1
|
Ijaz A, Broere F, Rutten VPMG, Jansen CA, Veldhuizen EJA. Perforin and granzyme A release as novel tool to measure NK cell activation in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105047. [PMID: 37625470 DOI: 10.1016/j.dci.2023.105047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that are present in the circulation but also in many organs including spleen and gut, where they play an important role in the defense against infections. Interaction of NK cells with target cells leads to degranulation, which results in the release of perforin and granzymes in the direct vicinity of the target cell. Chicken NK cells have many characteristics similar to their mammalian counterparts and based on similarities with studies on human NK cells, surface expression of CD107 was always presumed to correlate with granule release. However, proof of this degranulation or in fact the actual presence of perforin (PFN) and granzyme A (GrA) in chicken NK cells and their release upon activation is lacking. Therefore, the purpose of the present study was to determine the presence of perforin and granzyme A in primary chicken NK cells and to measure their release upon degranulation, as an additional tool to study the function of chicken NK cells. Using human specific antibodies against PFN and GrA in fluorescent and confocal microscopy resulted in staining in chicken NK cells. The presence of PFN and GrA was also confirmed by Western blot analyses and its gene expression by PCR. Stimulation of NK cells with the pectin SPE6 followed by flow cytometry resulted in reduced levels of intracellular PFN and GrA, suggesting release of PFN and GrA. Expression of PFN and GrA reversely correlated with increased surface expression of the lysosomal marker CD107. Finally it was shown that the supernatant of activated NK cells, containing the NK cell granule content including PFN and GrA, was able to kill Escherichia coli. This study correlates PFN and GrA release to activation of chicken NK cells and establishes an additional tool to study activity of cytotoxic lymphocytes in chickens.
Collapse
Affiliation(s)
- Adil Ijaz
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Femke Broere
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Victor P M G Rutten
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Edwin J A Veldhuizen
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Jin H, Kong Z, Jiang B, Tu M, Xu J, Cheng J, Liu W, Zhang Z, Li Y. Identification and Characterization of chCR2, a Protein That Binds Chicken Complement Component 3d. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1408-1418. [PMID: 36971659 PMCID: PMC10116081 DOI: 10.4049/jimmunol.2200423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023]
Abstract
Complement receptor type 2 (CR2) is an important membrane molecule expressed on B cells and follicular dendritic cells. Human CR2 has been shown to play a critical role in bridging the innate complement-mediated immune response with adaptive immunity by binding complement component 3d (C3d). However, the chicken CR2 (chCR2) gene has not been identified or characterized. In this study, unannotated genes that contain short consensus repeat (SCR) domains were analyzed based on RNA sequencing data for chicken bursa lymphocytes, and a gene with >80% homology to CR2 from other bird species was obtained. The gene consisted of 370 aa and was much smaller than the human CR2 gene because 10-11 SCRs were missing. The gene was then demonstrated as a chCR2 that exhibited high binding activity to chicken C3d. Further studies revealed that chCR2 interacts with chicken C3d through a binding site in its SCR1-4 region. An anti-chCR2 mAb that recognizes the epitope 258CKEISCVFPEVQ269 was prepared. Based on the anti-chCR2 mAb, the flow cytometry and confocal laser scanning microscopy experiments confirmed that chCR2 was expressed on the surface of bursal B lymphocytes and DT40 cells. Immunohistochemistry and quantitative PCR analyses further indicated that chCR2 is predominantly expressed in the spleen, bursa, and thymus, as well as in PBLs. Additionally, the expression of chCR2 varied according to the infectious bursal disease virus infection status. Collectively, this study identified and characterized chCR2 as a distinct immunological marker in chicken B cells.
Collapse
Affiliation(s)
- Huan Jin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
| | - ZiMeng Kong
- College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Bo Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
| | - Min Tu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
| | - Jian Xu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
| | - Zhenhua Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Beijing Academy of Agricultural and Forestry Sciences, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Abstract
Major advances in pathogen identification, treatment, vaccine development, and avian immunology have enabled the enormous expansion in global poultry production over the last 50 years. Looking forward, climate change, reduced feed, reduced water access, new avian pathogens and restrictions on the use of antimicrobials threaten to hamper further gains in poultry productivity and health. The development of novel in vitro cell culture systems, coupled with new genetic tools to investigate gene function, will aid in developing novel interventions for existing and newly emerging poultry pathogens. Our growing capacity to cryopreserve and generate genome-edited chicken lines will also be useful for developing improved chicken breeds for poultry farmers and conserving chicken genetic resources.
Collapse
Affiliation(s)
- Euan Mitchell
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Guillermo Tellez
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Mike J McGrew
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Alves E, Nakaya H, Guimarães E, Garcia CR. Combining IP 3 affinity chromatography and bioinformatics reveals a novel protein-IP 3 binding site on Plasmodium falciparum MDR1 transporter. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 4:100179. [PMID: 36582189 PMCID: PMC9792294 DOI: 10.1016/j.crmicr.2022.100179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Intracellular Ca2+ mobilization induced by second messenger IP3 controls many cellular events in most of the eukaryotic groups. Despite the increasing evidence of IP3-induced Ca2+ in apicomplexan parasites like Plasmodium, responsible for malaria infection, no protein with potential function as an IP3-receptor has been identified. The use of bioinformatic analyses based on previously known sequences of IP3-receptor failed to identify potential IP3-receptor candidates in any Apicomplexa. In this work, we combine the biochemical approach of an IP3 affinity chromatography column with bioinformatic meta-analyses to identify potential vital membrane proteins that present binding with IP3 in Plasmodium falciparum. Our analyses reveal that PF3D7_0523000, a gene that codes a transport protein associated with multidrug resistance as a potential target for IP3. This work provides a new insight for probing potential candidates for IP3-receptor in Apicomplexa.
Collapse
Affiliation(s)
- Eduardo Alves
- Life Science Department, Imperial College London, London, United Kingdom
| | - Helder Nakaya
- Department of Clinical and Toxicological Analyses of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil,Computational Systems Biology Laboratory, INOVA, University of Sao Paulo, Sao Paulo, Brazil
| | - Euzébio Guimarães
- Federal University of Rio Grande do Norte, Pharmacy Department, Health Science Center, Natal, Brazil
| | - Célia R.S. Garcia
- Department of Clinical and Toxicological Analyses of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil,Corresponding author.
| |
Collapse
|
5
|
Mladenov E, Paul-Konietzko K, Mladenova V, Stuschke M, Iliakis G. Increased Gene Targeting in Hyper-Recombinogenic LymphoBlastoid Cell Lines Leaves Unchanged DSB Processing by Homologous Recombination. Int J Mol Sci 2022; 23:9180. [PMID: 36012445 PMCID: PMC9409177 DOI: 10.3390/ijms23169180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
In the cells of higher eukaryotes, sophisticated mechanisms have evolved to repair DNA double-strand breaks (DSBs). Classical nonhomologous end joining (c-NHEJ), homologous recombination (HR), alternative end joining (alt-EJ) and single-strand annealing (SSA) exploit distinct principles to repair DSBs throughout the cell cycle, resulting in repair outcomes of different fidelity. In addition to their functions in DSB repair, the same repair pathways determine how cells integrate foreign DNA or rearrange their genetic information. As a consequence, random integration of DNA fragments is dominant in somatic cells of higher eukaryotes and suppresses integration events at homologous genomic locations, leading to very low gene-targeting efficiencies. However, this response is not universal, and embryonic stem cells display increased targeting efficiency. Additionally, lymphoblastic chicken and human cell lines DT40 and NALM6 show up to a 1000-fold increased gene-targeting efficiency that is successfully harnessed to generate knockouts for a large number of genes. We inquired whether the increased gene-targeting efficiency of DT40 and NALM6 cells is linked to increased rates of HR-mediated DSB repair after exposure to ionizing radiation (IR). We analyzed IR-induced γ-H2AX foci as a marker for the total number of DSBs induced in a cell and RAD51 foci as a marker for the fraction of those DSBs undergoing repair by HR. We also evaluated RPA accretion on chromatin as evidence for ongoing DNA end resection, an important initial step for all pathways of DSB repair except c-NHEJ. We finally employed the DR-GFP reporter assay to evaluate DSB repair by HR in DT40 cells. Collectively, the results obtained, unexpectedly show that DT40 and NALM6 cells utilized HR for DSB repair at levels very similar to those of other somatic cells. These observations uncouple gene-targeting efficiency from HR contribution to DSB repair and suggest the function of additional mechanisms increasing gene-targeting efficiency. Indeed, our results show that analysis of the contribution of HR to DSB repair may not be used as a proxy for gene-targeting efficiency.
Collapse
Affiliation(s)
- Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - Katja Paul-Konietzko
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Institute of Medical Radiation Biology, Medical School, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
6
|
Biegler MT, Fedrigo O, Collier P, Mountcastle J, Haase B, Tilgner HU, Jarvis ED. Induction of an immortalized songbird cell line allows for gene characterization and knockout by CRISPR-Cas9. Sci Rep 2022; 12:4369. [PMID: 35288582 PMCID: PMC8921232 DOI: 10.1038/s41598-022-07434-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
The zebra finch is one of the most commonly studied songbirds in biology, particularly in genomics, neuroscience and vocal communication. However, this species lacks a robust cell line for molecular biology research and reagent optimization. We generated a cell line, designated CFS414, from zebra finch embryonic fibroblasts using the SV40 large and small T antigens. This cell line demonstrates an improvement over previous songbird cell lines through continuous and density-independent growth, allowing for indefinite culture and monoclonal line derivation. Cytogenetic, genomic, and transcriptomic profiling established the provenance of this cell line and identified the expression of genes relevant to ongoing songbird research. Using this cell line, we disrupted endogenous gene sequences using S.aureus Cas9 and confirmed a stress-dependent localization response of a song system specialized gene, SAP30L. The utility of CFS414 cells enhances the comprehensive molecular potential of the zebra finch and validates cell immortalization strategies in a songbird species.
Collapse
Affiliation(s)
- Matthew T Biegler
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, 10065, USA
| | - Paul Collier
- Center for Neurogenetics, Graduate School of Medical Sciences, Weil Cornell Medical Center, New York, NY, 10065, USA
| | | | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, 10065, USA
| | - Hagen U Tilgner
- Center for Neurogenetics, Graduate School of Medical Sciences, Weil Cornell Medical Center, New York, NY, 10065, USA
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Quantal Ca 2+ release mediated by very few IP 3 receptors that rapidly inactivate allows graded responses to IP 3. Cell Rep 2021; 37:109932. [PMID: 34731613 PMCID: PMC8578705 DOI: 10.1016/j.celrep.2021.109932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/16/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that link extracellular stimuli to Ca2+ signals. Ca2+ release from intracellular stores is "quantal": low IP3 concentrations rapidly release a fraction of the stores. Ca2+ release then slows or terminates without compromising responses to further IP3 additions. The mechanisms are unresolved. Here, we synthesize a high-affinity partial agonist of IP3Rs and use it to demonstrate that quantal responses do not require heterogenous Ca2+ stores. IP3Rs respond incrementally to IP3 and close after the initial response to low IP3 concentrations. Comparing functional responses with IP3 binding shows that only a tiny fraction of a cell's IP3Rs mediate incremental Ca2+ release; inactivation does not therefore affect most IP3Rs. We conclude, and test by simulations, that Ca2+ signals evoked by IP3 pulses arise from rapid activation and then inactivation of very few IP3Rs. This allows IP3Rs to behave as increment detectors mediating graded Ca2+ release.
Collapse
|
8
|
Unwin RJ. Purinergic signalling in the kidney - A beginning with Geoffrey Burnstock. Auton Neurosci 2021; 234:102833. [PMID: 34118763 DOI: 10.1016/j.autneu.2021.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022]
Abstract
This not an original publication or a current and up-to-date review of purinergic signalling and kidney function, but rather a tribute to Professor Geoffrey Burnstock, written as a short and personal memoir of our early collaborative work together on this topic: our beginnings and the subsequent journey we took with our many valued collaborators along the way.
Collapse
Affiliation(s)
- Robert J Unwin
- Department of Renal Medicine, University College London, UK.
| |
Collapse
|
9
|
TRPM7 is an essential regulator for volume-sensitive outwardly rectifying anion channel. Commun Biol 2021; 4:599. [PMID: 34017036 PMCID: PMC8137958 DOI: 10.1038/s42003-021-02127-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Animal cells can regulate their volume after swelling by the regulatory volume decrease (RVD) mechanism. In epithelial cells, RVD is attained through KCl release mediated via volume-sensitive outwardly rectifying Cl- channels (VSOR) and Ca2+-activated K+ channels. Swelling-induced activation of TRPM7 cation channels leads to Ca2+ influx, thereby stimulating the K+ channels. Here, we examined whether TRPM7 plays any role in VSOR activation. When TRPM7 was knocked down in human HeLa cells or knocked out in chicken DT40 cells, not only TRPM7 activity and RVD efficacy but also VSOR activity were suppressed. Heterologous expression of TRPM7 in TRPM7-deficient DT40 cells rescued both VSOR activity and RVD, accompanied by an increase in the expression of LRRC8A, a core molecule of VSOR. TRPM7 exerts the facilitating action on VSOR activity first by enhancing molecular expression of LRRC8A mRNA through the mediation of steady-state Ca2+ influx and second by stabilizing the plasmalemmal expression of LRRC8A protein through the interaction between LRRC8A and the C-terminal domain of TRPM7. Therefore, TRPM7 functions as an essential regulator of VSOR activity and LRRC8A expression.
Collapse
|
10
|
Lerksuthirat T, Wikiniyadhanee R, Chitphuk S, Stitchantrakul W, Sampattavanich S, Jirawatnotai S, Jumpathong J, Dejsuphong D. DNA Repair Biosensor-Identified DNA Damage Activities of Endophyte Extracts from Garcinia cowa. Biomolecules 2020; 10:E1680. [PMID: 33339185 PMCID: PMC7765599 DOI: 10.3390/biom10121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/03/2022] Open
Abstract
Recent developments in chemotherapy focus on target-specific mechanisms, which occur only in cancer cells and minimize the effects on normal cells. DNA damage and repair pathways are a promising target in the treatment of cancer. In order to identify novel compounds targeting DNA repair pathways, two key proteins, 53BP1 and RAD54L, were tagged with fluorescent proteins as indicators for two major double strand break (DSB) repair pathways: non-homologous end-joining (NHEJ) and homologous recombination (HR). The engineered biosensor cells exhibited the same DNA repair properties as the wild type. The biosensor cells were further used to investigate the DNA repair activities of natural biological compounds. An extract from Phyllosticta sp., the endophyte isolated from the medicinal plant Garcinia cowa Roxb. ex Choisy, was tested. The results showed that the crude extract induced DSB, as demonstrated by the increase in the DNA DSB marker γH2AX. The damaged DNA appeared to be repaired through NHEJ, as the 53BP1 focus formation in the treated fraction was higher than in the control group. In conclusion, DNA repair-based biosensors are useful for the preliminary screening of crude extracts and biological compounds for the identification of potential targeted therapeutic drugs.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Rakkreat Wikiniyadhanee
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Sermsiri Chitphuk
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Wasana Stitchantrakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (T.L.); (S.C.); (W.S.)
| | - Somponnat Sampattavanich
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.J.)
| | - Siwanon Jirawatnotai
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (S.S.); (S.J.)
| | - Juangjun Jumpathong
- Center of Excellent in Research for Agricultural Biotechnology and Department of Agricultural Science, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Donniphat Dejsuphong
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| |
Collapse
|
11
|
Lerksuthirat T, Wikiniyadhanee R, Stitchantrakul W, Chitphuk S, Stansook N, Pipatpanyanugoon N, Jirawatnotai S, Dejsuphong D. A DNA repair player, ring finger protein 43, relieves etoposide-induced topoisomerase II poisoning. Genes Cells 2020; 25:718-729. [PMID: 32939879 DOI: 10.1111/gtc.12808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 08/15/2020] [Accepted: 09/06/2020] [Indexed: 12/25/2022]
Abstract
Ring finger protein 43 (RNF43) is an E3 ubiquitin ligase which is well-known for its role in negative regulation of the Wnt-signaling pathway. However, the function in DNA double-strand break repairs has not been investigated. In this study, we used a lymphoblast cell line, DT40, and mouse embryonic fibroblast as cellular models to study DNA double-strand break (DSB) repairs. For this purpose, we created RNF43 knockout, RNF43-/- DT40 cell line to investigate DSB repairs. We found that deletion of RNF43 does not interfere with cell proliferation. However, after exposure to various types of DNA-damaging agents, RNF43-/- cells become more sensitive to topoisomerase II inhibitors, etoposide, and ICRF193, than wild type cells. Our results also showed that depletion of RNF43 results in apoptosis upon etoposide-mediated DNA damage. The delay in resolution of γH2AX and 53BP1 foci formation after etoposide treatment, as well as epistasis analysis with DNAPKcs, suggested that RNF43 might participate in DNA repair of etoposide-induced DSB via non-homologous end joining. Disturbed γH2AX foci formation in MEFs following pulse etoposide treatment supported the notion that RNF43 also functions DNA repair in mammalian cells. These findings propose two possible functions of RNF43, either participating in NHEJ or removing the blockage of 5' topo II adducts from DSB ends.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rakkreat Wikiniyadhanee
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wasana Stitchantrakul
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sermsiri Chitphuk
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nauljun Stansook
- Division of Radiotherapy and Oncology, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nut Pipatpanyanugoon
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research for Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Donniphat Dejsuphong
- Section for Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
12
|
Merritt JR, Grogan KE, Zinzow-Kramer WM, Sun D, Ortlund EA, Yi SV, Maney DL. A supergene-linked estrogen receptor drives alternative phenotypes in a polymorphic songbird. Proc Natl Acad Sci U S A 2020; 117:21673-21680. [PMID: 32817554 PMCID: PMC7474689 DOI: 10.1073/pnas.2011347117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Behavioral evolution relies on genetic changes, yet few behaviors can be traced to specific genetic sequences in vertebrates. Here we provide experimental evidence showing that differentiation of a single gene has contributed to the evolution of divergent behavioral phenotypes in the white-throated sparrow, a common backyard songbird. In this species, a series of chromosomal inversions has formed a supergene that segregates with an aggressive phenotype. The supergene has captured ESR1, the gene that encodes estrogen receptor α (ERα); as a result, this gene is accumulating changes that now distinguish the supergene allele from the standard allele. Our results show that in birds of the more aggressive phenotype, ERα knockdown caused a phenotypic change to that of the less aggressive phenotype. We next showed that in a free-living population, aggression is predicted by allelic imbalance favoring the supergene allele. Finally, we identified cis-regulatory features, both genetic and epigenetic, that explain the allelic imbalance. This work provides a rare illustration of how genotypic divergence has led to behavioral phenotypic divergence in a vertebrate.
Collapse
Affiliation(s)
| | | | | | - Dan Sun
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA 30322
| | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA 30322
| |
Collapse
|
13
|
Han B, García‐Mendoza D, van den Berg H, van den Brink NW. Modulatory Effects of Pb 2+ on Virally Challenged Chicken Macrophage (HD-11) and B-Lymphocyte (DT40) Cell Lines In Vitro. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1060-1070. [PMID: 32124477 PMCID: PMC7277059 DOI: 10.1002/etc.4702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/24/2020] [Accepted: 02/25/2020] [Indexed: 05/08/2023]
Abstract
Elevated levels of lead have been found in waterfowl, due to human activities. Lead may cause immunomodulatory effects, but the mechanisms are largely unknown, especially after viral challenges. To characterize avian immunomodulatory hazards of lead (Pb)2+ , we used chicken macrophage (HD-11) and B-lymphocyte (DT40) cell lines, as in vitro models for the innate and adaptive immune systems, respectively. The cells were activated via toll-like receptor-3 by polyinosinic-polycytidylic acid sodium salt (poly I:C), mimicking viral infections. Our results indicate that Pb2+ is cytotoxic to both cell lines, macrophages being more sensitive. De novo synthesis of glutathione plays an important role in protecting macrophages from Pb2+ intoxication, which might also be closely involved in the induction of nitric oxide after Pb2+ exposure. Stimulatory effects on cell proliferation were noticed at noncytotoxic Pb2+ concentrations as well. Exposure to Pb2+ could also affect the inflammatory status by inhibiting the pro-inflammatory interferon (IFN)-γ while promoting the production of anti-inflammatory type I IFNs in both macrophages and B-cells, and increasing intracellular IgM levels in B-cells. These results suggest that the immunomodulatory effects of Pb2+ in birds are probably closely associated with disruption of immune cell proliferation and cytokine production, potentially causing disorders of the avian immune system. Environ Toxicol Chem 2020;39:1060-1070. © 2020 SETAC.
Collapse
Affiliation(s)
- Biyao Han
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
| | - Diego García‐Mendoza
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
| | - Hans van den Berg
- Division of ToxicologyWageningen University and ResearchWageningenThe Netherlands
| | | |
Collapse
|
14
|
Meyer SJ, Böser A, Korn MA, Koller C, Bertocci B, Reimann L, Warscheid B, Nitschke L. Cullin 3 Is Crucial for Pro-B Cell Proliferation, Interacts with CD22, and Controls CD22 Internalization on B Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:3360-3374. [DOI: 10.4049/jimmunol.1900925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 04/03/2020] [Indexed: 12/15/2022]
|
15
|
Dunislawska A, Slawinska A, Siwek M. Validation of the Reference Genes for the Gene Expression Studies in Chicken DT40 Cell Line. Genes (Basel) 2020; 11:genes11040372. [PMID: 32235512 PMCID: PMC7230526 DOI: 10.3390/genes11040372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 01/17/2023] Open
Abstract
The selection of a suitable reference gene assures a reliable gene expression analysis when using the qPCR method. Normalization of the reaction is based on the basic metabolism genes. These genes show a constant, unregulated expression in all cells and function throughout their lifetime. In the current study, seven reference gene candidates were screened using RT-qPCR, to determine the best-matched pair of reference genes in the chicken DT40 cell line. The DT40 was derived from bursal lymphoma cells that were subjected to RAV-1 bird retroviral infection. It is a simplified in vitro model that allows tracking the direct interaction of stimulants on the lymphoid population and profiling of the hepatocellular B cell transcriptome. The reference gene analysis was carried out using statistical tools integrating four independent methods—geNorm, Best Keeper, NormFinder, delta Ct and RefFinder. Based on the selected reference genes, the relative gene expression analysis was done using the ddCt method. Complete relative gene expression study on a panel of the target genes revealed that proper selection of reference genes depending on the tissue eliminate decreases in data quality. The SDHA and RPL4 genes constitute stable internal controls as reference genes when analyzing gene expression in the DT40 cell line.
Collapse
|
16
|
Mahtani T, Treanor B. Beyond the CRAC: Diversification of ion signaling in B cells. Immunol Rev 2020; 291:104-122. [PMID: 31402507 PMCID: PMC6851625 DOI: 10.1111/imr.12770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Although calcium signaling and the important role of calcium release–activated calcium channels is well recognized in the context of immune cell signaling, there is a vast diversity of ion channels and transporters that regulate the entry of ions beyond calcium, including magnesium, zinc, potassium, sodium, and chloride. These ions play a critical role in numerous metabolic and cellular processes. The importance of ions in human health and disease is illustrated by the identification of primary immunodeficiencies in patients with mutations in genes encoding ion channels and transporters, as well as the immunological defects observed in individuals with nutritional ion deficiencies. Despite progress in identifying the important role of ions in immune cell development and activation, we are still in the early stages of exploring the diversity of ion channels and transporters and mechanistically understanding the role of these ions in immune cell biology. Here, we review the biology of ion signaling in B cells and the identification of critical ion channels and transporters in B‐cell development, activation, and differentiation into effector cells. Elucidating the role of ion channels and transporters in immune cell signaling is critical for expanding the repertoire of potential therapeutics for the treatment of immune disorders. Moreover, increased understanding of the role of ions in immune cell function will enhance our understanding of the potentially serious consequences of ion deficiencies in human health and disease.
Collapse
Affiliation(s)
- Trisha Mahtani
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Bebhinn Treanor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Stefos GC, Theodorou G, Politis I. DNA G-quadruplexes: functional significance in plant and farm animal science. Anim Biotechnol 2019; 32:262-271. [PMID: 31642375 DOI: 10.1080/10495398.2019.1679823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
G-quadruplexes (G4s) are non-canonical structures that can be formed in DNA and RNA sequences which carry four short runs of guanines. They are distributed in the whole genome but are enriched in gene promoter regions, gene UTRs and chromosome telomeres. The whole array of their functional roles is not fully explored yet but there is solid evidence supporting their implication in a number of processes like regulation of transcription, replication and telomere organization, among others. During the last decade, there is an increased research interest for G4s that has resulted in a better understanding of their role in several physiological and pathological conditions. On the other hand, these structures are poorly studied in plant species and animals of agricultural interest. Here, we summarize the current methods that are used for studying G4s, we review the studies concerning plants and farm animals and we discuss the advantages of a more thorough inclusion of G4s research in the agricultural sciences.
Collapse
Affiliation(s)
- Georgios C Stefos
- Independent researcher, Agricultural University of Athens, Athens, Greece
| | - Georgios Theodorou
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Athens, Greece
| | - Ioannis Politis
- Department of Animal Science and Aquaculture, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
18
|
Hsieh JH, Smith-Roe SL, Huang R, Sedykh A, Shockley KR, Auerbach SS, Merrick BA, Xia M, Tice RR, Witt KL. Identifying Compounds with Genotoxicity Potential Using Tox21 High-Throughput Screening Assays. Chem Res Toxicol 2019; 32:1384-1401. [PMID: 31243984 DOI: 10.1021/acs.chemrestox.9b00053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genotoxicity is a critical component of a comprehensive toxicological profile. The Tox21 Program used five quantitative high-throughput screening (qHTS) assays measuring some aspect of DNA damage/repair to provide information on the genotoxic potential of over 10 000 compounds. Included were assays detecting activation of p53, increases in the DNA repair protein ATAD5, phosphorylation of H2AX, and enhanced cytotoxicity in DT40 cells deficient in DNA-repair proteins REV3 or KU70/RAD54. Each assay measures a distinct component of the DNA damage response signaling network; >70% of active compounds were detected in only one of the five assays. When qHTS results were compared with results from three standard genotoxicity assays (bacterial mutation, in vitro chromosomal aberration, and in vivo micronucleus), a maximum of 40% of known, direct-acting genotoxicants were active in one or more of the qHTS genotoxicity assays, indicating low sensitivity. This suggests that these qHTS assays cannot in their current form be used to replace traditional genotoxicity assays. However, despite the low sensitivity, ranking chemicals by potency of response in the qHTS assays revealed an enrichment for genotoxicants up to 12-fold compared with random selection, when allowing a 1% false positive rate. This finding indicates these qHTS assays can be used to prioritize chemicals for further investigation, allowing resources to focus on compounds most likely to induce genotoxic effects. To refine this prioritization process, models for predicting the genotoxicity potential of chemicals that were active in Tox21 genotoxicity assays were constructed using all Tox21 assay data, yielding a prediction accuracy up to 0.83. Data from qHTS assays related to stress-response pathway signaling (including genotoxicity) were the most informative for model construction. By using the results from qHTS genotoxicity assays, predictions from models based on qHTS data, and predictions from commercial bacterial mutagenicity QSAR models, we prioritized Tox21 chemicals for genotoxicity characterization.
Collapse
Affiliation(s)
- Jui-Hua Hsieh
- Kelly Government Solutions , Research Triangle Park , North Carolina 27709 , United States
| | - Stephanie L Smith-Roe
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Ruili Huang
- National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland 20850 , United States
| | - Alexander Sedykh
- Sciome, LLC , Research Triangle Park , North Carolina 27709 , United States
| | - Keith R Shockley
- Division of Intramural Research , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Scott S Auerbach
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - B Alex Merrick
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| | - Menghang Xia
- National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland 20850 , United States
| | - Raymond R Tice
- RTice Consulting , Hillsborough , North Carolina 27278 , United States
| | - Kristine L Witt
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina 27709 , United States
| |
Collapse
|
19
|
Xu C, Fang Y, Yang Z, Jing Y, Zhang Y, Liu C, Liu W. MARCKS regulates tonic and chronic active B cell receptor signaling. Leukemia 2019; 33:710-729. [PMID: 30209404 DOI: 10.1038/s41375-018-0244-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 01/16/2023]
Abstract
Tonic or chronic active B-cell receptor (BCR) signaling is essential for the survival of normal or some malignant B cells, respectively. However, the molecular mechanism regulating the strength of these two types of BCR signaling remains unknown. Here, using high-speed high-resolution single-molecule tracking in live cells, we identified that PKCβ, STIM1, and IP3R1/2/3 molecules affected the lateral Brownian mobile behavior of BCRs on the plasma membrane of quiescent B cells, which was correlated to the strength of BCR signaling. Further mechanistic studies revealed that these three molecules influenced BCR mobility by regulating the membrane tethering of MARCKS to the inner leaflet of the plasma membrane. Indeed, membrane-untethered or deficiency of MARCKS significantly decreased, while membrane-tethered or overexpression of MARCKS drastically increased the lateral mobility of BCRs. Functional experiments indicated that the membrane-tethered MARCKS suppressed the survival and/or proliferation in both B-cell tumor cells and mouse primary splenic B cells in vitro and in vivo. Mechanistically, we found that membrane-tethered MARCKS increased BCR lateral mobility, and thus decreased BCR nanoclustering by disturbing the interaction between cortical F-actin and the inner leaflet of the plasma membrane, resulting in the suppression of the strength of both tonic and chronic active BCR signaling. Conclusively, MARCKS is a newly identified molecule regulating the strength of BCR signaling by modulating cytoskeleton and plasma membrane interactions, both in the physiological and pathological conditions, suggesting that MARCKS is a putative target for drug design.
Collapse
Affiliation(s)
- Chenguang Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yan Fang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yukai Jing
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, 100084, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China.
- Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| |
Collapse
|
20
|
la Cour JM, Winding Gojkovic P, Ambjørner SEB, Bagge J, Jensen SM, Panina S, Berchtold MW. ALG-2 participates in recovery of cells after plasma membrane damage by electroporation and digitonin treatment. PLoS One 2018; 13:e0204520. [PMID: 30240438 PMCID: PMC6150531 DOI: 10.1371/journal.pone.0204520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
The calcium binding protein ALG-2 is upregulated in several types of cancerous tissues and cancer cell death may be a consequence of ALG-2 downregulation. Novel research suggests that ALG-2 is involved in membrane repair mechanisms, in line with several published studies linking ALG-2 to processes of membrane remodeling and transport, which may contribute to the fitness of cells or protect them from damage. To investigate the involvement of ALG-2 in cell recovery after membrane damage we disrupted the PDCD6 gene encoding the ALG-2 protein in DT-40 cells and exposed them to electroporation. ALG-2 knock-out cells were more sensitive to electroporation as compared to wild type cells. This phenotype could be reversed by reestablishing ALG-2 expression confirming that ALG-2 plays an important role in cell recovery after plasma membrane damage. We found that overexpression of wild type ALG-2 but not a mutated form unable to bind Ca2+ partially protected HeLa cells from digitonin-induced cell death. Further, we were able to inhibit the cell protective function of ALG-2 after digitonin treatment by adding a peptide with the ALG-2 binding sequence of ALIX, which has been proposed to serve as the ALG-2 downstream target in a number of processes including cell membrane repair. Our results suggest that ALG-2 may serve as a novel therapeutic target in combination with membrane damaging interventions.
Collapse
Affiliation(s)
- Jonas M la Cour
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jonas Bagge
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Simone M Jensen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana Panina
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
21
|
Leukocyte Immunoglobulin-Like Receptors A2 and A6 are Expressed in Avian Macrophages and Modulate Cytokine Production by Activating Multiple Signaling Pathways. Int J Mol Sci 2018; 19:ijms19092710. [PMID: 30208630 PMCID: PMC6163679 DOI: 10.3390/ijms19092710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
The activating leukocyte immunoglobulin-like receptors (LILRAs) play an important role in innate immunity. However, most of the LILRA members have not been characterized in avian species including chickens. The present study is the first attempt at cloning, structural analysis and functional characterization of two LILRAs (LILRA2 and LILRA6) in chickens. Multiple sequence alignments and construction of a phylogenetic tree of chicken LILRA2 and LILRA6 with mammalian proteins revealed high conservation between chicken LILRA2 and LILRA6 and a close relationship between the chicken and mammalian proteins. The mRNA expression of LILRA2 and LILRA6 was high in chicken HD11 macrophages and the small intestine compared to that in several other tissues and cells tested. To examine the function of LILRA2 and LILRA6 in chicken immunity, LILRA2 and LILRA6 were transfected into HD11 cells. Our findings indicated that LILRA2 and LILRA6 are associated with the phosphorylation of Src kinases and SHP2, which play a regulatory role in immune functions. Moreover, LILRA6 associated with and activated MHC class I, β2-microglobulin and induced the expression of transporters associated with antigen processing but LILRA2 did not. Furthermore, both LILRA2 and LILRA6 activated JAK-STAT, NF-κB, PI3K/AKT and ERK1/2 MAPK signaling pathways and induced Th1-, Th2- and Th17-type cytokines and Toll-like receptors. Collectively, this study indicates that LILRA2 and LILRA6 are essential for macrophage-mediated immune responses and they have the potential to complement the innate and adaptive immune system against pathogens.
Collapse
|
22
|
Zhang C, Zhou J, Li S, Cai K, Guo X, Liao C, Wang C. Bursal Hexapeptide, A Potential Immunomodulator, Inhibits Tumor Cells Proliferation via p53 Signaling Pathway. Anticancer Agents Med Chem 2018; 18:1582-1588. [PMID: 29866022 DOI: 10.2174/1871520618666180604094618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/03/2018] [Accepted: 03/28/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Bursa of Fabricius (BF) is acknowledged as the central humoral immune organ unique to birds. Bursal Hexapeptide (BHP, AGCCNG) is a recently reported bursal-derived bioactive peptide. However, there are few reports of the molecular basis of the mechanism on immune induction and potential antitumor activity of BHP. METHOD In this paper, Gene microarray analyses demonstrated that BHP regulated expression of 1347 genes, of which 832 were up-regulated and 515 were down-regulated. Differentially expressed genes involved in various pathways were identified, of which 16 pathways were associated with immune responses and tumorigenic processes. RESULT Specifically, we found that BHP selectively inhibited tumor cell proliferation. Furthermore, BHP enhanced antitumor factor p53 luciferase activity and stimulated expression of p53, p21, and p130 protein. Moreover, we observed that the inhibitory effect of BHP on cell proliferation and premature senescence in a p53-dependent manner. CONCLUSION Taken together, we uncovered that BHP may be involved in antitumor suppressor via p53 signaling pathway.
Collapse
Affiliation(s)
- Cong Zhang
- Key Lab of Veterinary Oncological Immunology, Henan University of Science and Technology, Luoyang, China
| | - Jiangfei Zhou
- Key Lab of Veterinary Oncological Immunology, Henan University of Science and Technology, Luoyang, China
| | - Shengnan Li
- Key Lab of Veterinary Oncological Immunology, Henan University of Science and Technology, Luoyang, China
| | - Kairui Cai
- Key Lab of Veterinary Oncological Immunology, Henan University of Science and Technology, Luoyang, China
| | - Xiangling Guo
- Key Lab of Veterinary Oncological Immunology, Henan University of Science and Technology, Luoyang, China
| | - Chengshui Liao
- Key Lab of Veterinary Oncological Immunology, Henan University of Science and Technology, Luoyang, China
| | - Chen Wang
- Key Lab of Veterinary Oncological Immunology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
23
|
Krishnamoorthy M, Wasim L, Buhari FHM, Zhao T, Mahtani T, Ho J, Kang S, Deason-Towne F, Perraud AL, Schmitz C, Treanor B. The channel-kinase TRPM7 regulates antigen gathering and internalization in B cells. Sci Signal 2018; 11:11/533/eaah6692. [PMID: 29871912 DOI: 10.1126/scisignal.aah6692] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Members of the transient receptor potential (TRP) family of ion channels are cellular sensors involved in numerous physiological and pathological processes. We identified the TRP subfamily M member 7 (TRPM7) channel-kinase as a previously uncharacterized regulator of B cell activation. We showed that TRPM7 played a critical role in the early events of B cell activation through both its ion channel and kinase functions. DT40 B cells deficient in TRPM7 or expressing a kinase-deficient mutant of TRPM7 showed defective gathering of antigen and prolonged B cell receptor (BCR) signaling. We showed that lipid metabolism was altered in TRPM7-deficient cells and in cells expressing a kinase-deficient mutant of TRPM7 and suggest that PLC-γ2 may be a target of the kinase activity of TRPM7. Primary B cells that expressed less TRPM7 or were treated with a pharmacological inhibitor of TRPM7 also displayed defective antigen gathering and increased BCR signaling. Finally, we demonstrated that blocking TRPM7 function compromised antigen internalization and presentation to T cells. These data suggest that TRPM7 controls an essential process required for B cell affinity maturation and the production of high-affinity antibodies.
Collapse
Affiliation(s)
- Mithunah Krishnamoorthy
- Department of Cell and Systems Biology, University of Toronto, 24 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Laabiah Wasim
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Fathima Hifza Mohamed Buhari
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Tiantian Zhao
- Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Trisha Mahtani
- Department of Cell and Systems Biology, University of Toronto, 24 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| | - Josephine Ho
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Sohee Kang
- Department of Computer and Mathematical Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Francina Deason-Towne
- Department of Immunology and Microbiology, University of Colorado, Denver, CO 80206, USA
| | - Anne-Laure Perraud
- Department of Immunology and Microbiology, University of Colorado, Denver, CO 80206, USA
| | - Carsten Schmitz
- Department of Immunology and Microbiology, University of Colorado, Denver, CO 80206, USA.,Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Bebhinn Treanor
- Department of Cell and Systems Biology, University of Toronto, 24 Harbord Street, Toronto, Ontario M5S 3G5, Canada. .,Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.,Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
24
|
Chi J, You L, Li P, Teng M, Zhang G, Luo J, Wang A. Surface IgM λ light chain is involved in the binding and infection of infectious bursal disease virus (IBDV) to DT40 cells. Virus Genes 2018; 54:236-245. [PMID: 29372383 DOI: 10.1007/s11262-018-1535-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 01/18/2018] [Indexed: 01/22/2023]
Abstract
Infectious bursal disease virus (IBDV) is an important immunosuppressive virus in chickens. Surface immunoglobulin M (sIgM)-bearing B lymphocytes act as the major targets of IBDV in the bursa of Fabricius, and sIgM may function as one of the membrane binding sites responsible for IBDV infection. Recently, using the virus overlay protein binding assay, the chicken λ light chain of sIgM was identified to specifically interact with IBDV in a virulence-independent manner in vitro. To further investigate sIgM λ light chain-mediated IBDV binding and infection in pre-B cells, the cell line DT40, which is susceptible to both pathogenic and attenuated IBDV, was used. Based on the RNA interference strategy, the DT40 cell line whose λ light chain of sIgM was stably knocked down, herein termed DT40LKD, was generated by the genomic integration of a specific small hairpin RNA and a green fluorescence protein co-expression construct. Flow cytometry analysis indicated that the binding of IBDV to DT40LKD cells was significantly reduced due to the loss of sIgM λ light chain. In particular, reduced viral replication was observed in IBDV-incubated DT40LKD cells, and no viral release into cell culture medium was detected by the IBDV rapid diagnostic strips. In addition, the rescue of sIgM λ light chain expression restored viral binding and replication in DT40LKD cells. These results show that sIgM λ light chain appears to be beneficial for IBDV attachment and infection, suggesting that sIgM acts as a binding site involved in IBDV infection.
Collapse
Affiliation(s)
- Jiaqi Chi
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Leiming You
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Peipei Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002, People's Republic of China
| | - Man Teng
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002, People's Republic of China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002, People's Republic of China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Zhengzhou, 450002, People's Republic of China.
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, No. 100 Kexue Road, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
25
|
Muhammad K, Rudolf R, Pham DAT, Klein-Hessling S, Takata K, Matsushita N, Ellenrieder V, Kondo E, Serfling E. Induction of Short NFATc1/αA Isoform Interferes with Peripheral B Cell Differentiation. Front Immunol 2018; 9:32. [PMID: 29416540 PMCID: PMC5787671 DOI: 10.3389/fimmu.2018.00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/04/2018] [Indexed: 11/15/2022] Open
Abstract
In lymphocytes, immune receptor signals induce the rapid nuclear translocation of preformed cytosolic NFAT proteins. Along with co-stimulatory signals, persistent immune receptor signals lead to high levels of NFATc1/αA, a short NFATc1 isoform, in effector lymphocytes. Whereas NFATc1 is not expressed in plasma cells, in germinal centers numerous centrocytic B cells express nuclear NFATc1/αA. When overexpressed in chicken DT40 B cells or murine WEHI 231 B cells, NFATc1/αA suppressed their cell death induced by B cell receptor signals and affected the expression of genes controlling the germinal center reaction and plasma cell formation. Among those is the Prdm1 gene encoding Blimp-1, a key factor of plasma cell formation. By binding to a regulatory DNA element within exon 1 of the Prdm1 gene, NFATc1/αA suppresses Blimp-1 expression. Since expression of a constitutive active version of NFATc1/αA interfered with Prdm1 RNA expression, LPS-mediated differentiation of splenic B cells to plasmablasts in vitro and reduced immunoglobulin production in vivo, one may conclude that NFATc1/αA plays an important role in controlling plasmablast/plasma cell formation.
Collapse
Affiliation(s)
- Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center (CCC) Mainfranken, University of Würzburg, Würzburg, Germany
| | - Ronald Rudolf
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center (CCC) Mainfranken, University of Würzburg, Würzburg, Germany
| | - Duong Anh Thuy Pham
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center (CCC) Mainfranken, University of Würzburg, Würzburg, Germany
| | - Stefan Klein-Hessling
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center (CCC) Mainfranken, University of Würzburg, Würzburg, Germany
| | - Katsuyoshi Takata
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, Okayama, Japan
| | - Nobuko Matsushita
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | - Volker Ellenrieder
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Eisaku Kondo
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, Comprehensive Cancer Center (CCC) Mainfranken, University of Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Lin D, Izadpanah R, Braun SE, Alt E. A novel model to characterize structure and function of BRCA1. Cell Biol Int 2017; 42:34-44. [PMID: 28833843 DOI: 10.1002/cbin.10846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023]
Abstract
BRCA1 plays a central role in DNA repair. Although N-terminal RING and C-terminal BRCT domains are studied well, the functions of the central region of BRCA1 are poorly characterized. Here, we report a structural and functional analysis of BRCA1 alleles and functional human BRCA1 in chicken B-lymphocyte cell line DT40. The combination of "homologous recombineering" and "RT-cassette" enables modifications of chicken BRCA1 gene in Escherichia coli. Mutant BRCA1 knock-in DT40 cell lines were generated using BRCA1 mutation constructs by homologous recombination with a targeting efficiency of up to 100%. Our study demonstrated that deletion of motifs 2-9 BRCA1Δ/Δ181-1415 (Caenorhabditis elegans BRCA1 mimic) or deletion of motif 1 BRCA1Δ/Δ126-136 decreased cell viability following cisplatin treatment. Furthermore, deletion of motifs 5 and 6 BRCA1Δ/Δ525-881 within DNA-binding region, even the conserved 7-amino acid deletion BRCA1Δ/Δ872-878 within motif 6, caused a decreased cell viability upon cisplatin treatment. Surprisingly, human BRCA1 is functional in DT40 cells as indicated by DNA damage-induced Rad 51 foci formation in human BRCA1 knock-in DT40 cells. These results demonstrate that those conserved motifs within the central region are essential for DNA repair functions of BRCA1. These findings provide a valuable tool for the development of new therapeutic modalities of breast cancer linked to BRCA1.
Collapse
Affiliation(s)
- Dong Lin
- Department of Radiation Oncology, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Reza Izadpanah
- Department of Medicine, Tulane University, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Stephen E Braun
- Division of Regenerative Medicine, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA, 70433, USA
| | - Eckhard Alt
- Isar Klinikum, Sonnenstr 24-26, Munich, 80331, Germany
| |
Collapse
|
27
|
Abstract
In this review, Prioleau and MacAlpine summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages. For more than three decades, investigators have sought to identify the precise locations where DNA replication initiates in mammalian genomes. The development of molecular and biochemical approaches to identify start sites of DNA replication (origins) based on the presence of defining and characteristic replication intermediates at specific loci led to the identification of only a handful of mammalian replication origins. The limited number of identified origins prevented a comprehensive and exhaustive search for conserved genomic features that were capable of specifying origins of DNA replication. More recently, the adaptation of origin-mapping assays to genome-wide approaches has led to the identification of tens of thousands of replication origins throughout mammalian genomes, providing an unprecedented opportunity to identify both genetic and epigenetic features that define and regulate their distribution and utilization. Here we summarize recent advances in our understanding of how primary sequence, chromatin environment, and nuclear architecture contribute to the dynamic selection and activation of replication origins across diverse cell types and developmental stages.
Collapse
Affiliation(s)
- Marie-Noëlle Prioleau
- Institut Jacques Monod, UMR7592, Centre National de la Recherche Scientifique, Universite Paris Diderot, Equipe Labellisee Association pour la Recherche sur le Cancer, Paris 75013, France
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710. USA
| |
Collapse
|
28
|
The FACT Complex Promotes Avian Leukosis Virus DNA Integration. J Virol 2017; 91:JVI.00082-17. [PMID: 28122976 DOI: 10.1128/jvi.00082-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/25/2022] Open
Abstract
All retroviruses need to integrate a DNA copy of their genome into the host chromatin. Cellular proteins regulating and targeting lentiviral and gammaretroviral integration in infected cells have been discovered, but the factors that mediate alpharetroviral avian leukosis virus (ALV) integration are unknown. In this study, we have identified the FACT protein complex, which consists of SSRP1 and Spt16, as a principal cellular binding partner of ALV integrase (IN). Biochemical experiments with purified recombinant proteins show that SSRP1 and Spt16 are able to individually bind ALV IN, but only the FACT complex effectively stimulates ALV integration activity in vitro Likewise, in infected cells, the FACT complex promotes ALV integration activity, with proviral integration frequency varying directly with cellular expression levels of the FACT complex. An increase in 2-long-terminal-repeat (2-LTR) circles in the depleted FACT complex cell line indicates that this complex regulates the ALV life cycle at the level of integration. This regulation is shown to be specific to ALV, as disruption of the FACT complex did not inhibit either lentiviral or gammaretroviral integration in infected cells.IMPORTANCE The majority of human gene therapy approaches utilize HIV-1- or murine leukemia virus (MLV)-based vectors, which preferentially integrate near genes and regulatory regions; thus, insertional mutagenesis is a substantial risk. In contrast, ALV integrates more randomly throughout the genome, which decreases the risks of deleterious integration. Understanding how ALV integration is regulated could facilitate the development of ALV-based vectors for use in human gene therapy. Here we show that the FACT complex directly binds and regulates ALV integration efficiency in vitro and in infected cells.
Collapse
|
29
|
A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 2017; 23:461-471. [PMID: 28263311 DOI: 10.1038/nm.4291] [Citation(s) in RCA: 370] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Cisplatin and its platinum analogs, carboplatin and oxaliplatin, are some of the most widely used cancer chemotherapeutics. Although cisplatin and carboplatin are used primarily in germ cell, breast and lung malignancies, oxaliplatin is instead used almost exclusively to treat colorectal and other gastrointestinal cancers. Here we utilize a unique, multi-platform genetic approach to study the mechanism of action of these clinically established platinum anti-cancer agents, as well as more recently developed cisplatin analogs. We show that oxaliplatin, unlike cisplatin and carboplatin, does not kill cells through the DNA-damage response. Rather, oxaliplatin kills cells by inducing ribosome biogenesis stress. This difference in drug mechanism explains the distinct clinical implementation of oxaliplatin relative to cisplatin, and it might enable mechanistically informed selection of distinct platinum drugs for distinct malignancies. These data highlight the functional diversity of core components of front-line cancer therapy and the potential benefits of applying a mechanism-based rationale to the use of our current arsenal of anti-cancer drugs.
Collapse
|
30
|
Truong AD, Ban J, Park B, Hong YH, Lillehoj HS. Characterization and functional analyses of a novel chicken CD8α variant X1 (CD8α1)1,2. J Anim Sci 2016; 94:2737-51. [DOI: 10.2527/jas.2015-0133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Wen H, Xu WJ, Jin X, Oh S, Phan CHD, Song J, Lee SK, Park S. The roles of IP3 receptor in energy metabolic pathways and reactive oxygen species homeostasis revealed by metabolomic and biochemical studies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2937-44. [PMID: 26235438 DOI: 10.1016/j.bbamcr.2015.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/10/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are calcium channels modulating important calcium-mediated processes. Recent studies implicate IP(3)R in cell metabolism, but specific evidence is missing regarding IP(3)R's effects on actual metabolic pathways and key energy metabolites. Here, we applied metabolomics and molecular biology to compare DT40 cell lines devoid of IP(3)R (KO) and its wild-type (WT) counterpart. NMR and LC-MS metabolomic data showed that the KO cell line has a very different basic energy metabolism from the WT cell line, showing enhanced Warburg effect. In particular, the KO cells exhibited significant perturbation in energy charge, reduced glutathione and NADPH ratios with slower cellular growth rate. Subsequent flow cytometry results showed that the KO cell line has a higher level of general reactive oxygen species (ROS) but has a lower level of peroxynitrites. This ROS disturbance could be explained by observing lower expression of superoxide dismutase 2 (SOD2) and unchanged expression of catalase. The higher ROS seems to be involved in the slower growth rate of the KO cells, with an ROS scavenger increasing their growth rate. However, the KO and WT cell lines did not show any noticeable differences in AMPK and phosphorylated AMPK levels, suggesting possible saturation of AMPK-mediated metabolic regulatory circuit in both cells. Overall, our study reveals IP3R's roles in ROS homeostasis and metabolic pathways as well as the effects of its KO on cellular phenotypes.
Collapse
Affiliation(s)
- He Wen
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Sillim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Wen Jun Xu
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Sillim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Xing Jin
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Sillim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sehyun Oh
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Sillim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Chau Hong Duc Phan
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Sillim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jayoung Song
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Sillim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Sillim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Sillim-dong, Gwanak-gu, Seoul 151-742, Republic of Korea.
| |
Collapse
|
32
|
A eukaryotic expression plasmid carrying chicken interleukin-18 enhances the response to newcastle disease virus vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:56-64. [PMID: 25355794 DOI: 10.1128/cvi.00636-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Interleukin-18 (IL-18) is an important cytokine involved in innate and acquired immunity. In this study, we cloned the full-length chicken IL-18 (ChIL-18) gene from specific-pathogen-free (SPF) chicken embryo spleen cells and provided evidence that the ChIL-18 gene in a recombinant plasmid was successfully expressed in chicken DT40 cells. ChIL-18 significantly enhanced gamma interferon (IFN-γ) mRNA expression in chicken splenocytes, which increased IFN-γ-induced nitric oxide (NO) synthesis by macrophages. The potential genetic adjuvant activity of the ChIL-18 plasmid was examined in chickens by coinjecting ChIL-18 plasmid and inactivated Newcastle disease virus (NDV) vaccine. ChIL-18 markedly elevated serum hemagglutination inhibition (HI) titers and anti-hemagglutinin-neuraminidase (anti-HN)-specific antibody levels, induced the secretion of both Th1- (IFN-γ) and Th2- (interleukin-4) type cytokines, promoted the proliferation of T and B lymphocytes, and increased the populations of CD3(+) T cells and their subsets, CD3(+) CD4(+) and CD3(+) CD8(+) T cells. Furthermore, a virus challenge revealed that ChIL-18 contributed to protection against Newcastle disease virus challenge. Taken together, our data indicate that the coadministration of ChIL-18 plasmid and NDV vaccine induces a strong immune response at both the humoral and cellular levels and that ChIL-18 is a novel immunoadjuvant suitable for NDV vaccination.
Collapse
|
33
|
Usefulness of a Darwinian system in a biotechnological application: evolution of optical window fluorescent protein variants under selective pressure. PLoS One 2014; 9:e107069. [PMID: 25192257 PMCID: PMC4156574 DOI: 10.1371/journal.pone.0107069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 08/13/2014] [Indexed: 01/20/2023] Open
Abstract
With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40's diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein's structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model.
Collapse
|
34
|
SDF-1 chemokine signalling modulates the apoptotic responses to iron deprivation of clathrin-depleted DT40 cells. PLoS One 2014; 9:e106278. [PMID: 25162584 PMCID: PMC4146602 DOI: 10.1371/journal.pone.0106278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 08/05/2014] [Indexed: 11/29/2022] Open
Abstract
We have previously deleted both endogenous copies of the clathrin heavy-chain gene in the chicken pre B-cell-line DT40 and replaced them with clathrin under the control of a tetracycline-regulatable promoter (Tet-Off). The originally derived cell-line DKO-S underwent apoptosis when clathrin expression was repressed. We have also described a cell-line DKO-R derived from DKO-S cells that was less sensitive to clathrin-depletion. Here we show that the restriction of transferrin uptake, resulting in iron deprivation, is responsible for the lethal consequence of clathrin-depletion. We further show that the DKO-R cells have up-regulated an anti-apoptotic survival pathway based on the chemokine SDF-1 and its receptor CXCR4. Our work clarifies several puzzling features of clathrin-depleted DT40 cells and reveals an example of how SDF-1/CXCR4 signalling can abrogate pro-apoptotic pathways and increase cell survival. We propose that the phenomenon described here has implications for the therapeutic approach to a variety of cancers.
Collapse
|
35
|
Davani D, Pancer Z, Cheroutre H, Ratcliffe MJH. Negative selection of self-reactive chicken B cells requires B cell receptor signaling and is independent of the bursal microenvironment. THE JOURNAL OF IMMUNOLOGY 2014; 192:3207-17. [PMID: 24516196 DOI: 10.4049/jimmunol.1302394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although the negative selection of self-reactive B cells in the bone marrow of mammals has been clearly demonstrated, it remains unclear in models of gut-associated B cell lymphopoiesis, such as that of the chicken (Gallus gallus). We have generated chicken surface IgM-related receptors in which the diversity region of the lamprey variable lymphocyte receptor (VLR) has been fused to the C region of chicken surface IgM (Tμ). Expression of a VLR:Tμ receptor with specificity for PE supported normal development of B cells, whereas a VLR:Tμ receptor specific to hen egg lysozyme (a self-antigen with respect to chicken B cells) induced, in vivo, complete deletion of VLR(HEL)Tμ-expressing B cells. In ovo i.v. injection of PE resulted in deletion of VLR(PE)Tμ-expressing Β cells in the embryo spleen, demonstrating that negative selection was independent of the bursal microenvironment. Although chickens transduced with a murine CD8α:chicken Igα fusion protein contained B cells expressing mCD8α:chIgα, cotransfection of the mCD8α:chIgα construct, together with thymus leukemia Ag (a natural ligand for mCD8α), resulted in reduced levels of mCD8α:chIgα-expressing B cells in inverse proportion to the levels of thymus leukemia Ag-expressing cells. Deletion of mCD8α:chIgα-expressing cells was specific for B cells and required active signaling downstream of the mCD8α:chIgα receptor. Ag-mediated negative selection of developing chicken B cells can therefore occur independently of the bursal microenvironment and is dependent on signaling downstream of the BCR.
Collapse
Affiliation(s)
- Dariush Davani
- Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | | | | | | |
Collapse
|
36
|
Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A 2013; 111:285-90. [PMID: 24347639 DOI: 10.1073/pnas.1309085110] [Citation(s) in RCA: 284] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellular response to highly genotoxic DNA double-strand breaks (DSBs) involves the exquisite coordination of multiple signaling and repair factors. Here, we conducted a functional RNAi screen and identified BAP1 as a deubiquitinase required for efficient assembly of the homologous recombination (HR) factors BRCA1 and RAD51 at ionizing radiation (IR) -induced foci. BAP1 is a chromatin-associated protein frequently inactivated in cancers of various tissues. To further investigate the role of BAP1 in DSB repair, we used a gene targeting approach to knockout (KO) this deubiquitinase in chicken DT40 cells. We show that BAP1-deficient cells are (i) sensitive to IR and other agents that induce DSBs, (ii) defective in HR-mediated immunoglobulin gene conversion, and (iii) exhibit an increased frequency of chromosomal breaks after IR treatment. We also show that BAP1 is recruited to chromatin in the proximity of a single site-specific I-SceI-induced DSB. Finally, we identified six IR-induced phosphorylation sites in BAP1 and showed that mutation of these residues inhibits BAP1 recruitment to DSB sites. We also found that both BAP1 catalytic activity and its phosphorylation are critical for promoting DNA repair and cellular recovery from DNA damage. Our data reveal an important role for BAP1 in DSB repair by HR, thereby providing a possible molecular basis for its tumor suppressor function.
Collapse
|
37
|
Minakawa EN, Yamakado H, Tanaka A, Uemura K, Takeda S, Takahashi R. Chicken DT40 cell line lacking DJ-1, the gene responsible for familial Parkinson's disease, displays mitochondrial dysfunction. Neurosci Res 2013; 77:228-33. [DOI: 10.1016/j.neures.2013.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/08/2013] [Accepted: 09/13/2013] [Indexed: 02/02/2023]
|
38
|
Li Z, Zhu Y, Zhai Y, R Castroagudin M, Bao Y, White TE, Glavy JS. Werner complex deficiency in cells disrupts the Nuclear Pore Complex and the distribution of lamin B1. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:3338-3345. [PMID: 24050918 DOI: 10.1016/j.bbamcr.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/22/2013] [Accepted: 09/03/2013] [Indexed: 11/24/2022]
Abstract
From the surrounding shell to the inner machinery, nuclear proteins provide the functional plasticity of the nucleus. This study highlights the nuclear association of Pore membrane (POM) protein NDC1 and Werner protein (WRN), a RecQ helicase responsible for the DNA instability progeria disorder, Werner Syndrome. In our previous publication, we connected the DNA damage sensor Werner's Helicase Interacting Protein (WHIP), a binding partner of WRN, to the NPC. Here, we confirm the association of the WRN/WHIP complex and NDC1. In established WRN/WHIP knockout cell lines, we further demonstrate the interdependence of WRN/WHIP and Nucleoporins (Nups). These changes do not completely abrogate the barrier of the Nuclear Envelope (NE) but do affect the distribution of FG Nups and the RAN gradient, which are necessary for nuclear transport. Evidence from WRN/WHIP knockout cell lines demonstrates changes in the processing and nucleolar localization of lamin B1. The appearance of "RAN holes" void of RAN corresponds to regions within the nucleolus filled with condensed pools of lamin B1. From WRN/WHIP knockout cell line extracts, we found three forms of lamin B1 that correspond to mature holoprotein and two potential post-translationally modified forms of the protein. Upon treatment with topoisomerase inhibitors lamin B1 cleavage occurs only in WRN/WHIP knockout cells. Our data suggest the link of the NDC1 and WRN as one facet of the network between the nuclear periphery and genome stability. Loss of WRN complex leads to multiple alterations at the NPC and the nucleolus.
Collapse
Affiliation(s)
- Zhi Li
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yizhou Zhu
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yujia Zhai
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Michelle R Castroagudin
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yifei Bao
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Tommy E White
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Joseph S Glavy
- Department of Chemistry, Chemical Biology & Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| |
Collapse
|
39
|
Panina S, Stephan A, la Cour JM, Jacobsen K, Kallerup LK, Bumbuleviciute R, Knudsen KVK, Sánchez-González P, Villalobo A, Olesen UH, Berchtold MW. Significance of calcium binding, tyrosine phosphorylation, and lysine trimethylation for the essential function of calmodulin in vertebrate cells analyzed in a novel gene replacement system. J Biol Chem 2012; 287:18173-81. [PMID: 22493455 DOI: 10.1074/jbc.m112.339382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) was shown to be essential for survival of lower eukaryotes by gene deletion experiments. So far, no CaM gene deletion was reported in higher eukaryotes. In vertebrates, CaM is expressed from several genes, which encode an identical protein, making it difficult to generate a model system to study the effect of CaM gene deletion. Here, we present a novel genetic system based on the chicken DT40 cell line, in which the two functional CaM genes were deleted and one allele replaced with a CaM transgene that can be artificially regulated. We show that CaM is essential for survival of vertebrate cells as they die in the absence of CaM expression. Reversal of CaM repression or ectopic expression of HA-tagged CaM rescued the cells. Cells exclusively expressing HA-CaM with impaired individual calcium binding domains as well as HA-CaM lacking the ability to be phosphorylated at residues Tyr(99)/Tyr(138) or trimethylated at Lys(115) survived and grew well. CaM mutated at both Ca(2+) binding sites 3 and 4 as well as at both sites 1 and 2, but to a lesser degree, showed decreased ability to support cell growth. Cells expressing CaM with all calcium binding sites impaired died with kinetics similar to that of cells expressing no CaM. This system offers a unique opportunity to analyze CaM structure-function relationships in vivo without the use of pharmacological inhibitors and to analyze the function of wild type and mutated CaM in modulating the activity of different target systems without interference of endogenous CaM.
Collapse
Affiliation(s)
- Svetlana Panina
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Detection of PIGO-deficient cells using proaerolysin: a valuable tool to investigate mechanisms of mutagenesis in the DT40 cell system. PLoS One 2012; 7:e33563. [PMID: 22428069 PMCID: PMC3299801 DOI: 10.1371/journal.pone.0033563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/16/2012] [Indexed: 12/30/2022] Open
Abstract
While isogenic DT40 cell lines deficient in DNA repair pathways are a great tool to understand the DNA damage response to genotoxic agents by a comparison of cell toxicity in mutants and parental DT40 cells, no convenient mutation assay for mutagens currently exists for this reverse-genetic system. Here we establish a proaerolysin (PA) selection-based mutation assay in DT40 cells to identify glycosylphosphatidylinositol (GPI)-anchor deficient cells. Using PA, we detected an increase in the number of PA-resistant DT40 cells exposed to MMS for 24 hours followed by a 5-day period of phenotype expression. GPI anchor synthesis is catalyzed by a series of phosphatidylinositol glycan complementation groups (PIGs). The PIG-O gene is on the sex chromosome (Chromosome Z) in chicken cells and is critical for GPI anchor synthesis at the intermediate step. Among all the mutations detected in the sequence levels observed in DT40 cells exposed to MMS at 100 µM, we identified that ∼55% of the mutations are located at A:T sites with a high frequency of A to T transversion mutations. In contrast, we observed no transition mutations out of 18 mutations. This novel assay for DT40 cells provides a valuable tool to investigate the mode of action of mutations caused by reactive agents using a series of isogenic mutant DT40 cells.
Collapse
|
41
|
Rahn JJ, Adair GM, Nairn RS. Use of gene targeting to study recombination in mammalian cell DNA repair mutants. Methods Mol Biol 2012; 920:445-470. [PMID: 22941622 DOI: 10.1007/978-1-61779-998-3_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The study of gene function has been greatly facilitated by the development of strategies to modify genomic DNA. Gene targeting is one of the most successfully applied techniques used to examine the roles of specific genes in a wide variety of model systems from yeast to mammals. Our laboratory has pioneered the use of the Chinese hamster ovary (CHO) cell culture model system to study pathways of DNA repair and recombination at the hemizygous CHO APRT locus. By using a simple and effective gene targeting method, we have generated a number of DNA repair-deficient cell lines that have been used in targeted recombination experiments to investigate pathways of recombinational repair in somatic mammalian cells. These methods can be readily customized to generate a variety of cell lines deficient in specific genes of interest and can be applied to study the roles of other DNA repair proteins in pathways of mammalian recombinational repair.
Collapse
Affiliation(s)
- Jennifer J Rahn
- Department of Molecular Carcinogenesis, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
42
|
TANIGUCHI M, KAMINO S, HIROMURA M, ENOMOTO S. Dynamics and Multiple Molecular Imaging of Bio-trace Elements. BUNSEKI KAGAKU 2012. [DOI: 10.2116/bunsekikagaku.61.1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Masanari TANIGUCHI
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science
| | - Shinichiro KAMINO
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science
| | - Makoto HIROMURA
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science
| | - Shuichi ENOMOTO
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
- Multiple Molecular Imaging Research Laboratory, RIKEN Center for Molecular Imaging Science
| |
Collapse
|
43
|
Li H, Panina S, Kaur A, Ruano MJ, Sánchez-González P, la Cour JM, Stephan A, Olesen UH, Berchtold MW, Villalobo A. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin. J Biol Chem 2011; 287:3273-81. [PMID: 22157759 DOI: 10.1074/jbc.m111.317529] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca(2+)/CaM complexes, which interact with and activate target proteins. In the present study the role of Ca(2+)/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca(2+) chelator inhibited ligand-dependent EGFR auto(trans)phosphorylation. This occurred also in the presence of inhibitors of protein kinase C, CaM-dependent protein kinase II and calcineurin, which are known Ca(2+)- and/or Ca(2+)/CaM-dependent EGFR regulators, pointing to a direct effect of Ca(2+)/CaM on the receptor. Furthermore, we demonstrate that down-regulation of CaM in conditional CaM knock out cells stably transfected with the human EGFR decreased its ligand-dependent phosphorylation. Substitution of six basic amino acid residues within the CaM-binding domain (CaM-BD) of the EGFR by alanine resulted in a decreased phosphorylation of the receptor and of its downstream substrate phospholipase Cγ1. These results support the hypothesis that Ca(2+)/CaM regulates the EGFR activity by directly interacting with the CaM-BD of the receptor located at its cytosolic juxtamembrane region.
Collapse
Affiliation(s)
- Hongbing Li
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Arturo Duperier 4, E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Minbuta T, Ono M. Scattered regulatory regions of the chicken immunoglobulin-β gene and two adjacent promoters of ubiquitously expressed genes interact with the immunoglobulin-β promoter in DT40 cells. Biol Pharm Bull 2011; 34:1710-6. [PMID: 22040884 DOI: 10.1248/bpb.34.1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies indicate that several transcription units assemble to form a 'transcription factory' where active transcription occurs in the nuclei. Previously, we generated chicken B-lymphocyte-derived DT40 cells lacking six transcriptional regulatory regions scattered in and around the immunoglobulin (Ig)-β gene. The deletions caused a complete shut down of transcription and epigenetic regulation of the Ig-β gene, demonstrating that the scattered regulatory regions cooperated in the transcriptional and epigenetic regulation of the gene. However, the in vivo 3-dimensional spatial relationships between the Ig-β promoter and these six regulatory regions were not investigated. In this study, we used chromosome conformation capture (3C) technology and demonstrated that the Ig-β promoter physically interacted with the scattered regulatory regions. We found that the Ig-β promoter also interacted with two downstream promoters of ubiquitously expressed genes, rad motif 1 (RDM1) and Plekhm1, to form a transcription factory, but not with three ubiquitously expressed genes, BAF60b, p45/SUG, and RRMJ3, located upstream of the Ig-β gene. In this factory, the chromatin from the three promoters and the scattered regulatory regions of the Ig-β gene formed a complex structure with many chromatin loops.
Collapse
Affiliation(s)
- Tomohiro Minbuta
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | | |
Collapse
|
45
|
Chayahara K, Itaya K, Ono M. Transcriptional and epigenetic effects of deleting large regions, alone or in combination, from their natural context in the chicken Ig-β gene. Gene 2011; 486:1-7. [PMID: 21749917 DOI: 10.1016/j.gene.2011.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/13/2011] [Accepted: 06/27/2011] [Indexed: 11/17/2022]
Abstract
Previously, we used homologous recombination to delete six groups of cell-type-specific DNase I hypersensitive sites (DHSs), potential transcriptional and epigenetic regulators, scattered in and around the Ig-β gene from their natural context in B-lymphocyte-derived chicken DT40 cells. Simultaneous deletion of all six groups completely shut down transcription and epigenetic regulation of the Ig-β gene; therefore, the cooperation of the scattered regulatory regions was essential for transcription and epigenetic regulation. In this study, we regrouped the cell-type-specific DHSs of Ig-β, those in the original six deletions and three additional ones, into three larger regional groups-the long upstream region, the intron, and the long downstream region-and deleted these groups individually or in combination. Combinatorial deletion of all three regional groups decreased Ig-β mRNA levels to 0.4% of the control, which was significantly higher than <0.1%, the level resulting from deletion of all six smaller groups. Histone H3 and H4 acetylation and H3K4 dimethylation levels at the Ig-β promoter were low in cells carrying deletions of all six smaller groups, but intermediate levels of acetylation and enhanced H3K4 dimethylation were observed in cells carrying deletions of all three larger groups. While CG methylation was definitely present at the Ig-β promoter in cells carrying all six smaller deletions, it was nearly absent from the Ig-β promoter in cells carrying all three larger deletions. Thus, combinatorial deletion of larger regulatory regions had less effect on transcription and epigenetic regulation at the chicken Ig-β gene than combinatorial deletion of shorter ones. Analysis of several combinatorial deletions, where combinations included two larger deletions and one smaller deletion, revealed the relative effects of each deletion on transcription of the Ig-β gene. Investigation of the CG methylation status at the Ig-β promoter in one combinatorial deletion demonstrated that USI was involved in the maintenance of CG methylation.
Collapse
Affiliation(s)
- K Chayahara
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | | | | |
Collapse
|
46
|
Ridpath JR, Takeda S, Swenberg JA, Nakamura J. Convenient, multi-well plate-based DNA damage response analysis using DT40 mutants is applicable to a high-throughput genotoxicity assay with characterization of modes of action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:153-60. [PMID: 20839229 PMCID: PMC3280086 DOI: 10.1002/em.20595] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Chemists continually synthesize myriad new chemicals (∼2,000/year), some of which make their way into the environment or otherwise pose possible threats to humans who potentially become exposed to the compounds. Regulators must determine whether these, along with the glut (∼80,000) of existing, chemicals are toxic and at what exposure levels. An important component of this determination is to ascertain the mode of action (MOA) of each compound as it relates to the pathway the compound uses to induce genotoxicity. Several assays have traditionally been used to reveal these effects to the genome: the Ames test, tests with yeast and mammalian cell lines, and animal studies. Previously, we described a new multi-well plate-based method which makes use of the DT40 isogenic cell line and its dozens of available mutants knocked out in DNA repair and cell cycle pathways and we now provide a detailed protocol of the further improvement of the assay. Although the DT40 line has existed for some time and has been used in numerous studies of DNA repair pathways, little use has been made of this valuable resource for toxicological investigations. Our method introduces the 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide dye scheme determination of cell survival in a manner that greatly increases throughput and reduces cost while maintaining reasonable sensitivity. Although this new genotoxicity assay requires validation with many more mutagens before becoming an established, regulatory decision-making analysis tool, we believe that this method will be very advantageous if eventually added to the repertoire of those investigating MOAs of potentially genotoxic substances.
Collapse
Affiliation(s)
- John R. Ridpath
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shunichi Takeda
- Department of Radiation Genetics Graduate School of Medicine, Kyoto, Japan
| | - James A. Swenberg
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
47
|
FitzGerald J, Moureau S, Drogaris P, O'Connell E, Abshiru N, Verreault A, Thibault P, Grenon M, Lowndes NF. Regulation of the DNA damage response and gene expression by the Dot1L histone methyltransferase and the 53Bp1 tumour suppressor. PLoS One 2011; 6:e14714. [PMID: 21383990 PMCID: PMC3044716 DOI: 10.1371/journal.pone.0014714] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/19/2010] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Dot1L, a histone methyltransferase that targets histone H3 lysine 79 (H3K79), has been implicated in gene regulation and the DNA damage response although its functions in these processes remain poorly defined. METHODOLOGY/PRINCIPAL FINDINGS Using the chicken DT40 model system, we generated cells in which the Dot1L gene is disrupted to examine the function and focal recruitment of the 53Bp1 DNA damage response protein. Detailed kinetic and dose response assays demonstrate that, despite the absence of H3K79 methylation demonstrated by mass spectrometry, 53Bp1 focal recruitment is not compromised in these cells. We also describe, for the first time, the phenotypes of a cell line lacking both Dot1L and 53Bp1. Dot1L⁻/⁻ and wild type cells are equally resistant to ionising radiation, whereas 53Bp1⁻/⁻/Dot1L⁻/⁻ cells display a striking DNA damage resistance phenotype. Dot1L and 53Bp1 also affect the expression of many genes. Loss of Dot1L activity dramatically alters the mRNA levels of over 1200 genes involved in diverse biological functions. These results, combined with the previously reported list of differentially expressed genes in mouse ES cells knocked down for Dot1L, demonstrates surprising cell type and species conservation of Dot1L-dependent gene expression. In 53Bp1⁻/⁻ cells, over 300 genes, many with functions in immune responses and apoptosis, were differentially expressed. To date, this is the first global analysis of gene expression in a 53Bp1-deficient cell line. CONCLUSIONS/SIGNIFICANCE Taken together, our results uncover a negative role for Dot1L and H3K79 methylation in the DNA damage response in the absence of 53Bp1. They also enlighten the roles of Dot1L and 53Bp1 in gene expression and the control of DNA double-strand repair pathways in the context of chromatin.
Collapse
Affiliation(s)
- Jennifer FitzGerald
- Genome Stability Laboratory, School of Natural Sciences, Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Sylvie Moureau
- Genome Stability Laboratory, School of Natural Sciences, Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Paul Drogaris
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Enda O'Connell
- National Centre for Biomedical Engineering Sciences, National University of Ireland Galway, Galway, Ireland
| | - Nebiyu Abshiru
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - Muriel Grenon
- Genome Stability Laboratory, School of Natural Sciences, Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| | - Noel F. Lowndes
- Genome Stability Laboratory, School of Natural Sciences, Centre for Chromosome Biology, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
48
|
Luo J, Zhang H, Teng M, Fan JM, You LM, Xiao ZJ, Yi ML, Zhi YB, Li XW, Zhang GP. Surface IgM on DT40 cells may be a component of the putative receptor complex responsible for the binding of infectious bursal disease virus. Avian Pathol 2011; 39:359-65. [PMID: 20954012 DOI: 10.1080/03079457.2010.506211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To investigate the host-pathogen interactions between infectious bursal disease virus (IBDV) and target B-lymphocytic cells, a cDNA T7 phage display library from the chicken bursa of Fabricius was constructed and screened for virus binding. Surface immunoglobulin M (sIgM) was isolated as a putative candidate binding site and its interactions with IBDV were further investigated using a chicken bursal lymphoma-derived cell line DT40. The results showed that the λ light chain of sIgM specifically interacted with IBDV in a virulence-independent manner in vitro, and most of the binding of IBDV to DT40 cells was inhibited by sIgM-specific monoclonal antibodies. Further, the infectivity of IBDV in vitro was reduced by sIgM-specific monoclonal antibodies. Our data provided evidence that sIgM may participate as one of the putative membrane binding sites responsible for IBDV infection.
Collapse
Affiliation(s)
- Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Itaya K, Chayahara K, Hirai T, Minbuta T, Uchikawa T, Tanaka T, Masaki S, Kuroda K, Ono M. DT40 knock-out and knock-in studies determine the regions necessary and sufficient for transcription and epigenetic conversion of the chicken Ig-β gene. Genes Cells 2011; 16:291-303. [PMID: 21294817 DOI: 10.1111/j.1365-2443.2011.01486.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chicken Ig-β locus is organized by three cell-type-specific genes and two ubiquitously expressed genes. B-cell-specific DNase I hypersensitive sites (DHS) in that locus, including three present inside the flanking gene, were grouped into six regions and deleted. The deletions decreased Ig-β mRNA content to <0.1% of that of normal DT40 cells and converted epigenetic parameters such as histone modifications, CG methylation and DNase I hypersensitivity into inactive states. Knocked-in DHS regions into knock-out cells reactivated both transcription of the Ig-β gene and epigenetic parameters. Thus, the collaboration of the scattered regulatory regions was essential and sufficient not only for B-cell-specific transcription of the Ig-β gene, but also for the conversion of epigenetic parameters. On the basis of the knock-in studies, we determined the regions involved in the conversion and maintenance of the epigenetic parameters. These scattered regulatory regions were limited in vicinity such as in an intron of the gene, in the intergenic regions and in the introns of a flanking gene.
Collapse
Affiliation(s)
- Kakeru Itaya
- Department of Life Science, College of Science, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fujita T, Fujii H. Species-specific 5'-genomic structure and multiple transcription start sites in the chicken Pax5 gene. Gene 2011; 477:24-31. [PMID: 21241785 DOI: 10.1016/j.gene.2011.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 01/09/2011] [Indexed: 12/22/2022]
Abstract
Master differentiation transcription factors (MDFs) play decisive roles in cell lineage commitment. Paired box 5 (Pax5) is one of MDFs essential for differentiation of pre-B cells into mature B cells. Here, we analyzed the 5'-genomic structure and transcription of the chicken Pax5 (cPax5) gene in the chicken mature B cell line, DT40. We showed that the cPax5 gene has two first exons: exon 1A contains long AG repeats, while exon 1B has high GC contents. The exons 1A and 1B had one and three major transcription start sites, respectively. Semi-quantitative RT-PCR revealed that comparable amounts of mRNA are transcribed from the exons 1A and 1B. Interestingly, the transcription start site of the cPax5 exon 1A was chicken-specific. In addition, the cPax5 promoter upstream of the exon 1A had no homology with the human and mouse Pax5 promoters. Thus, the mechanisms regulating transcription of the Pax5 exon 1A might not be conserved among species. Furthermore, we determined the physical structure of the exons 1A, 1B, and 2 in the genome of DT40 cells. Our results will be useful for elucidating mechanisms that control cPax5 transcription and B cell lineage commitment, which is conserved or not conserved among different species.
Collapse
Affiliation(s)
- Toshitsugu Fujita
- Combined Program on Microbiology and Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Osaka, Japan
| | | |
Collapse
|