1
|
Cochard C, Caby M, Gruau P, Madec E, Marceau M, Macavei I, Lemoine J, Le Danvic C, Bouchart F, Delrue B, Bontemps-Gallo S, Lacroix JM. Emergence of the Dickeya genus involved duplication of the OmpF porin and the adaptation of the EnvZ-OmpR signaling network. Microbiol Spectr 2023; 11:e0083323. [PMID: 37642428 PMCID: PMC10581057 DOI: 10.1128/spectrum.00833-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/31/2023] Open
Abstract
Genome evolution, and more specifically gene duplication, is a key process shaping host-microorganism interaction. The conserved paralogs usually provide an advantage to the bacterium to thrive. If not, these genes become pseudogenes and disappear. Here, we show that during the emergence of the genus Dickeya, the gene encoding the porin OmpF was duplicated. Our results show that the ompF2 expression is deleterious to the virulence of Dickeya dadantii, the agent causing soft rot disease. Interestingly, ompF2 is regulated while ompF is constitutive but activated by the EnvZ-OmpR two-component system. In vitro, acidic pH triggers the system. The pH measured in four eudicotyledons increased from an initial pH of 5.5 to 7 within 8 h post-infection. Then, the pH decreased to 5.5 at 10 h post-infection and until full maceration of the plant tissue. Yet, the production of phenolic acids by the plant's defenses prevents the activation of the EnvZ-OmpR system to avoid the ompF2 expression even though environmental conditions should trigger this system. We highlight that gene duplication in a pathogen is not automatically an advantage for the infectious process and that, there was a need for our model organism to adapt its genetic regulatory networks to conserve these duplicated genes. IMPORTANCE Dickeya species cause various diseases in a wide range of crops and ornamental plants. Understanding the molecular program that allows the bacterium to colonize the plant is key to developing new pest control methods. Unlike other enterobacterial pathogens, Dickeya dadantii, the causal agent of soft rot disease, does not require the EnvZ-OmpR system for virulence. Here, we showed that during the emergence of the genus Dickeya, the gene encoding the porin OmpF was duplicated and that the expression of ompF2 was deleterious for virulence. We revealed that while the EnvZ-OmpR system was activated in vitro by acidic pH and even though the pH was acidic when the plant is colonized, this system was repressed by phenolic acid (generated by the plant's defenses). These results provide a unique- biologically relevant-perspective on the consequence of gene duplication and the adaptive nature of regulatory networks to retain the duplicated gene.
Collapse
Affiliation(s)
- Clémence Cochard
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Marine Caby
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Peggy Gruau
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Edwige Madec
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Michael Marceau
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Iulia Macavei
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Jérôme Lemoine
- Univ. Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, Villeurbanne, France
| | - Chrystelle Le Danvic
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- R&D Department, ALLICE, Paris, France
| | - Franck Bouchart
- Université Polytechnique Hauts-de-France, EA 2443 - LMCPA - Laboratoire des Matériaux Céramiques et Procédés Associés, Valenciennes, France
| | - Brigitte Delrue
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Sébastien Bontemps-Gallo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Marie Lacroix
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
2
|
Mun W, Upatissa S, Lim S, Dwidar M, Mitchell RJ. Outer Membrane Porin F in E. coli Is Critical for Effective Predation by Bdellovibrio. Microbiol Spectr 2022; 10:e0309422. [PMID: 36445149 PMCID: PMC9769668 DOI: 10.1128/spectrum.03094-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Bdellovibrio and like organisms (BALOs) are a unique bacterial group that live by predating on other bacteria, consuming them from within to grow and replicate before the progeny come out to complete the life cycle. The mechanisms by which these predators recognize their prey and differentiate them from nonprey bacteria, however, are still not clear. Through genetic knockout and complementation studies in different Escherichia coli strains, we found that Bdellovibrio bacteriovorus strain 109J recognizes outer membrane porin F (OmpF) on the E. coli surface and that the activity of the E. coli EnvZ-OmpR regulatory system significantly impacts predation kinetics. OmpF is not the only signal by which BALOs recognize their prey, however, as B. bacteriovorus could eventually predate on the E. coli ΔompF mutant after prolonged incubation. Furthermore, recognizing OmpF as a prey surface structure was dependent on the prey strain, as knocking out OmpF protein homologues in other prey species, including Escherichia fergusonii, Klebsiella pneumoniae, and Salmonella enterica, did not always reduce the predation rate. Consequently, although OmpF was found to be an important surface component used by Bdellovibrio to efficiently recognize and attack E. coli, future work is needed to determine what other prey surface structures are recognized by these predators. IMPORTANCE Bdellovibrio bacteriovorus and like organisms (BALOs) are Gram-negative predatory bacteria that attack other Gram-negative bacteria by penetrating their periplasm and consuming them from within to obtain the nutrients necessary for the predator's growth and replication. How these predators recognize their prey, however, has remained a mystery. Here, we show that the outer membrane porin F (OmpF) in E. coli is recognized by B. bacteriovorus strain 109J and that the loss of this protein leads to severely delayed predation. However, predation of several other prey species was not dependent on the recognition of this protein or its homologues, indicating that there are other structures recognized by the predators on the prey surface that are yet to be discovered.
Collapse
Affiliation(s)
- Wonsik Mun
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sumudu Upatissa
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sungbin Lim
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Mohammed Dwidar
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert J. Mitchell
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
3
|
Maeda T, Iwasawa J, Kotani H, Sakata N, Kawada M, Horinouchi T, Sakai A, Tanabe K, Furusawa C. High-throughput laboratory evolution reveals evolutionary constraints in Escherichia coli. Nat Commun 2020; 11:5970. [PMID: 33235191 PMCID: PMC7686311 DOI: 10.1038/s41467-020-19713-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/28/2020] [Indexed: 01/19/2023] Open
Abstract
Understanding the constraints that shape the evolution of antibiotic resistance is critical for predicting and controlling drug resistance. Despite its importance, however, a systematic investigation of evolutionary constraints is lacking. Here, we perform a high-throughput laboratory evolution of Escherichia coli under the addition of 95 antibacterial chemicals and quantified the transcriptome, resistance, and genomic profiles for the evolved strains. Utilizing machine learning techniques, we analyze the phenotype-genotype data and identified low dimensional phenotypic states among the evolved strains. Further analysis reveals the underlying biological processes responsible for these distinct states, leading to the identification of trade-off relationships associated with drug resistance. We also report a decelerated evolution of β-lactam resistance, a phenomenon experienced by certain strains under various stresses resulting in higher acquired resistance to β-lactams compared to strains directly selected by β-lactams. These findings bridge the genotypic, gene expression, and drug resistance gap, while contributing to a better understanding of evolutionary constraints for antibiotic resistance.
Collapse
Affiliation(s)
- Tomoya Maeda
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Junichiro Iwasawa
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Hazuki Kotani
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Natsue Sakata
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Masako Kawada
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Takaaki Horinouchi
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Aki Sakai
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Kumi Tanabe
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Chikara Furusawa
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Mutalik VK, Adler BA, Rishi HS, Piya D, Zhong C, Koskella B, Kutter EM, Calendar R, Novichkov PS, Price MN, Deutschbauer AM, Arkin AP. High-throughput mapping of the phage resistance landscape in E. coli. PLoS Biol 2020; 18:e3000877. [PMID: 33048924 PMCID: PMC7553319 DOI: 10.1371/journal.pbio.3000877] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.
Collapse
Affiliation(s)
- Vivek K. Mutalik
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
| | - Benjamin A. Adler
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Harneet S. Rishi
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Denish Piya
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
| | - Crystal Zhong
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Britt Koskella
- Department of Integrative Biology, University of California – Berkeley, Berkeley, California, United States of America
| | | | - Richard Calendar
- Department of Molecular and Cell Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Pavel S. Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Morgan N. Price
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California – Berkeley, Berkeley, California, United States of America
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Innovative Genomics Institute, Berkeley, California, United States of America
- Department of Bioengineering, University of California – Berkeley, Berkeley, California, United States of America
- Biophysics Graduate Group, University of California – Berkeley, Berkeley, California, United States of America
- Designated Emphasis Program in Computational and Genomic Biology, University of California – Berkeley, Berkeley, California, United States of America
| |
Collapse
|
5
|
Subhadra B, Surendran S, Lim BR, Yim JS, Kim DH, Woo K, Kim HJ, Oh MH, Choi CH. The osmotic stress response operon betIBA is under the functional regulation of BetI and the quorum-sensing regulator AnoR in Acinetobacter nosocomialis. J Microbiol 2020; 58:519-529. [PMID: 32462489 DOI: 10.1007/s12275-020-0186-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 11/25/2022]
Abstract
Adaptation to changing environmental conditions is crucial for the survival of microorganisms. Bacteria have evolved various mechanisms to cope with osmotic stress. Here, we report the identification and functional characterization of the osmotic stress response operon, betIBA, in Acinetobacter nosocomialis. The betIBA operon encodes enzymes that are important for the conversion of choline to the osmoprotectant, glycine betaine. The betIBA operon is polycistronic and is under the regulation of the first gene, betI, of the same operon. A bioinformatics analysis revealed the presence of a BetI-binding motif upstream of the betIBA operon, and electrophoretic mobility shift assays confirmed the specific binding of BetI. An mRNA expression analysis revealed that expression of betI, betB, and betA genes is elevated in a betI-eletion mutant compared with the wild type, confirming that the autorepressor BetI represses the betIBA operon in A. nosocomialis. We further found that the betIBA operon is under the transcriptional control of the quorum-sensing (QS) regulator, AnoR in, A. nosocomialis. A subsequent analysis of the impact of BetI on expression of the QS genes, anoR and anoI, demonstrated that BetI acts as a repressor of anoR and anoI. In addition, it was noticed that the osmotic stress response regulator, OmpR might play an important role in controlling the expression of betIBA operon in A. nosocomialis. Collectively, these data demonstrate that QS and osmotic stress-response systems are correlated in A. nosocomialis and that the expression of genes in both systems is finely tuned by various feedback loops depending on osmolarity conditions.
Collapse
Affiliation(s)
- Bindu Subhadra
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Surya Surendran
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Bo Ra Lim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong Sung Yim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dong Ho Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyungho Woo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Chul Hee Choi
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
6
|
Suppression of antibiotic resistance evolution by single-gene deletion. Sci Rep 2020; 10:4178. [PMID: 32144279 PMCID: PMC7060189 DOI: 10.1038/s41598-020-60663-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/12/2020] [Indexed: 11/08/2022] Open
Abstract
Antibiotic treatment generally results in the selection of resistant bacterial strains, and the dynamics of resistance evolution is dependent on complex interactions between cellular components. To better characterize the mechanisms of antibiotic resistance and evaluate its dependence on gene regulatory networks, we performed systematic laboratory evolution of Escherichia coli strains with single-gene deletions of 173 transcription factors under three different antibiotics. This resulted in the identification of several genes whose deletion significantly suppressed resistance evolution, including arcA and gutM. Analysis of double-gene deletion strains suggested that the suppression of resistance evolution caused by arcA and gutM deletion was not caused by epistatic interactions with mutations known to confer drug resistance. These results provide a methodological basis for combinatorial drug treatments that may help to suppress the emergence of resistant pathogens by inhibiting resistance evolution.
Collapse
|
7
|
Chetri S, Singha M, Bhowmik D, Nath K, Chanda DD, Chakravarty A, Bhattacharjee A. Transcriptional response of OmpC and OmpF in Escherichia coli against differential gradient of carbapenem stress. BMC Res Notes 2019; 12:138. [PMID: 30871640 PMCID: PMC6419367 DOI: 10.1186/s13104-019-4177-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 11/25/2022] Open
Abstract
Objective This study was designed to investigate the transcriptional response of OmpF and OmpC along with an antisense RNA, MicF under concentration gradient carbapenem exposure. Result An elevation in the expression of OmpF gene under concentration gradient imipenem stress from a particular concentration was observed. For OmpC gene a significant decrease in the expression was noticed under concentration gradient imipenem and meropenem stress. The study showed reduction in the expression of OmpC gene against imipenem and meropenem possibly preventing the entry of carbapenem antibiotic inside the cell indicating a possible role in carbapenem resistance. Electronic supplementary material The online version of this article (10.1186/s13104-019-4177-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiela Chetri
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Melson Singha
- Department of Microbiology, Assam University, Silchar, Assam, India
| | | | - Kathakali Nath
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Debadatta Dhar Chanda
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, Assam, India
| | - Atanu Chakravarty
- Department of Microbiology, Silchar Medical College and Hospital, Silchar, Assam, India
| | | |
Collapse
|
8
|
Prediction of antibiotic resistance by gene expression profiles. Nat Commun 2014; 5:5792. [PMID: 25517437 PMCID: PMC4351646 DOI: 10.1038/ncomms6792] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022] Open
Abstract
Although many mutations contributing to antibiotic resistance have been identified, the relationship between the mutations and the related phenotypic changes responsible for the resistance has yet to be fully elucidated. To better characterize phenotype–genotype mapping for drug resistance, here we analyse phenotypic and genotypic changes of antibiotic-resistant Escherichia coli strains obtained by laboratory evolution. We demonstrate that the resistances can be quantitatively predicted by the expression changes of a small number of genes. Several candidate mutations contributing to the resistances are identified, while phenotype–genotype mapping is suggested to be complex and includes various mutations that cause similar phenotypic changes. The integration of transcriptome and genome data enables us to extract essential phenotypic changes for drug resistances. The relationship between mutations and phenotypic changes associated with drug resistance in bacteria remains unclear. Here, the authors use antibiotic-resistant E. coli strains, obtained by laboratory evolution, to show that resistance profiles can be predicted by changes in expression of a few genes.
Collapse
|
9
|
Kroll J, Klinter S, Schneider C, Voss I, Steinbüchel A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 2010; 3:634-57. [PMID: 21255361 PMCID: PMC3815339 DOI: 10.1111/j.1751-7915.2010.00170.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/17/2010] [Indexed: 11/26/2022] Open
Abstract
Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications.
Collapse
Affiliation(s)
- Jens Kroll
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
10
|
Purification of MBP-EnvZ fusion proteins using an automated system. Methods Enzymol 2010. [PMID: 20946843 DOI: 10.1016/s0076-6879(10)71005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Bacteria use two-component signal transduction systems to detect and respond to environmental changes. These systems have been studied systematically in Escherichia coli as a model organism. Most of the signal transduction systems present in E. coli are conserved in related pathogenic bacteria; however, differences in regulation by these systems have been reported from one bacterial species to another [Oropeza, R., and Calva, E. (2009). The cysteine 354 and 277 residues of Salmonella enterica serovar Typhi EnvZ are determinants of autophosphorylation and OmpR phosphorylation. FEMS Microbiol. Lett.292, 282-290]. Our laboratory has been interested in studying the OmpR/EnvZ two-component system in S. enterica. In S. enterica serovar Typhi (Typhi), it regulates the expression of the porin genes, namely ompC, ompF, ompS1, and ompS2. OmpR proteins are identical between E. coli and Typhi, but several differences exist between the EnvZ proteins. To define whether some differences in porin regulation are due to changes on EnvZ, we decided to overexpress and purify E. coli, Typhi, and S. enterica serovar Typhimurium (Typhimurium) EnvZ proteins fused to the maltose-binding protein (MBP) as a purification tag. Differences in the autophosphorylation level of these proteins were evidenced. Hence, considering the differences at the amino acid level between E. coli and Typhi EnvZ proteins, several mutations were introduced in the Typhi EnvZ protein in order to try to find the amino acids affecting the enzymatic activity of the protein. We found that Cys354 plays an important role in defining the enzymatic activity of this histidine kinase. Here, we report the automated purification of a collection of MBP-EnvZ fusions using a mini-chromatography commercial system, but adapting an amylose affinity column packed by ourselves.
Collapse
|
11
|
Identification of IbeR as a stationary-phase regulator in meningitic Escherichia coli K1 that carries a loss-of-function mutation in rpoS. J Biomed Biotechnol 2009; 2009:520283. [PMID: 19300523 PMCID: PMC2655632 DOI: 10.1155/2009/520283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Accepted: 12/01/2008] [Indexed: 11/23/2022] Open
Abstract
IbeR is a regulator present in meningitic Escherichia coli strain E44 that carries a loss-of-function mutation in the stationary-phase (SP) regulatory gene rpoS. In order to determine whether IbeR is an SP regulator in E44, two-dimensional gel electrophoresis and LC-MS were used to compare the proteomes of a noninvasive ibeR deletion mutant BR2 and its parent strain E44 in the SP. Four up-regulated (TufB, GapA, OmpA, AhpC) and three down-regulated (LpdA, TnaA, OpmC) proteins in BR2 were identified when compared to E44. All these proteins contribute to energy metabolism or stress resistance, which is related to SP regulation. One of the down-regulated proteins, tryptophanase (TnaA), which is regulated by RpoS in other E. coli strains, is associated with SP regulation via production of a signal molecule indole. Our studies demonstrated that TnaA was required for E44 invasion, and that indole was able to restore the noninvasive phenotype of the tnaA mutant. The production of indole was significantly reduced in BR2, indicating that ibeR is required for the indole production via tnaA. Survival studies under different stress conditions indicated that IbeR contributed to bacteria stress resistance in the SP. Taken together, IbeR is a novel regulator contributing to the SP regulation.
Collapse
|
12
|
Rishi P, Rampuria A, Tewari R, Koul A. Phytomodulatory potentials of Aloe vera against Salmonella OmpR-mediated inflammation. Phytother Res 2008; 22:1075-82. [DOI: 10.1002/ptr.2458] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Thompson KM, Rhodius VA, Gottesman S. SigmaE regulates and is regulated by a small RNA in Escherichia coli. J Bacteriol 2007; 189:4243-56. [PMID: 17416652 PMCID: PMC1913397 DOI: 10.1128/jb.00020-07] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RybB is a small, Hfq-binding noncoding RNA originally identified in a screen of conserved intergenic regions in Escherichia coli. Fusions of the rybB promoter to lacZ were used to screen plasmid genomic libraries and genomic transposon mutants for regulators of rybB expression. A number of plasmids, including some carrying rybB, negatively regulated the fusion. An insertion in the rep helicase and one upstream of dnaK decreased expression of the fusion. Multicopy suppressors of these insertions led to identification of two plasmids that stimulated the fusion. One contained the gene for the response regulator OmpR; the second contained mipA, encoding a murein hydrolase. The involvement of MipA and OmpR in cell surface synthesis suggested that the rybB promoter might be dependent on sigma(E). The sequence upstream of the +1 of rybB contains a consensus sigma(E) promoter. The activity of rybB-lacZ was increased in cells lacking the RseA anti-sigma factor and when sigma(E) was overproduced from a heterologous promoter. The activity of rybB-lacZ and the detection of RybB were totally abolished in an rpoE-null strain. In vitro, sigma(E) efficiently transcribes from this promoter. Both a rybB mutation and an hfq mutation significantly increased expression of both rybB-lacZ and rpoE-lacZ fusions, consistent with negative regulation of the sigma(E) response by RybB and other small RNAs. Based on the plasmid screens, NsrR, a repressor sensitive to nitric oxide, was also found to negatively regulate sigma(E)-dependent promoters in an RseA-independent fashion.
Collapse
Affiliation(s)
- Karl M Thompson
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
14
|
Hommais F, Krin E, Coppée JY, Lacroix C, Yeramian E, Danchin A, Bertin P. GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. MICROBIOLOGY-SGM 2004; 150:61-72. [PMID: 14702398 DOI: 10.1099/mic.0.26659-0] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In several Gram-positive and Gram-negative bacteria glutamate decarboxylases play an important role in the maintenance of cellular homeostasis in acid environments. Here, new insight is brought to the regulation of the acid response in Escherichia coli. Overexpression of yhiE, similarly to overexpression of gadX, a known regulator of glutamate decarboxylase expression, leads to increased resistance of E. coli strains under high acid conditions, suggesting that YhiE is a regulator of gene expression in the acid response. Target genes of both YhiE (renamed GadE) and GadX were identified by a transcriptomic approach. In vitro experiments with GadE purified protein provided evidence that this regulator binds to the promoter region of these target genes. Several of them are clustered together on the chromosome and this chromosomal organization is conserved in many E. coli strains. Detailed structural (in silico) analysis of this chromosomal region suggests that the promoters of the corresponding genes are preferentially denatured. These results, along with the G+C signature of the chromosomal region, support the existence of a fitness island for acid adaptation on the E. coli chromosome.
Collapse
Affiliation(s)
- Florence Hommais
- Unité de Génétique des Génomes Bactériens, URA CNRS 2185, Institut Pasteur, France
| | - Evelyne Krin
- Unité de Génétique des Génomes Bactériens, URA CNRS 2185, Institut Pasteur, France
| | - Jean-Yves Coppée
- Génopole - plateau puces à ADN, URA CNRS 2185, Institut Pasteur, France
| | - Céline Lacroix
- Génopole - plateau puces à ADN, URA CNRS 2185, Institut Pasteur, France
| | - Edouard Yeramian
- Unité de Bio-informatique Structurale, URA CNRS 2185, Institut Pasteur, France
| | - Antoine Danchin
- Unité de Génétique des Génomes Bactériens, URA CNRS 2185, Institut Pasteur, France
| | - Philippe Bertin
- Unité de Génétique des Génomes Bactériens, URA CNRS 2185, Institut Pasteur, France
| |
Collapse
|
15
|
Galen JE, Nair J, Wang JY, Wasserman SS, Tanner MK, Sztein MB, Levine MM. Optimization of plasmid maintenance in the attenuated live vector vaccine strain Salmonella typhi CVD 908-htrA. Infect Immun 1999; 67:6424-33. [PMID: 10569759 PMCID: PMC97051 DOI: 10.1128/iai.67.12.6424-6433.1999] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The broad objective of the research presented here is to develop a noncatalytic plasmid maintenance system for the stabilization of multicopy expression plasmids encoding foreign antigens in a Salmonella typhi live-vector vaccine strain such as CVD 908-htrA. We have enhanced the maintenance of expression plasmids at two independent levels. First, we removed dependence upon balanced-lethal maintenance systems that involve catalytic enzymes expressed from multicopy plasmids; we accomplished this through incorporation into expression plasmids of a postsegregational killing system based on the noncatalytic hok-sok plasmid addiction system from the antibiotic resistance factor pR1. We also included at least one naturally occurring plasmid partition function in our expression plasmids, which eliminates random segregation of these plasmids, thereby enhancing their inheritance and stability; to accomplish this, we incorporated either the par locus from pSC101, the parA locus from pR1, or both. We monitored the stability of optimized expression plasmids within CVD 908-htrA by quantitating expression of a variant of green fluorescent protein (GFPuv) by using flow cytometry. In this report, we demonstrate the utility of this novel plasmid maintenance system in enhancing the stability of our expression plasmids and go on to show that as the copy number of stabilized plasmids increases, the toxicity of GFPuv synthesis also increases. The implications of these observations for the rational design of immunogenic and protective bacterial live vector vaccines are discussed.
Collapse
Affiliation(s)
- J E Galen
- Center for Vaccine Development, Division of Geographic Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Immonen T, Saris PE. Characterization of the nisFEG operon of the nisin Z producing Lactococcus lactis subsp. lactis N8 strain. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1999; 9:263-74. [PMID: 10524754 DOI: 10.3109/10425179809008466] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biosynthesis of the food additive nisin, a posttranslationally modified peptide antibiotic existing as two natural variants (A and Z), requires eleven genes (nisA/ZBTCIPRKFEG) involved in modification, secretion, regulation and self-immunity. The suggested self-immunity genes (nisFEG) of the nisin Z producer Lactococcus lactis subsp. lactis N8 were cloned and sequenced. Putative binding sites of the NisR transcription factor were recognized upstream of the nisF promoter. The hydrophilic NisF protein was expressed in Escherichia coli and shown to be associated with the membrane. Expression of the nisF gene from a plasmid in L. lactis MG1614, a strain lacking the nisin operons, did not increase the nisin resistance of the cells. This showed that NisF alone does not protect against nisin. Overexpression of the nisF gene in the N8 nisin producer did not affect the level of nisin immunity, indicating that the wild-type amount of NisF is not limiting the level of nisin immunity. Production of antisense-nisEG or antisense-nisG RNA in L. lactis N8 resulted in severe reduction in the level of nisFEG mRNA and a clearly reduced immunity showing that the nisFEG transcript is important for development of nisin self-immunity.
Collapse
Affiliation(s)
- T Immonen
- Institute of Biotechnology, University of Helsinki, Finland
| | | |
Collapse
|
17
|
Bergstrom LC, Qin L, Harlocker SL, Egger LA, Inouye M. Hierarchical and co-operative binding of OmpR to a fusion construct containing the ompC and ompF upstream regulatory sequences of Escherichia coli. Genes Cells 1998; 3:777-88. [PMID: 10096019 DOI: 10.1046/j.1365-2443.1998.00228.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND OmpR is a transcription factor that regulates the expression of the porin genes ompF and ompC in Escherichia coli. The phosphorylation state of OmpR, directed by the osmosensor EnvZ, determines its ability to bind to the upstream regulatory regions of these genes, a total of 14 phospho-OmpR binding sites. While it has been possible to study the stoichiometry and hierarchy of the OmpR-DNA interaction in the upstream regions of ompF and ompC, their disunited location on the bacterial chromosome has made it difficult to compare the individual binding affinities of respective sites. RESULTS Using 1,10-phenanthroline-Cu+ footprinting on a fused construct containing both the ompF and ompC upstream regulatory sequences, and gel shift experiments on oligomers corresponding to individual sites, we have established a comparative hierarchy for OmpR binding, as F1, C1 > F2, F3 > C2 > C3. In addition, the binding patterns reveal an apparent co-operative relationship between OmpR molecules bound at several upstream motifs. Densitometric analyses of the footprinted regions provide support for these observations. Mutational analysis of this construct reveals that the alteration of a conserved cytidine in the F1 motif (-86) causes a loss of OmpR affinity and disrupts hierarchical OmpR-binding in the entire ompF region. CONCLUSIONS The present results provide a unique view of the OmpR interaction with the two respective promoters, ompF and ompC, and an insight into the question of how the expression of ompF and ompC are reciprocally regulated by medium osmolarity.
Collapse
Affiliation(s)
- L C Bergstrom
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | | | | | | | |
Collapse
|
18
|
Martínez-Hackert E, Stock AM. Structural relationships in the OmpR family of winged-helix transcription factors. J Mol Biol 1997; 269:301-12. [PMID: 9199401 DOI: 10.1006/jmbi.1997.1065] [Citation(s) in RCA: 219] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OmpR, a protein that regulates expression of outer membrane porin proteins in enteric bacteria, belongs to a large family of transcription factors. These transcription factors bind DNA and interact productively with RNA polymerase to activate transcription. The two functions, DNA-binding and transcriptional activation, have been localized within the 100 amino acid DNA-binding domain that characterizes members of the OmpR family. Both DNA binding and transcriptional activation by OmpR related proteins have remained poorly understood for lack of structural information or lack of sequence homology with transcription factors of known three-dimensional structure. The recently determined crystal structures of the Escherichia coli OmpR DNA-binding domain (OmpRc) have defined a new subfamily of "winged-helix-turn-helix" DNA-binding proteins. Structural elements of OmpRc can be assigned functional roles by analogy to other winged-helix DNA-binding proteins. A structure based sequence analysis of the OmpR family of transcription factors indicates specific roles for all conserved amino acid residues. Mutagenesis studies performed on several members of this family, OmpR, PhoB, ToxR and VirG, can now be interpreted with respect to the structure.
Collapse
Affiliation(s)
- E Martínez-Hackert
- Center for Advanced Biotechnology and Medicine and Dept. of Biochemistry, University of Medicine and Dentistry of New Jersey, Piscataway 08854, USA
| | | |
Collapse
|
19
|
Inoue K, Matsuzaki H, Matsumoto K, Shibuya I. Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in Escherichia coli. J Bacteriol 1997; 179:2872-8. [PMID: 9139902 PMCID: PMC179048 DOI: 10.1128/jb.179.9.2872-2878.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The amount of porin protein OmpF in the outer membrane of Escherichia coli was reduced to one-third by the pgsA3 mutation that diminishes the amount of phosphatidylglycerol and cardiolipin in the membrane, whereas a cls (cardiolipin synthase) null mutation had no effect. Osmoregulation of OmpF was functional in the pgsA3 mutant. As assessed by the beta-galactosidase activities of lacZ fusions, the ompF expression was not reduced at the transcriptional level but was reduced about threefold at the posttranscriptional level by pgsA3. This reduction was mostly restored by a micF null mutation, and the micF RNA that inhibits the ompF mRNA translation was present 1.3 to 1.4 times more in the pgsA3 mutant, as assayed by RNase protection and Northern blot analyses. Elevation of the level of micF RNA was not restricted to acidic-phospholipid deficiency: OmpF was hardly detected and micF RNA was present 2.7 to 2.8 times more in a pssA null mutant that lacked phosphatidylethanolamine. Other common phenotypes of pgsA3 and pssA null mutants, reduced rates of cell growth and phospholipid synthesis, were not the cause of micF activation. Salicylate, which activates micF expression and inhibits cell motility, did not repress the flagellar master operon. These results imply that an unbalanced phospholipid composition, rather than a decrease or increase in the amount of specific phospholipid species, induces a phospholipid-specific stress signal to which certain regulatory genes respond positively or negatively according to their intrinsic mechanisms.
Collapse
Affiliation(s)
- K Inoue
- Department of Biochemistry and Molecular Biology, Saitama University, Urawa, Japan
| | | | | | | |
Collapse
|
20
|
Huang KJ, Lan CY, Igo MM. Phosphorylation stimulates the cooperative DNA-binding properties of the transcription factor OmpR. Proc Natl Acad Sci U S A 1997; 94:2828-32. [PMID: 9096305 PMCID: PMC20281 DOI: 10.1073/pnas.94.7.2828] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The two-component regulatory proteins OmpR and EnvZ of Escherichia coli K-12 regulate expression of the major outer membrane porin protein, OmpF. OmpR is a DNA-binding protein that is involved in both the positive and negative control of ompF transcription. EnvZ is a histidine kinase that phosphorylates OmpR in response to environmental signals. We used DNA migration retardation analysis to examine the interactions of OmpR and the phosphorylated form of OmpR (OmpR-P) with the regulatory region immediately upstream of the ompF promoter. Our results indicate that the binding of OmpR to this regulatory region is cooperative and that phosphorylation significantly stimulates these cooperative interactions. Moreover, although phosphorylation increases the intrinsic binding of OmpR to a single OmpR-binding site, the primary role of phosphorylation in ompF regulation is to facilitate cooperative interactions between OmpR molecules bound at adjacent sites. Based on these results, we propose a model to explain how the phosphorylation of OmpR could stimulate the occupancy of specific sites in the ompF regulatory region, thereby resulting in the activation or repression of ompF transcription under the appropriate environmental conditions.
Collapse
Affiliation(s)
- K J Huang
- Division of Biological Sciences, University of California, Davis 95616, USA
| | | | | |
Collapse
|
21
|
Kondo H, Nakagawa A, Nishihira J, Nishimura Y, Mizuno T, Tanaka I. Escherichia coli positive regulator OmpR has a large loop structure at the putative RNA polymerase interaction site. NATURE STRUCTURAL BIOLOGY 1997; 4:28-31. [PMID: 8989318 DOI: 10.1038/nsb0197-28] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The C-terminal DNA-binding domain of OmpR, a positive regulator involved in osmoregulation expression of the ompF and ompC genes in Escherichia coli, has a helix-turn-helix variant motif. The 'turn' region, consisting of 11 residues, forms an RNA polymerase contact site.
Collapse
|
22
|
Harlocker SL, Bergstrom L, Inouye M. Tandem binding of six OmpR proteins to the ompF upstream regulatory sequence of Escherichia coli. J Biol Chem 1995; 270:26849-56. [PMID: 7592927 DOI: 10.1074/jbc.270.45.26849] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OmpR is a transcription factor in Escherichia coli whose function is modulated by phosphorylation in the presence of phosphorylated EnvZ, a transmembrane protein histidine kinase involved in osmosensing. Using a protein S-OmpR hybrid protein, we demonstrated that six OmpR molecules bind tandemly to the -100 to -39 sequence of ompF. This sequence consists of three 20-base pair units: F1, F2, and F3, each of which is bound by two OmpR proteins. Polymerase chain reaction selection of nine randomized base pairs within the F1 sequence revealed highly conserved C residues spaced 10 base pairs apart. Further mutational analysis of conserved bases indicated that two OmpR molecules bind tandemly to two direct repeats. Mobility shift assays showed that cooperative interactions play a role in enhancing binding of OmpR to lower affinity F2 and F3 sites. Activation and repression of ompF expression are thus regulated by a total of eight OmpR molecules, including two molecules that bind to a distal site (-380 to -361).
Collapse
Affiliation(s)
- S L Harlocker
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
23
|
Kato N, Tsuzuki M, Aiba H, Mizuno T. Gene activation by the Escherichia coli positive regulator OmpR: a mutational study of the DNA-binding domain of OmpR. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:399-406. [PMID: 7565603 DOI: 10.1007/bf02191639] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Escherichia coli DNA-binding protein, OmpR, is one of the best characterized of the bacterial positive regulators that enhance the transcriptional ability of RNA polymerase. OmpR, consisting of 239 amino acids, binds to specific sequences located upstream of the cognate ompC and ompF promoters. The C-terminal half of OmpR, consisting of about 120 amino acids, exhibits an inherent DNA-binding ability. To address the issue of DNA binding by OmpR, we selected a set of OmpR mutants, each of which has a single amino acid substitution in the C-terminal half of OmpR. In particular, we characterized a number of OmpR mutants which are defective in DNA binding and thereby result in an OmpF- OmpC phenotype. Among them, a putative positive control OmpR mutant was also obtained, which appears to be defective in phosphorylation-dependent transcriptional activation, but not in DNA binding. These results are discussed with general emphasis on DNA recognition by the E. coli family of OmpR-like regulatory proteins.
Collapse
Affiliation(s)
- N Kato
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Japan
| | | | | | | |
Collapse
|
24
|
Fernández-Mora M, Oropeza R, Puente JL, Calva E. Isolation and characterization of ompS1, a novel Salmonella typhi outer membrane protein-encoding gene. Gene 1995; 158:67-72. [PMID: 7789812 DOI: 10.1016/0378-1119(95)00171-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have isolated a novel outer membrane protein (OMP)-encoding gene from Salmonella typhi (St), termed ompS1, using the ompF gene of Escherichia coli (Ec) as a heterologous probe. The structural ompS1 gene codes for an OmpS1 polypeptide that consists of 373 amino acids (aa) in the mature product, with a putative 21-aa leader sequence, containing highly conserved aa residues that have been implicated in pore formation. Mature OmpS1 (41 kDa) is larger than the OmpC, OmpF and PhoE St and Ec porins. In contrast to the major porins, it is undetectable in Coomassie-stained OMP preparations; although, when ompS1 was cloned into a high-copy-number plasmid under the control of the inducible tac promoter, it was detectable along with major OMPs. The 5' regulatory region of ompS1 has five putative binding sites for OmpR, a positive transcriptional regulator. The ompS1 gene shows restriction-fragment length polymorphism (RFLP) among Salmonellae.
Collapse
Affiliation(s)
- M Fernández-Mora
- Departamento de Microbiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca, Morelos
| | | | | | | |
Collapse
|
25
|
Ferrario M, Ernsting BR, Borst DW, Wiese DE, Blumenthal RM, Matthews RG. The leucine-responsive regulatory protein of Escherichia coli negatively regulates transcription of ompC and micF and positively regulates translation of ompF. J Bacteriol 1995; 177:103-13. [PMID: 8002608 PMCID: PMC176562 DOI: 10.1128/jb.177.1.103-113.1995] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The two major porins of Escherichia coli K-12 strains, OmpC and OmpF, are inversely regulated with respect to one another. The expression of OmpC and OmpF has been shown to be influenced by the leucine-responsive regulatory protein (Lrp): two-dimensional gel electrophoresis of proteins from strains with and strains without a functional Lrp protein revealed that OmpC expression is increased in an lrp strain, while OmpF expression is decreased. In agreement with these findings, we now present evidence that transcriptional (operon) fusions of lacZ+ to ompC and micF are negatively regulated by Lrp. Lrp binds specifically to the intergenic region between micF and ompC, as indicated by mobility shift assays and by DNase I footprinting. The expression of an ompF'-lacZ+ gene (translational) fusion is increased 3.7-fold in an lrp+ background compared with an lrp background, but expression of an ompF-lacZ+ operon fusion is not. Studies of in vivo expression of the outer membrane porins during growth on glucose minimal medium showed that the OmpF/OmpC ratio is higher in lrp+ strains than it is in isogenic lrp strains. The effect of Lrp was not seen in a strain containing a deletion of micF. Our studies suggest that the positive effect of Lrp on OmpF expression stems from a negative effect of Lrp on the expression of micF, an antisense RNA that inhibits ompF translation.
Collapse
Affiliation(s)
- M Ferrario
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-1055
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
In Escherichia coli, OmpR and EnvZ comprise a two component regulatory system that controls the relative expression of the outer membrane porin proteins, OmpF and OmpC. In this system, OmpR functions as a transcriptional regulator, serving as an activator of ompC, and as both an activator and a repressor of ompF. Previous evidence suggests that OmpR-mediated transcriptional activation involves direct interaction between OmpR and the C-terminal domain of the alpha subunit of RNA polymerase. However, it has remained unclear what region(s) of OmpR is directly involved in this proposed interaction. Moreover, little else is known about how OmpR activates transcription. To identify residues important for transcriptional activation, we screened for mutations in ompR that render the protein specifically defective in its ability to activate transcription. The isolated ompR alleles were characterized through haploid and diploid analyses at both the ompF and ompC promoters, and through an in vivo DNA binding assay. Through this approach, we have identified five amino acid residues in OmpR that are specifically required for transcriptional activation; R42, P179, E193, A196 and E198. We propose that these mutations define a region(s) in OmpR that may contact the C-terminal domain of alpha to mediate transcriptional activation.
Collapse
Affiliation(s)
- L A Pratt
- Department of Molecular Biology, Princeton University, NJ 08544
| | | |
Collapse
|
27
|
Ramani N, Hedeshian M, Freundlich M. micF antisense RNA has a major role in osmoregulation of OmpF in Escherichia coli. J Bacteriol 1994; 176:5005-10. [PMID: 7519595 PMCID: PMC196339 DOI: 10.1128/jb.176.16.5005-5010.1994] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
micF RNA, produced from a multicopy plasmid, was originally shown to be a major factor in negative osmoregulation of the OmpF outer membrane protein in Escherichia coli. However, subsequent experiments with a micF deletion strain suggested that chromosomal micF RNA was not a key component in this process. We report here that micF RNA is essential for the reduction in OmpF levels in cells grown in media of low-to-intermediate levels of osmolarity. Under these conditions, the amount of OmpF was reduced up to 60% in the parent strain while OmpF levels were not altered in the micF deletion mutant. In medium of higher osmolarity, OmpF synthesis was strongly inhibited in both strains. RNA measurements showed that micF RNA levels rose rapidly in cells grown in low-to-intermediate levels of osmolarity concomitant with the reduction in OmpF protein, while ompF mRNA decreased strongly only during high-osmolarity conditions. Taken together, these results strongly suggest that the negative osmoregulation of OmpF at low-to-intermediate osmolarity levels requires micF RNA and that this is masked at higher osmolarity by the known strong inhibition of OmpF transcription by OmpR. Results consistent with this model were also obtained by using procaine, a compound reported to inhibit ompF expression by a mechanism very similar to that involved in osmoregulation.
Collapse
Affiliation(s)
- N Ramani
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794
| | | | | |
Collapse
|
28
|
Rampersaud A, Harlocker S, Inouye M. The OmpR protein of Escherichia coli binds to sites in the ompF promoter region in a hierarchical manner determined by its degree of phosphorylation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)99912-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
29
|
Utsumi R, Katayama S, Taniguchi M, Horie T, Ikeda M, Igaki S, Nakagawa H, Miwa A, Tanabe H, Noda M. Newly identified genes involved in the signal transduction of Escherichia coli K-12. Gene X 1994; 140:73-7. [PMID: 8125343 DOI: 10.1016/0378-1119(94)90733-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We cloned and sequenced two Escherichia coli genes which are members of a family of an environmentally responsive two-component system. The nucleotide (nt) and deduced amino-acid sequences of these two genes were found to be homologous to those of the Bordetella pertussis bvgA and bvgS genes. They were mapped at 51 min (clones 6B9 to 7G9 of the Kohara miniset library of the E. coli chromosome). Both proteins, deduced from their nt sequences, were identified in the coupled in vitro transcription-translation system; their molecular masses were consistent with BvgA and BvgS (23 and 135 kDa, respectively). Furthermore, when these genes were expressed on a multicopy plasmid in an envZ deletion strain, ompC expression was induced. This expression was found to be regulated by low temperature, MgSO4 and nicotinic acid, factors known to control the virulence of B. pertussis via BvgA and BvgS. These results indicate that the newly cloned genes were structurally and functionally similar to bvgA and bvgS, and we designated these genes evgA and evgS.
Collapse
Affiliation(s)
- R Utsumi
- Department of Agricultural Chemistry, Kinki University, Nara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang KJ, Schieberl JL, Igo MM. A distant upstream site involved in the negative regulation of the Escherichia coli ompF gene. J Bacteriol 1994; 176:1309-15. [PMID: 8113170 PMCID: PMC205194 DOI: 10.1128/jb.176.5.1309-1315.1994] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The two-component regulatory system, OmpR-EnvZ, of Escherichia coli K-12 regulates the expression of the major outer membrane porin protein, OmpF. OmpR is a DNA-binding protein which acts as both an activator and a repressor to control ompF transcription. In this article, we describe a new OmpR-binding site that is located between 384 to 351 bp upstream from the ompF start point of transcription. Inactivation of this site by insertion of a 22-bp fragment prevents the repression of ompF expression conferred by the dominant negative mutation, envZ473. On the basis of the location of this binding site, the presence of bent DNA in the ompF regulatory region (T. Mizuno, Gene 54:57-64, 1987), and the fact that mutations altering integration host factor result in constitutive ompF expression (P. Tsui, V. Helu, and M. Freundlich, J. Bacteriol. 170:4950-4953, 1988), we propose that the negative regulation of ompF involves a DNA loop structure.
Collapse
Affiliation(s)
- K J Huang
- Section of Microbiology, University of California, Davis 95616
| | | | | |
Collapse
|
31
|
|
32
|
Bowrin V, Brissette R, Tsung K, Inouye M. The alpha subunit of RNA polymerase specifically inhibits expression of the porin genes ompF and ompC in vivo and in vitro in Escherichia coli. FEMS Microbiol Lett 1994; 115:1-6. [PMID: 7510255 DOI: 10.1111/j.1574-6968.1994.tb06605.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Overproduction of the alpha subunit of RNA polymerase in Escherichia coli resulted in inhibition of transcription of two osmoregulated porin genes, ompF and ompC, but not of constitutively expressed housekeeping genes. Overproduction of the sigma subunit did not have any inhibitory effects. The specific inhibitory effect of the alpha subunit was also found to depend upon the OmpR protein, the transcriptional activator for ompF and ompC. These results are in general agreement with other biochemical and genetic evidence suggesting that the alpha subunit is the subunit of RNA polymerase that directly interacts with certain transcriptional activators to initiate transcription.
Collapse
Affiliation(s)
- V Bowrin
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey at Rutgers, Piscataway 08854
| | | | | | | |
Collapse
|
33
|
Delgado J, Forst S, Harlocker S, Inouye M. Identification of a phosphorylation site and functional analysis of conserved aspartic acid residues of OmpR, a transcriptional activator for ompF and ompC in Escherichia coli. Mol Microbiol 1993; 10:1037-47. [PMID: 7934854 DOI: 10.1111/j.1365-2958.1993.tb00974.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In Escherichia coli the OmpR and EnvZ proteins regulate the expression of the outer membrane porin proteins OmpC and OmpF. EnvZ and OmpR belong to a family of sensor/effector protein pairs that control adaptation to a variety of environmental conditions. EnvZ acts as the sensor protein that phosphorylates OmpR, which in turn regulates porin gene expression. The level of phosphorylated OmpR appears to be a determining factor for ompC and ompF regulation. Phosphorylation of OmpR is considered to occur at one or more aspartic acid residues (Asp-11, Asp-12 and/or Asp-55) that are highly conserved among the effector proteins. In this report we biochemically characterized the aspartic acid residue(s) in OmpR that were phosphorylated by EnvZ. Reduction of aspartyl phosphate residues in the amino-terminal domain of OmpR with [3H]-NaBH4 indicated that Asp-55 was a primary site of modification. We further studied the role of the highly conserved aspartate residues by creating OmpR mutants having aspartate to alanine substitutions at positions 11 (D11A), 12 (D12A) and 55 (D55A). Studies of ompF and ompC expression as well as in vivo and in vitro phosphorylation experiments also demonstrated that while Asp-55 is the primary phosphate acceptor site in OmpR, Asp-11 may also serve as a phosphorylation site, particularly in the absence of Asp-55.
Collapse
Affiliation(s)
- J Delgado
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | | | | | |
Collapse
|
34
|
Gidrol X, Farr S. Interaction of a redox-sensitive DNA-binding factor with the 5'-flanking region of the micF gene in Escherichia coli. Mol Microbiol 1993; 10:877-84. [PMID: 7934849 DOI: 10.1111/j.1365-2958.1993.tb00958.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The product of the micF gene is an endogenous antisense RNA which down-regulates the expression of a major outer membrane protein, OmpF, in E. coli. We report here that two DNA-binding factors compete for the same site in the promoter region of the micF gene: RSBF, a high-affinity redox-sensitive DNA-binding factor that responds to an active oxygen species other than hydrogen peroxide or superoxide anions; and HRBF a heat-resistant DNA-binding factor. Both RSBF and HRBF bind to the same DNA sequence, 5'-TTAAAATCAATAACTTATTCTTAA3-', located upstream of the transcription start site of the micF gene. We present evidence that RSBF could be the controlling factor of a novel regulon involved in the response to oxidative stress in E. coli.
Collapse
Affiliation(s)
- X Gidrol
- Harvard School of Public Health, Department of Cellular and Molecular Toxicology, Boston, Massachusetts 02115
| | | |
Collapse
|
35
|
Higashitani A, Nishimura Y, Hara H, Aiba H, Mizuno T, Horiuchi K. Osmoregulation of the fatty acid receptor gene fadL in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:339-47. [PMID: 8413182 DOI: 10.1007/bf00280384] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The fadL gene of Escherichia coli codes for an outer membrane protein that is involved in the uptake of long-chain fatty acids. Uptake is regulated by environmental osmolarity, and decreases when the cells are grown under conditions of high osmolarity. A temperature-sensitive mutant that requires fatty acid for growth at 42 degrees C was unable to grow at the high temperature even in the presence of fatty acid if the medium contained 10% sucrose. Promoter activity of the fadL gene in vivo was repressed by high osmolarity in a FadR repressor null mutant. Furthermore, in vitro transcription of the fadL gene was strongly repressed by the addition of OmpR and EnvZ proteins. The results of gel retardation and DNase I protection experiments indicated that OmpR, after incubation with the protein kinase EnvZ, specifically binds to at least four sites around the fadL promoter, two upstream and two downstream from the transcriptional start site. These results suggest that transcription of the fadL gene is osmotically regulated by the OmpR-EnvZ two-component system.
Collapse
Affiliation(s)
- A Higashitani
- Department of Microbial Genetics, National Institute of Genetics, Shizuoka-ken, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Bird TH, Grimsley JK, Hoch JA, Spiegelman GB. Phosphorylation of Spo0A activates its stimulation of in vitro transcription from the Bacillus subtilis spoIIG operon. Mol Microbiol 1993; 9:741-9. [PMID: 8231806 DOI: 10.1111/j.1365-2958.1993.tb01734.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The spoIIG operon of Bacillus subtilis codes for a sporulation-specific sigma factor, sigma E. In vivo expression of the spoIIG promoter is activated shortly after the onset of sporulation and is dependent on kinA, spo0F, spo0B and spo0A genes. The products of these genes have been shown to participate in a phosphorelay reaction in vitro, culminating in phosphorylation of the transcription factor, Spo0A. The effect of Spo0A phosphorylation on in vitro transcription from the spoIIG promoter was determined. Aliquots from phosphorelay reactions enhanced spoIIG promoter activity 10-fold in transcription assays and stimulation of transcription was dependent on Spo0A phosphorylation. Our results provide biochemical evidence that Spo0A and the phosphorelay form a signal transduction pathway which activates spoII gene expression in development.
Collapse
Affiliation(s)
- T H Bird
- Department of Microbiology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
37
|
Bowrin V, Brissette R, Inouye M. Two transcriptionally active OmpR mutants that do not require phosphorylation by EnvZ in an Escherichia coli cell-free system. J Bacteriol 1992; 174:6685-7. [PMID: 1328161 PMCID: PMC207654 DOI: 10.1128/jb.174.20.6685-6687.1992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
D55Q-T83A and D55Q-G94S, two pseudorevertants of the D55Q mutant OmpR, an Escherichia coli transcriptional activator, were isolated previously by R. Brissette, K. Tsung, and M. Inouye (J. Bacteriol. 173:3749-3755, 1991). These pseudorevertant OmpR proteins were purified and examined for their function as transcriptional activators in a cell-free system with an ompF DNA fragment. These proteins were transcriptionally active, even after acid treatment, whereas the wild-type OmpR was completely inactive after the same treatment. Phosphorylation of acid-treated wild-type OmpR with an EnvZ11 membrane fraction and ATP restored transcriptional activity, whereas the activities of the mutant OmpR proteins did not change after phosphorylation.
Collapse
Affiliation(s)
- V Bowrin
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey at Rutgers, Piscataway 08854
| | | | | |
Collapse
|
38
|
Brissette RE, Tsung K, Inouye M. Mutations in a central highly conserved non-DNA-binding region of OmpR, an Escherichia coli transcriptional activator, influence its DNA-binding ability. J Bacteriol 1992; 174:4907-12. [PMID: 1321117 PMCID: PMC206302 DOI: 10.1128/jb.174.15.4907-4912.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OmpR is a transcriptional activator for the expression of outer membrane porin genes ompF and ompC in Escherichia coli. Its C-terminal half has been identified as the DNA-binding domain (K. Tsung, R. Brissette, and M. Inouye, J. Biol. Chem. 264:10104-10109, 1989). Recent studies have indicated that the N-terminal non-DNA-binding domain of OmpR is involved in modulating OmpR function through interaction with the EnvZ protein, a kinase and phosphatase for OmpR. We isolated and characterized two mutations, G94D and E111K, in the N-terminal domain of OmpR and one mutation, R182C, in the DNA-binding domain of OmpR. All three mutations abolished the ability of OmpR to bind to the ompF and ompC promoters in vivo, thus giving an OmpF- OmpC- phenotype. The decreased DNA-binding ability of the mutant OmpRs was not due to diminished phosphorylation of their N termini, since all the mutant OmpRs were found to be normally phosphorylated by EnvZ in vitro. The mutant OmpRs produced from multicopy plasmids were also found to inhibit completely the production of OmpF and OmpC in wild-type cells, and the complete inhibition depended on the function of EnvZ which was produced in cis or in trans from plasmids. The relationship of the possible alterations in OmpR by the mutations with the observed diminished binding ability is discussed.
Collapse
Affiliation(s)
- R E Brissette
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey at Rutgers, Piscataway 08854-5635
| | | | | |
Collapse
|
39
|
Abstract
The nifA gene of Rhizobium meliloti, the bacterial endosymbiont of alfalfa, is a regulatory nitrogen fixation gene required for the induction of several key nif and fix genes. Transcription of nifA is strongly induced in planta and under microaerobic conditions ex planta. Induction of nifA, in turn, is positively controlled by the fixL and fixJ genes of R. meliloti, the sensor and regulator, respectively, of a two-component system responsible for oxygen sensing by this bacterium. This system is also responsible for the positive induction of fixK. Here, we report that chemical and oligonucleotide site-directed mutageneses of the nifA promoter (nifAp) were conducted to identify nucleotides essential for induction. Nineteen mutants, including 14 single-point mutants, were analyzed for microaerobic induction of nifAp in R. meliloti. Critical residues were identified in an upstream region between base pairs -54 and -39 relative to the transcription start site. Attempts at separating the upstream and downstream regions of the nifA promoter so as to maintain fixJ-dependent activity were unsuccessful. A 5' deletion of the fixK promoter (fixKp) to -67 indicates that sequences upstream of this position are not required for microaerobic induction. A sequence comparison of the -54 to -39 region of nifAp with the upstream sequences of fixKp does not reveal a block of identical nucleotides that could account for the fixJ-dependent microaerobic induction of both promoters. Many of the defective nifAp mutants in this region, however, are in residues with identity to fixKp in an alignment of the promoters according to their transcription start sites. Therefore, it is possible that there is a common sequence motif in the -54 to -39 region of the two promoters that is required for fixLJ-dependent microaerobic induction.
Collapse
Affiliation(s)
- P G Agron
- Biology Department, University of California, San Diego, La Jolla 92093-0634
| | | | | |
Collapse
|
40
|
Geiger O, Russo FD, Silhavy TJ, Kennedy EP. Membrane-derived oligosaccharides affect porin osmoregulation only in media of low ionic strength. J Bacteriol 1992; 174:1410-3. [PMID: 1370954 PMCID: PMC206439 DOI: 10.1128/jb.174.4.1410-1413.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria grown under conditions of low osmolarity accumulate significant amounts of periplasmic glucans, membrane-derived oligosaccharides (MDO) in Escherichia coli and cyclic glucans in members of the family Rhizobiaceae. It was reported previously (W. Fiedlder and H. Rotering, J. Biol. Chem. 263:14684-14689, 1988) that mdoA mutants unable to synthesize MDO show a number of altered phenotypes, among them a decreased expression of OmpF and an increased expression of OmpC, when grown in a Bacto Peptone medium of low osmolarity and low ionic strength. Although we confirm the findings of Fiedler and Rotering, we find that the regulation of OmpF and OmpC expression in mdoA mutants is normal in cells grown on other low-osmolarity media, eliminating the possibility that MDO itself might control porin expression. Our data suggest that a certain minimal ionic strength in the periplasm is needed for normal porin regulation. In media containing very low levels of salt, this may be contributed by anionic MDO.
Collapse
Affiliation(s)
- O Geiger
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
41
|
Waukau J, Forst S. Molecular analysis of the signaling pathway between EnvZ and OmpR in Escherichia coli. J Bacteriol 1992; 174:1522-7. [PMID: 1311295 PMCID: PMC206547 DOI: 10.1128/jb.174.5.1522-1527.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OmpR is a DNA-binding protein that regulates transcription of ompF and ompC. The activity of OmpR is controlled by the inner membrane osmosensor, EnvZ. In order to study the signaling process between EnvZ and OmpR, we analyzed two different envZ strains: the envZ473 strain, in which OmpC is constitutively produced and OmpF is fully repressed, and the envZ3 strain, in which the production of OmpC is greatly reduced and OmpF is not fully repressed by high-osmolarity growth conditions. Using direct sequencing of DNA derived from the polymerase chain reaction amplification method, we identified the mutation in the envZ473 strain as a Val-241-to-Gly substitution and the mutation in the envZ3 as an Ala-219-to-Val substitution. The relative DNA-binding affinity of OmpR derived from the envZ473 strain was dramatically increased for the upstream sequence of both ompF and ompC. In contrast, OmpR derived from the envZ3 strain was not converted to the high-affinity form. The intracellular levels of OmpR-phosphate, as analyzed by the in vivo phosphorylation approach, significantly increased in the envZ473 strain, while in the envZ3 strain the levels were considerably reduced, relative to those found in the parent strain. The intracellular level of OmpR protein in the envZ473 strain was also found to be markedly elevated relative to that of the parent strain. These results are discussed in relation to the role of phosphorylation and relative DNA-binding affinity of OmpR in the expression of ompF and ompC.
Collapse
Affiliation(s)
- J Waukau
- Department of Biological Sciences, University of Wisconsin-Milwaukee 53201
| | | |
Collapse
|
42
|
Huang L, Tsui P, Freundlich M. Positive and negative control of ompB transcription in Escherichia coli by cyclic AMP and the cyclic AMP receptor protein. J Bacteriol 1992; 174:664-70. [PMID: 1310090 PMCID: PMC206141 DOI: 10.1128/jb.174.3.664-670.1992] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ompB operon encodes OmpR and EnvZ, two proteins that are necessary for the expression and osmoregulation of the OmpF and OmpC porins in Escherichia coli. We have used in vitro and in vivo experiments to show that cyclic AMP and the cyclic AMP receptor protein (CRP) directly regulate ompB. ompB expression in an ompB-lacZ chromosomal fusion strain was increased two- to fivefold when cells were grown in medium containing poor carbon sources or with added cyclic AMP. In vivo primer extension analysis indicated that this control is complex and involves both positive and negative effects by cyclic AMP-CRP on multiple ompB promoters. In vitro footprinting showed that cyclic AMP-CRP binds to a 34-bp site centered at -53 and at -75 in relation to the start sites of the major transcripts that are inhibited and activated, respectively, by this complex. Site-directed mutagenesis of the crp binding site provided evidence that this site is necessary for the in vivo regulation of ompB expression by cyclic AMP. Control of the ompB operon by cyclic AMP-CRP may account for the observed regulation of the formation of OmpF and OmpC by this complex (N. W. Scott and C. R. Harwood, FEMS Microbiol. Lett. 9:95-98, 1980).
Collapse
Affiliation(s)
- L Huang
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794-5215
| | | | | |
Collapse
|
43
|
Ramani N, Huang L, Freundlich M. In vitro interactions of integration host factor with the ompF promoter-regulatory region of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1992; 231:248-55. [PMID: 1736095 DOI: 10.1007/bf00279798] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previous work has shown that integration host factor (IHF) mutants have increased expression and altered osmoregulation of OmpF, a major Escherichia coli outer membrane protein. By in vitro analysis the possibility was investigated that IHF interacts directly with the ompF promoter region. Gel retardation assays and DNase I protection experiments showed that IHF binds to two sites in the ompF promoter region centered at positions -180 and -60 relative to the start of transcription. Gel electrophoresis studies with circularly permuted ompF promoter fragments indicated that IHF binding strongly increased a small intrinsic bend in the ompF promoter region. The addition of IHF to a purified in vitro transcription system strongly and specifically inhibited ompF transcription. This inhibition was reversed by increasing the concentration of OmpR, a positive activator required for ompF expression, suggesting that IHF may inhibit ompF transcription by altering how OmpR interacts with the ompF promoter.
Collapse
Affiliation(s)
- N Ramani
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794-5215
| | | | | |
Collapse
|
44
|
Russo FD, Silhavy TJ. EnvZ controls the concentration of phosphorylated OmpR to mediate osmoregulation of the porin genes. J Mol Biol 1991; 222:567-80. [PMID: 1660927 DOI: 10.1016/0022-2836(91)90497-t] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Osmoregulation of the bacterial porin genes ompF and ompC is controlled by a two-component regulatory system. EnvZ, the sensor component of this system, is capable both of phosphorylating and dephosphorylating OmpR, the effector component. Mutations were isolated in envZ that abolish the expression of both porin genes. These mutants appear to have lost the kinase activity of EnvZ while retaining their phosphatase activity, so that in their presence OmpR is completely unphosphorylated. The behavior of these mutants in haploid, and in diploid with other envZ alleles, is consistent with a model in which EnvZ mediates osmoregulation by controlling the concentration of a single species. OmpR-P.
Collapse
Affiliation(s)
- F D Russo
- Department of Molecular Biology, Princeton University, NJ 08544
| | | |
Collapse
|
45
|
Rampersaud A, Inouye M. Procaine, a local anesthetic, signals through the EnvZ receptor to change the DNA binding affinity of the transcriptional activator protein OmpR. J Bacteriol 1991; 173:6882-8. [PMID: 1718943 PMCID: PMC209041 DOI: 10.1128/jb.173.21.6882-6888.1991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Local anesthetics are known to reduce the level of OmpF and increase the synthesis of OmpC in the outer membrane of Escherichia coli K-12. It has been shown that the anesthetics procaine and phenethyl alcohol (PEA) act at the transcriptional level for ompF and ompC and that in the case of procaine, its action is dependent on EnvZ, the membrane-bound signal transducer required for ompF and ompC expression. In an effort to further understand how anesthetics regulate ompF and ompC expression, we have analyzed the DNA binding properties of OmpR (the transcriptional activator protein for ompF and ompC genes) from cells treated with procaine or PEA. Treatment of a wild-type cell with either anesthetic converted OmpR from a low-affinity DNA binding form to a high-affinity DNA binding form. The change in DNA binding affinity was correlated with alterations in outer membrane porin profiles and could occur in the absence of protein synthesis. A strain lacking EnvZ was unable to respond to procaine to produce either the shift in the OmpR DNA binding property or cause any change in the outer membrane porin profile. PEA treatment was also dependent on EnvZ for the alteration in the OmpR DNA binding property, but it could induce ompC expression in the absence of EnvZ. Further studies suggest that the amino-terminal region of EnvZ is responsible for the procaine signalling. Our results indicate that procaine and PEA regulate ompF and ompC expression by modifying the DNA binding properties of OmpR through EnvZ signal transduction.
Collapse
Affiliation(s)
- A Rampersaud
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Rutgers, Piscataway 08854
| | | |
Collapse
|
46
|
Tsui P, Huang L, Freundlich M. Integration host factor binds specifically to multiple sites in the ompB promoter of Escherichia coli and inhibits transcription. J Bacteriol 1991; 173:5800-7. [PMID: 1885551 PMCID: PMC208313 DOI: 10.1128/jb.173.18.5800-5807.1991] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Escherichia coli integration host factor (IHF) is a DNA-binding protein that participates in gene regulation, site-specific recombination, and other processes in E. coli and some of its bacteriophages and plasmids. In the present study, we showed that IHF is a direct negative effector of the ompB operon of E. coli. Gel retardation experiments and DNase I footprinting studies revealed that IHF binds to three sites in the ompB promoter region. In vitro transcription from ompB promoter fragments was specifically blocked by IHF. In vivo experiments showed that IHF is a negative effector of ompB expression in growing cells. Analysis of IHF binding site mutations strongly suggested that IHF binding in the ompB promoter region is necessary for the negative effects seen in vivo.
Collapse
Affiliation(s)
- P Tsui
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794-5212
| | | | | |
Collapse
|
47
|
Hetherington AM, Quatrano RS. Mechanisms of action of abscisic acid at the cellular level. THE NEW PHYTOLOGIST 1991; 119:9-12. [PMID: 33874327 DOI: 10.1111/j.1469-8137.1991.tb01004.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Abscisic acid (ABA) has been implicated in the control of a diverse range of physiological processes in higher plants. In this review, we focus on the events which constitute the cellular responses to ABA. Current evidence suggests that it is possible to classify the responses to ABA on the basis of whether they are rapid, involving ion fluxes (typified by the stomatal response), or slower and requiring alterations to gene expression (for example the response of cereal embryos to ABA). In our consideration of ABA stimulus response coupling pathways, we have chosen to highlight the role of the calcium ion in the rapid responses, while we have concentrated on the contribution of as-acting elements and trans-acting factors in the regulation of ABA-responsive genes. We also draw attention to the possibility that interaction may exist between these pathways. Additionally, we discuss the controls of ABA concentrations during development and in response to environmental stimuli. Factors which contribute to the controls of ABA sensitivity are also reviewed. In our conclusions, we suggest that a general role for ABA may be to prepare tissue for entry into a new and different physiological state, perhaps by resetting the direction of cellular metabolism. CONTENTS Summary 9 I. Introduction 10 II. Stimulus response coupling 17 Synopsis 27 Acknowledgements 28 References 28.
Collapse
Affiliation(s)
| | - Ralph S Quatrano
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA
| |
Collapse
|
48
|
Mohr CD, Hibler NS, Deretic V. AlgR, a response regulator controlling mucoidy in Pseudomonas aeruginosa, binds to the FUS sites of the algD promoter located unusually far upstream from the mRNA start site. J Bacteriol 1991; 173:5136-43. [PMID: 1907266 PMCID: PMC208205 DOI: 10.1128/jb.173.16.5136-5143.1991] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Strong transcriptional activation of algD, a key event in the overproduction of alginate and establishment of mucoidy in Pseudomonas aeruginosa, depends on the functional algR gene. The predicted gene product of algR shows homologies to response regulators from bacterial signal transduction systems. The algR gene was overexpressed in Escherichia coli, its product (AlgR) was purified by utilizing its apparent affinity for heparin, and its sequence was verified by partial amino acid sequence analysis. AlgR was found to interact directly with the algD promoter. Deletion mapping analysis, in conjunction with mobility shift DNA-binding assays, indicated the presence of three regions within the algD promoter capable of specifically binding AlgR. A relatively weak interaction was observed with the algD promoter fragment containing the region immediately upstream of the algD mRNA start site (-144 to +11). However, when fragments spanning regions located very far upstream from the algD mRNA initiation site (-533 and -332) were used, strong specific binding was observed. These regions were separated by a DNA segment not binding AlgR and spanning positions -332 to -144. DNase I footprinting analysis further established the presence of discrete AlgR binding sites overlapping with FUS, the far-upstream sites required for full induction of algD transcription and its environmental modulation. There were two distinct binding sites: RB1, spanning nucleotides -479 to -457, and RB2, spanning nucleotides -400 to -380. Both of these sequences shared a highly conserved core region, ACCGTTCGTC. These results established a direct interaction of AlgR with the algD promoter and revealed an arrangement of binding sites highly unusual for response regulators of the AlgR type.
Collapse
Affiliation(s)
- C D Mohr
- Department of Microbiology, University of Texas Health Science Center, San Antonio, Texas 78284-7758
| | | | | |
Collapse
|
49
|
Bohannon DE, Connell N, Keener J, Tormo A, Espinosa-Urgel M, Zambrano MM, Kolter R. Stationary-phase-inducible "gearbox" promoters: differential effects of katF mutations and role of sigma 70. J Bacteriol 1991; 173:4482-92. [PMID: 1906064 PMCID: PMC208112 DOI: 10.1128/jb.173.14.4482-4492.1991] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Many of the changes in gene expression observed when Escherichia coli cells enter stationary phase are regulated at the level of transcription initiation. A group of stationary-phase-inducible promoters, known as "gearbox" promoter, display a characteristic sequence in the -10 region which differs greatly from the consensus sequence for sigma 70-dependent promoters. Here we describe our studies on the gearbox promoters bolAp1 and mcbAp, responsible for the temporally regulated transcription of bolA and the genes involved in the synthesis of the peptide antibiotic microcin B17, respectively. Deletion analysis of mcbAp demonstrated that the stationary-phase-inducible properties of this promoter are found in a DNA fragment extending from -54 to +11 bp, surrounding the transcriptional start site, and are separable from DNA sequences responsible for the OmpR-dependent stimulation of transcription of mcbAp. In vitro transcription studies indicate that the RNA polymerase holoenzyme involved in the transcription of mcbAp contains sigma 70. In this and an accompanying paper (R. Lange and R. Hengge-Aronis, J. Bacteriol. 173: 4474-4481, 1991), experiments are described which show that the product of katF, a global regulator of stationary-phase gene expression and a putative sigma factor, is required for the expression of bolAp1 fused to the reporter gene lacZ. In contrast, mcbAp appears to be negatively regulated by katF. We discuss the implications of these results for postexponential gene expression and the role of gearbox sequences in the regulation of promoter activity.
Collapse
Affiliation(s)
- D E Bohannon
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | | | | | |
Collapse
|
50
|
Brissette RE, Tsung KL, Inouye M. Intramolecular second-site revertants to the phosphorylation site mutation in OmpR, a kinase-dependent transcriptional activator in Escherichia coli. J Bacteriol 1991; 173:3749-55. [PMID: 1646788 PMCID: PMC208004 DOI: 10.1128/jb.173.12.3749-3755.1991] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OmpR is a transcriptional activator for the ompF and ompC genes of Escherichia coli. Its phosphorylation is mediated by a transmembrane sensory-receptor protein, EnvZ, and is essential for transcriptional activation. In a previous study, when the aspartic acid residue at position 55, the putative phosphorylation site, was replaced with glutamine (D55Q), ompF and ompC expression were completely lost. In this study two pseudorevertants of the D55Q mutation were isolated and identified to be the replacement of threonine at position 83 with alanine (T83A) and glycine at position 94 with serine (G94S). The revertant OmpRs no longer responded to EnvZ function when ompF and ompC expression were examined. The purified D55Q-T83A OmpR was unable to be phosphorylated by EnvZ in vitro. The role of EnvZ as an osmosensor for the environmentally regulated expression of OmpF and OmpC has been indicated in previous studies. The isolation of seemingly EnvZ-independent OmpR revertants in this study, however, made it possible to examine the osmolarity-regulated expression of OmpF and OmpC in the absence of effects exerted by EnvZ. We found that the expression of OmpF and OmpC supported by these revertant OmpRs was clearly regulated in accordance with the change in osmolarity of the growth media. These results indicate that another EnvZ-independent mechanism(s) may also contribute to the regulated expression of the ompF and ompC genes.
Collapse
Affiliation(s)
- R E Brissette
- Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Rutgers, Piscataway 08854
| | | | | |
Collapse
|