1
|
Zhou J, Wang G, Zhou Y, Lin X, Zhao Z, Xue Y, An Y, Shao H, Wang Y, Hou S, Wang L, Fan Y. Bioinspired Lipid Nanoparticles with Prolonged Cartilage Retention Boost Regeneration in Early Osteoarthritis and Large Cartilage Defects. ACS NANO 2025; 19:13654-13672. [PMID: 40184476 DOI: 10.1021/acsnano.4c13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Osteoarthritis (OA) leads to the progressive degeneration of articular cartilage, yet there is currently no effective treatment available for both the early and late stages of osteoarthritis. Cartilage regeneration requires the action and prolonged retention of multiple drugs at injured sites to recruit endogenous cells and facilitate cartilage formation. Here, we propose a cartilage-binding-peptide-modified lipid nanoparticle as a drug carrier to achieve sustained release of protein (TGF-β3) and small molecular drugs (KGN) for one month. Through systematic screening of multiple peptides targeting collagen II or chondrocytes, we identify a decorin-derived-peptide-modified lipid nanoparticle with precise targeting and prolonged retention capability in cartilage. Improved nanoparticle stability, high drug loading, and sustainable dual-drug release are achieved through interbilayer cross-linking of adjacent lipid bilayers within multilamellar vesicles. In a surgical model of rat OA, the nanoparticle loading with TGF-β3 and KGN protects injured cartilage from degeneration progression. For severe cartilage injury (full-thickness defects) in a rabbit model, the nanoparticle facilitates the regeneration of high-quality hyaline-like cartilage, which is a rare achievement in full-thickness cartilage regeneration through nanoparticle-based drug delivery. This work presents a strategy for the rational design of bioinspired cartilage-binding peptide-modified lipid-based drug carriers to promote hyaline-like cartilage regeneration.
Collapse
Affiliation(s)
- Jin Zhou
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Guanhuier Wang
- Department of Plastic and Reconstructive Surgery, Peking University Third Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing 100191, China
| | - Yue Zhou
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xubo Lin
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
| | - Zhenmin Zhao
- Department of Plastic and Reconstructive Surgery, Peking University Third Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing 100191, China
| | - Yumeng Xue
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yang An
- Department of Plastic and Reconstructive Surgery, Peking University Third Hospital, NO.49 of North Huayuan Road, Haidian District, Beijing 100191, China
| | - Hui Shao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Ying Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Sen Hou
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lizhen Wang
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Medical Engineering & Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
2
|
Tuppurainen J, Paakkari P, Jäntti J, Nissinen MT, Fugazzola MC, van Weeren R, Ylisiurua S, Nieminen MT, Kröger H, Snyder BD, Joenathan A, Grinstaff MW, Matikka H, Korhonen RK, Mäkelä JTA. Revealing Detailed Cartilage Function Through Nanoparticle Diffusion Imaging: A Computed Tomography & Finite Element Study. Ann Biomed Eng 2024; 52:2584-2595. [PMID: 39012563 PMCID: PMC11329549 DOI: 10.1007/s10439-024-03552-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/23/2024] [Indexed: 07/17/2024]
Abstract
The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (n = 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents' intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta2O5-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta2O5-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment.
Collapse
Affiliation(s)
- Juuso Tuppurainen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland.
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland.
| | - Petri Paakkari
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Jiri Jäntti
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Mikko T Nissinen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Maria C Fugazzola
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sampo Ylisiurua
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Miika T Nieminen
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Heikki Kröger
- Department of Orthopaedics and Traumatology, Kuopio University Hospital, Kuopio, Finland
- Kuopio Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland
| | - Brian D Snyder
- Department of Orthopedic Surgery, Boston Children's Hospital, Boston, USA
| | - Anisha Joenathan
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, USA
| | - Hanna Matikka
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
| | - Janne T A Mäkelä
- Department of Technical Physics, University of Eastern Finland, POB 1627, 70211, Kuopio, Finland
- Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
3
|
Mei H, Sha C, Lv Q, Liu H, Jiang L, Song Q, Zeng Y, Zhou J, Zheng Y, Zhong W, Zhou J, Li J. Multifunctional polymeric nanocapsules with enhanced cartilage penetration and retention for osteoarthritis treatment. J Control Release 2024; 374:466-477. [PMID: 39179111 DOI: 10.1016/j.jconrel.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Osteoarthritis (OA) is a prevalent joint disease characterized by cartilage degeneration and subchondral bone homeostasis imbalance. Effective topical OA therapy is challenging, as therapeutic drugs often suffer from insufficient penetration and rapid clearance. We develop miniature polydopamine (PDA) nanocapsules (sub-60 nm), which are conjugated with collagen-binding polypeptide (CBP) and loaded with an anabolic drug (i.e., parathyroid hormone 1-34, PTH 1-34) for efficient OA treatment. Such multifunctional polymeric nanocapsules, denoted as PDA@CBP-PTH, possess deformability when interacting with the dense collagen fiber networks, enabling the efficient penetration into 1 mm cartilage in 4 h and prolonged retention within the joints up to 28 days. Moreover, PDA@CBP-PTH nanocapsules exhibit excellent reactive oxygen species scavenging property in chondrocytes and enhance the anabolism in subchondral bone. The nanosystem, as dual-mode treatment for OA, demonstrates rapid penetration, long-lasting effects, and combinational therapeutic impact, paving the way for reversing the progression of OA for joint health care.
Collapse
Affiliation(s)
- Hongxiang Mei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chuanlu Sha
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry, Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Qinyi Lv
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hai Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry, Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Linli Jiang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiantao Song
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry, Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yiwei Zeng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiawei Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yule Zheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry, Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Yi X, Leng P, Wang S, Liu L, Xie B. Functional Nanomaterials for the Treatment of Osteoarthritis. Int J Nanomedicine 2024; 19:6731-6756. [PMID: 38979531 PMCID: PMC11230134 DOI: 10.2147/ijn.s465243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease, affecting more than 595 million people worldwide. Nanomaterials possess superior physicochemical properties and can influence pathological processes due to their unique structural features, such as size, surface interface, and photoelectromagnetic thermal effects. Unlike traditional OA treatments, which suffer from short half-life, low stability, poor bioavailability, and high systemic toxicity, nanotherapeutic strategies for OA offer longer half-life, enhanced targeting, improved bioavailability, and reduced systemic toxicity. These advantages effectively address the limitations of traditional therapies. This review aims to inspire researchers to develop more multifunctional nanomaterials and promote their practical application in OA treatment.
Collapse
Affiliation(s)
- Xinyue Yi
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Pengyuan Leng
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Supeng Wang
- Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, People’s Republic of China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| | - Bingju Xie
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
5
|
Alexandrovskaya YM, Kasianenko EM, Sovetsky AA, Matveyev AL, Atyakshin DA, Patsap OI, Ignatiuk MA, Volodkin AV, Zaitsev VY. Optical coherence elastography with osmotically induced strains: Preliminary demonstration for express detection of cartilage degradation. JOURNAL OF BIOPHOTONICS 2024; 17:e202400016. [PMID: 38702959 DOI: 10.1002/jbio.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/06/2024]
Abstract
Optical coherence elastography (OCE) demonstrated impressive abilities for diagnosing tissue types/states using differences in their biomechanics. Usually, OCE visualizes tissue deformation induced by some additional stimulus (e.g., contact compression or auxiliary elastic-wave excitation). We propose a new variant of OCE with osmotically induced straining (OIS-OCE) and demonstrate its application to assess various stages of proteoglycan content degradation in cartilage. The information-bearing signatures in OIS-OCE are the magnitude and rate of strains caused by the application of osmotically active solutions onto the sample surface. OCE examination of the induced strains does not require special tissue preparation, the osmotic stimulation is highly reproducible, and strains are observed in noncontact mode. Several minutes suffice to obtain a conclusion. These features are promising for intraoperative method usage when express assessment of tissue state is required during surgical operations. The "waterfall" images demonstrate the development of cumulative osmotic strains in control and degraded cartilage samples.
Collapse
Affiliation(s)
| | - Ekaterina M Kasianenko
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
- National Research Center Kurchatov Institute, Moscow, Russia
| | - Alexander A Sovetsky
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Alexander L Matveyev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Dmitry A Atyakshin
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Olga I Patsap
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Mikhail A Ignatiuk
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Artem V Volodkin
- Scientific and Educational Resource Center "Molecular Morphology", RUDN University, Moscow, Russia
| | - Vladimir Y Zaitsev
- A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
6
|
Zhou H, Zhang Z, Mu Y, Yao H, Zhang Y, Wang DA. Harnessing Nanomedicine for Cartilage Repair: Design Considerations and Recent Advances in Biomaterials. ACS NANO 2024; 18:10667-10687. [PMID: 38592060 DOI: 10.1021/acsnano.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cartilage injuries are escalating worldwide, particularly in aging society. Given its limited self-healing ability, the repair and regeneration of damaged articular cartilage remain formidable challenges. To address this issue, nanomaterials are leveraged to achieve desirable repair outcomes by enhancing mechanical properties, optimizing drug loading and bioavailability, enabling site-specific and targeted delivery, and orchestrating cell activities at the nanoscale. This review presents a comprehensive survey of recent research in nanomedicine for cartilage repair, with a primary focus on biomaterial design considerations and recent advances. The review commences with an introductory overview of the intricate cartilage microenvironment and further delves into key biomaterial design parameters crucial for treating cartilage damage, including microstructure, surface charge, and active targeting. The focal point of this review lies in recent advances in nano drug delivery systems and nanotechnology-enabled 3D matrices for cartilage repair. We discuss the compositions and properties of these nanomaterials and elucidate how these materials impact the regeneration of damaged cartilage. This review underscores the pivotal role of nanotechnology in improving the efficacy of biomaterials utilized for the treatment of cartilage damage.
Collapse
Affiliation(s)
- Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Center for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
7
|
Wu J, Wu C, Cai Z, Gu H, Liu L, Xia C, Lui S, Gong Q, Song B, Ai H. Ultra-small superparamagnetic iron oxide nanoparticles for intra-articular targeting of cartilage in early osteoarthritis. Regen Biomater 2023; 10:rbad052. [PMID: 37397872 PMCID: PMC10307945 DOI: 10.1093/rb/rbad052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 07/04/2023] Open
Abstract
Early diagnosis of osteoarthritis (OA) is critical for effective cartilage repair. However, lack of blood vessels in articular cartilage poses a barrier to contrast agent delivery and subsequent diagnostic imaging. To address this challenge, we proposed to develop ultra-small superparamagnetic iron oxide nanoparticles (SPIONs, 4 nm) that can penetrate into the matrix of articular cartilage, and further modified with the peptide ligand WYRGRL (particle size, 5.9 nm), which allows SPIONs to bind to type II collagen in the cartilage matrix and increase the retention of probes. Type II collagen in the cartilage matrix is gradually lost with the progression of OA, consequently, the binding of peptide-modified ultra-small SPIONs to type II collagen in the OA cartilage matrix is less, thus presenting different magnetic resonance (MR) signals in OA group from the normal ones. By introducing the AND logical operation, damaged cartilage can be differentiated from the surrounding normal tissue on T1 and T2 AND logical map of MR images, and this was also verified in histology studies. Overall, this work provides an effective strategy for delivering nanosized imaging agents to articular cartilage, which could potentially be used to diagnosis joint-related diseases such as osteoarthritis.
Collapse
Affiliation(s)
- Jun Wu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China
- Medical Imaging Key Laboratory of Sichuan Province, School of Medical Imaging, North Sichuan Medical College, Nanchong 637000, China
| | - Changqiang Wu
- Correspondence address. Tel: +86 28 85413991, E-mail: (H.A.); (C.W.)
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Li Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610064, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Fujian, Xiamen 361000, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Radiology, Sanya People’s Hospital, Hainan, Sanya 572000, China
| | - Hua Ai
- Correspondence address. Tel: +86 28 85413991, E-mail: (H.A.); (C.W.)
| |
Collapse
|
8
|
Szarek P, Pierce DM. A specialized protocol for mechanical testing of isolated networks of type II collagen. J Mech Behav Biomed Mater 2022; 136:105466. [PMID: 36183667 DOI: 10.1016/j.jmbbm.2022.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022]
Abstract
The mechanical responses of most soft biological tissues rely heavily on networks of collagen fibers, thus quantifying the mechanics of both individual collagen fibers and networks of these fibers advances understanding of biological tissues in health and disease. The mechanics of type I collagen are well-studied and quantified. Yet no data exist on the tensile mechanical responses of individual type II collagen fibers nor of isolated networks comprised of type II collagen. We aimed to establish methods to facilitate studies of networked and individual type II collagen fibers within the native networked structure, specifically to establish best practices for isolating and mechanically testing type II collagen networks in tension. We systematically investigated mechanical tests of networks of type II collagen undergoing uniaxial extension, and quantified ranges for each of the important variables to help ensure that the experiment itself does not affect the measured mechanical parameters. Specifically we determined both the specimen (establishing networks of isolated collagen, the footprint and thickness of the specimen) and the mechanical test (both the device and the strain rate) to establish a repeatable and practical protocol. Mechanical testing of isolated networks of type II collagen fibers leveraging this protocol will lead to better understanding of the mechanics both of these networks and of the individual fibers. Such understanding may aid in developing and testing therapeutics, understanding inter-constituent interactions (and their roles in bulk-tissue biomechanics), investigating mechanical/biochemical modifications to networked type II collagen, and proposing, calibrating, and validating constitutive models for finite element analyses.
Collapse
Affiliation(s)
- Phoebe Szarek
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - David M Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States of America.
| |
Collapse
|
9
|
Polymeric Nanoparticles for Drug Delivery in Osteoarthritis. Pharmaceutics 2022; 14:pharmaceutics14122639. [PMID: 36559133 PMCID: PMC9788411 DOI: 10.3390/pharmaceutics14122639] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative musculoskeletal disorder affecting the whole synovial joint and globally impacts more than one in five individuals aged 40 and over, representing a huge socioeconomic burden. Drug penetration into and retention within the joints are major challenges in the development of regenerative therapies for OA. During the recent years, polymeric nanoparticles (PNPs) have emerged as promising drug carrier candidates due to their biodegradable properties, nanoscale structure, functional versatility, and reproducible manufacturing, which makes them particularly attractive for cartilage penetration and joint retention. In this review, we discuss the current development state of natural and synthetic PNPs for drug delivery and OA treatment. Evidence from in vitro and pre-clinical in vivo studies is used to show how disease pathology and key cellular pathways of joint inflammation are modulated by these nanoparticle-based therapies. Furthermore, we compare the biodegradability and surface modification of these nanocarriers in relation to the drug release profile and tissue targeting. Finally, the main challenges for nanoparticle delivery to the cartilage are discussed, as a function of disease state and physicochemical properties of PNPs such as size and surface charge.
Collapse
|
10
|
Wang Y, Liu L, Le Z, Tay A. Analysis of Nanomedicine Efficacy for Osteoarthritis. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Yuwen Wang
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Ling Liu
- Institute of Health Innovation and Technology National University of Singapore Singapore 117599 Singapore
| | - Zhicheng Le
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
| | - Andy Tay
- Department of Biomedical Engineering National University of Singapore Singapore 117583 Singapore
- Institute of Health Innovation and Technology National University of Singapore Singapore 117599 Singapore
- Tissue Engineering Programme National University of Singapore Singapore 117510 Singapore
| |
Collapse
|
11
|
Hall ME, Wang AS, Gold GE, Levenston ME. Contrast solution properties and scan parameters influence the apparent diffusivity of computed tomography contrast agents in articular cartilage. J R Soc Interface 2022; 19:20220403. [PMID: 35919981 PMCID: PMC9346352 DOI: 10.1098/rsif.2022.0403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022] Open
Abstract
The inability to detect early degenerative changes to the articular cartilage surface that commonly precede bulk osteoarthritic degradation is an obstacle to early disease detection for research or clinical diagnosis. Leveraging a known artefact that blurs tissue boundaries in clinical arthrograms, contrast agent (CA) diffusivity can be derived from computed tomography arthrography (CTa) scans. We combined experimental and computational approaches to study protocol variations that may alter the CTa-derived apparent diffusivity. In experimental studies on bovine cartilage explants, we examined how CA dilution and transport direction (absorption versus desorption) influence the apparent diffusivity of untreated and enzymatically digested cartilage. Using multiphysics simulations, we examined mechanisms underlying experimental observations and the effects of image resolution, scan interval and early scan termination. The apparent diffusivity during absorption decreased with increasing CA concentration by an amount similar to the increase induced by tissue digestion. Models indicated that osmotically-induced fluid efflux strongly contributed to the concentration effect. Simulated changes to spatial resolution, scan spacing and total scan time all influenced the apparent diffusivity, indicating the importance of consistent protocols. With careful control of imaging protocols and interpretations guided by transport models, CTa-derived diffusivity offers promise as a biomarker for early degenerative changes.
Collapse
Affiliation(s)
- Mary E. Hall
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Adam S. Wang
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Garry E. Gold
- Department of Radiology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Marc E. Levenston
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
宗 路, 吴 乾, 董 仲, 黄 立, 杨 惠. [Research progress of nanomaterials for intra-articular targeted drug delivery in treatment of osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:908-914. [PMID: 35848190 PMCID: PMC9288906 DOI: 10.7507/1002-1892.202203033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To review the research progress of intra-articular targeted delivery of nanomaterials in the treatment of osteoarthritis (OA). METHODS The domestic and foreign related literature on intra-articular targeted delivery of nanomaterials for the treatment of OA was extensively reviewed, and their targeting strategies were discussed and summarized. RESULTS Rapid drug clearance from the joint remains a critical limitation in drug efficacy. Nanocarriers can not only significantly improve the residence profiles of drugs in the joint, but also achieve targeted delivery of drugs to specific joint tissues through active or passive targeting strategies. CONCLUSION With the continuous development of various emerging tissue- or cell-specific drugs, the targeted delivery of drugs with nanomaterials promise to realize the clinical translation of these drugs in the treatment of OA.
Collapse
Affiliation(s)
- 路杰 宗
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
| | - 乾 吴
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
- 昆山市第一人民医院骨科(江苏昆山 215300)Department of Orthopedics, the First People’s Hospital of Kunshan, Kunshan Jiangsu, 215300, P. R. China
| | - 仲琛 董
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
| | - 立新 黄
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
| | - 惠林 杨
- 苏州大学附属第一医院骨科(江苏苏州 215000)Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215000, P. R. China
| |
Collapse
|
13
|
Siefen T, Bjerregaard S, Borglin C, Lamprecht A. Assessment of joint pharmacokinetics and consequences for the intraarticular delivery of biologics. J Control Release 2022; 348:745-759. [PMID: 35714731 DOI: 10.1016/j.jconrel.2022.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023]
Abstract
Intraarticular (IA) injections provide the opportunity to deliver biologics directly to their site of action for a local and efficient treatment of osteoarthritis. However, the synovial joint is a challenging site of administration since the drug is rapidly eliminated across the synovial membrane and has limited distribution into cartilage, resulting in unsatisfactory therapeutic efficacy. In order to rationally develop appropriate drug delivery systems, it is essential to thoroughly understand the unique biopharmaceutical environments and kinetics in the joint to adequately simulate them in relevant experimental models. This review presents a detailed view on articular kinetics and drug-tissue interplay of IA administered drugs and summarizes how these can be translated into reasonable formulation strategies by identification of key factors through which the joint residence time can be prolonged and specific structures can be targeted. In this way, pros and cons of the delivery approaches for biologics will be evaluated and the extent to which biorelevant models are applicable to gain mechanistic insights and ameliorate formulation design is discussed.
Collapse
Affiliation(s)
- Tobias Siefen
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | | | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; PEPITE (EA4267), University of Burgundy/Franche-Comté, Besançon, France.
| |
Collapse
|
14
|
Travascio F, Valladares-Prieto S, Jackson AR. EFFECTS OF SOLUTE SIZE AND TISSUE COMPOSITION ON MOLECULAR AND MACROMOLECULAR DIFFUSIVITY IN HUMAN KNEE CARTILAGE. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 2. [PMID: 34611626 DOI: 10.1016/j.ocarto.2020.100087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Objective Articular cartilage is an avascular tissue. Accordingly, diffusivity represents a fundamental transport mechanism for nutrients and other molecular signals regulating its cell metabolism and maintenance of the extracellular matrix. Understanding how solutes spread into articular cartilage is crucial to elucidating its pathologies, and to designing treatments for repair and restoration of its extracellular matrix. As in other connective tissues, diffusivity in articular cartilage may vary depending both its composition and the specific diffusing solute. Hence, this study investigated the roles of solute size and tissue composition on molecular diffusion in knee articular cartilage. Design FRAP tests were conducted to measure diffusivity of five molecular probes, with size ranging from ~332Da to 70,000Da, in human knee articular cartilage. The measured diffusion coefficients were related to molecular size, as well as water and glycosaminoglycan (GAG) content of femoral and tibial condyle cartilage. Results Diffusivity was affected by molecular size, with the magnitude of the diffusion coefficients decreasing as the Stokes radius of the probe increased. The values of diffusion coefficients in tibial and femoral samples were not significantly different from one another, despite the fact that tibial samples exhibited significantly higher water content and lower GAG content of the femoral specimens. Water content did not affect diffusivity. In contrast, diffusivities of large molecules were sensitive to GAG content. Conclusions This study provides new knowledge on the mechanisms of diffusion in articular cartilage. Our findings can be leveraged to further investigate osteoarthritis and to design treatments for cartilage restoration or replacement.
Collapse
Affiliation(s)
- Francesco Travascio
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL.,Department of Orthopaedic Surgery, University of Miami, Miami, FL.,Max Biedermann Institute for Biomechanics at Mount Sinai Medical Center, Miami Beach, FL
| | | | - Alicia R Jackson
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL
| |
Collapse
|
15
|
Culliton KN, Speirs AD. Sliding contact accelerates solute transport into the cartilage surface compared to axial loading. Osteoarthritis Cartilage 2021; 29:1362-1369. [PMID: 34082132 DOI: 10.1016/j.joca.2021.05.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objectives of this study were: first, to compare solute uptake driven by sliding to cyclic uniaxial compression. And secondly, to evaluate the role of the superficial region on passive diffusion to determine if mechanical action is merely overcoming the low permeability of the superficial region or exceeding equilibrium capacity of the tissue. DESIGN Tests were performed on osteochondral plugs under two types of conditions: cyclic loading (sliding vs axial compression) and unloaded passive diffusion (intact vs superficial zone removed). The articular surfaces were exposed to a fluorescent bath and uptake was quantified from the surface to the subchondral bone using fluorescent microscopy. Primary outcome measures were total mass transfer, mass transfer rate, and surface partition factor. RESULTS Mass transfer was 2.1-fold higher at 0.5 h for sliding compared to uniaxial compression (p = 0.004). This increased to 4.4-fold at 2 h (p = 0.002). Solute transport for both loading conditions at 2 h had reached or exceeded intact passive diffusion at 12 h. Total mass transport and mass transport per hour was higher in samples without the superficial region compared to intact samples at equilibrium. Rate of mass transfer was not declining for samples subject to sliding indicating solute uptake induced by sliding would exceed passive tissue capacity. CONCLUSIONS These results are the first to quantify solute uptake between two components of joint articulation. The study demonstrates that sliding is a larger driver of solute transport compared to cyclic uniaxial compression. This has implications for cell nutrition, tissue engineering and biochemical signaling.
Collapse
Affiliation(s)
- K N Culliton
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada
| | - A D Speirs
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Canada.
| |
Collapse
|
16
|
Luo J, Zhang Y, Zhu S, Tong Y, Ji L, Zhang W, Zhang Q, Bi Q. The application prospect of metal/metal oxide nanoparticles in the treatment of osteoarthritis. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1991-2002. [PMID: 34415355 PMCID: PMC8486704 DOI: 10.1007/s00210-021-02131-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022]
Abstract
The current understanding of osteoarthritis is developing from a mechanical disease caused by cartilage wear to a complex biological response involving inflammation, oxidative stress and other aspects. Nanoparticles are widely used in drug delivery due to its good stability in vivo and cell uptake efficiency. In addition to the above advantages, metal/metal oxide NPs, such as cerium oxide and manganese dioxide, can also simulate the activity of antioxidant enzymes and catalyze the degradation of superoxide anions and hydrogen peroxide. Degrading of metal/metal oxide nanoparticles releases metal ions, which may slow down the progression of osteoarthritis by inhibiting inflammation, promoting cartilage repair and inhibiting cartilage ossification. In present review, we focused on recent research works concerning osteoarthritis treating with metal/metal oxide nanoparticles, and introduced some potential nanoparticles that may have therapeutic effects.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China
| | - Yin Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Senbo Zhu
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China
| | - Yu Tong
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China
| | - Lichen Ji
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China
| | - Wei Zhang
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China.,Qingdao University, Qingdao, 266071, Shandong, China
| | - Qiong Zhang
- Operating Theater, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, China. .,Department of Orthopedics, The Second Affiliated Hospital of Wenzhou Medical University, Xueyuan Xi Road 109#, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
17
|
Li X, Dai B, Guo J, Zheng L, Guo Q, Peng J, Xu J, Qin L. Nanoparticle-Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy. NANO-MICRO LETTERS 2021; 13:149. [PMID: 34160733 PMCID: PMC8222488 DOI: 10.1007/s40820-021-00670-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/19/2021] [Indexed: 05/03/2023]
Abstract
Osteoarthritis is the most prevalent chronic and debilitating joint disease, resulting in huge medical and socioeconomic burdens. Intra-articular administration of agents is clinically used for pain management. However, the effectiveness is inapparent caused by the rapid clearance of agents. To overcome this issue, nanoparticles as delivery systems hold considerable promise for local control of the pharmacokinetics of therapeutic agents. Given the therapeutic programs are inseparable from pathological progress of osteoarthritis, an ideal delivery system should allow the release of therapeutic agents upon specific features of disorders. In this review, we firstly introduce the pathological features of osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release. Then, we review the interactions of nanoparticles with cartilage microenvironment and the rational design. Furthermore, we highlight advances in the therapeutic schemes according to the pathology signals. Finally, armed with an updated understanding of the pathological mechanisms, we place an emphasis on the development of "smart" bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological signals. We anticipate that the exploration of nanoparticles by balancing the efficacy, safety, and complexity will lay down a solid foundation tangible for clinical translation.
Collapse
Affiliation(s)
- Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China
| | - Quanyi Guo
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiang Peng
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
- Innovative Orthopedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
18
|
Rahimi M, Charmi G, Matyjaszewski K, Banquy X, Pietrasik J. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta Biomater 2021; 123:31-50. [PMID: 33444800 DOI: 10.1016/j.actbio.2021.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), is a common musculoskeletal disorder that will progressively increase in older populations and is expected to be the most dominant cause of disability in the world population by 2030. The progression of OA is controlled by a multi-factorial pathway that has not been completely elucidated and understood yet. However, over the years, research efforts have provided a significant understanding of some of the processes contributing to the progression of OA. Both cartilage and bone degradation processes induce articular cells to produce inflammatory mediators that produce proinflammatory cytokines that block the synthesis of collagen type II and aggrecan, the major components of cartilage. Systemic administration and intraarticular injection of anti-inflammatory agents are the first-line treatments of OA. However, small anti-inflammatory molecules are rapidly cleared from the joint cavity which limits their therapeutic efficacy. To palliate this strong technological drawback, different types of polymeric materials such as microparticles, nanoparticles, and hydrogels, have been examined as drug carriers for the delivery of therapeutic agents to articular joints. The main purpose of this review is to provide a summary of recent developments in natural and synthetic polymeric drug delivery systems for the delivery of anti-inflammatory agents to arthritic joints. Furthermore, this review provides an overview of the design rules that have been proposed so far for the development of drug carriers used in OA therapy. Overall it is difficult to state clearly which polymeric platform is the most efficient one because many advantages and disadvantages could be pointed to both natural and synthetic formulations. That requires further research in the near future.
Collapse
|
19
|
van Gastel N, Carmeliet G. Metabolic regulation of skeletal cell fate and function in physiology and disease. Nat Metab 2021; 3:11-20. [PMID: 33398192 DOI: 10.1038/s42255-020-00321-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023]
Abstract
The skeleton is diverse in its functions, which include mechanical support, movement, blood cell production, mineral storage and endocrine regulation. This multifaceted role is achieved through an interplay of osteoblasts, chondrocytes, bone marrow adipocytes and stromal cells, all generated from skeletal stem cells. Emerging evidence shows the importance of cellular metabolism in the molecular control of the skeletal system. The different skeletal cell types not only have distinct metabolic demands relating to their particular functions but also are affected by microenvironmental constraints. Specific metabolites control skeletal stem cell maintenance, direct lineage allocation and mediate cellular communication. Here, we discuss recent findings on the roles of cellular metabolism in determining skeletal stem cell fate, coordinating osteoblast and chondrocyte function, and organizing stromal support of haematopoiesis. We also consider metabolic dysregulation in skeletal ageing and degenerative diseases, and provide an outlook on how the field may evolve in the coming years.
Collapse
Affiliation(s)
- Nick van Gastel
- de Duve Institute, Brussels, Belgium.
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Ngo L, Knothe Tate ML. Osteoarthritis: New Strategies for Transport and Drug Delivery Across Length Scales. ACS Biomater Sci Eng 2020; 6:6009-6020. [PMID: 33449636 DOI: 10.1021/acsbiomaterials.0c01081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is the fourth leading cause of disability in adults. Yet, few viable pharmaceutical options exist for pain abatement and joint restoration, aside from joint replacement at late and irreversible stages of the disease. From the first onset of OA, as joint pain increases, individuals with arthritis increasingly reach for drug delivery solutions, from taking oral glycosaminoglycans (GAGs) bought over the counter from retail stores (e.g., Costco) to getting injections of viscous, GAG-containing synovial fluid supplement in the doctor's office. Little is known regarding the efficacy of delivery mode and/or treatment by such disease-modulating agents. This Review addresses the interplay of mechanics and biology on drug delivery to affected joints, which has profound implications for molecular transport in joint health and (patho)physiology. Multiscale systems biology approaches lend themselves to understand the relationship between the cell and joint health in OA and other joint (patho)physiologies. This Review first describes OA-related structural and functional changes in the context of the multilength scale anatomy of articular joints. It then summarizes and categorizes, by size and charge, published molecular transport studies, considering changes in permeability induced through inflammatory pathways. Finally, pharmacological interventions for OA are outlined in the context of molecular weights and modes of drug delivery. Taken together, the current state-of-the-art points to a need for new drug delivery strategies that harness systems-based interactions underpinning molecular transport and maintenance of joint structure and function at multiple length scales from molecular agents to cells, tissues, and tissue compartments which together make up articular joints. Cutting edge and cross-length and -time scale imaging represents a key discovery enabling technology in this process.
Collapse
Affiliation(s)
- Lucy Ngo
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Melissa L Knothe Tate
- Inaugural Paul Trainor Chair of Biomedical Engineering, Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
21
|
Hashlamoun K, Federico S. Anisotropic Diffusivity Tensor in Articular Cartilage: Effective Medium Approach. J Biomech Eng 2020; 142:081001. [PMID: 31891378 DOI: 10.1115/1.4045811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 11/08/2022]
Abstract
Due to the avascular nature of articular cartilage, molecular transport occurs via interstitial fluid flow as well as via diffusion. Diffusion in cartilage has been studied experimentally, but no mathematical models have been developed to interpret the experimental results and the observed isotropy or anisotropy in the different cartilage zones. Here, we propose a model for the determination of the diffusivity tensor of uncharged macromolecules in articular cartilage, accounting for the inhomogeneity and anisotropy arising from fiber arrangement, volumetric fraction, and radius. We study a representative element of volume (REV) comprising a fiber surrounded by fluid-saturated proteoglycan matrix. The REV permeability tensor is evaluated using a previously developed model, while the REV diffusivity tensor is obtained by incorporating the hydrodynamic effect and the steric effect of the fiber-reinforced matrix. Both effects are represented by anisotropic second-order tensors. The overall diffusivity tensor is obtained as the averaging integral of the REV diffusivity, weighted by the probability distribution of fiber orientation. The model's predictions of the trend of the magnitude of the diffusivity of spheroidal macromolecules as a function of molecular radius agree with published experimental results. For large linear macromolecules, the model underestimates the diffusivity magnitude (i.e., the equivalent isotropic diffusivity). The model correctly predicts the anisotropic behavior for linear macromolecules, although it underestimates the numerical value of the diffusivity anisotropy ratio of large linear macromolecules in the superficial zone, and overestimates it in the deep zone. In summary, this model constitutes a first step toward understanding the relation between diffusivity and permeability in articular cartilage.
Collapse
Affiliation(s)
- Kotaybah Hashlamoun
- Department of Mechanical and Manufacturing Engineering, The University of Calgary, 2500 University Drive NW, Calgary, AB T2N1N4, Canada; Graduate Programme in Biomedical Engineering, The University of Calgary, 2500 University Drive NW, Calgary, AB T2N1N4, Canada
| | - Salvatore Federico
- Department of Mechanical and Manufacturing Engineering, The University of Calgary, 2500 University Drive NW, Calgary, AB T2N1N4, Canada
| |
Collapse
|
22
|
Effect of aggrecan degradation on the nanomechanics of hyaluronan in extra-fibrillar matrix of annulus fibrosus: A molecular dynamics investigation. J Mech Behav Biomed Mater 2020; 107:103752. [PMID: 32278311 DOI: 10.1016/j.jmbbm.2020.103752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
Intervertebral Disc (IVD) Degeneration is one of the primary causes of low back pain among the adult population - the most significant cause being the degradation of aggrecan present in the extra-fibrillar matrix (EFM). Aggrecan degradation is closely associated with loss of water content leading to an alteration in the mechanical behaviour of the IVD. The loss in water content has a significant impact on the chemo-mechanical interplay of IVD biochemical constituents at the fundamental level. This work presents a mechanistic understanding of the effect of hydration, closely associated with aggrecan degradation, on the nanoscale mechanical behaviour of the hyaluronan present in the EFM of the Annulus Fibrosus. For this purpose, explicit three-dimensional molecular dynamics analyses of tensile and compressive tests are performed on a representative atomistic model of the hyaluronan present in the EFM. To account for the degradation of aggrecan, hydration levels are varied from 0 to 75% by weight of water. Analyses show that an increase in the hydration levels decreases the elastic modulus of hyaluronan in tension from ~4.6 GPa to ~2.1 GPa. On the other hand, the increase in hydration level increases the elastic moduli in axial compression from ~1.6 GPa in un-hydrated condition to ~6 GPa in 50% hydrated condition. But as the hydration levels increase to 75%, the elastic modulus reduces to ~3.5 GPa signifying a shift in load-bearing characteristic, from the solid hyaluronan component to the fluid component. Furthermore, analyses show a reduction in the intermolecular energy between hyaluronan and water, under axial tensile loading, indicating a nanoscale intermolecular debonding between hyaluronan and water molecules. This is attributed to the ability of hyaluronan to form stabilizing intra-molecular hydrogen bonds between adjacent residues. Compressive loading, on the other hand, causes intensive coiling of hyaluronan molecule, which traps more water through hydrogen bonding and aids in bearing compressive loads. Overall, study shows that hydration level has a strong influence on the atomistic level interactions between hyaluronan molecules and hyaluronan and water molecules in the EFM which influences the nanoscale mechanics of the Annulus Fibrosus.
Collapse
|
23
|
Sands I, Lee J, Zhang W, Chen Y. RNA Delivery via DNA-Inspired Janus Base Nanotubes for Extracellular Matrix Penetration. ACTA ACUST UNITED AC 2020; 5:815-823. [PMID: 32405433 DOI: 10.1557/adv.2020.47] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
RNA delivery into deep tissues with dense extracellular matrix (ECM) has been challenging. For example, cartilage is a major barrier for RNA and drug delivery due to its avascular structure, low cell density and strong negative surface charge. Cartilage ECM is comprised of collagens, proteoglycans, and various other noncollagneous proteins with a spacing of 20nm. Conventional nanoparticles are usually spherical with a diameter larger than 50-60nm (after cargo loading). Therefore, they presented limited success for RNA delivery into cartilage. Here, we developed Janus base nanotubes (JBNTs, self-assembled nanotubes inspired from DNA base pairs) to assemble with small RNAs to form nano-rod delivery vehicles (termed as "Nanopieces"). Nanopieces have a diameter of ~20nm (smallest delivery vehicles after cargo loading) and a length of ~100nm. They present a novel breakthrough in ECM penetration due to the reduced size and adjustable characteristics to encourage ECM and intracellular penetration.
Collapse
Affiliation(s)
- Ian Sands
- Department of Engineering, University of Connecticut, Storrs, CT
| | - Jinhyung Lee
- Department of Engineering, University of Connecticut, Storrs, CT
| | - Wuxia Zhang
- Department of Engineering, University of Connecticut, Storrs, CT
| | - Yupeng Chen
- Department of Engineering, University of Connecticut, Storrs, CT
| |
Collapse
|
24
|
Kumar S, Adjei IM, Brown SB, Liseth O, Sharma B. Manganese dioxide nanoparticles protect cartilage from inflammation-induced oxidative stress. Biomaterials 2019; 224:119467. [PMID: 31557589 PMCID: PMC7025913 DOI: 10.1016/j.biomaterials.2019.119467] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 01/10/2023]
Abstract
Oxidative stress has been implicated in the pathogenesis of osteoarthritis and has become an important therapeutic target. Investigations of various antioxidant supplements, reactive oxidative species (ROS) pathway mediators, and free radical scavengers for treating osteoarthritis have demonstrated common disadvantages including poor bioavailability and stability, as well as rapid joint clearance or release profiles from delivery vehicles. Moreover, these therapies do not target cartilage, which irreversibly degenerates in the presence of oxidative stress. The goal of this study was to engineer a nanoparticle system capable of sustained retention in the joint space, localization to cartilage, and mitigation of oxidative stress. Towards this goal, ROS scavenging manganese dioxide nanoparticles with physicochemical properties (less than 20 nm and cationic) that facilitate their uptake into cartilage were developed and characterized. These particles penetrated through the depth of cartilage explants and were found both in the extracellular matrix as well as intracellularly within the resident chondrocytes. Furthermore, the particles demonstrated chondroprotection of cytokine-challenged cartilage explants by reducing the loss of glycosaminoglycans and release of nitric oxide. Quantitative PCR analysis revealed that the particles mitigated impacts of oxidative stress related genes in cytokine-challenged chondrocytes. When injected intra-articularly into rats, the particles persisted in the joint space over one week, with 75% of the initial signal remaining in the joint. Biodistribution and histological analysis revealed accumulation of particles at the chondral surfaces and colocalization of the particles with the lacunae of chondrocytes. The results suggest that the manganese dioxide nanoparticles could be a promising approach for the chondroprotection of osteoarthritic cartilage.
Collapse
Affiliation(s)
- Shreedevi Kumar
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Isaac M Adjei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Shannon B Brown
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Olivia Liseth
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive Biomedical Sciences Building JG-56, P.O. Box 116131, Gainesville, FL 32611-6131, USA.
| |
Collapse
|
25
|
Molecular transport in articular cartilage - what have we learned from the past 50 years? Nat Rev Rheumatol 2019; 14:393-403. [PMID: 29899547 DOI: 10.1038/s41584-018-0033-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing therapeutic molecules that target chondrocytes and locally produced inflammatory factors within arthritic cartilage is an active area of investigation. The extensive studies that have been conducted over the past 50 years have enabled the accurate prediction and reliable optimization of the transport of a wide variety of molecules into cartilage. In this Review, the factors that can be used to tune the transport kinetics of therapeutics are summarized. Overall, the most crucial factor when designing new therapeutic molecules is solute size. The diffusivity and partition coefficient of a solute both decrease with increasing solute size as indicated by molecular mass or by hydrodynamic radius. Surprisingly, despite having an effective pore size of ~6 nm, molecules of ~16 nm radius can diffuse through the cartilage matrix. Alteration of the shape or charge of a solute and the application of physiological loading to cartilage can be used to predictably improve solute transport kinetics, and this knowledge can be used to improve the development of therapeutic agents for osteoarthritis that target the cartilage.
Collapse
|
26
|
Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater 2019; 93:239-257. [PMID: 30862551 DOI: 10.1016/j.actbio.2019.03.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/31/2022]
Abstract
Osteoarthritis is a prevalent and debilitating disease that involves pathological contributions from numerous joint tissues and cells. The joint is a challenging arena for drug delivery, since the joint has poor bioavailability for systemically administered drugs and experiences rapid clearance of therapeutics after intra-articular injection. Moreover, each tissue within the joint presents unique barriers to drug localization. In this review, the various applications of nanotechnology to overcome these drug delivery limitations are investigated. Nanomaterials have reliably shown improvements to retention profiles of drugs within the joint space relative to injected free drugs. Additionally, nanomaterials have been modified through active and passive targeting strategies to facilitate interactions with and localization within specific joint tissues such as cartilage and synovium. Last, the limitations of drawing cross-study comparisons, the implications of synovial fluid, and the potential importance of multi-modal therapeutic strategies are discussed. As emerging, cell-specific disease modifying osteoarthritis drugs continue to be developed, the need for targeted nanomaterial delivery will likely become critical for effective clinical translation of therapeutics for osteoarthritis. STATEMENT OF SIGNIFICANCE: Improving drug delivery to the joint is a pressing clinical need. Over 27 million Americans live with osteoarthritis, and this figure is continuously expanding. Numerous drugs have been investigated but have failed in clinical trials, likely related to poor bioavailability to target cells. This article comprehensively reviews the advances in nano-scale delivery vehicles designed to overcome the delivery barriers in the joint. This is the first review to analyze active and passive targeting strategies systematically for different target sites while also delineating between tissue homing and whole joint retention. By bringing together the lessons learned across numerous nano-scale platforms, researchers may be able to hone future nanomaterial designs, allowing emerging therapeutics to perform with clinically relevant efficacy and disease modifying potential.
Collapse
|
27
|
DiDomenico CD, Bonassar LJ. How can 50 years of solute transport data in articular cartilage inform the design of arthritis therapeutics? Osteoarthritis Cartilage 2018; 26:1438-1446. [PMID: 30053617 DOI: 10.1016/j.joca.2018.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE For the last half century, transport of nutrients and therapeutics in articular cartilage has been studied with various in vitro systems that attempt to model in vivo conditions. However, experimental technique, tissue species, and tissue storage condition (fresh/frozen) vary widely and there is debate on the most appropriate model system. Additionally, there is still no clear overarching framework with which to predict solute transport properties based on molecular characteristics. This review aims to develop such a framework, and to assess whether experimental procedure affects trends in transport data. METHODS Solute data from 31 published papers that investigated transport in healthy articular cartilage were obtained and analyzed for trends. RESULTS Here, we show that diffusivity of spherical and globular solutes in cartilage can be predicted by molecular weight (MW) and hydrodynamic radius via a power-law relationship. This relationship is robust for many solutes, spanning 5 orders of magnitude in MW and was not affected by variations in cartilage species, age, condition (fresh/frozen), and experimental technique. Traditional models of transport in porous media exhibited mixed effectiveness at predicting diffusivity in cartilage, but were good in predicting solute partition coefficient. CONCLUSION Ultimately, these robust relationships can be used to accurately predict and improve transport of solutes in adult human cartilage and enable the development of better optimized arthritis therapeutics.
Collapse
Affiliation(s)
- C D DiDomenico
- Cornell University, Meinig School of Biomedical Engineering, USA.
| | - L J Bonassar
- Cornell University, Meinig School of Biomedical Engineering, USA.
| |
Collapse
|
28
|
DiDomenico CD, Kaghazchi A, Bonassar LJ. Measurement of local diffusion and composition in degraded articular cartilage reveals the unique role of surface structure in controlling macromolecular transport. J Biomech 2018; 82:38-45. [PMID: 30385000 DOI: 10.1016/j.jbiomech.2018.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/05/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022]
Abstract
Developing effective therapeutics for osteoarthritis (OA) necessitates that such molecules can reach and target chondrocytes within articular cartilage. However, predicting how well very large therapeutic molecules diffuse through cartilage is often difficult, and the relationship between local transport mechanics for these molecules and tissue heterogeneities in the tissue is still unclear. In this study, a 150 kDa antibody diffused through the articular surface of healthy and enzymatically degraded cartilage, which enabled the calculation of local diffusion mechanics in tissue with large compositional variations. Local cartilage composition and structure was quantified with Fourier transform infrared (FTIR) spectroscopy and second harmonic generation (SHG) imaging techniques. Overall, both local concentrations of aggrecan and collagen were correlated to local diffusivities for both healthy and surface-degraded samples (0.3 > R2 < 0.9). However, samples that underwent surface degradation by collagenase exhibited stronger correlations (R2 > 0.75) compared to healthy samples (R2 < 0.46), suggesting that the highly aligned collagen at the surface of cartilage acts as a barrier to macromolecular transport.
Collapse
Affiliation(s)
- Chris D DiDomenico
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Aydin Kaghazchi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
29
|
Labens R, Daniel C, Hall S, Xia XR, Schwarz T. Effect of intra-articular administration of superparamagnetic iron oxide nanoparticles (SPIONs) for MRI assessment of the cartilage barrier in a large animal model. PLoS One 2017; 12:e0190216. [PMID: 29287105 PMCID: PMC5747449 DOI: 10.1371/journal.pone.0190216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/11/2017] [Indexed: 11/22/2022] Open
Abstract
Early diagnosis of cartilage disease at a time when changes are limited to depletion of extracellular matrix components represents an important diagnostic target to reduce patient morbidity. This report is to present proof of concept for nanoparticle dependent cartilage barrier imaging in a large animal model including the use of clinical magnetic resonance imaging (MRI). Conditioned (following matrix depletion) and unconditioned porcine metacarpophalangeal cartilage was evaluated on the basis of fluorophore conjugated 30 nm and 80 nm spherical gold nanoparticle permeation and multiphoton laser scanning and bright field microscopy after autometallographic particle enhancement. Consequently, conditioned and unconditioned joints underwent MRI pre- and post-injection with 12 nm superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate particle permeation in the context of matrix depletion and use of a clinical 1.5 Tesla MRI scanner. To gauge the potential pro-inflammatory effect of intra-articular nanoparticle delivery co-cultures of equine synovium and cartilage tissue were exposed to an escalating dose of SPIONs and IL-6, IL-10, IFN-γ and PGE2 were assessed in culture media. The chemotactic potential of growth media samples was subsequently assessed in transwell migration assays on isolated equine neutrophils. Results demonstrate an increase in MRI signal following conditioning of porcine joints which suggests that nanoparticle dependent compositional cartilage imaging is feasible. Tissue culture and neutrophil migration assays highlight a dose dependent inflammatory response following SPION exposure which at the imaging dose investigated was not different from controls. The preliminary safety and imaging data support the continued investigation of nanoparticle dependent compositional cartilage imaging. To our knowledge, this is the first report in using SPIONs as intra-articular MRI contrast agent for studying cartilage barrier function, which could potentially lead to a new diagnostic technique for early detection of cartilage disease.
Collapse
Affiliation(s)
- Raphael Labens
- School of Animal and Veterinary Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- * E-mail:
| | - Carola Daniel
- The Roslin Institute, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
| | - Sarah Hall
- Animal & Veterinary Sciences, Scotland’s Rural College, Easter Bush Campus, Midlothian, United Kingdom
| | - Xin-Rui Xia
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Tobias Schwarz
- Royal (Dick) School of Veterinary Studies, Easter Bush Campus, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
30
|
Shoga JS, Graham BT, Wang L, Price C. Direct Quantification of Solute Diffusivity in Agarose and Articular Cartilage Using Correlation Spectroscopy. Ann Biomed Eng 2017; 45:2461-2474. [PMID: 28612188 PMCID: PMC5693644 DOI: 10.1007/s10439-017-1869-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/07/2017] [Indexed: 11/26/2022]
Abstract
Articular cartilage is an avascular tissue; diffusive transport is critical for its homeostasis. While numerous techniques have been used to quantify diffusivity within porous, hydrated tissues and tissue engineered constructs, these techniques have suffered from issues regarding invasiveness and spatial resolution. In the present study, we implemented and compared two separate correlation spectroscopy techniques, fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), for the direct, and minimally-invasive quantification of fluorescent solute diffusion in agarose and articular cartilage. Specifically, we quantified the diffusional properties of fluorescein and Alexa Fluor 488-conjugated dextrans (3k and 10k) in aqueous solutions, agarose gels of varying concentration (i.e. 1, 3, 5%), and in different zones of juvenile bovine articular cartilage explants (i.e. superficial, middle, and deep). In agarose, properties of solute diffusion obtained via FCS and RICS were inversely related to molecule size, gel concentration, and applied strain. In cartilage, the diffusional properties of solutes were similarly dependent upon solute size, cartilage zone, and compressive strain; findings that agree with work utilizing other quantification techniques. In conclusion, this study established the utility of FCS and RICS as simple and minimally invasive techniques for quantifying microscale solute diffusivity within agarose constructs and articular cartilage explants.
Collapse
Affiliation(s)
- Janty S Shoga
- Biomechanics & Movement Science, University of Delaware, Newark, DE, USA
| | - Brian T Graham
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Liyun Wang
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Christopher Price
- Biomechanics & Movement Science, University of Delaware, Newark, DE, USA.
- Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA.
| |
Collapse
|
31
|
DiDomenico CD, Goodearl A, Yarilina A, Sun V, Mitra S, Sterman AS, Bonassar LJ. The Effect of Antibody Size and Mechanical Loading on Solute Diffusion Through the Articular Surface of Cartilage. J Biomech Eng 2017; 139:2643262. [DOI: 10.1115/1.4037202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 11/08/2022]
Abstract
Because of the heterogeneous nature of articular cartilage tissue, penetration of potential therapeutic molecules for osteoarthritis (OA) through the articular surface (AS) is complex, with many factors that affect transport of these solutes within the tissue. Therefore, the goal of this study is to investigate how the size of antibody (Ab) variants, as well as application of cyclic mechanical loading, affects solute transport within healthy cartilage tissue. Penetration of fluorescently tagged solutes was quantified using confocal microscopy. For all the solutes tested, fluorescence curves were obtained through the articular surface. On average, diffusivities for the solutes of sizes 200 kDa, 150 kDa, 50 kDa, and 25 kDa were 3.3, 3.4, 5.1, and 6.0 μm2/s from 0 to 100 μm from the articular surface. Diffusivities went up to a maximum of 16.5, 18.5, 20.5, and 23.4 μm2/s for the 200 kDa, 150 kDa, 50 kDa, and 25 kDa molecules, respectively, from 225 to 325 μm from the surface. Overall, the effect of loading was very significant, with maximal transport enhancement for each solute ranging from 2.2 to 3.4-fold near 275 μm. Ultimately, solutes of this size do not diffuse uniformly nor are convected uniformly, through the depth of the cartilage tissue. This research potentially holds great clinical significance to discover ways of further optimizing transport into cartilage and leads to effective antibody-based treatments for OA.
Collapse
Affiliation(s)
- Chris D. DiDomenico
- Meinig School of Biomedical Engineering,Cornell University,145 Weill Hall,Ithaca, NY 14853e-mail:
| | | | - Anna Yarilina
- AbbVie Inc.,100 Research Drive,Worcester, MA 01605e-mail:
| | - Victor Sun
- AbbVie Inc.,100 Research Drive,Worcester, MA 01605e-mail:
| | - Soumya Mitra
- AbbVie Inc.,100 Research Drive,Worcester, MA 01605e-mail:
| | | | | |
Collapse
|
32
|
Perni S, Prokopovich P. Poly-beta-amino-esters nano-vehicles based drug delivery system for cartilage. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:539-548. [PMID: 27746232 PMCID: PMC5339075 DOI: 10.1016/j.nano.2016.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/29/2016] [Accepted: 10/04/2016] [Indexed: 02/03/2023]
Abstract
The efficient delivery of therapeutic molecules to the cartilage of joints is a major obstacle in developing useful therapeutic interventions; hence, a targeted drug delivery system for this tissue is critical. We have overcome the challenge by developing a system that employs electrostatic attraction between the negatively charged constituents of cartilage and a positively charged polymer, poly-beta amino esters (PBAEs). We have demonstrated cartilage uptake of dexamethasone (DEX) covalently bound to the PBAE was doubled and retention in tissues prolonged compared to the equivalent dose of the commercial drug formulation. Moreover, no adverse effects on chondrocytes were found. Our data also show that PBAEs can bind not only healthy cartilage tissues but also enzymatically treated cartilage mimicking early stages of OA. Our PBAEs-prodrug technology's advantages are fourfold; the specificity and efficacy of its targeting mechanism for cartilage, the ease of its production and the low-cost nature of the delivery system.
Collapse
Affiliation(s)
- Stefano Perni
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Polina Prokopovich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
33
|
Kleinhans KL, Jackson AR. Effect of Strain, Region, and Tissue Composition on Glucose Partitioning in Meniscus Fibrocartilage. J Biomech Eng 2017; 139:2595196. [DOI: 10.1115/1.4035537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Indexed: 12/18/2022]
Abstract
A nearly avascular tissue, the knee meniscus relies on diffusive transport for nutritional supply to cells. Nutrient transport depends on solute partitioning in the tissue, which governs the amount of nutrients that can enter a tissue. The purpose of the present study was to investigate the effects of mechanical strain, tissue region, and tissue composition on the partition coefficient of glucose in meniscus fibrocartilage. A simple partitioning experiment was employed to measure glucose partitioning in porcine meniscus tissues from two regions (horn and central), from both meniscal components (medial and lateral), and at three levels of compression (0%, 10%, and 20%). Partition coefficient values were correlated to strain level, water volume fraction, and glycosaminoglycan (GAG) content of tissue specimens. Partition coefficient values ranged from 0.47 to 0.91 (n = 48). Results show that glucose partition coefficient is significantly (p < 0.001) affected by compression, decreasing with increasing strain. Furthermore, we did not find a statistically significant effect of tissue when comparing medial versus lateral (p = 0.181) or when comparing central and horn regions (p = 0.837). There were significant positive correlations between tissue water volume fraction and glucose partitioning for all groups. However, the correlation between GAG content and partitioning was only significant in the lateral horn group. Determining how glucose partitioning is affected by tissue composition and loading is necessary for understanding nutrient availability and related tissue health and/or degeneration. Therefore, this study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration.
Collapse
Affiliation(s)
- Kelsey L. Kleinhans
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33124-0621 e-mail:
| | - Alicia R. Jackson
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 207, Coral Gables, FL 33124-0621 e-mail:
| |
Collapse
|
34
|
Mittelstaedt D, Kahn D, Xia Y. Topographical and depth-dependent glycosaminoglycan concentration in canine medial tibial cartilage 3 weeks after anterior cruciate ligament transection surgery-a microscopic imaging study. Quant Imaging Med Surg 2016; 6:648-660. [PMID: 28090443 DOI: 10.21037/qims.2016.06.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Medical imaging has become an invaluable tool to diagnose damage to cartilage. Depletion of glycosaminoglycans (GAG) has been shown to be one of the early signs of cartilage degradation. In order to investigate the topographical changes in GAG concentration caused by the anterior cruciate ligament transection (ACLT) surgery in a canine model, microscopic magnetic resonance imaging (µMRI) and microscopic computed tomography (µCT) were used to measure the GAG concentration with correlation from a biochemical assay, inductively coupled plasma optical emission spectroscopy (ICP-OES), to understand where the topographical and depth-dependent changes in the GAG concentration occur. METHODS This study used eight knee joints from four canines, which were examined 3 weeks after ACLT surgery. From right (n=3) and left (n=1) medial tibias of the ACLT and the contralateral side, two ex vivo specimens from each of four locations (interior, central, exterior and posterior) were imaged before and after equilibration in contrast agents. The cartilage blocks imaged using µMRI were approximately 3 mm × 5 mm and were imaged before and after eight hours submersion in a gadolinium (Gd) contrast agent with an in-plane pixel resolution of 17.6 µm2 and an image slice thickness of 1 mm. The cartilage blocks imaged using µCT were approximately 2 mm × 1 mm and were imaged before and after 24 hours submersed in ioxaglate with an isotropic voxel resolution of 13.4 µm3. ICP-OES was used to quantify the bulk GAG at each topographical location. RESULTS The pre-contrast µMRI and µCT results did not demonstrate significant differences in GAG between the ACLT and contralateral cartilage at all topographical locations. The post-contrast µMRI and µCT results demonstrated topographically similar significant differences in GAG concentrations between the ACLT and contralateral tibia. Using µMRI, the GAG concentrations (mg/mL) were measured for the ACLT and contralateral respectively, the exterior (54.0±3.6; 70.4±4.3; P=0.001) and interior (54.9±5.9; 71.0±5.9; P=0.029) demonstrated significant differences, but not for the central (61.0±12.0; 67.4±7.2; P=0.438) or posterior (61.6±6.3; 70.3±4.4; P=0.097) locations. Using µCT, the GAG concentrations (mg/mL) were measured for the ACLT and contralateral respectively, the exterior (68.8±0.4; 87.7±4.1; P=0.023) and interior (60.5±9.1; 82.6±8.7; P=0.039) demonstrated significant differences, but not for the central (53.5±5.5; 59.1±25.6; P=0.684) or posterior (52.3±6.2; 61.5±12.7; P=0.325) locations. The depth-dependent GAG (mg/mL) profiles showed significant differences in µMRI for the transitional zone (TZ) [exterior (28.1±4.7; 47.0±8.6; P=0.01) and interior (32.6±4.8; 43.8±8.7; P=0.025)], radial zone (RZ) 1 [exterior (49.6±4.8; 71.5±5.8; P=0.001) and interior (49.4±7.4; 66.7±6.8; P=0.041)], and RZ 2 [exterior (74.9±4.7; 91.8±2.9; P=0.001) and interior (77.1±6.0; 94.8±4.5; P=0.015)], and in µCT for the superficial zone (SZ) [interior (20.6±1.2; 40.4±5.4; P=0.004)], TZ [exterior (45.6±12.0; 61.8±0.5; P=0.049) and interior (36.3±11.7; 60.8±2.0; P=0.019)], and RZ 1 [exterior (61.1±4.1; 85.3±5.6; P=0.039) and interior (53.9±4.9; 78.0±5.1; P=0.041)] for the ACLT and contralateral, respectively. ICP-OES measured significant differences in GAG were found for the exterior (42.1±19.6; 65.3±16.2; P=0.017), central (43.4±4.4; 65.3±10.6; P=0.0111), and interior (46.8±5.6; 61.7±7.3; P=0.0445) but not for the posterior (52.6±12.1; 59.0±2.6; P=0.9252) medial tibia locations compared for the ACLT and contralateral, respectively. CONCLUSIONS The detection and correlation between the three techniques show a topographic depth-dependency on the initial GAG loss in injured cartilage. This topographic and high resolution investigation of ACLT cartilage demonstrated the potential of using µMRI and µCT to study and help diagnose cartilage with very early stages of osteoarthritis.
Collapse
Affiliation(s)
- Daniel Mittelstaedt
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - David Kahn
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
35
|
Solute Transport of Negatively Charged Contrast Agents Across Articular Surface of Injured Cartilage. Ann Biomed Eng 2016; 45:973-981. [DOI: 10.1007/s10439-016-1756-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
36
|
Wu Y, Cisewski SE, Wegner N, Zhao S, Pellegrini VD, Slate EH, Yao H. Region and strain-dependent diffusivities of glucose and lactate in healthy human cartilage endplate. J Biomech 2016; 49:2756-2762. [PMID: 27338525 DOI: 10.1016/j.jbiomech.2016.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/20/2023]
Abstract
The cartilage endplate (CEP) is implicated as the main pathway of nutrient supply to the healthy human intervertebral disc (IVD). In this study, the diffusivities of nutrient/metabolite solutes in healthy CEP were assessed, and further correlated with tissue biochemical composition and structure. The CEPs from non-degenerated human IVD were divided into four regions: central, lateral, anterior, and posterior. The diffusivities of glucose and lactate were measured with a custom diffusion cell apparatus under 0%, 10%, and 20% compressive strains. Biochemical assays were conducted to quantify the water and glycosaminoglycan (GAG) contents. The Safranin-O and Ehrlich׳s hematoxylin and eosin staining and scanning electron microscopy (SEM) were performed to reveal the tissue structure of the CEP. Average diffusivities of glucose and lactate in healthy CEP were 2.68±0.93×10-7cm2/s and 4.52±1.47×10-7cm2/s, respectively. Solute diffusivities were region-dependent (p<0.0001) with the highest values in the central region, and mechanical strains impeded solute diffusion in the CEP (p<0.0001). The solute diffusivities were significantly correlated with the tissue porosities (glucose: p<0.0001, r=0.581; lactate: p<0.0001, r=0.534). Histological and SEM studies further revealed that the collagen fibers in healthy CEP are more compacted than those in the nucleus pulposus (NP) and annulus fibrosus (AF) and show no clear orientation. Compared to human AF and NP, much smaller solute diffusivities in human CEP suggested that it acts as a gateway for solute diffusion through the disc, maintaining the balance of nutritional environment in healthy human disc under mechanical loading and preventing the progression of disc degeneration.
Collapse
Affiliation(s)
- Yongren Wu
- Department of Bioengineering, Clemson University, Clemson, SC, United States; Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Sarah E Cisewski
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Nicholas Wegner
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Shichang Zhao
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - Vincent D Pellegrini
- Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States
| | - Elizabeth H Slate
- Department of Statistics, Florida State University, Tallahassee, FL, United States
| | - Hai Yao
- Department of Bioengineering, Clemson University, Clemson, SC, United States; Department of Orthopaedics, Medical University of South Carolina (MUSC), Charleston, SC, United States.
| |
Collapse
|
37
|
Bottini M, Magrini A, Fadeel B, Rosato N. Tackling chondrocyte hypertrophy with multifunctional nanoparticles. Gene Ther 2016; 23:560-4. [DOI: 10.1038/gt.2016.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 01/09/2023]
|
38
|
Foster RJ, Damion RA, Baboolal TG, Smye SW, Ries ME. A nuclear magnetic resonance study of water in aggrecan solutions. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150705. [PMID: 27069663 PMCID: PMC4821274 DOI: 10.1098/rsos.150705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
Aggrecan, a highly charged macromolecule found in articular cartilage, was investigated in aqueous salt solutions with proton nuclear magnetic resonance. The longitudinal and transverse relaxation rates were determined at two different field strengths, 9.4 T and 0.5 T, for a range of temperatures and aggrecan concentrations. The diffusion coefficients of the water molecules were also measured as a function of temperature and aggrecan concentration, using a pulsed field gradient technique at 9.4 T. Assuming an Arrhenius relationship, the activation energies for the various relaxation processes and the translational motion of the water molecules were determined from temperature dependencies as a function of aggrecan concentration in the range 0-5.3% w/w. The longitudinal relaxation rate and inverse diffusion coefficient were approximately equally dependent on concentration and only increased by upto 20% from that of the salt solution. The transverse relaxation rate at high field demonstrated greatest concentration dependence, changing by an order of magnitude across the concentration range examined. We attribute this primarily to chemical exchange. Activation energies appeared to be approximately independent of aggrecan concentration, except for that of the low-field transverse relaxation rate, which decreased with concentration.
Collapse
Affiliation(s)
- Richard J. Foster
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Robin A. Damion
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas G. Baboolal
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | - Stephen W. Smye
- Academic Division of Medical Physics, University of Leeds, Leeds LS2 9JT, UK
- National Institute for Health Research, Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, Leeds LS2 9LN, UK
| | - Michael E. Ries
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
39
|
Sharma S, Vazquez-Portalatin N, Calve S, Panitch A. Biomimetic molecules lower catabolic expression and prevent chondroitin sulfate degradation in an osteoarthritic ex vivo model. ACS Biomater Sci Eng 2015; 2:241-250. [PMID: 26878059 DOI: 10.1021/acsbiomaterials.5b00458] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aggrecan, the major proteoglycan in cartilage, serves to protect cartilage tissue from damage and degradation during the progression of osteoarthritis (OA). In cartilage extracellular matrix (ECM) aggrecan exists in an aggregate composed of several aggrecan molecules that bind to a single filament of hyaluronan. Each molecule of aggrecan is composed of a protein core and glycosaminoglycan sides chains, the latter of which provides cartilage with the ability to retain water and resist compressive loads. During the progression of OA, loss of aggrecan is considered to occur first, after which other cartilage matrix components become extremely susceptible to degradation. Proteolytic cleavage of the protein core of aggrecan by enzymes such as aggrecanases, prevent its binding to HA and lower cartilage mechanical strength. Here we present the use of HA-binding or collagen type II-binding molecules that functionally mimic aggrecan but lack known cleavage sites, protecting the molecule from proteolytic degradation. These molecules synthesized with chondroitin sulfate backbones conjugated to hyaluronan- or collagen type II- binding peptides, are capable of diffusing through a cartilage explant and adhering to the ECM of this tissue. The objective of this study was to test the functional efficacy of these molecules in an ex vivo osteoarthritic model to discern the optimal molecule for further studies. Different variations of chondroitin sulfate conjugated to the binding peptides were diffused through aggrecan depleted explants and assessed for their ability to enhance compressive stiffness, prevent CS degradation, and modulate catabolic (MMP-13 and ADAMTS-5) and anabolic (aggrecan and collagen type II) gene expression. A pilot in vivo study assessed the ability to retain the molecule within the joint space of an osteoarthritic guinea pig model. The results indicate chondroitin sulfate conjugated to hyaluronan-binding peptides is able to significantly restore equilibrium modulus and prevent CS degradation. All molecules demonstrated the ability to lower catabolic gene expression in aggrecan depleted explants. In order to enhance biosynthesis and regeneration, the molecules need to be coupled with an external stimulant such as a growth factor. The chondroitin sulfate molecule synthesized with HA-binding peptides demonstrated adherence to cartilage tissue and retention up to 6 hours in an ambulatory joint. Further studies will monitor the in vivo residence time and ability of the molecules to act as a disease-modifying agent.
Collapse
Affiliation(s)
- Shaili Sharma
- 206 S Martin Jischke Drive, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907
| | - Nelda Vazquez-Portalatin
- 206 S Martin Jischke Drive, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907
| | - Sarah Calve
- 206 S Martin Jischke Drive, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907
| | - Alyssa Panitch
- 206 S Martin Jischke Drive, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907
| |
Collapse
|
40
|
Hunckler MD, Tilley JMR, Roeder RK. Molecular transport in collagenous tissues measured by gel electrophoresis. J Biomech 2015; 48:4087-4092. [PMID: 26482732 DOI: 10.1016/j.jbiomech.2015.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/29/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.
Collapse
Affiliation(s)
- Michael D Hunckler
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jennifer M R Tilley
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan K Roeder
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
41
|
Mittelstaedt D, Xia Y. Depth-Dependent Glycosaminoglycan Concentration in Articular Cartilage by Quantitative Contrast-Enhanced Micro-Computed Tomography. Cartilage 2015; 6:216-25. [PMID: 26425259 PMCID: PMC4568736 DOI: 10.1177/1947603515596418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE A quantitative contrast-enhanced micro-computed tomography (qCECT) method was developed to investigate the depth dependency and heterogeneity of the glycosaminoglycan (GAG) concentration of ex vivo cartilage equilibrated with an anionic radiographic contrast agent, Hexabrix. DESIGN Full-thickness fresh native (n = 19 in 3 subgroups) and trypsin-degraded (n = 6) articular cartilage blocks were imaged using micro-computed tomography (μCT) at high resolution (13.4 μm(3)) before and after equilibration with various Hexabrix bathing concentrations. The GAG concentration was calculated depth-dependently based on Gibbs-Donnan equilibrium theory. Analysis of variance with Tukey's post hoc was used to test for statistical significance (P < 0.05) for effect of Hexabrix bathing concentration, and for differences in bulk and zonal GAG concentrations individually and compared between native and trypsin-degraded cartilage. RESULTS The bulk GAG concentration was calculated to be 74.44 ± 6.09 and 11.99 ± 4.24 mg/mL for native and degraded cartilage, respectively. A statistical difference was demonstrated for bulk and zonal GAG between native and degraded cartilage (P < 0.032). A statistical difference was not demonstrated for bulk GAG when comparing Hexabrix bathing concentrations (P > 0.3214) for neither native nor degraded cartilage. Depth-dependent GAG analysis of native cartilage revealed a statistical difference only in the radial zone between 30% and 50% Hexabrix bathing concentrations. CONCLUSIONS This nondestructive qCECT methodology calculated the depth-dependent GAG concentration for both native and trypsin-degraded cartilage at high spatial resolution. qCECT allows for more detailed understanding of the topography and depth dependency, which could help diagnose health, degradation, and repair of native and contrived cartilage.
Collapse
Affiliation(s)
- Daniel Mittelstaedt
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI, USA
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI, USA
| |
Collapse
|
42
|
Kleinhans KL, Jaworski LM, Schneiderbauer MM, Jackson AR. Effect of Static Compressive Strain, Anisotropy, and Tissue Region on the Diffusion of Glucose in Meniscus Fibrocartilage. J Biomech Eng 2015. [DOI: 10.1115/1.4031118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Osteoarthritis (OA) is a significant socio-economic concern, affecting millions of individuals each year. Degeneration of the meniscus of the knee is often associated with OA, yet the relationship between the two is not well understood. As a nearly avascular tissue, the meniscus must rely on diffusive transport for nutritional supply to cells. Therefore, quantifying structure–function relations for transport properties in meniscus fibrocartilage is an important task. The purpose of the present study was to determine how mechanical loading, tissue anisotropy, and tissue region affect glucose diffusion in meniscus fibrocartilage. A one-dimensional (1D) diffusion experiment was used to measure the diffusion coefficient of glucose in porcine meniscus tissues. Results show that glucose diffusion is strain-dependent, decreasing significantly with increased levels of compression. It was also determined that glucose diffusion in meniscus tissues is anisotropic, with the diffusion coefficient in the circumferential direction being significantly higher than that in the axial direction. Finally, the effect of tissue region was not statistically significant, comparing axial diffusion in the central and horn regions of the tissue. This study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration and related OA in the knee.
Collapse
Affiliation(s)
- Kelsey L. Kleinhans
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146 e-mail:
| | - Lukas M. Jaworski
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146 e-mail:
| | - Michaela M. Schneiderbauer
- Department of Orthopaedics, University of Miami Miller School of Medicine, 1400 NW 12th Avenue, Room 4056, Miami, FL 33136 e-mail:
| | - Alicia R. Jackson
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, MEA 219, Coral Gables, FL 33146 e-mail:
| |
Collapse
|
43
|
Grenier S, Donnelly PE, Gittens J, Torzilli PA. Resurfacing damaged articular cartilage to restore compressive properties. J Biomech 2015; 48:122-9. [PMID: 25468298 PMCID: PMC4420241 DOI: 10.1016/j.jbiomech.2014.10.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 08/28/2014] [Accepted: 10/19/2014] [Indexed: 01/02/2023]
Abstract
Surface damage to articular cartilage is recognized as the initial underlying process causing the loss of mechanical function in early-stage osteoarthritis. In this study, we developed structure-modifying treatments to potentially prevent, stabilize or reverse the loss in mechanical function. Various polymers (chondroitin sulfate, carboxymethylcellulose, sodium hyaluronate) and photoinitiators (riboflavin, irgacure 2959) were applied to the surface of collagenase-degraded cartilage and crosslinked in situ using UV light irradiation. While matrix permeability and deformation significantly increased following collagenase-induced degradation of the superficial zone, resurfacing using tyramine-substituted sodium hyaluronate and riboflavin decreased both values to a level comparable to that of intact cartilage. Repetitive loading of resurfaced cartilage showed minimal variation in the mechanical response over a 7 day period. Cartilage resurfaced using a low concentration of riboflavin had viable cells in all zones while a higher concentration resulted in a thin layer of cell death in the uppermost superficial zone. Our approach to repair surface damage initiates a new therapeutic advance in the treatment of injured articular cartilage with potential benefits that include enhanced mechanical properties, reduced susceptibility to enzymatic degradation and reduced adhesion of macrophages.
Collapse
Affiliation(s)
- Stephanie Grenier
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, The Hospital for Special Surgery, New York, NY 10021, USA.
| | - Patrick E Donnelly
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, The Hospital for Special Surgery, New York, NY 10021, USA
| | - Jamila Gittens
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, The Hospital for Special Surgery, New York, NY 10021, USA
| | - Peter A Torzilli
- Laboratory for Soft Tissue Research, Tissue Engineering, Regeneration and Repair Program, The Hospital for Special Surgery, New York, NY 10021, USA
| |
Collapse
|
44
|
Entezari V, Bansal PN, Stewart RC, Lakin BA, Grinstaff MW, Snyder BD. Effect of mechanical convection on the partitioning of an anionic iodinated contrast agent in intact patellar cartilage. J Orthop Res 2014; 32:1333-40. [PMID: 24961833 DOI: 10.1002/jor.22662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/14/2014] [Indexed: 02/04/2023]
Abstract
To determine if mechanical convection accelerates partitioning of an anionic contrast agent into cartilage while maintaining its ability to reflect the glycosaminoglycan (GAG) content in contrast-enhanced computed tomography (CECT) of cartilage. Bovine patellae (N = 4) were immersed in iothalamate and serially imaged over 24 h of passive diffusion at 34°C. Following saline washing for 14 h, each patella was serially imaged over 2.5 h of mechanical convection by cyclic compressive loading (120N, 1 Hz) while immersed in iothalamate at 34°C. After similar saline washing, each patella was sectioned into 15 blocks (n = 60) and contrast concentration per time point as well as GAG content were determined for each cartilage block. Mechanical convection produced 70.6%, 34.4%, and 16.4% higher contrast concentration at 30, 60, and 90 min, respectively, compared to passive diffusion (p < 0.001) and boosted initial contrast flux 330%. The correlation between contrast concentration and GAG content was significant at all time points and correlation coefficients improved with time, reaching R(2) = 0.60 after 180 min of passive diffusion and 22.5 min of mechanical convection. Mechanical convection significantly accelerated partitioning of a contrast agent into healthy cartilage while maintaining strong correlations with GAG content, providing an evidence-based rationale for adopting walking regimens in CECT imaging protocols.
Collapse
Affiliation(s)
- Vahid Entezari
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, 02215
| | | | | | | | | | | |
Collapse
|
45
|
Serrat MA, Efaw ML, Williams RM. Hindlimb heating increases vascular access of large molecules to murine tibial growth plates measured by in vivo multiphoton imaging. J Appl Physiol (1985) 2014; 116:425-38. [PMID: 24371019 PMCID: PMC3921350 DOI: 10.1152/japplphysiol.01212.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/23/2013] [Indexed: 01/30/2023] Open
Abstract
Advances in understanding the molecular regulation of longitudinal growth have led to development of novel drug therapies for growth plate disorders. Despite progress, a major unmet challenge is delivering therapeutic agents to avascular-cartilage plates. Dense extracellular matrix and lack of penetrating blood vessels create a semipermeable "barrier," which hinders molecular transport at the vascular-cartilage interface. To overcome this obstacle, we used a hindlimb heating model to manipulate bone circulation in 5-wk-old female mice (n = 22). Temperatures represented a physiological range of normal human knee joints. We used in vivo multiphoton microscopy to quantify temperature-enhanced delivery of large molecules into tibial growth plates. We tested the hypothesis that increasing hindlimb temperature from 22°C to 34°C increases vascular access of large systemic molecules, modeled using 10, 40, and 70 kDa dextrans that approximate sizes of physiological regulators. Vascular access was quantified by vessel diameter, velocity, and dextran leakage from subperichondrial plexus vessels and accumulation in growth plate cartilage. Growth plate entry of 10 kDa dextrans increased >150% at 34°C. Entry of 40 and 70 kDa dextrans increased <50%, suggesting a size-dependent temperature enhancement. Total dextran levels in the plexus increased at 34°C, but relative leakage out of vessels was not temperature dependent. Blood velocity and vessel diameter increased 118% and 31%, respectively, at 34°C. These results demonstrate that heat enhances vascular carrying capacity and bioavailability of large molecules around growth plates, suggesting that temperature could be a noninvasive strategy for modulating delivery of therapeutics to impaired growth plates of children.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| | | | | |
Collapse
|
46
|
Bedran-Russo AK, Pauli GF, Chen SN, McAlpine J, Castellan CS, Phansalkar RS, Aguiar TR, Vidal CMP, Napotilano JG, Nam JW, Leme AA. Dentin biomodification: strategies, renewable resources and clinical applications. Dent Mater 2013; 30:62-76. [PMID: 24309436 DOI: 10.1016/j.dental.2013.10.012] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/20/2013] [Accepted: 10/30/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The biomodification of dentin is a biomimetic approach, mediated by bioactive agents, to enhance and reinforce the dentin by locally altering the biochemistry and biomechanical properties. This review provides an overview of key dentin matrix components, targeting effects of biomodification strategies, the chemistry of renewable natural sources, and current research on their potential clinical applications. METHODS The PubMed database and collected literature were used as a resource for peer-reviewed articles to highlight the topics of dentin hierarchical structure, biomodification agents, and laboratorial investigations of their clinical applications. In addition, new data is presented on laboratorial methods for the standardization of proanthocyanidin-rich preparations as a renewable source of plant-derived biomodification agents. RESULTS Biomodification agents can be categorized as physical methods and chemical agents. Synthetic and naturally occurring chemical strategies present distinctive mechanism of interaction with the tissue. Initially thought to be driven only by inter- or intra-molecular collagen induced non-enzymatic cross-linking, multiple interactions with other dentin components are fundamental for the long-term biomechanics and biostability of the tissue. Oligomeric proanthocyanidins show promising bioactivity, and their chemical complexity requires systematic evaluation of the active compounds to produce a fully standardized intervention material from renewable resource, prior to their detailed clinical evaluation. SIGNIFICANCE Understanding the hierarchical structure of dentin and the targeting effect of the bioactive compounds will establish their use in both dentin-biomaterials interface and caries management.
Collapse
Affiliation(s)
- Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.
| | - Guido F Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Shao-Nong Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - James McAlpine
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Carina S Castellan
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA; Department of Biochemistry and Dental Biomaterials, School of Dentistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Rasika S Phansalkar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Thaiane R Aguiar
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Cristina M P Vidal
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - José G Napotilano
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joo-Won Nam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ariene A Leme
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
47
|
Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis. Biomaterials 2013; 35:538-49. [PMID: 24120044 DOI: 10.1016/j.biomaterials.2013.09.091] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/24/2013] [Indexed: 12/28/2022]
Abstract
Local drug delivery into cartilage remains a challenge due to its dense extracellular matrix of negatively charged proteoglycans enmeshed within a collagen fibril network. The high negative fixed charge density of cartilage offers the unique opportunity to utilize electrostatic interactions to augment transport, binding and retention of drug carriers. With the goal of developing particle-based drug delivery mechanisms for treating post-traumatic osteoarthritis, our objectives were, first, to determine the size range of a variety of solutes that could penetrate and diffuse through normal cartilage and enzymatically treated cartilage to mimic early stages of OA, and second, to investigate the effects of electrostatic interactions on particle partitioning, uptake and binding within cartilage using the highly positively charged protein, Avidin, as a model. Results showed that solutes having a hydrodynamic diameter ≤10 nm can penetrate into the full thickness of cartilage explants while larger sized solutes were trapped in the tissue's superficial zone. Avidin had a 400-fold higher uptake than its neutral same-sized counterpart, NeutrAvidin, and >90% of the absorbed Avidin remained within cartilage explants for at least 15 days. We report reversible, weak binding (K(D) ~ 150 μM) of Avidin to intratissue sites in cartilage. The large effective binding site density (N(T) ~ 2920 μM) within cartilage matrix facilitates Avidin's retention, making its structure suitable for particle based drug delivery into cartilage.
Collapse
|
48
|
Solute transport across the articular surface of injured cartilage. Arch Biochem Biophys 2013; 535:241-7. [DOI: 10.1016/j.abb.2013.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/27/2013] [Accepted: 04/19/2013] [Indexed: 11/20/2022]
|
49
|
Bougault C, Cueru L, Bariller J, Malbouyres M, Paumier A, Aszodi A, Berthier Y, Mallein-Gerin F, Trunfio-Sfarghiu AM. Alteration of cartilage mechanical properties in absence of β1 integrins revealed by rheometry and FRAP analyses. J Biomech 2013; 46:1633-40. [DOI: 10.1016/j.jbiomech.2013.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/08/2013] [Accepted: 04/14/2013] [Indexed: 10/26/2022]
|
50
|
Elsaid KA, Ferreira L, Truong T, Liang A, Machan J, D’Souza GG. Pharmaceutical nanocarrier association with chondrocytes and cartilage explants: influence of surface modification and extracellular matrix depletion. Osteoarthritis Cartilage 2013; 21. [PMID: 23186944 PMCID: PMC3556184 DOI: 10.1016/j.joca.2012.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate cartilage diffusion and isolated chondrocyte association of micelles and liposomes and to determine the effect of cell-penetrating peptide (CPP) surface functionalization and extracellular matrix depletion on chondrocyte association and cartilage diffusion, respectively. METHODS Rhodamine-labeled micelles and liposomes were incubated with bovine chondrocytes and cell-associated fluorescence was quantified using flow cytometry. Rhodamine-labeled CPP-modified micelles and liposomes were incubated with chondrocytes and cell-associated fluorescence was compared to unmodified nanocarriers. Rhodamine-labeled micelles and liposomes were incubated with bovine cartilage explants for 1, 2 and 4 h and cartilage-associated fluorescence was compared across groups. Cartilage explants were treated with interleukin-1 alpha (IL-1α) or with 0.25% trypsin. Rhodamine-labeled micelles and liposomes were incubated with control, IL-1 and trypsin-treated explants and cartilage-associated fluorescence was compared across groups. RESULTS Chondrocyte-associated fluorescence following treatment with micelles was significantly higher (P < 0.001) than fluorescence in the cells treated with liposomes while there was no difference between cell-associated fluorescence in the liposomes-treated and untreated controls. CPP-modified nanocarriers exhibited a significant increase in chondrocyte association compared to unmodified nanocarriers (P < 0.001). Micelles exhibited a time and concentration-dependent diffusion in cartilage explants while liposomes showed no diffusion. Following IL-1 and trypsin treatments, micelle diffusion in articular cartilage was significantly higher (P < 0.001) than their diffusion in untreated explants. CONCLUSION Micelles exhibit superior association with isolated chondrocytes compared to liposomes. Surface modification with a CPP enhances chondrocyte association of both nanocarriers. 15 nm diameter micelles are better than 138 nm diameter liposomes in penetrating articular cartilage and extracellular matrix depletion enhances micelle penetration.
Collapse
Affiliation(s)
- KA Elsaid
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115
| | - L Ferreira
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115
| | - T Truong
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115
| | - A Liang
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115
| | - J Machan
- Biostatistics Research, Rhode Island Hospital, Providence, RI 02903
| | - GG D’Souza
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, Boston, MA 02115
| |
Collapse
|