Aggrecan and types II and VI collagen were not retained intracellularly within the same cells. In addition to selective extracellular matrix components, the chaperones HSP47, protein disulfide isomerase (PDI) and calnexin were localized at elevated levels within the rER vesicles of PSACH chondrocytes, suggesting that they may play a role in the cellular retention of mutant COMP molecules. Whether the aberrant rER inclusions in PSACH chondrocytes are a direct consequence of chaperone-mediated retention of mutant COMP or are otherwise due to selective intracellular protein interactions, which may in turn lead to aggregation within the rER, is unclear. However, our data demonstrate that retention of mutant COMP molecules results in the selective retention of ECM molecules and molecular chaperones, indicating the existence of distinct secretory pathways or ER-sorting mechanisms for matrix molecules, a process mediated by their association with various molecular chaperones.
Collapse
Affiliation(s)
- J Vranka
- Research Department, Shriners Hospital for Children, Portland, OR 97201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Plaas AH, West LA, Midura RJ. Keratan sulfate disaccharide composition determined by FACE analysis of keratanase II and endo-beta-galactosidase digestion products. Glycobiology 2001; 11:779-90. [PMID: 11588154 DOI: 10.1093/glycob/11.10.779] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many tissues contain glycoproteins and proteoglycans, which are substituted with N-or O-linked keratan sulfate, a glycosaminoglycan in which the lactosamine (-galbeta1,4glcNAc-) disaccharide backbone is variably modified by sulfation, fucosylation, and sialylation. We report here a rapid, sensitive, and quantitative procedure for obtaining a complete disaccharide compositional analyses for keratan sulfates after FACE separation of products generated by hydrolysis of the glycosaminoglycans with B. fragillis keratanase II and E. freundii endo-beta-galactosidase. Seven digestion end products are separable in a single electrophoretic step using Monosaccharide composition gels. These are: the unsulfated disaccharide, glcNAcbeta1,3gal, the fucosylated trisaccharide, galbeta1,2[fucalpha1,3]glcNAc6S, the mono- and disulfated disaccharides, galbeta1,4glcNAc6S or gal6Sbeta1,4glcNAc6S from the chain interior, and the sialylated mono- and disulfated trisaccharides neuAalpha2,3galbeta1,4glcNAc6S or neuAalpha2,3gal6Sbeta1,4glcNAc6S from the nonreducing terminus. FACE analyses also revealed the presence of a contaminant beta-galactosidase activity in keratanase II enzyme preparations which cleaves the disaccharide, galbeta1,4glcNAc6S to its constituent monosaccharides, gal and glcNAc6S. It was particularly prominent at enzyme concentrations > 2 mU per nmole substrate glcNH(2) or after prolonged digestion times (> 12 h), and was not inhibitable by thiogalactosides or N-acetyl-lactosamine. As these monosaccharide products would not be detectable using the commonly described analytical methods for KS hydrolase products, such as (1)H-NMR and HPLC analyses, our data illustrate that the FACE procedure represents an improved approach for accurate compositional microanalyses of corneal and skeletal keratan sulfates, especially applicable to experimentation involving small amounts (1-2 microg) of this glycosaminoglycan.
Collapse
Affiliation(s)
- A H Plaas
- Shriners Hospital for Children, 12502 N. Pine Drive, Tampa, FL 33612, USA
| | | | | |
Collapse
|
15
|
Soo C, Hu FY, Zhang X, Wang Y, Beanes SR, Lorenz HP, Hedrick MH, Mackool RJ, Plaas A, Kim SJ, Longaker MT, Freymiller E, Ting K. Differential expression of fibromodulin, a transforming growth factor-beta modulator, in fetal skin development and scarless repair. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:423-33. [PMID: 10934147 PMCID: PMC1850122 DOI: 10.1016/s0002-9440(10)64555-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transforming growth factor-beta (TGF-beta1, -beta2, and -beta3) has been implicated in the ontogenetic transition from scarless fetal repair to adult repair with scar. Generally, TGF-beta exerts its effects through type I and II receptors; however, TGF-beta modulators such as latent TGF-beta binding protein-1 (LTBP-1), decorin, biglycan, and fibromodulin can bind and potentially inhibit TGF-beta activity. To more fully explore the role of TGF-beta ligands, receptors, and potential modulators during skin development and wound healing, we have used a rat model that transitions from scarless fetal-type repair to adult-type repair with scar between days 16 and 18 of gestation. We showed that TGF-beta ligand and receptor mRNA levels did not increase during the transition to adult-type repair in fetal skin, whereas LTBP-1 and fibromodulin expression decreased. In addition, TGF-beta1 and -beta3; type I, II, and III receptors; as well as LTBP-1, decorin, and biglycan were up-regulated during adult wound healing. In marked contrast, fibromodulin expression was initially down-regulated in adult repair. Immunostaining demonstrated significant fibromodulin induction 36 hours after injury in gestation day 16, but not day 19, fetal wounds. This inverse relationship between fibromodulin expression and scarring in both fetal and adult rat wound repair suggests that fibromodulin may be a biologically relevant modulator of TGF-beta activity during scar formation.
Collapse
Affiliation(s)
- Chia Soo
- and the Dental and Craniofacial Research Institute,†
| | - Fei-Ya Hu
- University of California, Los Angeles, California; Mount Sinai Hospital,‡
| | - Xinli Zhang
- University of California, Los Angeles, California; Mount Sinai Hospital,‡
| | - Yubert Wang
- and the Dental and Craniofacial Research Institute,†
| | | | | | | | | | - Ana Plaas
- Tampa, Florida; and the Institute of Reconstructive Plastic Surgery,¶
| | - Soo-Jin Kim
- University of California, Los Angeles, California; Mount Sinai Hospital,‡
| | | | - Earl Freymiller
- University of California, Los Angeles, California; Mount Sinai Hospital,‡
| | - Kang Ting
- University of California, Los Angeles, California; Mount Sinai Hospital,‡
| |
Collapse
|
16
|
Abstract
Tendon proteoglycans and proteins (other than Type I collagen) were solubilized by sequential extraction of powdered adult bovine deep flexor tendon. Only the proximal (tensile) region of this tendon was used. The experiments involved 24-hour extraction with phosphate buffered saline (to remove components that are readily soluble), followed by repeated extraction with 4 mol/L guanidine (to break noncovalent bonds holding components into the tissue), and then extraction with 4 mol/L guanidine containing dithiothreitol (to dissociate components held by disulfide bonds). Proteins accounting for approximately 5% of the tissue dry weight could by removed by the extraction protocol. Proteins were identified by Western blotting and correlation with stained gels. The major extracted components were identified as decorin, Type VI collagen, fibromodulin and a member of the leucine rich repeat protein family (PRELP). In addition an oligomeric matrix protein initially identified in cartilage (COMP), aggrecan, and biglycan were present. Most of these proteins were entirely extracted in cold 4 mol/L guanidine. However, some Type VI collagen and cartilage oligomeric matrix protein could not be removed unless the tissue was reduced with dithiothreitol. Many of these proteins have been considered as molecules that are primarily or exclusively components of cartilage. Cartilage and tendon are tissues with different histologic appearance and different function. However, the fact that the same biochemical components are found in cartilage and tendon shows the relatedness of these connective tissues and the cells that produce them. Tissue engineering attempts to reconstruct tendon using only its major or unique components may omit significant aspects of the tissue's structure.
Collapse
Affiliation(s)
- K G Vogel
- Department of Biology, University of New Mexico, Albuquerque 87131, USA
| | | |
Collapse
|
17
|
Iozzo RV. The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem 1999; 274:18843-6. [PMID: 10383378 DOI: 10.1074/jbc.274.27.18843] [Citation(s) in RCA: 480] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- R V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
18
|
Abstract
The proteoglycan superfamily now contains more than 30 full-time molecules that fulfill a variety of biological functions. Proteoglycans act as tissue organizers, influence cell growth and the maturation of specialized tissues, play a role as biological filters and modulate growth-factor activities, regulate collagen fibrillogenesis and skin tensile strength, affect tumor cell growth and invasion, and influence corneal transparency and neurite outgrowth. Additional roles, derived from studies of mutant animals, indicate that certain proteoglycans are essential to life whereas others might be redundant. The review focuses on the most recent genetic and molecular biological studies of the matrix proteoglycans, broadly defined as proteoglycans secreted into the pericellular matrix. Special emphasis is placed on the molecular organization of the protein core, the utilization of protein modules, the gene structure and transcriptional control, and the functional roles of the various proteoglycans. When possible, proteoglycans have been grouped into distinct gene families and subfamilies offering a simplified nomenclature based on their protein core design. The structure-function relationship of some paradigmatic proteoglycans is discussed in depth and novel aspects of their biology are examined.
Collapse
Affiliation(s)
- R V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799, USA.
| |
Collapse
|
19
|
Tuhkanen AL, Tammi M, Tammi R. CD44 substituted with heparan sulfate and endo-beta-galactosidase-sensitive oligosaccharides: a major proteoglycan in adult human epidermis. J Invest Dermatol 1997; 109:213-8. [PMID: 9242510 DOI: 10.1111/1523-1747.ep12319402] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CD44 is a group of cell surface glycoproteins that is generated from a single gene by mRNA splice variation. Its functions in matrix adhesion and tumor invasion are strongly influenced by glycosylation. We studied the glycosylated tissue forms of CD44 from extracts of normal adult human epidermis by using western blotting and immunoprecipitation from short-term skin organ cultures. An antibody for CD44 (Hermes 3) precipitated 7-17% of all 35SO4-labeled proteoglycans (PGs) synthesized in epidermis. Immunoprecipitates digested with heparitinase lost 40-68% of incorporated 35SO4 and 24-40% of [3H]glucosamine, indicating that heparan sulfate was the predominant glycosaminoglycan in epidermal CD44. Chondroitinase ABC released 10-25% and 6-12% of 35SO4 and [3H]glucosamine, respectively. Less than 5% of both isotopes were susceptible to keratanase. Five to 33% of 35SO4 and 26-37% of [3H]glucosamine, however, was released by endo-beta-galactosidase, implying marked substitution by oligosaccharides with N-acetyllactosamine repeats. Heparitinase pretreatment retarded, whereas endo-beta-galactosidase enhanced the mobility of the > or = 180-kDa polydisperse CD44 on agarose gel electrophoresis. On SDS-polyacrylamide gel electrophoresis, however, western blotting and fluorographs of 35SO4-labeled immunoprecipitates showed the main CD44 isoform at > or = 250 kDa and a shift to 180-200 kDa after heparitinase treatment. Keratanase, keratanase II, and chondroitinase ABC had minor effects. A less abundant form of CD44, with a core of 100 kDa, partly substituted with chondroitinase ABC- and endo-beta-galactosidase-sensitive chains, was also present. Therefore, the large heparan sulfate-substituted CD44 forms a significant part of all proteoglycans in normal human epidermis. Both the large and the 100-kDa variant of epidermal CD44 contain endo-beta-galactosidase-sensitive oligosaccharides not previously noted in other cells or tissues.
Collapse
Affiliation(s)
- A L Tuhkanen
- Department of Anatomy, University of Kuopio, Finland
| | | | | |
Collapse
|
20
|
Cs-Szabó G, Melching LI, Roughley PJ, Glant TT. Changes in messenger RNA and protein levels of proteoglycans and link protein in human osteoarthritic cartilage samples. ARTHRITIS AND RHEUMATISM 1997; 40:1037-45. [PMID: 9182913 DOI: 10.1002/art.1780400607] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To determine the steady-state messenger RNA (mRNA) levels and corresponding protein contents of major matrix components in osteoarthritic (OA) cartilage. METHODS Steady-state levels of gene-specific mRNA (relative to GAPDH) were measured by quantitative polymerase chain reaction (PCR), and the relative levels of the corresponding proteins were determined by Western blotting. RESULTS All mRNA levels and corresponding protein contents of aggrecan and versican (hyaluronan-binding large proteoglycans), decorin, biglycan, fibromodulin, and lumican (small proteoglycans), and link protein were higher in OA cartilage samples than in age-matched normal samples. The ratio of increase, however, was different for each component. The mRNA and protein levels of biglycan, decorin, and fibromodulin increased synchronously, whereas message for link protein and lumican were several-fold higher than expected by their measured protein contents. Versican was also detected in OA cartilage; however, the versican protein content was associated with a relatively low mRNA level. CONCLUSION The expression of matrix components was increased in chondrocytes of OA cartilage, especially the expression of small proteoglycans, most likely due to the repair processes. A discoordinate gene expression accompanied with imbalanced accumulation of noncollagenous matrix components may contribute to the disorganization of the cartilage and the development of OA processes.
Collapse
Affiliation(s)
- G Cs-Szabó
- Rush Medical College at Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
21
|
Iozzo RV. The family of the small leucine-rich proteoglycans: key regulators of matrix assembly and cellular growth. Crit Rev Biochem Mol Biol 1997; 32:141-74. [PMID: 9145286 DOI: 10.3109/10409239709108551] [Citation(s) in RCA: 387] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The focus of this review is on conceptual and functional advances in our understanding of the small leucine-rich proteoglycans. These molecules belong to an expanding gene class whose distinctive feature is a structural motif, called the leucine-rich repeat, found in an increasing number of intracellular and extracellular proteins with diverse biological attributes. Three-dimensional modeling of their prototype protein core proposes a flexible, arch-shaped binding surface suitable for strong and distinctive interactions with ligand proteins. Changes in the properties of individual proteoglycans derive from amino acid substitutions in the less conserved surface residues, changes in the number and length of the leucine-rich repeats, and/or variation in glycosylation. These proteoglycans are tissue organizers, orienting and ordering collagen fibrils during ontogeny and in pathological processes such as wound healing, tissue repair, and tumor stroma formation. These properties are rooted in their bifunctional character: the protein moiety binding collagen fibrils at strategic loci, the microscopic gaps between staggered fibrils, and the highly charged glycosaminoglycans extending out to regulate interfibrillar distances and thereby establishing the exact topology of fibrillar collagens in tissues. These proteoglycans also interact with soluble growth factors, modulate their functional activity, and bind to cell surface receptors. The latter interaction affects cell cycle progression in a variety of cellular systems and could explain the purported changes in the expression of these gene products around the invasive neoplastic cells and in regenerating tissues.
Collapse
Affiliation(s)
- R V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
22
|
Sgroi D, Nocks A, Stamenkovic I. A single N-linked glycosylation site is implicated in the regulation of ligand recognition by the I-type lectins CD22 and CD33. J Biol Chem 1996; 271:18803-9. [PMID: 8702538 DOI: 10.1074/jbc.271.31.18803] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
CD22 is an immunoglobulin superfamily B lymphocyte-specific adhesion receptor and a member of the recently identified I-type class of lectins. Recent work has shown that CD22 specifically recognizes sialic acid linked alpha2,6 to terminal N-linked oligosaccharides on selected cell surface glycoproteins. CD22-ligand interaction is regulated by the activity of a beta-galactoside alpha2, 6-sialyltransferase that can inactivate CD22-mediated binding by sialylating the CD22 receptor itself. These observations suggest that N-linked glycosylation sites on the CD22 molecule may play a role in the regulation of CD22-mediated adhesion. In this work we have performed site-specific mutagenesis of potential N-linked glycosylation sites on CD22 in an effort to determine whether they might be involved in ligand recognition. We show that mutation of a single potential N-linked glycosylation site in the first immunoglobulin domain of CD22 completely abrogates ligand recognition. Interestingly, this site is characterized by the sequence NCT, where the cysteine is thought to be involved in an intrachain disulfide bond. Site-directed mutagenesis of similar NC(T/S) motifs in the first or second Ig domains of the I-type lectins myelin-associated glycoprotein, and sialoadhesin did not disrupt their ability to mediate sialic acid binding. In contrast, mutation of a NCS motif in the first Ig domain of the I-type lectin CD33 unmasked its sialic acid binding activity. These observations suggest that a single N-linked glycosylation site located at a similar position in the CD22 and CD33 glycoproteins is critical for regulating ligand recognition by both receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, Myelomonocytic/chemistry
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Binding Sites/genetics
- Cell Adhesion
- Cell Adhesion Molecules
- Cell Line
- Glycosylation
- Humans
- Lectins
- Ligands
- Membrane Glycoproteins/genetics
- Molecular Sequence Data
- Molecular Structure
- Mutagenesis, Site-Directed
- Myelin-Associated Glycoprotein/genetics
- Rats
- Receptors, Immunologic/genetics
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Sialic Acid Binding Ig-like Lectin 1
- Sialic Acid Binding Ig-like Lectin 2
- Sialic Acid Binding Ig-like Lectin 3
- Transfection
Collapse
Affiliation(s)
- D Sgroi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02129, USA
| | | | | |
Collapse
|
23
|
Cs-Szabó G, Roughley PJ, Plaas AH, Glant TT. Large and small proteoglycans of osteoarthritic and rheumatoid articular cartilage. ARTHRITIS AND RHEUMATISM 1995; 38:660-8. [PMID: 7538297 DOI: 10.1002/art.1780380514] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To identify characteristic changes in large aggregating (aggrecan) and small proteoglycan (PG) populations in articular cartilages during osteoarthritis (OA) and rheumatoid arthritis (RA). METHODS Aggrecan populations in guanidine extracts of femoral condylar cartilages of 46 OA and 8 RA patients who underwent total knee arthroplasty, as well as of 2 fetuses and 6 normal adults, were separated in agarose-polyacrylamide composite gels. Small PGs (biglycan, decorin, and fibromodulin) in the same extracts were analyzed in 12% polyacrylamide gels. Gels were stained or electrophoretically transferred and probed with antibodies to aggrecan epitopes and to small PGs. Epitope contents of the samples were also compared by inhibition radioimmunoassay. RESULTS There were significant differences found among normal and diseased samples in their electrophoretic mobilities, band distributions, and antibody staining. OA and especially RA samples were heavily degraded, lacked certain aggrecan populations, and contained fewer keratan sulfate and chondroitin-6-sulfate epitopes compared with normal samples. Levels of chondroitin-4-sulfate and "fetal-type" epitopes were elevated in the OA samples compared with the normal ones. More core proteins of small PGs were found in diseased than in normal cartilages, but they were more heterogeneous in size and glycosaminoglycan substitution. CONCLUSION There is extensive degradation of both large and small PGs in diseased cartilages, but a repair process does exist, especially in OA cartilages. Chondrocytes of diseased cartilages are able to synthesize fetal-type aggrecans. Small PGs are glycosylated differently in diseased cartilages than in normal ones.
Collapse
Affiliation(s)
- G Cs-Szabó
- Rush Medical College at Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|