1
|
Wang YX, Kang JQ, Chen ZG, Gao S, Zhao WX, Zhao N, Lan Y, Li YJ. Machine Learning Analysis of Nutrient Associations with Peripheral Arterial Disease: Insights from NHANES 1999-2004. Ann Vasc Surg 2025; 114:154-162. [PMID: 39892831 DOI: 10.1016/j.avsg.2024.12.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND Peripheral arterial disease (PAD) is a common manifestation of atherosclerosis, affecting over 200 million people worldwide. The incidence of PAD is increasing due to the aging population. Common risk factors include smoking, diabetes, and hyperlipidemia, but its exact pathogenesis remains unclear. Nutritional intake is associated with the onset and progression of PAD, although relevant studies remain limited. Some studies suggest that certain nutritional elements may influence the development of PAD. This study aims to explore the relationship between nutrition and PAD using machine learning techniques. Unlike traditional statistical methods, machine learning can effectively capture complex, nonlinear relationships, providing a more comprehensive analysis of PAD risk factor. METHODS Data from National Health and Nutrition Examination Survey (NHANES 1999-2004) were analyzed, including demographic, clinical, and dietary information. Nutrient intake was assessed through 24-h dietary recalls using computer-assisted dietary interview system (CADI) and automated multiple pass method (AMPM) methods. PAD was defined as an ankle-brachial index (ABI) < 0.9. Six ML models-extreme gradient boosting (XGBoost), random Forest (RF), naive bayes classifier (NB), support vector machine (SVM), logistic regression (LR), and decision tree (DT)-were trained on a 70/30 train-test split, with missing data imputed and sample imbalance addressed via synthetic minority oversampling technique (SMOTE). Model performance was evaluated using the area under the receiver operating characteristic curve (AUROC), accuracy, sensitivity, specificity, precision, recall, and F1 score. Shapley additive explanations (SHAP) analysis was used to identify key features. In addition, to further enhance the interpretability of the model, we applied SHAP analysis to identify the features that have a significant impact on PAD prediction. This approach allowed us to determine the contribution of different variables to the model's output, providing deeper insights into how each feature influences the prediction of PAD outcomes. RESULTS Of 31,126 participants, 4,520 met the inclusion criteria (mean age 61.2 ± 13.5 years; 48.8% male), and 441 (9.7%) had ABI < 0.9. XGBoost outperformed other models, achieving an AUROC of 0.913 (95% CI, 0.891-0.936) and F1 score of 0.932. With SMOTE, its AUROC improved to 0.926 (95% CI, 0.889-0.936) and F1 score to 0.937. SHAP analysis identified vitamin C, saturated fatty acids, selenium, phosphorus, and protein intake as key predictors of PAD. CONCLUSION This is the first study to apply ML algorithms to examine nutrient intake and PAD in a general population. Vitamin C and phosphorus showed negative correlations with PAD, while saturated fatty acids, protein, and selenium exhibited positive associations.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Jin-Quan Kang
- Beijing Information Science & Technology University, Beijing, China
| | - Zuo-Guan Chen
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shang Gao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wen-Xin Zhao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Zhao
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China; Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong Lan
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yong-Jun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhao Q, Zhang L, Han W, Wang Z, Wu J. Integrated Transcriptome and Metabolome Analysis Elucidates the Defense Mechanisms of Pumpkin Against Gummy Stem Blight. Int J Mol Sci 2025; 26:2586. [PMID: 40141230 PMCID: PMC11941995 DOI: 10.3390/ijms26062586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Gummy stem blight (GSB) is a pervasive disease that causes considerable economic losses in cucurbit crops and poses a significant threat to pumpkin production. However, the molecular interaction mechanisms between pumpkin and the pathogen remain largely unexplored. In our previous research, we isolated and identified Stagonosporopsis cucurbitacearum (Sc) as the primary causative agent of pumpkin stem blight in Northeast China. Through whole-genome analysis, we identified several pathogenic genes associated with Sc infection in pumpkins. In this study, we performed a comprehensive comparative transcriptomic and metabolomic analysis of unvaccinated and Sc-inoculated pumpkins. We observed distinct differences in gene expression profiles, with these genes being significantly enriched in pathways related to plant-pathogen interactions, phytohormone signal transduction, and metabolic processes, including phenylpropanoid biosynthesis. Joint analysis revealed that the phenylpropanoid biosynthesis pathway was activated in Sc-infected pumpkins. Notably, two metabolites involved in the phenylpropanoid and flavonoid biosynthesis pathways, p-coumaric acid and quercetin, exhibited significant upregulation, suggesting their potential roles in conferring resistance to GSB. These findings enhance our understanding of the molecular mechanisms underlying the defense response against GSB infection in pumpkins and may provide valuable insights for developing strategies to control GSB disease.
Collapse
Affiliation(s)
- Qian Zhao
- Cultivation and Farming Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Liyan Zhang
- Forestry College, Inner Mongolia Agricultural University, Huhhot 010011, China;
| | - Weibo Han
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (Z.W.)
| | - Ziyu Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (Z.W.)
| | - Jianzhong Wu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (W.H.); (Z.W.)
| |
Collapse
|
3
|
Ranade SS, García‐Gil MR. Metabolomic profiling of shade response and in silico analysis of PAL homologs imply the potential presence of bifunctional ammonia lyases in conifers. PHYSIOLOGIA PLANTARUM 2025; 177:e70175. [PMID: 40148258 PMCID: PMC11949857 DOI: 10.1111/ppl.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Norway spruce and Scots pine show enhanced lignin synthesis under shade, along with differential expression of defense-related genes that render disease resilience. In general, phenylalanine (Phe) is the precursor for lignin synthesis in plants, and tyrosine (Tyr) forms an additional lignin precursor specifically in grasses. Phenylalanine ammonia-lyase (PAL) and tyrosine ammonia-lyase (TAL) from the lignin biosynthesis pathway use either Phe or Tyr as precursors for lignin production, respectively. Grasses possess a bifunctional phenylalanine/tyrosine ammonia-lyase (PTAL) that potentially can use both Phe and Tyr for lignin biosynthesis. Metabolomic profiles of seedlings revealed higher levels of Phe and Tyr under shade in Scots pine, while Norway spruce showed differential regulation of only Tyr under shade. Sequence analysis and phylogeny of PAL homologs in the two conifers, coupled with correlation of up-regulation of precursors for lignin synthesis (Phe/Tyr) and enhanced lignin synthesis along with differential expression of PAL homologs under shade, suggest the potential presence of a bifunctional ammonia-lyases (BAL) in conifers. This finding is novel and comparable to PTALs in grasses. Exome sequence analysis revealed a latitudinal variation in allele frequencies of SNPs from coding regions of putative PAL and BAL in Norway spruce, which may impact enzyme activity affecting lignin synthesis. Metabolomic analysis additionally identified metabolites involved in plant immunity, defense and stress response.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - María Rosario García‐Gil
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
4
|
Zia H, Murray H, Hofsommer M, Barreto AM, Pavon-Vargas D, Puzovic A, Gędas A, Rincon S, Gössinger M, Slatnar A. Comparing the impact of conventional and non-conventional processing technologies on water-soluble vitamins and color in strawberry nectar - a pilot scale study. Food Chem 2025; 463:141078. [PMID: 39243612 DOI: 10.1016/j.foodchem.2024.141078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
A comprehensive comparison was conducted on the effect of conventional thermal processing (TT), high-pressure processing (HP), pulse electric field (PF), and ohmic heating (OH) on water-soluble vitamins and color retention in strawberry nectar. The ascorbic acid (AA) content increased by 15- and 9-fold after TT and OH treatment, respectively, due to rupturing of cells under heat stress and release of intracellular AA. Dehydroascorbic acid (DHA) content did not change considerably after TT and PF treatment but significantly decreased after HP and OH treatment. TT treatment offered the highest total vitamin C retention. The B vitamins remained largely unchanged after processing, with the highest loss of 34 % for riboflavin in OH-treated samples. All the technologies resulted in similar color retention after processing. The study concludes with a standardized comparison of mainstream preservation technologies using pilot-scale equipment. Such an approach significantly increases the applicability of the results presented in the study.
Collapse
Affiliation(s)
- Hassan Zia
- GfL Gesellschaft für Lebensmittel-Forschung mbH, Landgrafenstrasse 16, 10787 Berlin, Germany; University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia.
| | - Helen Murray
- Federal College and Institute for Viticulture and Pomology, A-3400, Klosterneuburg, Austria
| | - Mikko Hofsommer
- GfL Gesellschaft für Lebensmittel-Forschung mbH, Landgrafenstrasse 16, 10787 Berlin, Germany
| | | | - Darío Pavon-Vargas
- University of Parma, Viale delle Scienze 181/A, 43124 Parma, Italy.; CFT S.P.A, Via Paradigna, 94/a, 43122 Parma, Italy
| | - Alema Puzovic
- University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia
| | - Astrid Gędas
- University of Hamburg, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Sebastian Rincon
- INRAE, Avignon University, UMR408 SQPOV, F-84000, Avignon, France
| | - Manfred Gössinger
- Federal College and Institute for Viticulture and Pomology, A-3400, Klosterneuburg, Austria
| | - Ana Slatnar
- University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia
| |
Collapse
|
5
|
Roy D, Johnson HM, Hurlock MJ, Roy K, Zhang Q, Moreau LM. Exploring the Complex Chemistry and Degradation of Ascorbic Acid in Aqueous Nanoparticle Synthesis. Angew Chem Int Ed Engl 2024; 63:e202412542. [PMID: 39039626 DOI: 10.1002/anie.202412542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Ascorbic acid (AA) is the most widely used reductant for noble metal nanoparticle (NP) synthesis. Despite the synthetic relevance, its aqueous chemistry remains misunderstood, due in part to various assumptions about its reduction pathway which are insufficiently supported by experimental evidence. This study aims to provide an understanding of the complex chemistry associated with AA under aqueous conditions. We demonstrate that (i) AA undergoes appreciable degradation in alkaline solution on a timescale relevant to NP synthesis, (ii) contrary to popular belief, AA does not degrade into dehydroascorbic acid (DHA), nor is DHA the oxidized product of AA under noble metal NP synthetic conditions, (iii) DHA, which readily degrades under alkaline conditions, can also effectively reduce metal salt precursors to metal NPs, (iv) neither ascorbate nor dehydroascorbate act as surface capping agents post-synthetically on the NPs (v) AA degradation time greatly affects the morphology and polydispersity of the resultant NP. Results from our mechanistic investigation enabled us to utilize purposefully-aged reductants to achieve control over shape yield and monodispersity in the seed-mediated synthesis of Au nanorods. Our findings have important implications for achieving monodispersed products in the many metal NP synthesis reactions that make use of AA as a reducing agent.
Collapse
Affiliation(s)
- Debashree Roy
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Matthew J Hurlock
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Kingshuk Roy
- Research Institute for Sustainable Energy, Centers for Research and Education in Science and Technology (TCG-CREST), Kolkata, 700091, India
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Liane M Moreau
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
6
|
Violet PC, Munyan N, Luecke HF, Wang Y, Lloyd J, Patra K, Blakeslee K, Ebenuwa IC, Levine M. Dehydroascorbic acid quantification in human plasma: Simultaneous direct measurement of the ascorbic acid/dehydroascorbic acid couple by UPLC/MS-MS. Redox Biol 2024; 78:103425. [PMID: 39591903 PMCID: PMC11626825 DOI: 10.1016/j.redox.2024.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Ascorbic acid (AA, vitamin C) and dehydroascorbic acid (DHA) constitute a biological couple. No technique can accurately, independently, and simultaneously quantify both members of the couple in animal and human samples, thereby constraining advances in physiology and pathophysiology. Here we describe a new UPLC/MS/MS method to measure both compounds directly and independently in human plasma. Lower limits of quantification were 16 nM, with linear coefficients >0.99 over a 100-fold concentration range. The method was stable and reproducible with <10 % injection-to-injection variation. Use of isotopic labeled internal standards for both compounds ensured precision and accuracy. Plasma preparation required only 2 steps. In plasma samples from 14 anonymized subjects who met criteria for blood donation, mean concentrations were 6±2 μmol/L (mean ± SD) and 56 ± 14 μmol/L for DHA and AA respectively, with (DHA)/(AA + DHA) ratio of 9.8 %. This method represents a pioneering approach to measuring the AA/DHA couple in human plasma.
Collapse
Affiliation(s)
- P-C Violet
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892
| | - N Munyan
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892
| | - H F Luecke
- Intramural Research Division, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA, 27709
| | - Y Wang
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892
| | - J Lloyd
- Laboratory of Bioorganic Chemistry, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892
| | - K Patra
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892
| | - K Blakeslee
- Principal Technical Support Specialist, Waters Mid Atlantic District Office, Waters Corporation, Columbia, MD, 21046, USA
| | - I C Ebenuwa
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892
| | - M Levine
- Molecular and Clinical Nutrition Section, Digestive Diseases Branch, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA, 20892.
| |
Collapse
|
7
|
Liu L, Jia N, Burgess I, Greener J. Laminar Flow Infrared Spectroelectrochemistry. Anal Chem 2024; 96:16609-16620. [PMID: 39394981 DOI: 10.1021/acs.analchem.4c02479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
In this work, we advance lab-on-chip electrochemistry and spectroscopy by combining these capabilities onto a single platform, thereby achieving mid-infrared spectroelectrochemistry (SEC) for the first time. The key feature of this technique is the use of deterministic laminar flow patterns to precisely transport a reacted solution from upstream electrodes to a downstream spectral detection region. Laminar flow spectroelectrochemistry (LF-SEC) is therefore a completely new approach, which derives its distinction and advantage over traditional SEC by physically separating electrode and attenuated total reflection (ATR) elements. As such, these functional elements retain optimal properties, such as inert, highly conductive electrodes and a bare ATR element for sensitive Fourier transform infrared (FTIR) spectroscopy. By combining ATR-FTIR with a scanning aperture system, LF-SEC provides the additional advantage of spectroscopically monitoring reactions at individual electrodes. The LF-SEC system design is first optimized through a series of targeted experiments using a ferricyanide/ferrocyanide redox pair to validate electrochemical functionality, undertake spectroscopic calibration, optimize experimental parameters, and finally validate the quantitative relationship between FTIR results and the reaction rate under galvanostatic control. After optimization, we demonstrate the technique by monitoring the oxidation of the therapeutic compound ascorbic acid (vitamin C) in the presence of biomolecular interference from a molecule with an overlapping oxidation potential. We find that molecular availability causes the reaction to switch between reaction pathways, which we could finely monitor using LF-SEC. This work opens the door to future developments that take advantage of the microfluidic reactor setup, with benefits ranging from portability to high-throughput studies under precise reaction conditions.
Collapse
Affiliation(s)
- Linlin Liu
- Département de Chimie, Université Laval, Québec G1V 0A6, Canada
| | - Nan Jia
- Département de Chimie, Université Laval, Québec G1V 0A6, Canada
| | - Ian Burgess
- Department of Chemistry, University of Saskatchewan, Saskatoon S7N 5C5, Canada
| | - Jesse Greener
- Département de Chimie, Université Laval, Québec G1V 0A6, Canada
- CHU de Québec, Centre de recherche du CHU de Québec, Université Laval, Québec G1L 3L5, Canada
| |
Collapse
|
8
|
Macpherson S, Lawson T, Abfalterer A, Andrich P, Lage A, Reisner E, Euser TG, Stranks SD, Gentleman AS. Influence of Electron Donors on the Charge Transfer Dynamics of Carbon Nanodots in Photocatalytic Systems. ACS Catal 2024; 14:12006-12015. [PMID: 39169903 PMCID: PMC11334169 DOI: 10.1021/acscatal.4c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024]
Abstract
Carbon nanodots (CNDs) are nanosized light-harvesters emerging as next-generation photosensitizers in photocatalytic reactions. Despite their ever-increasing potential applications, the intricacies underlying their photoexcited charge carrier dynamics are yet to be elucidated. In this study, nitrogen-doped graphitic CNDs (NgCNDs) are selectively excited in the presence of methyl viologen (MV2+, redox mediator) and different electron donors (EDs), namely ascorbic acid (AA) and ethylenediaminetetraacetic acid (EDTA). The consequent formation of the methyl viologen radical cation (MV•+) is investigated, and the excited charge carrier dynamics of the photocatalytic system are understood on a 0.1 ps-1 ms time range, providing spectroscopic evidence of oxidative or reductive quenching mechanisms experienced by optically excited NgCNDs (NgCNDs*) depending on the ED implemented. In the presence of AA, NgCNDs* undergo oxidative quenching by MV2+ to form MV•+, which is short-lived due to dehydroascorbic acid, a product of photoinduced hole quenching of oxidized NgCNDs. The EDTA-mediated reductive quenching of NgCNDs* is observed to be at least 2 orders of magnitude slower due to screening by EDTA-MV2+ complexes, but the MV•+ population is stable due to the irreversibly oxidized EDTA preventing a back reaction. In general, our methodology provides a distinct solution with which to study charge transfer dynamics in photocatalytic systems on an extended time range spanning 10 orders of magnitude. This approach generates a mechanistic understanding to select and develop suitable EDs to promote photocatalytic reactions.
Collapse
Affiliation(s)
- Stuart Macpherson
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Takashi Lawson
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, U.K.
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Anna Abfalterer
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Paolo Andrich
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Ava Lage
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Erwin Reisner
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Tijmen G. Euser
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Samuel D. Stranks
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K.
| | - Alexander S. Gentleman
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, U.K.
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
9
|
Pach A, Zaryczny A, Podborska A, Luty-Błocho M. The Role of Ascorbic Acid in the Process of Azo Dye Degradation in Aqueous Solution. Molecules 2024; 29:3659. [PMID: 39125065 PMCID: PMC11313820 DOI: 10.3390/molecules29153659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, the role of ascorbic acid in the process of azo dye degradation was explained. For this purpose, the kinetics of azo dye degradation under different conditions was studied. Among them, the influence of daylight protection/exposition, different concentrations of ascorbic acid (0.567-0.014 mol/dm3), and temperature (20 °C and 50 °C) on the rate of the dyes' degradation was considered. For this process, the kinetic equation was proposed, which indicates that the process of azo dye degradation using ascorbic acid is first order. Moreover, the observed rate constants were determined, and the mechanism of azo dye degradation was proposed. Spectrophotometry results, together with FTIR, fluorescence spectroscopy, and DFT calculations, explain the origin of the decolorization of the azo dyes and highlight the role of ascorbic acid in this process. Detailed analysis of the obtained products indicates that the process itself goes through several stages in which equally or more toxic compounds are formed. Obtained results from LCMS studies indicate that during tropaeolin OO degradation, 1,2-Diphenylhydrazine (m/z 185.1073) is formed. Thus, the process of azo dye degradation should be carried out in protective conditions. The proposed mechanism suggests that ascorbic acid at high content levels can be used for azo dye degradation from aqueous solution and can be an alternative method for their removal/neutralization from waste solution but with caution during the process.
Collapse
Affiliation(s)
- Adrianna Pach
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.P.)
| | - Aleksandra Zaryczny
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.P.)
| | - Agnieszka Podborska
- AGH University of Krakow, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Magdalena Luty-Błocho
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.P.)
| |
Collapse
|
10
|
Shen X, Wang J, Deng B, Zhao Z, Chen S, Kong W, Zhou C, Bae-Jump V. Review of the Potential Role of Ascorbate in the Prevention and Treatment of Gynecological Cancers. Antioxidants (Basel) 2024; 13:617. [PMID: 38790722 PMCID: PMC11118910 DOI: 10.3390/antiox13050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Ascorbate (vitamin C) is an essential vitamin for the human body and participates in various physiological processes as an important coenzyme and antioxidant. Furthermore, the role of ascorbate in the prevention and treatment of cancer including gynecological cancer has gained much more interest recently. The bioavailability and certain biological functions of ascorbate are distinct in males versus females due to differences in lean body mass, sex hormones, and lifestyle factors. Despite epidemiological evidence that ascorbate-rich foods and ascorbate plasma concentrations are inversely related to cancer risk, ascorbate has not demonstrated a significant protective effect in patients with gynecological cancers. Adequate ascorbate intake may have the potential to reduce the risk of human papillomavirus (HPV) infection and high-risk HPV persistence status. High-dose ascorbate exerts antitumor activity and synergizes with chemotherapeutic agents in preclinical cancer models of gynecological cancer. In this review, we provide evidence for the biological activity of ascorbate in females and discuss the potential role of ascorbate in the prevention and treatment of ovarian, endometrial, and cervical cancers.
Collapse
Affiliation(s)
- Xiaochang Shen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Boer Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ziyi Zhao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuning Chen
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weimin Kong
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100006, China; (X.S.); (J.W.); (B.D.); (Z.Z.); (S.C.); (W.K.)
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Zheng H, Xu Y, Liehn EA, Rusu M. Vitamin C as Scavenger of Reactive Oxygen Species during Healing after Myocardial Infarction. Int J Mol Sci 2024; 25:3114. [PMID: 38542087 PMCID: PMC10970003 DOI: 10.3390/ijms25063114] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 02/10/2024] [Indexed: 06/26/2024] Open
Abstract
Currently, coronary artery bypass and reperfusion therapies are considered the gold standard in long-term treatments to restore heart function after acute myocardial infarction. As a drawback of these restoring strategies, reperfusion after an ischemic insult and sudden oxygen exposure lead to the exacerbated synthesis of additional reactive oxidative species and the persistence of increased oxidation levels. Attempts based on antioxidant treatment have failed to achieve an effective therapy for cardiovascular disease patients. The controversial use of vitamin C as an antioxidant in clinical practice is comprehensively systematized and discussed in this review. The dose-dependent adsorption and release kinetics mechanism of vitamin C is complex; however, this review may provide a holistic perspective on its potential as a preventive supplement and/or for combined precise and targeted therapeutics in cardiovascular management therapy.
Collapse
Affiliation(s)
- Huabo Zheng
- Department of Cardiology, Angiology and Intensive Care, University Hospital, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany;
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
| | - Yichen Xu
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- Department of Histology and Embryology, Medicine and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Elisa A. Liehn
- Institute of Molecular Medicine, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark;
- National Institute of Pathology “Victor Babes”, Splaiul Independentei Nr. 99-101, 050096 Bucharest, Romania
| | - Mihaela Rusu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074 Aachen, Germany
| |
Collapse
|
12
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
13
|
Gilad Barzilay Y, Yucknovsky A, Amdursky N. Light-Triggered Reversible Change in the Electronic Structure of MoO 3 Nanosheets via an Excited-State Proton Transfer Mechanism. NANO LETTERS 2024; 24:1936-1943. [PMID: 38289664 PMCID: PMC10870760 DOI: 10.1021/acs.nanolett.3c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Light is an attractive source of energy for regulating stimulus-responsive chemical systems. Here, we use light as a gating source to control the redox state, the localized surface plasmonic resonance (LSPR) peak, and the structure of molybdenum oxide (MoO3) nanosheets, which are important for various applications. However, the light excitation is not that of the MoO3 nanosheets but rather that of pyranine (HPTS) photoacids, which in turn undergo an excited-state proton transfer (ESPT) process. We show that the ESPT process from HPTS to the nanosheets and the intercalation of protons within the MoO3 nanosheets trigger the reduction of the nanosheets and the broadening of the LSPR peak, a process that is reversible, meaning that in the absence of light, the LSPR peak diminishes and the nanosheets return to their oxidized form. We further show that this reversible process is accompanied by a change in the nanosheet size and morphology.
Collapse
Affiliation(s)
- Yuval Gilad Barzilay
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Anna Yucknovsky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Nadav Amdursky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
14
|
Vancoillie F, Verkempinck SHE, Sluys L, De Mazière S, Delbaere SM, Van Poucke C, Hendrickx ME, Van Loey AM, Grauwet T. Impact of refrigerated storage on (bio)chemical conversions of health-related compounds in pretreated, pasteurized Brussels sprouts and leek. Food Res Int 2024; 175:113764. [PMID: 38129057 DOI: 10.1016/j.foodres.2023.113764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Vegetable processing often consists of multiple processing steps. Research mostly focused on the impact of individual processing steps on individual health-related compounds. However, there is a need for more holistic approaches to understand the overall impact of the processing chain on the health potential of vegetables. Therefore, this work studied the impact of pretreatment (relatively intact versus pureed vegetable systems), pasteurization and subsequent refrigerated storage (kinetic evaluation) on multiple health-related compounds (vitamin C, vitamin K1, carotenoids, glucosinolates and S-alk(en)yl-L-cysteine sulfoxides (ACSOs)) in Brussels sprouts and leek. It could be shown that differences introduced by different types of pretreatment were not nullified during pasteurization and refrigerated storage. Clearly, enzymatic conversions controlled during pretreatment resulted in different health-related compound profiles still observable after pasteurization. Moreover, about -42% and -100% relative concentration differences of ACSOs and dehydroascorbic acid, respectively, were detected immediately after pasteurization, while glucosinolates concentrations decreased by about 47% during refrigerated storage. All other compounds were stable during pasteurization and refrigerated storage.
Collapse
Affiliation(s)
- Flore Vancoillie
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium.
| | - Sarah H E Verkempinck
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Lili Sluys
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Sarah De Mazière
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Sophie M Delbaere
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Christof Van Poucke
- Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Marc E Hendrickx
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Ann M Van Loey
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium
| | - Tara Grauwet
- KU Leuven Department of Microbial and Molecular Systems, Laboratory of Food Technology, Kasteelpark Arenberg 22 Box 2457, 3001 Leuven, Belgium.
| |
Collapse
|
15
|
Wagner BA, Buettner GR. Stability of aqueous solutions of ascorbate for basic research and for intravenous administration. ADVANCES IN REDOX RESEARCH : AN OFFICIAL JOURNAL OF THE SOCIETY FOR REDOX BIOLOGY AND MEDICINE AND THE SOCIETY FOR FREE RADICAL RESEARCH-EUROPE 2023; 9:100077. [PMID: 37808406 PMCID: PMC10552410 DOI: 10.1016/j.arres.2023.100077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Ascorbate (vitamin C) can rapidly oxidize in many near-neutral pH, aqueous solutions. We report on the stability of ascorbate solutions prepared for infusion into patients using standard pharmacy protocols, for example, 75 g of ascorbate/L in water for infusion. The concentration of ascorbate was monitored for changes over time using direct UV-Vis spectroscopy. The pH of the solution was about 5.7 with no significant change over 24 h. There was only an approximate loss of 1% per day over the first 3 days of storage. This information allows decisions on how far ahead of need such preparations can be made. We also provide laboratory approaches to minimize or control the rate of oxidation of ascorbate solutions for use in chemical and biochemical studies as well as preclinical animal studies. The goal is to have the amount of ascorbate intended to be used in experiments be the actual amount available.
Collapse
Affiliation(s)
- Brett A. Wagner
- Free Radical and Radiation Biology Program, ESR Facility, The University of Iowa, Iowa City, IA 52242, USA
| | - Garry R. Buettner
- Free Radical and Radiation Biology Program, ESR Facility, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
Du YW, Liu L, Feng NJ, Zheng DF, Liu ML, Zhou H, Deng P, Wang YX, Zhao HM. Combined transcriptomic and metabolomic analysis of alginate oligosaccharides alleviating salt stress in rice seedlings. BMC PLANT BIOLOGY 2023; 23:455. [PMID: 37770835 PMCID: PMC10540332 DOI: 10.1186/s12870-023-04470-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Salt stress is one of the key factors limiting rice production. Alginate oligosaccharides (AOS) enhance plant stress resistance. However, the molecular mechanism underlying salt tolerance in rice induced by AOS remains unclear. FL478, which is a salt-tolerant indica recombinant inbred line and IR29, a salt-sensitive rice cultivar, were used to comprehensively analyze the effects of AOS sprayed on leaves in terms of transcriptomic and metabolite profiles of rice seedlings under salt stress. RESULTS In this experiment, exogenous application of AOS increased SOD, CAT and APX activities, as well as GSH and ASA levels to reduce the damage to leaf membrane, increased rice stem diameter, the number of root tips, aboveground and subterranean biomass, and improved rice salt tolerance. Comparative transcriptomic analyses showed that the regulation of AOS combined with salt treatment induced the differential expression of 305 and 1030 genes in FL478 and IR29. The expressed genes enriched in KEGG pathway analysis were associated with antioxidant levels, photosynthesis, cell wall synthesis, and signal transduction. The genes associated with light-trapping proteins and RLCK receptor cytoplasmic kinases, including CBA, LHCB, and Lhcp genes, were fregulated in response to salt stress. Treatment with AOS combined with salt induced the differential expression of 22 and 50 metabolites in FL478 and IR29. These metabolites were mainly related to the metabolism of amino and nucleotide sugars, tryptophan, histidine, and β -alanine. The abundance of metabolites associated with antioxidant activity, such as 6-hydroxymelatonin, wedelolactone and L-histidine increased significantly. Combined transcriptomic and metabolomic analyses revealed that dehydroascorbic acid in the glutathione and ascorbic acid cycles plays a vital role in salt tolerance mediated by AOS. CONCLUSION AOS activate signal transduction, regulate photosynthesis, cell wall formation, and multiple antioxidant pathways in response to salt stress. This study provides a molecular basis for the alleviation of salt stress-induced damage by AOS in rice.
Collapse
Affiliation(s)
- You-Wei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Ling Liu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Nai-Jie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Dian-Feng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China.
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Mei-Ling Liu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Ya-Xing Wang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| | - Hui-Min Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
- South China Center of National Saline-tolerant Rice Technology Innovation Center, Zhanjiang, 524088, China
| |
Collapse
|
17
|
Spanic V, Vukovic A, Cseplo M, Vukovic R, Buchvaldt Amby D, Cairo Westergaard J, Puskas K, Roitsch T. Early leaf responses of cell physiological and sensor-based signatures reflect susceptibility of wheat seedlings to infection by leaf rust. PHYSIOLOGIA PLANTARUM 2023; 175:e13990. [PMID: 37616017 DOI: 10.1111/ppl.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Leaf rust caused by Puccinia triticina Erikss. can have devastating effects on wheat (Triticum aestivum L.), causing severe economic losses. This comprehensive study serves to facilitate our understanding of the impact of carbohydrate and antioxidant metabolism in association with sensor-based phenotyping and leaf rust stress responses in wheat seedlings. After 24 h of inoculation (hai) very susceptible variety to leaf rust (Ficko) increased cell-wall invertase (cwInv; EC 3.2.1.26), compared to other varieties that significantly increased cwInv later. This could mean that the Ficko variety cannot defend itself from leaf rust infections once symptoms have started to develop. Also, Ficko had significantly decreased amounts of cytoplasmic invertase (cytInv; EC 3.2.1.26) at 8 hai. The downregulation of cytInv in susceptible plants may facilitate the maintenance of elevated apoplastic sucrose availability favoring the pathogen. The significant role of vacuolar invertase (vacInv; EC 3.2.1.26) in moderately resistant varieties was recorded. Also, a significant decrease of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) in moderately resistant varieties might restrict normal development of leaf rust due to reduced sugar. During plant-pathogen interaction, when the invader spreads systemically throughout the plant, the main role of ascorbate peroxidase (APX; EC 1.11.1.11) activity in one moderately resistant variety (Olimpija) and catalase (CAT; EC 1.11.1.6) activity in another moderately resistant variety (Alka) is to protect the plant against oxidative damage in the early stages of infection. Non-invasive phenotyping with a sensor-based technique could be used as a rapid method for pre-symptomatic determination of wheat leaf rust resistance or susceptibility.
Collapse
Affiliation(s)
- Valentina Spanic
- Department of Small Cereal Crops Breeding and Genetics, Agricultural Institute Osijek, Osijek, Osijek, Croatia
| | - Ana Vukovic
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Monika Cseplo
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Rosemary Vukovic
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark
| | - Katalin Puskas
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark
| |
Collapse
|
18
|
Angeli L, Morozova K, Scampicchio M. A kinetic-based stopped-flow DPPH • method. Sci Rep 2023; 13:7621. [PMID: 37164998 PMCID: PMC10172368 DOI: 10.1038/s41598-023-34382-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
The reaction kinetics of antioxidants with free radicals is crucial to screen their functionality. However, studying antioxidant-radical interactions is very challenging for fast electron-donor substances, such as ascorbic acid, because the reaction ends in a few seconds. Accordingly, this work proposes a rapid and sensitive method for the determination of the absolute rate constant of the reaction between fast antioxidants and DPPH•. The method consists of a stopped-flow spectrophotometric system, which monitors the decay of DPPH• during its interaction with antioxidants. A kinetic-based reaction mechanism fits the experimental data. Kinetic parameters include a second order kinetics (k1) and, depending on the type of antioxidant, a side reaction (k2). Ascorbic acid was the fastest antioxidant (k1 = 21,100 ± 570 M-1 s-1) in comparison with other eleven phenols, showing k1 values from 45 to 3070 M-1 s-1. Compounds like catechin, epicatechin, quercetin, rutin, and tannic, ellagic and syringic acids presented a side reaction (k2 from 15 to 60 M-1 s-1). Among seven fruit juices, strawberry was the fastest, while red plum the slowest. Overall, the proposed kinetic-based DPPH• method is simple, rapid, and suitable for studying the activity and capacity of different molecules, and food samples rich in fast antioxidants, like fruit juices.
Collapse
Affiliation(s)
- Lucrezia Angeli
- Faculty for Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 1, 39100, Bolzano, BZ, Italy
| | - Ksenia Morozova
- Faculty for Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 1, 39100, Bolzano, BZ, Italy
| | - Matteo Scampicchio
- Faculty for Agricultural, Environmental and Food Sciences, Free University of Bolzano, Piazza Università 1, 39100, Bolzano, BZ, Italy.
| |
Collapse
|
19
|
Wu T, Phacharapan S, Inoue N, Kamitani Y. Antioxidant Activity Enhancement Effect of Silver-Ionized Water: Silver Cation Prepared by Electrolysis. Antioxidants (Basel) 2023; 12:antiox12020467. [PMID: 36830025 PMCID: PMC9952159 DOI: 10.3390/antiox12020467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
In the present study, tap water, alkaline electrolyzed water (AlEW) and tourmaline water (TMW) were used as the electrolytes to generated the silver-ionized water (SIW), AlEW-SIW and TMW-SIW, respectively. The antioxidant properties of the samples containing ascorbic acid (AsA) were investigated by WST-kit method. The results showed that the SOD activity of AsA (2 mmol/L) dissolved in SIW (66.0%) was enhanced by about 8% compared to that of the tap water (57.9%). The SOD activity of the AlEW-SIW solution (77.3%), which was higher than that of the SIW solution, and lower than that of the AlEW solution (83.6%). The SOD activity of the TMW-SIW solution (83.0%) was similar to that of the TMW solution (82.5%). Furthermore, to classify the sample solutions, discriminant analyses were performed based on near infrared (NIR) spectral data, which was consistent with the results of the WST-kit method. The SOD activity of the AlEW-SIW and TMW-SIW solutions decreased slowly with storage time, and their SOD activities were higher than that of AlEW, TMW and the tap water solutions at storage time of 14 days. In summary, AlEW-SIW and TMW-SIW showed similar antioxidant activity enhancement as AlEW and TMW, and they also maintained the stability of the antioxidant activity of AsA during storage.
Collapse
Affiliation(s)
- Tongjiao Wu
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Santudprom Phacharapan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Natsuki Inoue
- Graduate School of Agricultural, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Yoshinori Kamitani
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Graduate School of Agricultural, Forestry and Fisheries, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Correspondence:
| |
Collapse
|
20
|
Di Turi A, Antonacci M, Dibenedetto JR, Maqoud F, Leonetti F, Centoducati G, Colonna N, Tricarico D. Molecular Composition and Biological Activity of a Novel Acetonitrile-Water Extract of Lens Culinaris Medik in Murine Native Cells and Cell Lines Exposed to Different Chemotherapeutics Using Mass Spectrometry. Cells 2023; 12:cells12040575. [PMID: 36831242 PMCID: PMC9953783 DOI: 10.3390/cells12040575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
We evaluated the effects of a new extract (70% acetonitrile, 2E0217022196DIPFARMTDA) of Lens culinaris Medik (Terre di Altamura SRL, Altamura BA) to prevent cytotoxic damage from cisplatin, staurosporine, irinotecan, doxorubicin, and the glucocorticoid dexamethasone. The acetonitrile-water extract (range 0.1-5 mg/mL) was obtained by extracting 10 g of lentil flour with 50 milliliters of the acetonitrile-water extraction mixture in a 70:30 ratio, first for 3 h and then overnight in a shaker at room temperature. The next day, the extract was filtered and passed through a Rotavapor to obtain only the aqueous component and eliminate that with acetonitrile, and then freeze-dried to finally have the powdered extract. In vitro experiments showed that the extract prevented the cytotoxic damage induced by cisplatin, irinotecan, and doxorubicin on HEK293 and SHSY5Y cell lines after 24-96 h. In murine osteoblasts after 24-72 h of incubation time, the extract was cytoprotective against all chemicals. The extract was effective against dexamethasone, leading to synergic cell proliferation in all cell types. In bone marrow cells, the extract is cytoprotective after 72 h against doxorubicin, staurosporine, and dexamethasone. Instead, on muscle fibers, the extract has a synergic effect with chemotherapeutics, increasing cytotoxicity induced by doxorubicin and staurosporine. LC-MS attested to the existence of several phenolic structures in the extract. The most abundant families of compounds were flavonoids (25.7%) and mellitic acid (18%). Thus, the development of this extract could be implemented in the area of research related to the chemoprevention of damage to renal, neuronal, bone marrow cells, and osteoblasts by chemotherapeutics; moreover, it could be used as a reinforcer of cytotoxic action of chemotherapeutics on muscle fibers.
Collapse
Affiliation(s)
- Annamaria Di Turi
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Marina Antonacci
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Jacopo Raffaele Dibenedetto
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Fatima Maqoud
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Francesco Leonetti
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Gerardo Centoducati
- Department of Medicine Veterinary, University of Bari “Aldo Moro”, Str 62 to Casamassima, Valenzano, 70121 Bari, Italy
| | | | - Domenico Tricarico
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
21
|
Handayani NA, Mulia K, Kartohardjono S, Krisanti EA. Fortifying jelly foods with microencapsulated anti-anaemic compounds, ferrous gluconate, ascorbic acid and folic acid. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:147-159. [PMID: 36618066 PMCID: PMC9813336 DOI: 10.1007/s13197-022-05599-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/25/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
Low ferrous iron bioavailability presents a challenge for food fortification programmes. In this study, jelly foods were fortified with spray-dried chitosan microparticles that had been loaded with ferrous gluconate (FeG) and folic acid (FA) to alleviate iron deficiency anaemia and FA deficiency anaemia, respectively. The presence of FA and ascorbic acid (AA) increased the in vitro iron bioavailability of the FeG-AA-FA microparticles up to sixfold. Furthermore, the iron bioavailability of the fortified jelly foods increased more than 5 folds compared to that of the FeG-AA-FA microparticles. The use of lower temperature during the preparation of fortified jelly foods is recommended to avoid the microparticles' decomposition and a Maillard browning reaction. These findings can help food technologists and product developers select formulations with higher ferrous bioavailability to reduce the prevalence of anaemia. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05599-7.
Collapse
Affiliation(s)
- Noer Abyor Handayani
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro Kampus Undip Tembalang, Semarang, Central Java Indonesia
| | - Kamarza Mulia
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
| | - Sutrasno Kartohardjono
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
| | - Elsa Anisa Krisanti
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia Kampus UI Depok, Depok, 16424 West Java Indonesia
| |
Collapse
|
22
|
Iron removal and titanium dioxide support recovery from spent V2O5-WO3/TiO2 catalyst. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
24
|
Chavan SN, De Kesel J, Desmedt W, Degroote E, Singh RR, Nguyen GT, Demeestere K, De Meyer T, Kyndt T. Dehydroascorbate induces plant resistance in rice against root-knot nematode Meloidogyne graminicola. MOLECULAR PLANT PATHOLOGY 2022; 23:1303-1319. [PMID: 35587614 PMCID: PMC9366072 DOI: 10.1111/mpp.13230] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/01/2023]
Abstract
Ascorbic acid (AsA) is an important antioxidant in plants and regulates various physiological processes. In this study, we show that exogenous treatments with the oxidized form of AsA, that is, dehydroascorbate (DHA), activates induced systemic resistance in rice against the root-knot nematode Meloidogyne graminicola, and investigate the molecular and biochemical mechanisms underlying this phenotype. Detailed transcriptome analysis on roots of rice plants showed an early and robust transcriptional response on foliar DHA treatment, with induction of several genes related to plant stress responses, immunity, antioxidant activity, and secondary metabolism already at 1 day after treatment. Quantitative and qualitative evaluation of H2 O2 levels confirmed the appearance of a reactive oxygen species (ROS) burst on DHA treatment, both at the site of treatment and systemically. Experiments using chemical ROS inhibitors or scavengers confirmed that H2 O2 accumulation contributes to DHA-based induced resistance. Furthermore, hormone measurements in DHA-treated plants showed a significant systemic accumulation of the defence hormone salicylic acid (SA). The role of the SA pathway in DHA-based induced resistance was confirmed by nematode infection experiments using an SA-signalling deficient WRKY45-RNAi line and reverse transcription-quantitative PCR on SA marker genes. Our results collectively reveal that DHA activates induced systemic resistance in rice against the root-knot nematode M. graminicola, mediated through the production of ROS and activation of the SA pathway.
Collapse
Affiliation(s)
- Satish Namdeo Chavan
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- ICAR – Indian Institute of Rice ResearchHyderabadIndia
| | - Jonas De Kesel
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Willem Desmedt
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Eva Degroote
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Richard Raj Singh
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
- Department Plants and Crops, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Giang Thu Nguyen
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Kristof Demeestere
- Department of Green Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical ModellingGhent UniversityGhentBelgium
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
25
|
Bharti V, Kaushal D, Kumar S, Thakur A, Rana DS, Kumar M, Kant S. Molecular interaction studies on the binding ability of hydrated zinc sulphate with aqueous solution of ascorbic acid at different temperatures. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The ternary systems containing Water, Ascorbic acid (AA) and ZnSO4·7H2O were investigated using three approaches namely volumetric studies, viscosity studies and conductance studies. The solvent systems used were 2, 4 and 6% (by weight) of AA in water. The studies were conducted at four temperatures (303.15–318.15 K with an interval of 5 K) and pressure 0.1 MPa with concentration of ZnSO4·7H2O in the solution ranging from 0.01 to 0.12 m. Various parameters like partial molar volume (ϕ
v), apparent molar volume
(
ϕ
v
o
)
$({\phi }_{\text{v}}^{\text{o}})$
, Hepler’s constant
(
(
d
2
ϕ
v
o
/
d
T
2
)
p
)
$({({d}^{2}{\phi }_{\text{v}}^{\text{o}}/d{T}^{2})}_{p})$
, partial molar expansibility
(
ϕ
E
o
)
$({\phi }_{\text{E}}^{\text{o}})$
and transfer volume
(
Δ
t
r
ϕ
v
o
)
$({{\Delta}}_{tr}{\phi }_{\text{v}}^{\text{o}})$
have been evaluated from volumetric studies. The viscosity studies have yielded Jones-Dole parameters (A and B) and free energy of activation per mole for solvent
(
Δ
μ
1
0
‡
)
$({\Delta}{\mu }_{1}^{0{\ddagger}})$
and solute
(
Δ
μ
2
0
‡
)
$({\Delta}{\mu }_{2}^{0{\ddagger}})$
. The conductance data has been used to calculate molar conductance (Λm), limiting molar conductance
(
Λ
m
o
)
$({{\Lambda}}_{\text{m}}^{\text{o}})$
and Walden product
(
Λ
m
o
η
o
)
$({{\Lambda}}_{\text{m}}^{\text{o}}{\eta }_{\text{o}})$
. The results of these studies agree with each other and have concluded the structure breaker behavior of ZnSO4·7H2O in the solvent system containing AA and water.
Collapse
Affiliation(s)
- Vikas Bharti
- Department of Chemistry , Himachal Pradesh University , Shimla , 171005 , India
- Department of Applied Science and Humanities , Government Hydro Engineering College , Bilaspur , India
| | - Deepika Kaushal
- Department of Chemistry , Sri Sai University , Palampur , 176061 , India
| | - Sunil Kumar
- Department of Chemistry , Himachal Pradesh University , Shimla , 171005 , India
| | - Abhishek Thakur
- Department of Chemistry , Himachal Pradesh University , Shimla , 171005 , India
| | - Dilbag Singh Rana
- Department of Environmental Science , Central University of Himachal Pradesh , Dharamshala , Kangra (HP) , India
| | - Manish Kumar
- Department of Chemistry & Chemical Sciences , Central University of Himachal Pradesh , Dharamshala , Kangra (HP) , India
| | - Shashi Kant
- Department of Chemistry , Himachal Pradesh University , Shimla , 171005 , India
| |
Collapse
|
26
|
Over-Expression of Dehydroascorbate Reductase Improves Salt Tolerance, Environmental Adaptability and Productivity in Oryza sativa. Antioxidants (Basel) 2022; 11:antiox11061077. [PMID: 35739975 PMCID: PMC9220092 DOI: 10.3390/antiox11061077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Abiotic stress induces reactive oxygen species (ROS) generation in plants, and high ROS levels can cause partial or severe oxidative damage to cellular components that regulate the redox status. Here, we developed salt-tolerant transgenic rice plants that overexpressed the dehydroascorbate reductase gene (OsDHAR1) under the control of a stress-inducible sweet potato promoter (SWPA2). OsDHAR1-expressing transgenic plants exhibited improved environmental adaptability compared to wild-type plants, owing to enhanced ascorbate levels, redox homeostasis, photosynthetic ability, and membrane stability through cross-activation of ascorbate-glutathione cycle enzymes under paddy-field conditions, which enhanced various agronomic traits, including root development, panicle number, spikelet number per panicle, and total grain yield. dhar2-knockdown plants were susceptible to salt stress, and owing to poor seed maturation, exhibited reduced biomass (root growth) and grain yield under paddy field conditions. Microarray revealed that transgenic plants highly expressed genes associated with cell growth, plant growth, leaf senescence, root development, ROS and heavy metal detoxification systems, lipid metabolism, isoflavone and ascorbate recycling, and photosynthesis. We identified the genetic source of functional genomics‒based molecular breeding in crop plants and provided new insights into the physiological processes underlying environmental adaptability, which will enable improvement of stress tolerance and crop species productivity in response to climate change.
Collapse
|
27
|
Kádár CB, Păucean A, Simon E, Vodnar DC, Ranga F, Rusu IE, Vișan VG, Man S, Chiș MS, Drețcanu G. Dynamics of Bioactive Compounds during Spontaneous Fermentation of Paste Obtained from Capsicum ssp.-Stage towards a Product with Technological Application. PLANTS (BASEL, SWITZERLAND) 2022; 11:1080. [PMID: 35448807 PMCID: PMC9025496 DOI: 10.3390/plants11081080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Six cultivars of chili (Cherry, Bulgarian Chilli, Cayenne, Fatalii, Habanero, and Carolina Reaper) from two species (Capsicum annuum and Capsicum chinense) have been studied. Anaerobic, spontaneous fermentation of pure chili paste was conducted for 21 days at 20 °C. The unfermented (UCP) and fermented chili pastes (FCP) were both subjected to physicochemical and microbiological characterization consisting of capsaicinoid, ascorbic acid, short-chain organic acids, phenolic compounds, and simple sugars analysis. Cell viability for Lactic Acid Bacteria (LAB) and Leuconostoc was determined before and after fermentation. Results indicate that capsaicinoids are very stable compounds, as notable differences between unfermented and fermented samples could not be seen. Carolina Reaper and Fatalii cultivars were amongst the most pungent, whereas Cherry, Cayenne, and Bulgarian types were low to moderate in pungency. Average loss of total ascorbic acid was 19.01%. Total phenolic compounds ranged between 36.89−195.43 mg/100 g for the fresh fruits and 35.60−180.40 mg/100 g for the fermented product. Losses through fermentation were not significant (p < 0.05). Plate counts indicated low initial numbers for LAB in the fresh samples, values ranging between 50−3700 CFU/g (colony-forming units). After fermentation, day 21, concentration of LAB (3.8 × 106−6.2 × 108 CFU/g) was high in all samples. Fermented chilies paste with enhanced biochemical and bacterial properties might further be used in the technology of vegetable (brining) or meat (curing) products, processes that generally involve the fermenting activity of different microorganisms, especially (LAB). Thus, the purpose of this research was the investigation of biochemical and microbial transformations that naturally occur in fermented chilies with a future perspective towards technological applications in cured meat products.
Collapse
Affiliation(s)
- Csaba Balázs Kádár
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Adriana Păucean
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Elemér Simon
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (E.S.); (D.C.V.); (F.R.); (G.D.)
| | - Dan Cristian Vodnar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (E.S.); (D.C.V.); (F.R.); (G.D.)
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Floricuța Ranga
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (E.S.); (D.C.V.); (F.R.); (G.D.)
| | - Iulian Eugen Rusu
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Vasile-Gheorghe Vișan
- Department of Fundamental Sciences, Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania;
| | - Simona Man
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Maria Simona Chiș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăștur Street, 400372 Cluj-Napoca, Romania; (C.B.K.); (I.E.R.); (S.M.); (M.S.C.)
| | - Georgiana Drețcanu
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 3–5 Calea Mănăștur, 400372 Cluj-Napoca, Romania; (E.S.); (D.C.V.); (F.R.); (G.D.)
| |
Collapse
|
28
|
Determination of the Chemical Stability of Cyanocobalamin in Medical Food by a Validated Immunoaffinity Column-Linked HPLC Method. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1619936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cyanocobalamin, which plays an essential role in the body, is a synthetic form used in medical food. This present study aimed to develop an HPLC analysis method for determination cyanocobalamin and investigate the stability of cyanocobalamin in medical food. Validation of the developed method for cyanocobalamin was evaluated with linearity, LOD, LOQ, and accuracy. The linearity of this method was calculated with a value of the coefficient of determination (R2) ≥ 0.999. LOD and LOQ were 0.165 and 0.499 μg/kg, respectively. The recovery of medical food matrixes for accuracy was more than 97.63%. The validated method was applied for determining cyanocobalamin from medical foods. The developed method was used to examine the additives for cyanocobalamin protection. Ferric chloride and sorbitol alleviated cyanocobalamin degradation from heat and ascorbic acid. Especially, sorbitol showed a superior protective effect during the medical food production process. Therefore, this study suggests that sorbitol is a sweetener additive that prevents cyanocobalamin degradation by heat and the food matrix in medical food processing.
Collapse
|
29
|
Stepnov AA, Christensen IA, Forsberg Z, Aachmann FL, Courtade G, Eijsink VGH. The impact of reductants on the catalytic efficiency of a lytic polysaccharide monooxygenase and the special role of dehydroascorbic acid. FEBS Lett 2022; 596:53-70. [PMID: 34845720 DOI: 10.1002/1873-3468.14246] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022]
Abstract
Monocopper lytic polysaccharide monooxygenases (LPMOs) catalyse oxidative cleavage of glycosidic bonds in a reductant-dependent reaction. Recent studies indicate that LPMOs, rather than being O2 -dependent monooxygenases, are H2 O2 -dependent peroxygenases. Here, we describe SscLPMO10B, a novel LPMO from the phytopathogenic bacterium Streptomyces scabies and address links between this enzyme's catalytic rate and in situ hydrogen peroxide production in the presence of ascorbic acid, gallic acid and l-cysteine. Studies of Avicel degradation showed a clear correlation between the catalytic rate of SscLPMO10B and the rate of H2 O2 generation in the reaction mixture. We also assessed the impact of oxidised ascorbic acid, dehydroascorbic acid (DHA), on LPMO activity, since DHA, which is not considered a reductant, was recently reported to drive LPMO reactions. Kinetic studies, combined with NMR analysis, showed that DHA is unstable and converts into multiple derivatives, some of which are redox active and can fuel the LPMO reaction by reducing the active site copper and promoting H2 O2 production. These results show that the apparent monooxygenase activity observed in SscLPMO10B reactions without exogenously added H2 O2 reflects a peroxygenase reaction.
Collapse
Affiliation(s)
- Anton A Stepnov
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Idd A Christensen
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Zarah Forsberg
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Gaston Courtade
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
30
|
Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Meena M, Gour VS, Minkina T, Sushkova S, Mandzhieva S. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. BIOLOGY 2021; 10:267. [PMID: 33810535 PMCID: PMC8066271 DOI: 10.3390/biology10040267] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
The stationary life of plants has led to the evolution of a complex gridded antioxidant defence system constituting numerous enzymatic components, playing a crucial role in overcoming various stress conditions. Mainly, these plant enzymes are superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferases (GST), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR), which work as part of the antioxidant defence system. These enzymes together form a complex set of mechanisms to minimise, buffer, and scavenge the reactive oxygen species (ROS) efficiently. The present review is aimed at articulating the current understanding of each of these enzymatic components, with special attention on the role of each enzyme in response to the various environmental, especially abiotic stresses, their molecular characterisation, and reaction mechanisms. The role of the enzymatic defence system for plant health and development, their significance, and cross-talk mechanisms are discussed in detail. Additionally, the application of antioxidant enzymes in developing stress-tolerant transgenic plants are also discussed.
Collapse
Affiliation(s)
- Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Harish
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Rupesh Kumar Singh
- Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Lav Sharma
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Francisco Roberto Quiroz-Figueroa
- Laboratorio de Fitomejoramiento Molecular, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN Unidad Sinaloa), Instituto Politécnico Nacional, Blvd. Juan de Dios Bátiz Paredes no. 250, Col. San Joachín, C.P., 81101 Guasave, Mexico;
| | - Mukesh Meena
- Department of Botany, Mohan Lal Sukhadia University, Udaipur, Rajasthan 313001, India;
| | - Vinod Singh Gour
- Amity Institute of Biotechnology, Amity University Rajasthan, NH 11C, Kant Kalwar, Jaipur 303002, India;
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (T.M.); (S.S.); (S.M.)
| |
Collapse
|
31
|
Guo P, Kong L, Hu X, Peng X, Wang X. Removal of Cl(-I) from strongly acidic wastewater containing Cu(II) by complexation-precipitation using thiourea: Efficiency enhancement by ascorbic acid. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123836. [PMID: 33254814 DOI: 10.1016/j.jhazmat.2020.123836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 06/12/2023]
Abstract
Strongly acidic wastewater produced by copper smelting industries contains high concentrations of Cl(-I), Cu(II) and H2SO4. The common method for the treatment of this type of wastewater is neutralization, which produces large amounts of solid waste. To avoid the production of solid waste, it was proposed to selectively remove contaminants and then recycle the wastewater as diluted sulfuric acid. This study proposed a new complexation-precipitation method to effectively remove Cl(-I) using thiourea (TU) under the promotion of ascorbic acid (AC). The Cl(-I) removal efficiency was optimized, important effecting factors were investigated and the mechanisms of the AC-improved removal of Cl(-I) were studied. The results showed that, Cl(-I) removal efficiency reached 87.4 % under a TU/AC/Cl(-I) mole ratio of 1:3:1 and the residual Cl(-I) concentration was lowered from 1000 mg/L to 126.4 mg/L. The mechanism investigation showed that, AC first reduces Cu(II) to Cu(I), then, the produced Cu(I) is quickly complexed by TU to form the [Cu(I)x(TU)y]x+; finally, [Cu(I)x(TU)y]x+ precipitates with Cl(-I) in the form of [Cu(I)x(TU)y]Clx. This study provided a theoretical foundation of complexation-precipitation of Cl(-I) under strongly conditions and developed an effective method for removal of Cl(-I) from strongly acid waster.
Collapse
Affiliation(s)
- Panpan Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linghao Kong
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xingyun Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xianjia Peng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xianliang Wang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
32
|
Determination of Ascorbic Acid, Total Ascorbic Acid, and Dehydroascorbic Acid in Bee Pollen Using Hydrophilic Interaction Liquid Chromatography-Ultraviolet Detection. Molecules 2020; 25:molecules25235696. [PMID: 33287160 PMCID: PMC7729496 DOI: 10.3390/molecules25235696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
Ascorbic acid (AA) is one of the essential nutrients in bee pollen, however, it is unstable and likely to be oxidized. Generally, the oxidation form (dehydroascorbic acid (DHA)) is considered to have equivalent biological activity as the reduction form. Thus, determination of the total content of AA and DHA would be more accurate for the nutritional analysis of bee pollen. Here we present a simple, sensitive, and reliable method for the determination of AA, total ascorbic acids (TAA), and DHA in rape (Brassica campestris), lotus (Nelumbo nucifera), and camellia (Camellia japonica) bee pollen, which is based on ultrasonic extraction in metaphosphoric acid solution, and analysis using hydrophilic interaction liquid chromatography (HILIC)-ultraviolet detection. Analytical performance of the method was evaluated and validated, then the proposed method was successfully applied in twenty-one bee pollen samples. Results indicated that contents of AA were in the range of 17.54 to 94.01 µg/g, 66.01 to 111.66 µg/g, and 90.04 to 313.02 µg/g for rape, lotus, and camellia bee pollen, respectively. In addition, percentages of DHA in TAA showed good intra-species consistency, with values of 13.7%, 16.5%, and 7.6% in rape, lotus, and camellia bee pollen, respectively. This is the first report on the discriminative determination between AA and DHA in bee pollen matrices. The proposed method would be valuable for the nutritional analysis of bee pollen.
Collapse
|
33
|
Elias M, Madureira J, Santos P, Carolino M, Margaça F, Cabo Verde S. Preservation treatment of fresh raspberries by e-beam irradiation. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102487] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Majkut M, Kwiecińska-Piróg J, Wszelaczyńska E, Pobereżny J, Gospodarek-Komkowska E, Wojtacki K, Barczak T. Antimicrobial activity of heat-treated Polish honeys. Food Chem 2020; 343:128561. [PMID: 33267984 DOI: 10.1016/j.foodchem.2020.128561] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 12/23/2022]
Abstract
Bactericidal properties of honey depend on botanical and geographical origin, where thermal treatment can have a significant affect. The aim of this study was to investigate the effect of temperature on minimum bactericidal concentration (MBC), vitamin C content, total polyphenols content and antioxidant capacity of ferric reducing antioxidant potential (FRAP) of several nectar honey varieties from northern Poland (lime, rapeseed, multifloral and buckwheat). The honeys were subjected to thermal treatment at 22 °C, 42 °C, 62 °C, 82 °C and 100 °C for two exposure times. The results showed a significant reduction of antimicrobial properties (MBC ⩾50%) at 82 °C and 62 °C after 15 and 120 min exposure time for most samples. Short time exposure reduced vitamin C content (⩽50 %) but increased total polyphenols content (⩾27%) and FRAP value (⩾106%).
Collapse
Affiliation(s)
- Michał Majkut
- UTP University of Science and Technology, Department of Biology and Animal Environment, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| | - Joanna Kwiecińska-Piróg
- Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, Department of Microbiology, Skłodowska-Curie 9 M., 85-094 Bydgoszcz, Poland
| | - Elżbieta Wszelaczyńska
- UTP University of Science and Technology, Department of Food Technology, Kordeckiego 20, 85-225 Bydgoszcz, Poland
| | - Jarosław Pobereżny
- UTP University of Science and Technology, Department of Food Technology, Kordeckiego 20, 85-225 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, Department of Microbiology, Skłodowska-Curie 9 M., 85-094 Bydgoszcz, Poland
| | - Kajetan Wojtacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106, Warsaw, Poland
| | - Tadeusz Barczak
- UTP University of Science and Technology, Department of Biology and Animal Environment, Mazowiecka 28, 85-084 Bydgoszcz, Poland.
| |
Collapse
|
35
|
Mehlomakulu NN, Emmambux MN. Nutritional Quality of Wet and Dry Processed Moringa oleifera Lam. Leaves: A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1831527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Fu J, Wu Z, Liu J, Wu T. Vitamin C: A stem cell promoter in cancer metastasis and immunotherapy. Biomed Pharmacother 2020; 131:110588. [PMID: 32836076 DOI: 10.1016/j.biopha.2020.110588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin C is an electron donor and is involved in a variety of biochemical reactions in stem cell and cancer stem cell, as well as collagen synthesis and the regulation of hypoxia-inducible factor synthesis, which two affect extracellular matrix remodelling and hence cancer metastasis. Specific doses of vitamin C can stop cancer cell glycolysis and block nitroso synthesis, indicating the potential of vitamin C in cancer treatment. Recent studies preliminary revealed Vitamin C enhance the cancer's immune response to anti PD-L1 therapy through multiple indirect approaches. Herein we reviewed the recent function of vitamin C for further research in sequential aspects of cancer stem cell, extracellular matrix remodeling, cancer metastasis and cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwen Fu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Zhaoyi Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Jianfeng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China.
| | - Tianfu Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China.
| |
Collapse
|
37
|
Xu L, Xu Z, Wang X, Wang B, Liao X. The application of pseudotargeted metabolomics method for fruit juices discrimination. Food Chem 2020; 316:126278. [DOI: 10.1016/j.foodchem.2020.126278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
|
38
|
Organic selenium supplement partially alleviated diquat-induced oxidative insults and hepatic metabolic stress in nursery pigs. Br J Nutr 2020; 124:23-33. [PMID: 32116206 PMCID: PMC7512145 DOI: 10.1017/s0007114520000689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The study investigated antioxidant effects of Se on resilience to diquat-induced oxidative stress in nursery pigs. Thirty-five weaned pigs were individually housed and randomly assigned to one of the five treatments. Pigs were (1) fed a basal diet and intraperitoneally injected with sterile saline (negative control), (2) fed the basal diet and injected with diquat solution (positive control, PC), or fed the basal diet supplemented with 0·3 mg Se/kg as (3) sodium selenite (SS), (4) soyabean protein-chelated Se (SC) or (5) selenised yeast (SY) and intraperitoneally injected with diquat. Pigs were fed the experimental diets for 17 d and injected with diquat at 10 mg/kg body weight or saline on the 11th day of the study (day 0 post-injection (PI)). Diquat exposure induced acute stress and innate immune activation (P < 0·05) at 6 h PI and compromised (P < 0·05) plasma glutathione peroxidase activity on day 2 PI, which was accompanied by an increase in plasma malondialdehyde at 6 h and day 2 PI (P < 0·10). Organic Se, particularly SY, enhanced (P < 0·05) endogenous antioxidant activity in various aspects compared with the PC group. The growth rate and feed intake from day 0 to day 7 PI were significantly lower in the PC, SS and SC groups than the NC group (P < 0·05). Untargeted metabolomics analysis revealed that twenty-two hepatic metabolites (false discovery rate < 0·15) associated with lipid and cellular antioxidant metabolism were altered by diquat. SY restored hepatic metabolic profiles in some but not all samples.
Collapse
|
39
|
Stress Responses of Shade-Treated Tea Leaves to High Light Exposure after Removal of Shading. PLANTS 2020; 9:plants9030302. [PMID: 32121552 PMCID: PMC7154902 DOI: 10.3390/plants9030302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022]
Abstract
High-quality green tea is produced from buds and young leaves grown by the covering-culture method, which employs shading treatment for tea plants (Camellia sinensis L.). Shading treatment improves the quality of tea, but shaded tea plants undergo sudden exposures to high light (HL) at the end of the treatment by shade removal. In this study, the stress response of shaded tea plants to HL illumination was examined in field condition. Chl a/b ratio was lower in shaded plants than nonshaded control, but it increased due to exposure to HL after 14 days. Rapid decline in Fv/Fm values and increases in carbonylated protein level were induced by HL illumination in the shaded leaves on the first day, and they recovered thereafter between a period of one and two weeks. These results revealed that shaded tea plants temporarily suffered from oxidative damages caused by HL exposure, but they could also recover from these damages in 2 weeks. The activities of antioxidant enzymes, total ascorbate level, and ascorbate/dehydroascorbate ratio were decreased and increased in response to low light and HL conditions, respectively, suggesting that the upregulation of antioxidant defense systems plays a role in the protection of the shaded tea plants from HL stress.
Collapse
|
40
|
Kahramanoğlu İ, Chen C, Chen J, Wan C. Chemical Constituents, Antimicrobial Activity, and Food Preservative Characteristics of Aloe vera Gel. AGRONOMY 2019; 9:831. [DOI: 10.3390/agronomy9120831] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Edible coating gels developed from the Aloe vera plant have been used as a traditional medicine for about 3000 years. Aloe vera contains approximately 110 potentially active constituents from six different classes: chromone and its glycoside derivatives; anthraquinone and its glycoside derivatives; flavonoids; phenylpropanoids and coumarins; phenylpyrone and phenol derivatives; and phytosterols and others. Apart from medicinal uses, Aloe gels have an important role in food preservation as edible coatings. They provide an edible barrier for atmospheric gases and moisture and help to reduce the respiration and transpiration of fresh produce, which helps to preserve its postharvest quality. To date, numerous studies have been conducted on the postharvest use of Aloe vera gel. The present review article summarizes and discusses existing available information about the chemical constituents, antimicrobial activity, and food preservative characteristics of Aloe vera.
Collapse
Affiliation(s)
- İbrahim Kahramanoğlu
- European University of Lefke, Northern Cyprus, via Mersin 10, Gemikonagi 99780, Turkey
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
- Pingxiang University, Pingxiang 337055, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
41
|
Nguyen T, Nguyen P, Luu X, Huynh B, Krishnan S, Huynh PT. Kinetics of nutrient change and color retention during low‐temperature microwave‐assisted drying of bitter melon (
Momordica charantia
L.). J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thi‐Van‐Linh Nguyen
- Faculty of Environmental and Food Engineering Nguyen Tat Thanh University Ho Chi Minh City Vietnam
- Faculty of Chemical Engineering HCMC University of Technology Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Phuoc‐Bao‐Duy Nguyen
- Faculty of Electrical and Electronics Engineering Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
| | - Xuan‐Cuong Luu
- Faculty of Environmental and Food Engineering Nguyen Tat Thanh University Ho Chi Minh City Vietnam
| | - Bao‐Long Huynh
- Faculty of Chemical Engineering Ho Chi Minh City University of Food Industry Ho Chi Minh City Vietnam
| | - Sitaraman Krishnan
- Department of Chemical and Biomolecular Engineering Clarkson University Potsdam NY USA
| | - Phong T. Huynh
- Faculty of Chemical Engineering HCMC University of Technology Vietnam National University Ho Chi Minh City (VNU‐HCM) Ho Chi Minh City Vietnam
- Department of Chemical and Biomolecular Engineering Clarkson University Potsdam NY USA
| |
Collapse
|
42
|
Fatima Z, Jin X, Zou Y, Kaw HY, Quinto M, Li D. Recent trends in analytical methods for water-soluble vitamins. J Chromatogr A 2019; 1606:360245. [PMID: 31122728 DOI: 10.1016/j.chroma.2019.05.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
In this review, recent advances in the analysis of water-soluble vitamins (WSVs) have been reported considering the advantages and disadvantages of various extraction, separation and detection techniques, commonly used for their quantification. Acid hydrolysis, enzyme treatment, SPE based methods and some other extraction methods have been discussed. Particular attention has been devoted to the analytical techniques based on liquid chromatography and electrophoresis. Furthermore, suitability and selectivity of hydrophilic interaction liquid chromatography (HILIC) for WSVs has been discussed in detail. Problems related to these techniques and their possible solutions have also been considered. Special focus has been given to the applications of liquid chromatography (since 2014-2019) for the simultaneous analysis of WSVs and their homologous in complex food samples.
Collapse
Affiliation(s)
- Zakia Fatima
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Xiangzi Jin
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | - Maurizio Quinto
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China; SAFE - Department of Science of Agriculture, Food and Environment, University of Foggia, via Napoli 25, I-71100 Foggia, Italy
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Natural Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China.
| |
Collapse
|
43
|
Lekala CS, Madani KSH, Phan ADT, Maboko MM, Fotouo H, Soundy P, Sultanbawa Y, Sivakumar D. Cultivar-specific responses in red sweet peppers grown under shade nets and controlled-temperature plastic tunnel environment on antioxidant constituents at harvest. Food Chem 2019; 275:85-94. [PMID: 30724264 DOI: 10.1016/j.foodchem.2018.09.097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/11/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
Antioxidant constituents such as carotenoids (capsanthin, phytoene, lutein, β-cryptoxanthin), polyphenols content (p-coumaric, ferulic, p-hydroxybenzoic, caffeic acid, sinapic acid, and quercetin-3-glucoside) and marketable yield were investigated in 11 sweet pepper cultivars grown under controlled temperature plastic tunnel and white shade net. Marketable yield was not affected by either of the environments, while the interaction between cultivar and growing environment significantly affected the accumulation of antioxidant constituents. The principal component analysis illustrated that controlled temperature plastic tunnel improved the accumulation of carotenoid components and ascorbic acid and vitamin C content in most cultivars. On the contrary, white shade nets favoured the accumulation of phenolic compounds and ORAC activity in most cultivars. A strong correlation was noted between phytoene and carotenoid components in this study (capsanthin r = 0.60; P < 0.001; lutein r = 0.75; P < 0.001; β-carotene r = 0.78; P < 0.001) while ORAC correlated with phenolic compounds. Based on this study, it is possible to refine the choice of environment and cultivar to enhance individual antioxidant constituent groups to improve health benefits for consumers.
Collapse
Affiliation(s)
- Chembi Solomon Lekala
- Phytochemical FoodNetwork Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West, 0001, South Africa
| | - Khalil Saber H Madani
- Queensland Alliance for Agriculture and Food Innovation, Center for Food Science and Nutrition, The University of Queensland, Australia
| | - Anh Dao Thi Phan
- Queensland Alliance for Agriculture and Food Innovation, Center for Food Science and Nutrition, The University of Queensland, Australia
| | - Martin Makgose Maboko
- Agricultural Research Council - Roodeplaat, Vegetable and Ornamental Plants, Private Bag X293, Pretoria 0001, South Africa
| | - Helene Fotouo
- Phytochemical FoodNetwork Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West, 0001, South Africa
| | - Puffy Soundy
- Phytochemical FoodNetwork Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West, 0001, South Africa
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation, Center for Food Science and Nutrition, The University of Queensland, Australia
| | - Dharini Sivakumar
- Phytochemical FoodNetwork Research Group, Department of Crop Sciences, Tshwane University of Technology, Pretoria West, 0001, South Africa; Queensland Alliance for Agriculture and Food Innovation, Center for Food Science and Nutrition, The University of Queensland, Australia.
| |
Collapse
|
44
|
Dewhirst RA, Fry SC. The oxidation of dehydroascorbic acid and 2,3-diketogulonate by distinct reactive oxygen species. Biochem J 2018; 475:3451-3470. [PMID: 30348642 PMCID: PMC6225978 DOI: 10.1042/bcj20180688] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
l-Ascorbate, dehydro-l-ascorbic acid (DHA), and 2,3-diketo-l-gulonate (DKG) can all quench reactive oxygen species (ROS) in plants and animals. The vitamin C oxidation products thereby formed are investigated here. DHA and DKG were incubated aerobically at pH 4.7 with peroxide (H2O2), 'superoxide' (a ∼50 : 50 mixture of [Formula: see text] and [Formula: see text]), hydroxyl radicals (•OH, formed in Fenton mixtures), and illuminated riboflavin (generating singlet oxygen, 1O2). Products were monitored electrophoretically. DHA quenched H2O2 far more effectively than superoxide, but the main products in both cases were 4-O-oxalyl-l-threonate (4-OxT) and smaller amounts of 3-OxT and OxA + threonate. H2O2, but not superoxide, also yielded cyclic-OxT. Dilute Fenton mixture almost completely oxidised a 50-fold excess of DHA, indicating that it generated oxidant(s) greatly exceeding the theoretical •OH yield; it yielded oxalate, threonate, and OxT. 1O2 had no effect on DHA. DKG was oxidatively decarboxylated by H2O2, Fenton mixture, and 1O2, forming a newly characterised product, 2-oxo-l-threo-pentonate (OTP; '2-keto-l-xylonate'). Superoxide yielded negligible OTP. Prolonged H2O2 treatment oxidatively decarboxylated OTP to threonate. Oxidation of DKG by H2O2, Fenton mixture, or 1O2 also gave traces of 4-OxT but no detectable 3-OxT or cyclic-OxT. In conclusion, DHA and DKG yield different oxidation products when attacked by different ROS. DHA is more readily oxidised by H2O2 and superoxide; DKG more readily by 1O2 The diverse products are potential signals, enabling organisms to respond appropriately to diverse stresses. Also, the reaction-product 'fingerprints' are analytically useful, indicating which ROS are acting in vivo.
Collapse
Affiliation(s)
- Rebecca A Dewhirst
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, U.K.
| |
Collapse
|
45
|
Smirnoff N. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radic Biol Med 2018; 122:116-129. [PMID: 29567393 PMCID: PMC6191929 DOI: 10.1016/j.freeradbiomed.2018.03.033] [Citation(s) in RCA: 348] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
Ascorbic acid is synthesised by eukaryotes, the known exceptions being primates and some other animal groups which have lost functional gulonolactone oxidase. Prokaryotes do not synthesise ascorbate and do not need an ascorbate supply, so the functions that are essential for mammals and plants are not required or are substituted by other compounds. The ability of ascorbate to donate electrons enables it to act as a free radical scavenger and to reduce higher oxidation states of iron to Fe2+. These reactions are the basis of its biological activity along with the relative stability of the resulting resonance stabilised monodehydroascorbate radical. The importance of these properties is emphasised by the evolution of at least three biosynthetic pathways and production of an ascorbate analogue, erythroascorbate, by fungi. The iron reducing activity of ascorbate maintains the reactive centre Fe2+ of 2-oxoglutarate-dependent dioxygenases (2-ODDs) thus preventing inactivation. These enzymes have diverse functions and, recently, the possibility that ascorbate status in mammals could influence 2-ODDs involved in histone and DNA demethylation thereby influencing stem cell differentiation and cancer has been uncovered. Ascorbate is involved in iron uptake and transport in plants and animals. While the above biochemical functions are shared between mammals and plants, ascorbate peroxidase (APX) is an enzyme family limited to plants and photosynthetic protists. It provides these organisms with increased capacity to remove H2O2 produced by photosynthetic electron transport and photorespiration. The Fe reducing activity of ascorbate enables hydroxyl radical production (pro-oxidant effect) and the reactivity of dehydroascorbate (DHA) and reaction of its degradation products with proteins (dehydroascorbylation and glycation) is potentially damaging. Ascorbate status influences gene expression in plants and mammals but at present there is little evidence that it acts as a specific signalling molecule. It most likely acts indirectly by influencing the redox state of thiols and 2-ODD activity. However, the possibility that dehydroascorbylation is a regulatory post-translational protein modification could be explored.
Collapse
Affiliation(s)
- Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
46
|
Cesario D, Furia E, Mazzone G, Beneduci A, De Luca G, Sicilia E. Complexation of Al3+ and Ni2+ by l-Ascorbic Acid: An Experimental and Theoretical Investigation. J Phys Chem A 2017; 121:9773-9781. [DOI: 10.1021/acs.jpca.7b10847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Diego Cesario
- Department
of Chemistry and Chemical Technologies, University of Calabria, Arcavacata
di Rende 87036, Italy
| | - Emilia Furia
- Department
of Chemistry and Chemical Technologies, University of Calabria, Arcavacata
di Rende 87036, Italy
| | - Gloria Mazzone
- Department
of Chemistry and Chemical Technologies, University of Calabria, Arcavacata
di Rende 87036, Italy
| | - Amerigo Beneduci
- Department
of Chemistry and Chemical Technologies, University of Calabria, Arcavacata
di Rende 87036, Italy
| | - Giuseppina De Luca
- Department
of Chemistry and Chemical Technologies, University of Calabria, Arcavacata
di Rende 87036, Italy
| | - Emilia Sicilia
- Department
of Chemistry and Chemical Technologies, University of Calabria, Arcavacata
di Rende 87036, Italy
| |
Collapse
|
47
|
Defective methionine metabolism in the brain after repeated blast exposures might contribute to increased oxidative stress. Neurochem Int 2017; 112:234-238. [PMID: 28774719 DOI: 10.1016/j.neuint.2017.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/29/2017] [Indexed: 01/26/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is one of the major disabilities in Service Members returning from recent military operations. The neurobiological underpinnings of bTBI, which are associated with acute and chronic neuropathological and neurobehavioral deficits, are uncertain. Increased oxidative stress in the brain is reported to play a significant role promoting neuronal damage associated with both brain injury and neurodegenerative disorders. In this study, brains of rats exposed to repeated blasts in a shock tube underwent untargeted profiling of primary metabolism by automatic linear exchange/cold injection GC-TOF mass spectrometry and revealed acute and sub-acute disruptions in the metabolism of the essential amino acid methionine and associated antioxidants. Methionine sulfoxide, the oxidized metabolite of methionine, showed a sustained increase in the brain after blast exposure which was associated with a significant decrease in cysteine, the amino acid derived from methionine. Glutathione, the antioxidant synthesized from cysteine, also concomitantly decreased as did the antioxidant ascorbic acid. Reductions in ascorbic acid were accompanied by increased levels of its oxidized metabolite, dehydroascorbic acid and other metabolites such as threonic acid, isothreonic acid, glycolic acid and oxalic acid. Fluorometric analysis of the brains showed acute and sub-acute increase in total reactive oxygen species. In view of the fundamental importance of glutathione in the brain as an antioxidant, including its role in the reduction of dehydroascorbic acid to ascorbic acid, the disruptions in methionine metabolism elicited by blast exposure might prominently contribute to neuronal injury by promoting increased and sustained oxidative stress.
Collapse
|
48
|
Liu XY, Chen H, Wang R, Shang Y, Zhang Q, Li W, Zhang G, Su J, Dinh CT, de Arquer FPG, Li J, Jiang J, Mi Q, Si R, Li X, Sun Y, Long YT, Tian H, Sargent EH, Ning Z. 0D-2D Quantum Dot: Metal Dichalcogenide Nanocomposite Photocatalyst Achieves Efficient Hydrogen Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605646. [PMID: 28397299 DOI: 10.1002/adma.201605646] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/26/2017] [Indexed: 06/07/2023]
Abstract
Hydrogen generation via photocatalysis-driven water splitting provides a convenient approach to turn solar energy into chemical fuel. The development of photocatalysis system that can effectively harvest visible light for hydrogen generation is an essential task in order to utilize this technology. Herein, a kind of cadmium free Zn-Ag-In-S (ZAIS) colloidal quantum dots (CQDs) that shows remarkably photocatalytic efficiency in the visible region is developed. More importantly, a nanocomposite based on the combination of 0D ZAIS CQDs and 2D MoS2 nanosheet is developed. This can leverage the strong light harvesting capability of CQDs and catalytic performance of MoS2 simultaneously. As a result, an excellent external quantum efficiency of 40.8% at 400 nm is achieved for CQD-based hydrogen generation catalyst. This work presents a new platform for the development of high-efficiency photocatalyst based on 0D-2D nanocomposite.
Collapse
Affiliation(s)
- Xiao-Yuan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hao Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Institute of Ceramic, Chinese Academy of Science, Shanghai, 200050, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Ruili Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Institute of Ceramic, Chinese Academy of Science, Shanghai, 200050, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Yuequn Shang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Institute of Ceramic, Chinese Academy of Science, Shanghai, 200050, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Qiong Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Wei Li
- Shanghai Institute of Applied Physics, Chinese Academy Science, Shanghai Synchrotron Radiation Facility, Shanghai, 201204, P. R. China
| | - Guozhen Zhang
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), University of Science and Technology of China (USTC), Hefei, 230026, P. R. China
| | - Juan Su
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Cao Thang Dinh
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - F Pelayo García de Arquer
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Jie Li
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Jun Jiang
- School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale and CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD), University of Science and Technology of China (USTC), Hefei, 230026, P. R. China
| | - Qixi Mi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Rui Si
- Shanghai Institute of Applied Physics, Chinese Academy Science, Shanghai Synchrotron Radiation Facility, Shanghai, 201204, P. R. China
| | - Xiaopeng Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada
| | - Zhijun Ning
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
49
|
Gómez Ruiz B, Roux S, Courtois F, Bonazzi C. Spectrophotometric method for fast quantification of ascorbic acid and dehydroascorbic acid in simple matrix for kinetics measurements. Food Chem 2016; 211:583-9. [DOI: 10.1016/j.foodchem.2016.05.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 02/02/2023]
|
50
|
Dereven’kov IA, Thi TTB, Salnikov DS, Makarov SV. Effect of amino acids on the interaction between cobalamin(II) and dehydroascorbic acid. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2016. [DOI: 10.1134/s0036024416030080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|