1
|
Effects of Omega-3 Fatty Acids Supplementation on Serum Lipid Profile and Blood Pressure in Patients with Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods 2023; 12:foods12040725. [PMID: 36832799 PMCID: PMC9956263 DOI: 10.3390/foods12040725] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The purpose of this study was to explore the effect of omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplementation on serum lipid profile and blood pressure in patients with metabolic syndrome. We searched PubMed, Web of Science, Embase, and the Cochrane library from database inception to 30 April 2022. This meta-analysis included eight trials with 387 participants. We found that supplementation of n-3 PUFAs has no significant reduction in TC level (SMD = -0.02; 95% CI: -0.22 ~ 0.18, I2 = 23.7%) and LDL-c level in serum (SMD = 0.18; 95% CI: -0.18 ~ 0.53, I2 = 54.9%) of patients with metabolic syndrome. Moreover, we found no significant increase in serum high-density lipoprotein cholesterol level (SMD = 0.02; 95% CI: -0.21 ~ 0.25, I2 = 0%) in patients with metabolic syndrome after consuming n-3 PUFAs. In addition, we found that n-3 PUFAs can significantly decrease serum triglyceride levels (SMD= -0.39; 95% CI: -0.59 ~ -0.18, I2 = 17.2%), systolic blood pressure (SMD = -0.54; 95% CI: -0.86 ~ -0.22, I2 = 48.6%), and diastolic blood pressure (SMD = -0.56; 95% CI: -0.79 ~ 0.33, I2 = 14.0%) in patients with metabolic syndrome. The results from the sensitivity analysis confirmed that our results were robust. These findings suggest that n-3 PUFA supplementation may serve as a potential dietary supplement for improving lipids and blood pressure in metabolic syndrome. Given the quality of the included studies, further studies are still needed to verify our findings.
Collapse
|
2
|
Fanalli SL, da Silva BPM, Gomes JD, Durval MC, de Almeida VV, Moreira GCM, Silva-Vignato B, Afonso J, Freitas FAO, Reecy JM, Koltes JE, Koltes D, Garrick D, Correia de Almeida Regitano L, Balieiro JCDC, Mourão GB, Coutinho LL, Fukumasu H, de Alencar SM, Luchiari Filho A, Cesar ASM. RNA-seq transcriptome profiling of pigs' liver in response to diet with different sources of fatty acids. Front Genet 2023; 14:1053021. [PMID: 36816031 PMCID: PMC9936315 DOI: 10.3389/fgene.2023.1053021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Pigs (Sus scrofa) are an animal model for metabolic diseases in humans. Pork is an important source of fatty acids (FAs) in the human diet, as it is one of the most consumed meats worldwide. The effects of dietary inclusion of oils such as canola, fish, and soybean oils on pig gene expression are mostly unknown. Our objective was to evaluate FA composition, identify changes in gene expression in the liver of male pigs fed diets enriched with different FA profiles, and identify impacted metabolic pathways and gene networks to enlighten the biological mechanisms' variation. Large White male pigs were randomly allocated to one of three diets with 18 pigs in each; all diets comprised a base of corn and soybean meal to which either 3% of soybean oil (SOY), 3% canola oil (CO), or 3% fish oil (FO) was added for a 98-day trial during the growing and finishing phases. RNA sequencing was performed on the liver samples of each animal by Illumina technology for differential gene expression analyses, using the R package DESeq2. The diets modified the FA profile, mainly in relation to polyunsaturated and saturated FAs. Comparing SOY vs. FO, 143 differentially expressed genes (DEGs) were identified as being associated with metabolism, metabolic and neurodegenerative disease pathways, inflammatory processes, and immune response networks. Comparing CO vs. SOY, 148 DEGs were identified, with pathways related to FA oxidation, regulation of lipid metabolism, and metabolic and neurodegenerative diseases. Our results help explain the behavior of genes with differential expression in metabolic pathways resulting from feeding different types of oils in pig diets.
Collapse
Affiliation(s)
- Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil
| | | | - Julia Dezen Gomes
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Mariah Castro Durval
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil
| | | | | | - Bárbara Silva-Vignato
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | | | - Felipe André Oliveira Freitas
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - James Mark Reecy
- Animal Science Department, Iowa State University, Ames, IA, United States
| | | | - Dawn Koltes
- Animal Science Department, Iowa State University, Ames, IA, United States
| | - Dorian Garrick
- AL Rae Centre for Genetics and Breeding, Massey University, Hamilton, New Zealand
| | | | | | - Gerson Barreto Mourão
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Luiz Lehmann Coutinho
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil
| | - Severino Matias de Alencar
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Albino Luchiari Filho
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, São Paulo, Brazil,Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil,*Correspondence: Aline Silva Mello Cesar,
| |
Collapse
|
3
|
Fanalli SL, da Silva BPM, Gomes JD, Ciconello FN, de Almeida VV, Freitas FAO, Moreira GCM, Silva-Vignato B, Afonso J, Reecy J, Koltes J, Koltes D, Regitano LCA, de Carvalho Baileiro JC, Freitas L, Coutinho LL, Fukumasu H, de Alencar SM, Luchiari Filho A, Cesar ASM. Effect of dietary soybean oil inclusion on liver-related transcription factors in a pig model for metabolic diseases. Sci Rep 2022; 12:10318. [PMID: 35725871 PMCID: PMC9209463 DOI: 10.1038/s41598-022-14069-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/31/2022] [Indexed: 12/21/2022] Open
Abstract
Dietary fatty acids (FA) are components of the lipids, which contribute to membrane structure, energy input, and biological functions related to cellular signaling and transcriptome regulation. However, the consumers still associate dietary FA with fat deposition and increased occurrence of metabolic diseases such as obesity and atherosclerosis. Previous studies already demonstrated that some fatty acids are linked with inflammatory response, preventing metabolic diseases. To better understand the role of dietary FA on metabolic diseases, for the first time, a study to identify key transcription factors (TF) involved in lipid metabolism and inflammatory response by transcriptome analysis from liver samples of animal models was performed. The key TF were identified by functional enrichment analysis from the list of differentially expressed genes identified in liver samples between 35 pigs fed with 1.5% or 3.0% soybean oil. The functional enrichment analysis detected TF linked to lipid homeostasis and inflammatory response, such as RXRA, EGFR, and SREBP2 precursor. These findings demonstrated that key TF related to lipid metabolism could be modulated by dietary inclusion of soybean oil. It could contribute to nutrigenomics research field that aims to elucidate dietary interventions in animal and human health, as well as to drive food technology and science.
Collapse
Affiliation(s)
- Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, University of São Paulo, Campus Fernando Costa, Avenue Duque de Caxias Norte 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Bruna Pereira Martins da Silva
- Faculty of Animal Science and Food Engineering, University of São Paulo, Campus Fernando Costa, Avenue Duque de Caxias Norte 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Julia Dezen Gomes
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Fernanda Nery Ciconello
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Vivian Vezzoni de Almeida
- College of Veterinary Medicine and Animal Science, Federal University of Goiás, Nova Veneza, km 8, Campus Samambaia, Goiânia, Goiás, 74690-900, Brazil
| | - Felipe André Oliveira Freitas
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Gabriel Costa Monteiro Moreira
- University of Liège, GIGA Medical Genomics, Unit of Animal Genomics, Quartier Hôpital, Avenue de l'Hôpital, 11, 4000, Liège, Belgium
| | - Bárbara Silva-Vignato
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Juliana Afonso
- Embrapa Pecuária Sudeste, Km 234 s/nº, São Carlos, São Paulo, 13560-970, Brazil
| | - James Reecy
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, 1221, Kildee Hall, Ames, IA, 50011-3150, USA
| | - James Koltes
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, 1221, Kildee Hall, Ames, IA, 50011-3150, USA
| | - Dawn Koltes
- Department of Animal Science, College of Agriculture and Life Sciences, Iowa State University, 1221, Kildee Hall, Ames, IA, 50011-3150, USA
| | | | - Júlio Cesar de Carvalho Baileiro
- College of Veterinary Medicine and Animal Science, University of São Paulo, Duque de Caxias Norte, 225, Pirassununga, São Paulo, 13.635-900, Brazil
| | - Luciana Freitas
- DB Genética de Suínos, Avenue Juscelino Kubitschek de Oliveira, 2094, Patos de Minas, MG, 38.706-000, Brazil
| | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, University of São Paulo, Campus Fernando Costa, Avenue Duque de Caxias Norte 225, Pirassununga, São Paulo, 13635-900, Brazil
| | - Severino Matias de Alencar
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Albino Luchiari Filho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, University of São Paulo, Campus Fernando Costa, Avenue Duque de Caxias Norte 225, Pirassununga, São Paulo, 13635-900, Brazil. .,Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba, São Paulo, 13418-900, Brazil.
| |
Collapse
|
4
|
Prostaglandin F2 and EP2 Agonists Exert Different Effects on 3D 3T3-L1 Spheroids during Their Culture Phase. Biomedicines 2021; 9:biomedicines9121821. [PMID: 34944637 PMCID: PMC8698783 DOI: 10.3390/biomedicines9121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
To elucidate the effects of switching a PGF2α agonist, bimatoprost acid (BIM-A), to an EP2 agonist (Omidenepag—OMD; butaprost—Buta) or reversing the switching on adipose tissue, two-dimensional (2D) and three-dimensional (3D) cultures of 3T3-L1 cells were analyzed by lipid staining and according to the mRNA expression of adipogenesis-related genes (Pparγ, Ap2, and Leptin), components of the extracellular matrix (ECM; collagen1 (Col1), Col4, Col6, and fibronectin (Fn)), and the sizes and stiffness of the 3D spheroids. Switching from BIM-A to EP2 agonists caused (1) suppression of lipid staining and downregulation of most adipogenesis-related genes, (2) smaller and stiffer 3D spheroids, and (3) upregulation of Col1 and Fn, downregulation of Col4 (2D), or up-regulation of all ECM genes (3D, BIM-A to OMD), as well as downregulation of Col6 (3D, BIM-A to Buta). In contrast, reversing the switching resulted in (1) an enhancement in lipid staining (2D) and a significant upregulation of adipogenesis-related genes (2D, 3D Buta to BIM-A), (2) larger and slightly stiffer 3D spheroids, and (3) upregulation of Col1 and Fn (2D). These collective findings indicate that the switching orders of BIM-A and EP2 agonists have a significant effect on lipid metabolism, ECM expression, and the physical stiffness of 3T3-L1 cells.
Collapse
|
5
|
Hikage F, Ida Y, Ouchi Y, Watanabe M, Ohguro H. Omidenepag, a Selective, Prostanoid EP2 Agonist, Does Not Suppress Adipogenesis in 3D Organoids of Human Orbital Fibroblasts. Transl Vis Sci Technol 2021; 10:6. [PMID: 34003984 PMCID: PMC8039573 DOI: 10.1167/tvst.10.4.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose The purpose of this study was to present the effects of the prostanoid EP2 agonist, omidenepag (OMD) on human orbital fibroblasts (HOFs) using a three-dimension (3D) cell culture. Methods During adipogenesis of 3D HOFs organoids, changes in size, lipids staining, mRNA expression of adipogenesis related genes, PPARγ, AP2, and ADIPOQ, and extracellular matrix, collagen 1 (COL 1), COL 4, COL 6, and fibronectin (FN), and stiffness by a micro-squeezer were examined in the presence and absence of either 100 nM bimatoprost acid (BIM-A) or 10, 100, or 10,000 nM OMD. Results The size of the 3D organoids increased dramatically during adipogenesis, and these were further enhanced in the presence of OMD in contrast to the BIM-A induced suppression effect. The intensity of lipid staining and the mRNA expression of PPARγ were significantly increased upon adipogenesis, and both or latter was markedly inhibited in the presence of OMD or BIM-A, respectively. AP2 expression was also upregulated by adipogenesis, and was further enhanced by BIM-A. The adipogenesis-induced downregulation of COL 1 and FN, or the upregulation of the expression of COL 4 and COL 6 were all suppressed in the presence of BIM-A. In contrast, OMD caused similar effects on COL 4, COL 6, or FN expression, but caused a significant increase in COL 1 expression. Stiffness was significantly increased upon adipogenesis, and was further increased or substantially decreased by BIM-A or OMD, respectively. Conclusions The present study indicates that the FP2 agonist, OMD, had different effects on 3D HOFs organoids, as compared to BIM-A. Translational Relevance The current study suggests that OMD may not induce deepening of upper eyelid sulcus (DUES).
Collapse
Affiliation(s)
- Fumihito Hikage
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yosuke Ida
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuika Ouchi
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Megumi Watanabe
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ohguro
- Department of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
6
|
Antraco VJ, Hirata BKS, de Jesus Simão J, Cruz MM, da Silva VS, da Cunha de Sá RDC, Abdala FM, Armelin-Correa L, Alonso-Vale MIC. Omega-3 Polyunsaturated Fatty Acids Prevent Nonalcoholic Steatohepatitis (NASH) and Stimulate Adipogenesis. Nutrients 2021; 13:nu13020622. [PMID: 33671850 PMCID: PMC7918199 DOI: 10.3390/nu13020622] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
The increasing impact of obesity on global human health intensifies the importance of studies focusing on agents interfering with the metabolism and remodeling not only of the white adipose tissue (WAT) but also of the liver. In the present study, we have addressed the impact of n-3 PUFA in adipose cells' proliferation and adipogenesis, as well as in the hepatic lipid profile and morphology. Mice were induced to obesity by the consumption of a high-fat diet (HFD) for 16 weeks. At the 9th week, the treatment with fish oil (FO) was initiated and maintained until the end of the period. The FO treatment reduced the animals' body mass, plasma lipids, glucose, plasma transaminases, liver mass, triacylglycerol, and cholesterol liver content when compared to animals consuming only HFD. FO also decreased the inguinal (ing) WAT mass, reduced adipocyte volume, increased adipose cellularity (hyperplasia), and increased the proliferation of adipose-derived stromal cells (AdSCs) which corroborates the increment in the proliferation of 3T3-L1 pre-adipocytes or AdSCs treated in vitro with n-3 PUFA. After submitting the in vitro treated (n-3 PUFA) cells, 3T3-L1 and AdSCs, to an adipogenic cocktail, there was an increase in the mRNA expression of adipogenic transcriptional factors and other late adipocyte markers, as well as an increase in lipid accumulation when compared to not treated cells. Finally, the expression of browning-related genes was also higher in the n-3 PUFA treated group. We conclude that n-3 PUFA exerts an attenuating effect on body mass, dyslipidemia, and hepatic steatosis induced by HFD. FO treatment led to decreasing adiposity and adipocyte hypertrophy in ingWAT while increasing hyperplasia. Data suggest that FO treatment might induce recruitment (by increased proliferation and differentiation) of new adipocytes (white and/or beige) to the ingWAT, which is fundamental for the healthy expansion of WAT.
Collapse
|
7
|
Ida Y, Hikage F, Umetsu A, Ida H, Ohguro H. Omidenepag, a non-prostanoid EP2 receptor agonist, induces enlargement of the 3D organoid of 3T3-L1 cells. Sci Rep 2020; 10:16018. [PMID: 32994409 PMCID: PMC7524797 DOI: 10.1038/s41598-020-72538-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
2D and 3D cultures of 3T3-L1 cells were employed in a study of the effects of Omidenepag (OMD), interacting with a non-prostanoid EP2 receptor, on adipogenesis. Upon adipogenesis, the effects on lipid staining, the mRNA expression of adipogenesis-related genes (Pparγ, CEBPa, Ap2, and Glut4) and the extracellular matrix (ECM) including collagen type 1, 4 and 6, and fibronectin, and the size and physical property of 3D organoids were compared between groups that had been treated with EP2 agonists (butaprost and OMD) and PGF2α. Upon adipogenesis, these significantly suppressed lipid staining and the mRNA expression of related genes. EP2 agonists and PGF2α influenced the mRNA expression of ECM in different manners, and these effects were also different between 2 and 3D cultures. Examining the physical properties by a microsqueezer indicated that the solidity of the 3D organoids became significantly lowered upon adipogenesis and these effects were not affected by EP2 agonists. In contrast, 3D organoid stiffness was markedly enhanced by the presence of PGF2α. These observations indicate that EP2 agonists affect the adipogenesis of 3T3-L1 cells in different manners, as compared to PGF2α, suggesting that OMD may not induce PGF2α related orbital fat atrophy, called the deepening of the upper eyelid sulcus (DUES).
Collapse
Affiliation(s)
- Yosuke Ida
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Haruka Ida
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Jaggers GK, Watkins BA, Rodriguez RL. COVID-19: repositioning nutrition research for the next pandemic. Nutr Res 2020; 81:1-6. [PMID: 32795724 PMCID: PMC7375285 DOI: 10.1016/j.nutres.2020.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Grayson K Jaggers
- Department of Biological Sciences, University of Southern California, Los Angeles, CA.
| | - Bruce A Watkins
- Department of Nutrition, University of California, Davis, Davis, CA.
| | - Raymond L Rodriguez
- Department of Department of Molecular and Cellular Biology, University of California Davis, Davis, CA.
| |
Collapse
|
9
|
Albracht-Schulte K, Kalupahana NS, Ramalingam L, Wang S, Rahman SM, Robert-McComb J, Moustaid-Moussa N. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. J Nutr Biochem 2018; 58:1-16. [PMID: 29621669 DOI: 10.1016/j.jnutbio.2018.02.012] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/24/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
Strategies to reduce obesity have become public health priorities as the prevalence of obesity has risen in the United States and around the world. While the anti-inflammatory and hypotriglyceridemic properties of long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs) are well known, their antiobesity effects and efficacy against metabolic syndrome, especially in humans, are still under debate. In animal models, evidence consistently suggests a role for n-3 PUFAs in reducing fat mass, particularly in the retroperitoneal and epididymal regions. In humans, however, published research suggests that though n-3 PUFAs may not aid weight loss, they may attenuate further weight gain and could be useful in the diet or as a supplement to help maintain weight loss. Proposed mechanisms by which n-3 PUFAs may work to improve body composition and counteract obesity-related metabolic changes include modulating lipid metabolism; regulating adipokines, such as adiponectin and leptin; alleviating adipose tissue inflammation; promoting adipogenesis and altering epigenetic mechanisms.
Collapse
Affiliation(s)
- Kembra Albracht-Schulte
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA; Department of Physiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Shaikh Mizanoor Rahman
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA
| | - Jacalyn Robert-McComb
- Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA; Department of Kinesiology, Texas Tech University, Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Obesity Research Cluster, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
10
|
Mendonça AM, Cayer LGJ, Pauls SD, Winter T, Leng S, Taylor CG, Zahradka P, Aukema HM. Distinct effects of dietary ALA, EPA and DHA on rat adipose oxylipins vary by depot location and sex. Prostaglandins Leukot Essent Fatty Acids 2018; 129:13-24. [PMID: 29482766 DOI: 10.1016/j.plefa.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022]
Abstract
Dietary EPA and DHA given together alter oxylipins in adipose tissue. To compare the separate effects of individual dietary n-3 PUFA on oxylipins in different adipose depots (gonadal, mesenteric, perirenal, subcutaneous) in males and females, rats were provided diets containing higher levels of α-linolenic acid (ALA), EPA or DHA. Each n-3 PUFA enhanced its respective oxylipins the most, while effects on other n-3 oxylipins varied. For example: in perirenal and subcutaneous depots, more DHA oxylipins were higher with dietary ALA than with EPA; dietary EPA uniquely decreased 14-hydroxy-docosahexaenoic acid, in contrast to increasing many other DHA oxylipins. The n-3 PUFAs also reduced oxylipins from n-6 PUFAs in order of effectiveness: DHA > EPA > ALA. Diet by sex interactions in all depots except the perirenal depot resulted in higher oxylipins in males given DHA, and higher oxylipins in females given the other diets. Diet and sex effects on oxylipins did not necessarily reflect effects on either their tissue phospholipid or neutral lipid PUFA precursors. These varying diet and sex effects on oxylipins in the different adipose sites indicate that they may have distinct effects on adipose function.
Collapse
Affiliation(s)
- Anne M Mendonça
- School of Medicine, Federal University of Uberlândia, Brazil; Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Lucien G J Cayer
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Samantha D Pauls
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Tanja Winter
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Shan Leng
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada
| | - Carla G Taylor
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Research in Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Peter Zahradka
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Research in Agri-Food Research in Health and Medicine, Winnipeg, Canada; Department of Physiology and Pathophysiology, University of Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Research in Agri-Food Research in Health and Medicine, Winnipeg, Canada.
| |
Collapse
|
11
|
Barquissau V, Ghandour RA, Ailhaud G, Klingenspor M, Langin D, Amri EZ, Pisani DF. Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie 2016; 136:3-11. [PMID: 28034718 DOI: 10.1016/j.biochi.2016.12.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/02/2016] [Accepted: 12/23/2016] [Indexed: 01/15/2023]
Abstract
Oxylipins are bioactive metabolites derived from the oxygenation of ω3 and ω6 polyunsaturated fatty acids, triggered essentially by cyclooxygenase and lipoxygenase activities. Oxylipins are involved in the development and function of adipose tissue and their productions are strictly related to diet quality and quantity. Oxylipins signal via cell surface membrane (G Protein-coupled receptors) and nuclear receptors (peroxisome proliferator-activated receptors), two pathways playing a pivotal role in adipocyte biology. In this review, we made an attempt to cover the available knowledge about synthesis and molecular function of oxylipins known to modulate adipogenesis, adipocyte function and phenotype conversion, with a focus on their interaction with peroxisome proliferator-activated nuclear receptor family.
Collapse
Affiliation(s)
- Valentin Barquissau
- Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, 31432, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, 31432, France
| | | | | | - Martin Klingenspor
- Technische Universität München, Chair of Molecular Nutritional Medicine, Else Kröner-Fresenius Center, 85350, Freising-Weihenstephan, Germany
| | - Dominique Langin
- Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, 31432, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, 31432, France; Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, 31059, France
| | | | | |
Collapse
|
12
|
Nikolopoulou E, Papacleovoulou G, Jean-Alphonse F, Grimaldi G, Parker MG, Hanyaloglu AC, Christian M. Arachidonic acid-dependent gene regulation during preadipocyte differentiation controls adipocyte potential. J Lipid Res 2014; 55:2479-90. [PMID: 25325755 PMCID: PMC4242441 DOI: 10.1194/jlr.m049551] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arachidonic acid (AA) is a major PUFA that has been implicated in the regulation of adipogenesis. We examined the effect of a short exposure to AA at different stages of 3T3-L1 adipocyte differentiation. AA caused the upregulation of fatty acid binding protein 4 (FABP4/aP2) following 24 h of differentiation. This was mediated by the prostaglandin F2α (PGF2α), as inhibition of cyclooxygenases or PGF2α receptor signaling counteracted the AA-mediated aP2 induction. In addition, calcium, protein kinase C, and ERK are all key elements of the pathway through which AA induces the expression of aP2. We also show that treatment with AA during the first 24 h of differentiation upregulates the expression of the transcription factor Fos-related antigen 1 (Fra-1) via the same pathway. Finally, treatment with AA for 24 h at the beginning of the adipocyte differentiation is sufficient to inhibit the late stages of adipogenesis through a Fra-1-dependent pathway, as Fra-1 knockdown rescued adipogenesis. Our data show that AA is able to program the differentiation potential of preadipocytes by regulating gene expression at the early stages of adipogenesis.
Collapse
Affiliation(s)
- Evanthia Nikolopoulou
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | | | - Frederic Jean-Alphonse
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Giulia Grimaldi
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Malcolm G Parker
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Mark Christian
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
13
|
Masoodi M, Kuda O, Rossmeisl M, Flachs P, Kopecky J. Lipid signaling in adipose tissue: Connecting inflammation & metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:503-18. [PMID: 25311170 DOI: 10.1016/j.bbalip.2014.09.023] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 02/08/2023]
Abstract
Obesity-associated low-grade inflammation of white adipose tissue (WAT) contributes to development of insulin resistance and other disorders. Accumulation of immune cells, especially macrophages, and macrophage polarization from M2 to M1 state, affect intrinsic WAT signaling, namely anti-inflammatory and proinflammatory cytokines, fatty acids (FA), and lipid mediators derived from both n-6 and n-3 long-chain PUFA such as (i) arachidonic acid (AA)-derived eicosanoids and endocannabinoids, and (ii) specialized pro-resolving lipid mediators including resolvins derived from both eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), lipoxins (AA metabolites), protectins and maresins (DHA metabolites). In this respect, potential differences in modulating adipocyte metabolism by various lipid mediators formed by inflammatory M1 macrophages typical of obese state, and non-inflammatory M2 macrophages typical of lean state remain to be established. Studies in mice suggest that (i) transient accumulation of M2 macrophages could be essential for the control of tissue FA levels during activation of lipolysis, (ii) currently unidentified M2 macrophage-borne signaling molecule(s) could inhibit lipolysis and re-esterification of lipolyzed FA back to triacylglycerols (TAG/FA cycle), and (iii) the egress of M2 macrophages from rebuilt WAT and removal of the negative feedback regulation could allow for a full unmasking of metabolic activities of adipocytes. Thus, M2 macrophages could support remodeling of WAT to a tissue containing metabolically flexible adipocytes endowed with a high capacity of both TAG/FA cycling and oxidative phosphorylation. This situation could be exemplified by a combined intervention using mild calorie restriction and dietary supplementation with EPA/DHA, which enhances the formation of "healthy" adipocytes. This article is part of a Special Issue entitled Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Mojgan Masoodi
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, bâtiment H, 1015 Lausanne, Switzerland.
| | - Ondrej Kuda
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Martin Rossmeisl
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Pavel Flachs
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Jan Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
| |
Collapse
|
14
|
Pisani DF, Ghandour RA, Beranger GE, Le Faouder P, Chambard JC, Giroud M, Vegiopoulos A, Djedaini M, Bertrand-Michel J, Tauc M, Herzig S, Langin D, Ailhaud G, Duranton C, Amri EZ. The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Mol Metab 2014; 3:834-47. [PMID: 25506549 PMCID: PMC4264041 DOI: 10.1016/j.molmet.2014.09.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 12/01/2022] Open
Abstract
Objective Brite adipocytes are inducible energy-dissipating cells expressing UCP1 which appear within white adipose tissue of healthy adult individuals. Recruitment of these cells represents a potential strategy to fight obesity and associated diseases. Methods/Results Using human Multipotent Adipose-Derived Stem cells, able to convert into brite adipocytes, we show that arachidonic acid strongly inhibits brite adipocyte formation via a cyclooxygenase pathway leading to secretion of PGE2 and PGF2α. Both prostaglandins induce an oscillatory Ca++ signaling coupled to ERK pathway and trigger a decrease in UCP1 expression and in oxygen consumption without altering mitochondriogenesis. In mice fed a standard diet supplemented with ω6 arachidonic acid, PGF2α and PGE2 amounts are increased in subcutaneous white adipose tissue and associated with a decrease in the recruitment of brite adipocytes. Conclusion Our results suggest that dietary excess of ω6 polyunsaturated fatty acids present in Western diets, may also favor obesity by preventing the “browning” process to take place.
Collapse
Affiliation(s)
- Didier F Pisani
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Rayane A Ghandour
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Guillaume E Beranger
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Pauline Le Faouder
- Lipidomic Core Facility, Metatoul Platform, France ; INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France ; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Jean-Claude Chambard
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Maude Giroud
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Alexandros Vegiopoulos
- Joint Division Molecular Metabolic Control, Alliance and Network Aging Research, German Cancer Research Center (DKFZ), Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Mansour Djedaini
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Justine Bertrand-Michel
- Lipidomic Core Facility, Metatoul Platform, France ; INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France ; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - Michel Tauc
- Univ. Nice Sophia Antipolis, LP2M, UMR 7370, 06100 Nice, France ; UMR 7370, CNRS-LP2M, 06100 Nice, France
| | - Stephan Herzig
- Joint Division Molecular Metabolic Control, Alliance and Network Aging Research, German Cancer Research Center (DKFZ), Center for Molecular Biology (ZMBH) and University Hospital, Heidelberg University, Heidelberg, Germany
| | - Dominique Langin
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France ; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France ; Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France
| | - Gérard Ailhaud
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| | - Christophe Duranton
- Univ. Nice Sophia Antipolis, LP2M, UMR 7370, 06100 Nice, France ; UMR 7370, CNRS-LP2M, 06100 Nice, France
| | - Ez-Zoubir Amri
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, 06100 Nice, France ; CNRS, iBV, UMR 7277, 06100 Nice, France ; Inserm, iBV, U1091, 06100 Nice, France
| |
Collapse
|
15
|
Serrano A, Decara JM, Fernández-González R, López-Cardona AP, Pavón FJ, Orio L, Alen F, Gutiérrez-Adán A, de Fonseca FR. Hyperplastic Obesity and Liver Steatosis as Long-Term Consequences of Suboptimal In Vitro Culture of Mouse Embryos1. Biol Reprod 2014; 91:30. [DOI: 10.1095/biolreprod.114.117879] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
16
|
Alonso M, Serrano A, Vida M, Crespillo A, Hernandez-Folgado L, Jagerovic N, Goya P, Reyes-Cabello C, Perez-Valero V, Decara J, Macías-González M, Bermúdez-Silva FJ, Suárez J, Rodríguez de Fonseca F, Pavón FJ. Anti-obesity efficacy of LH-21, a cannabinoid CB(1) receptor antagonist with poor brain penetration, in diet-induced obese rats. Br J Pharmacol 2012; 165:2274-91. [PMID: 21951309 DOI: 10.1111/j.1476-5381.2011.01698.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Peripheral blockade of cannabinoid CB(1) receptors has been proposed as a safe and effective therapy against obesity, putatively devoid of the adverse psychiatric side effects of centrally acting CB(1) receptor antagonists. In this study we analysed the effects of LH-21, a peripherally acting neutral cannabinoid receptor antagonist with poor brain penetration, in an animal model of diet-induced obesity. EXPERIMENTAL APPROACH To induce obesity, male Wistar rats were fed a high-fat diet (HFD; 60 kcal% fat) whereas controls received a standard diet (SD; 10 kcal% fat). Following 10 weeks of feeding, animals received a daily i.p. injection of vehicle or 3 mg·kg(-1) LH-21 for 10 days. Plasma and liver samples were used for biochemical analyses whereas visceral fat-pad samples were analysed for lipid metabolism gene expression using real-time RT-PCR. In addition, the potential of LH-21 to interact with hepatic cytochrome P450 isoforms and cardiac human Ether-à-go-go Related Gene (hERG) channels was evaluated. KEY RESULTS LH-21 reduced feeding and body weight gain in HFD-fed animals compared with the control group fed SD. In adipose tissue, this effect was associated with decreased gene expression of: (i) leptin; (ii) lipogenic enzymes, including SCD-1; (iii) CB(1) receptors; and (iv) both PPARα and PPARγ. Although there were no significant differences in plasma parameters between HFD- and SD-fed rats, LH-21 did not seem to induce hepatic, cardiac or renal toxicity. CONCLUSIONS AND IMPLICATIONS These results support the hypothesis that treatment with the peripherally neutral acting CB(1) receptor antagonist, LH-21, may promote weight loss through modulation of visceral adipose tissue.
Collapse
Affiliation(s)
- Mónica Alonso
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario Carlos Haya, Fundación IMABIS, Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lottenberg AM, Afonso MDS, Lavrador MSF, Machado RM, Nakandakare ER. The role of dietary fatty acids in the pathology of metabolic syndrome. J Nutr Biochem 2012; 23:1027-40. [PMID: 22749135 DOI: 10.1016/j.jnutbio.2012.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 03/07/2012] [Accepted: 03/14/2012] [Indexed: 01/21/2023]
Abstract
Dysfunctional lipid metabolism is a key component in the development of metabolic syndrome, a very frequent condition characterized by dyslipidemia, insulin resistance, abdominal obesity and hypertension, which are related to an elevated risk for type 2 diabetes mellitus. The prevalence of metabolic syndrome is strongly associated with the severity of obesity; its physiopathology is related to both genetics and food intake habits, especially the consumption of a high-caloric, high-fat and high-carbohydrate diet. With the progress of scientific knowledge in the field of nutrigenomics, it was possible to elucidate how the majority of dietary fatty acids influence plasma lipid metabolism and also the genes expression involved in lipolysis and lipogenesis within hepatocytes and adipocytes. The aim of this review is to examine the relevant mechanistic aspects of dietary fatty acids related to blood lipids, adipose tissue metabolism, hepatic fat storage and inflammatory process, all of them closely related to the genesis of metabolic syndrome.
Collapse
|
18
|
Vara Prasad SSS, Jeya Kumar SS, Kumar PU, Qadri SSYH, Vajreswari A. Dietary fatty acid composition alters 11β-hydroxysteroid dehydrogenase type 1 gene expression in rat retroperitoneal white adipose tissue. Lipids Health Dis 2010; 9:111. [PMID: 20932307 PMCID: PMC2959202 DOI: 10.1186/1476-511x-9-111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/08/2010] [Indexed: 11/26/2022] Open
Abstract
The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) amplifies intracellular glucocorticoid action by converting inactive glucocorticoids to their active forms in vivo. Adipose-specific overexpression of 11β-HSD1 induces metabolic syndrome in mice, whereas 11β-HSD1 null mice are resistant to it. Dietary trans and saturated fatty acids (TFAs and SFAs) are involved in the development of metabolic syndrome, whereas polyunsaturated fatty acids (PUFA) offer protection against this. Here, we report the effects of chronic feeding of different diets containing vanaspati (TFA rich), palm oil (SFA rich) and sunflower oil (PUFA rich) at 10%level on 11β-HSD1 gene expression in rat retroperitoneal adipose tissue. 11β-HSD1 gene expression was significantly higher in TFA rich diet-fed rats compared to SFA rich diet-fed rats, which in turn was significantly higher than PUFA rich diet-fed rats. Similar trend was observed in the expression of CCAAT-enhancer binding protein-α (C/EBP-α), the main transcription factor required for the expression of 11β-HSD1. We propose that TFAs and SFAs increase local amplification of glucocorticoid action in adipose tissue by upregulating 11β-HSD1 by altering C/EBP-α-gene expression. The increased levels of glucocorticoids in adipose tissue may lead to development of obesity and insulin resistance, thereby increasing the risk of developing metabolic syndrome.
Collapse
Affiliation(s)
- Sakamuri S S Vara Prasad
- Department of Biochemistry, National Institute of Nutrition, Indian Council of Medical Research, Jamai Osmania PO, Hyderabad-500 604, Andhra Pradesh, India
| | | | | | | | | |
Collapse
|
19
|
|
20
|
Hsiang CY, Chen YS, Ho TY. Nuclear factor-κB bioluminescence imaging-guided transcriptomic analysis for the assessment of host–biomaterial interaction in vivo. Biomaterials 2009; 30:3042-9. [DOI: 10.1016/j.biomaterials.2009.02.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/08/2009] [Indexed: 10/21/2022]
|
21
|
Lobo S, Wiczer BM, Bernlohr DA. Functional analysis of long-chain acyl-CoA synthetase 1 in 3T3-L1 adipocytes. J Biol Chem 2009; 284:18347-56. [PMID: 19429676 DOI: 10.1074/jbc.m109.017244] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ACSL1 (acyl-CoA synthetase 1), the major acyl-CoA synthetase of adipocytes, has been proposed to function in adipocytes as mediating free fatty acid influx, esterification, and storage as triglyceride. To test this hypothesis, ACSL1 was stably silenced (knockdown (kd)) in 3T3-L1 cells, differentiated into adipocytes, and evaluated for changes in lipid metabolism. Surprisingly, ACSL1-silenced adipocytes exhibited no significant changes in basal or insulin-stimulated long-chain fatty acid uptake, lipid droplet size, or tri-, di-, or monoacylglycerol levels when compared with a control adipocyte line. However, ACSL1 kd adipocytes displayed a 7-fold increase in basal and a approximately 15% increase in forskolin-stimulated fatty acid efflux without any change in glycerol release, indicating a role for the protein in fatty acid reesterification following lipolysis. Consistent with this proposition, ACSL1 kd cells exhibited a decrease in activation and phosphorylation of AMP-activated protein kinase and its primary substrate acetyl-CoA carboxylase. Moreover, ACSL1 kd adipocytes displayed an increase in phosphorylated protein kinase C and phosphorylated JNK, attenuated insulin signaling, and a decrease in insulin-stimulated glucose uptake. These findings identify a primary role of ACSL1 in adipocytes not in control of lipid influx, as previously considered, but in lipid efflux and fatty acid-induced insulin resistance.
Collapse
Affiliation(s)
- Sandra Lobo
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
22
|
Papadopoulos GA, Erkens T, Maes DGD, Peelman LJ, van Kempen TATG, Buyse J, Janssens GPJ. Peripartal feeding strategy with different n-6:n-3 ratios in sows: effect on gene expression in backfat white adipose tissue postpartum. Br J Nutr 2009; 101:197-205. [PMID: 18498673 DOI: 10.1017/s0007114508994782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The aim of this study was to describe the effects of two diets differing in n-6:n-3 ratio and prepartal feeding regime on gene expression of PPARgamma1a/1b, PPARgamma1c/1d, PPARgamma2, PPARgamma coactivator 1A (PPARGC1A), GLUT4, TNFalpha, adiponectin, leptin, leptin receptor (LEPR), fatty acid binding protein 4 (FABP4), lipoprotein lipase (LPL) in sows' white adipose tissue on the first day of lactation. The relationship between mRNA expression of these genes and circulating insulin, leptin and thyroid hormones was also considered. Diets contained a low (supplemented with fish oil; f group) or a high (supplemented with sunflower oil; s group) n-6:n-3 ratio and were provided from 8 (f8, s8) or 3d (f3, s3) before parturition (onset day 8 or 3). A low n-6:n-3 ratio reduced the 1d postpartum expression of PPARgamma2 and PPARGC1A but only when applied from 3 d before parturition. Circulating leptin was negatively correlated with mRNA expression of adiponectin, LEPR and LPL, whereas thyroxine was positively correlated with levels of PPARGC1A. In conclusion, the effect of dietary treatments, e.g. altering the n-6:n-3 ratio, around parturition on the expression of crucial genes in nutrient metabolism can be modulated by the duration of application before parturition.
Collapse
Affiliation(s)
- Georgios A Papadopoulos
- Laboratory of Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|
23
|
Yu YH, Lin EC, Wu SC, Cheng WTK, Mersmann HJ, Wang PH, Ding ST. Docosahexaenoic acid regulates adipogenic genes in myoblasts via porcine peroxisome proliferator-activated receptor gamma. J Anim Sci 2008; 86:3385-92. [PMID: 18676720 DOI: 10.2527/jas.2008-1051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The nuclear transcription factor peroxisome proliferator-activated receptor gamma (PPARgamma) triggers adipocyte differentiation by regulating lipogenic genes. A ligand for PPARgamma is necessary to activate PPARgamma function. Fatty acids are potential ligands for PPARgamma activation. The current experiment was designed to determine the potential for individual fatty acids to activate porcine PPARgamma ectopically expressed in myoblasts. The expression of adipocyte fatty acid binding protein (aP2) and adiponectin in myoblasts stably expressing porcine PPARgamma was increased when docosahexaenoic acid (DHA) was added to the adipogenic medium. The response was positively related to DHA concentration and suggests that DHA may bind to and activate porcine PPARgamma, leading to increased expression of aP2 and adiponectin. The conditioned media collected from myoblasts expressing PPARgamma between d 3 and 6 or between d 6 and 9, but not DHA itself, activated the aP2 gene promoter-driven luciferase activity. These results suggest that a metabolite of DHA is the ligand binding to and activating porcine PPARgamma. The metabolite and pathway for its production are currently unknown.
Collapse
Affiliation(s)
- Y H Yu
- Department of Animal Science and Technology, Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | |
Collapse
|
24
|
Tanabe Y, Matsunaga Y, Saito M, Nakayama K. Involvement of Cyclooxygenase-2 in Synergistic Effect of Cyclic Stretching and Eicosapentaenoic Acid on Adipocyte Differentiation. J Pharmacol Sci 2008; 106:478-84. [DOI: 10.1254/jphs.fp0071886] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Aprikian O, Reynaud D, Pace-Asciak C, Leone P, Blancher F, Monnard I, Darimont C, Macé K. Neonatal dietary supplementation of arachidonic acid increases prostaglandin levels in adipose tissue but does not promote fat mass development in guinea pigs. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2006-12. [PMID: 17761509 DOI: 10.1152/ajpregu.00382.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of arachidonic acid (AA) on the development of adipose tissue is still controversial since its metabolites, i.e., prostaglandins, can either stimulate or inhibit preadipocyte differentiation in vitro. In the present study, we evaluated the effects of early postnatal supplementation of AA on body weight and adipose tissue development in guinea pigs. Male newborn guinea pigs were fed for 21 days ( day 21) with diets (milk and pellet) supplemented (+AA) or not (−AA) with 1.2% (total fatty acids) AA. From day 21 to day 105 both groups were fed a chow diet. The 21-days-old +AA pups showed a twofold higher AA accretion in phospholipids associated with a two- to sixfold increase in several prostaglandins, such as 6-keto PGF1α(the stable hydrolysis product of PGI2), PGF2α, PGE2, and PGD2in adipose tissue, compared with the −AA group. No difference in fat pad and body weight, aP2, and leptin gene expression in adipose tissue, fasting plasma glucose, free-fatty acids, and triglyceride concentration was observed between groups at day 21 or day 105. These results show that dietary supplementation of AA during the suckling/weaning period increases prostaglandin levels in adipose tissue but does not influence early fat mass development in the guinea pig.
Collapse
Affiliation(s)
- Olivier Aprikian
- Nestlé Research Centre, PO Box 44, Vers-Chez-Les-Blanc, 1000 Lausanne 26, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cha MH, Kim IC, Lee BH, Yoon Y. Baicalein Inhibits Adipocyte Differentiation by Enhancing COX-2 Expression. J Med Food 2006; 9:145-53. [PMID: 16822198 DOI: 10.1089/jmf.2006.9.145] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Baicalein, one of the major flavonoids in Scutellaria baicalensis (Chinese Skullcap), is well known for its effects on cell proliferation, apoptosis, and inflammation. Here we show that baicalein also inhibits the adipogenesis of 3T3-L1 preadipocytes. Baicalein inhibited triglyceride accumulation during adipogenesis and significantly decreased the mRNA expression of fatty acid-binding protein (FABP), a marker of adipogenesis. Microarray analysis revealed that several genes, which are differentially expressed during adipogenesis, were modulated by baicalein treatment in 3T-L1 cells. The expression of FABP, apolipoprotein D, and insulin-like growth factor 2, which was markedly up-regulated during adipogenesis, was down-regulated by baicalein. Cyclooxygenase (COX)-2 mRNA expression, which was decreased during adipogenesis, was up-regulated by baicalein. These COX-2 mRNA expression patterns were mirrored by the expression of COX-2 protein and its enzymatic activity. NS-398, a COX-2 inhibitor, partially abrogated the baicalein-induced inhibition of adipogenensis. Thus, the anti-adipogenic effect of baicalein may be mediated by its ability to enhance the expression of COX-2, which is normally down-regulated during adipogenesis.
Collapse
Affiliation(s)
- Min-Ho Cha
- Department of Medical Research, Korea Institute of Oriental Medicine, Daejeon, Korea
| | | | | | | |
Collapse
|
27
|
CLARKE STEVEND, GASPERIKOVA DANIELA, NELSON CAROLANNE, LAPILLONNE ALEXANDRE, HEIRD WILLIAMC. Fatty Acid Regulation of Gene Expression. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2002.tb04284.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Abstract
Apart from being an important macronutrient, dietary fat has recently gained much prominence for its role in regulating gene expression. Polyunsaturated fatty acids (PUFAs) affect gene expression through various mechanisms including, but not limited to, changes in membrane composition, intracellular calcium levels, and eicosanoid production. Furthermore, PUFAs and their various metabolites can act at the level of the nucleus, in conjunction with nuclear receptors and transcription factors, to affect the transcription of a variety of genes. Several of these transcription mediators have been identified and include the nuclear receptors peroxisome proliferator-activated receptor (PPAR), hepatocyte nuclear factor (HNF)-4alpha, and liver X receptor (LXR) and the transcription factors sterol-regulatory element binding protein (SREBP) and nuclear factor-kappaB (NFkappaB). Their interaction with PUFAs has been shown to be critical to the regulation of several key genes of lipid metabolism. Working out the mechanisms by which these interactions and consequent effects occur is proving to be complicated but is invaluable to our understanding of the role that dietary fat can play in disease management and prevention.
Collapse
Affiliation(s)
- Harini Sampath
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
29
|
Liu BH, Kuo CF, Wang YC, Ding ST. Effect of docosahexaenoic acid and arachidonic acid on the expression of adipocyte determination and differentiation-dependent factor 1 in differentiating porcine adipocytes1. J Anim Sci 2005; 83:1516-25. [PMID: 15956459 DOI: 10.2527/2005.8371516x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adipocyte determination and differentiation-dependent factor 1 (ADD1) drives the expression of several lipogenic genes in mammals. Polyunsaturated fatty acids decrease ADD1 mRNA abundance in differentiating porcine adipocytes. The current study was designed to explore the mechanisms by which PUFA inhibit the expression of ADD1 in porcine adipocytes. Porcine preadipocytes were differentiated for 24 h with 0 or 100 microM of docosahexaenoic acid (DHA) and mixtures of different concentrations of antioxidants to investigate the effect of DHA and antioxidants on the ADD1 mRNA abundance. We found the relative mRNA abundance was decreased by the addition of 100 microM DHA to the medium for porcine differentiating adipocytes, and adding an antioxidant mixture to the medium prevented part of the decrease in ADD1 mRNA abundance. These data suggest that DHA decreased the steady-state transcription factor ADD1 mRNA through a mechanism related to fatty acid peroxidation. Indeed, adding 7.5 microM vitamin E (a natural antioxidant) also restored the concentrations of ADD1 and fatty acid synthase mRNA, which were decreased by DHA treatment; however, the DHA or the antioxidant treatment did not change the expression of antioxidation genes (superoxide dismutase 1 and glutathione peroxidase 1) in porcine stromal vascular cells. When supplemented with the eicosanoid synthesis pathway inhibitors, the inhibition of the expression of ADD1 by arachidonic acid was partially recovered. These results suggest that the mechanism by which PUFA decrease ADD1 mRNA is due to the metabolic product of eicosanoids and peroxidation of these PUFA.
Collapse
Affiliation(s)
- B H Liu
- Department of Animal Science, National Taiwan University, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
30
|
Madsen L, Petersen RK, Kristiansen K. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim Biophys Acta Mol Basis Dis 2005; 1740:266-86. [PMID: 15949694 DOI: 10.1016/j.bbadis.2005.03.001] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 02/23/2005] [Accepted: 03/02/2005] [Indexed: 12/11/2022]
Abstract
A diet enriched in PUFAs, in particular of the n-3 family, decreases adipose tissue mass and suppresses development of obesity in rodents. Although several nuclear hormone receptors are identified as PUFA targets, the precise molecular mechanisms underlying the effects of PUFAs still remain to be elucidated. Here we review research aimed at elucidating molecular mechanisms governing the effects of PUFAs on the differentiation and function of white fat cells. This review focuses on dietary PUFAs as signaling molecules, with special emphasis on agonistic and antagonistic effects on transcription factors currently implicated as key players in adipocyte differentiation and function, including peroxisome proliferator activated receptors (PPARs) (alpha, beta and gamma), sterol regulatory element binding proteins (SREBPs) and liver X receptors (LXRs). We review evidence that dietary n-3 PUFAs decrease adipose tissue mass and suppress the development of obesity in rodents by targeting a set of key regulatory transcription factors involved in both adipogensis and lipid homeostasis in mature adipocytes. The same set of factors are targeted by PUFAs of the n-6 family, but the cellular/physiological responses are dependent on the experimental setting as n-6 PUFAs may exert either an anti- or a proadipogenic effect. Feeding status and hormonal background may therefore be of particular importance in determining the physiological effects of PUFAs of the n-6 family.
Collapse
Affiliation(s)
- Lise Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | |
Collapse
|
31
|
Haugen F, Zahid N, Dalen KT, Hollung K, Nebb HI, Drevon CA. Resistin expression in 3T3-L1 adipocytes is reduced by arachidonic acid. J Lipid Res 2004; 46:143-53. [PMID: 15489540 DOI: 10.1194/jlr.m400348-jlr200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The resistin gene is expressed in adipocytes and encodes a protein proposed to link obesity and type 2 diabetes. Increased plasma FFA is associated with insulin resistance. We examined the effect of separate FFAs on the expression of resistin mRNA in cultured murine 3T3-L1 adipocytes. The FFAs tested did not increase resistin expression, whereas both arachidonic acid (AA) and eicosapentaenoic acid (EPA) reduced resistin mRNA levels. AA was by far the most potent FFA, reducing resistin mRNA levels to approximately 20% of control at 60-250 muM concentration. Selective inhibitors of cyclooxygenase-1 and of mitogen-activated protein kinase kinase counteracted AA-induced reduction in resistin mRNA levels. Transient overexpression of sterol-regulatory element binding protein-1a (SREBP-1a) activated the resistin promoter, but there was no reduction in the abundance of approximately 65 kDa mature SREBP-1 after AA exposure. Actinomycin D as well as cycloheximide abolished the AA-induced reduction of resistin mRNA levels, indicating dependence on de novo transcription and translation. Our data suggest that reductions in resistin mRNA levels involve a destabilization of the resistin mRNA molecule. An inhibitory effect of AA and EPA on resistin expression may explain the beneficial effect of ingesting PUFAs on insulin sensitivity.
Collapse
Affiliation(s)
- Fred Haugen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
32
|
Horani MH, Gobal F, Haas MJ, Wong NCW, Mooradian AD. Cyclooxygenase inhibition is associated with downregulation of apolipoprotein AI promoter activity in cultured hepatoma cell line HepG2. Metabolism 2004; 53:174-81. [PMID: 14767868 DOI: 10.1016/j.metabol.2003.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prostanoids have been implicated in the transcriptional control of several genes. Since prostanoid synthesis inhibitors are commonly used in subjects with coronary heart disease we studied the effect of cyclooxygenase (COX) inhibition on apolipoprotein AI (apoAI) expression in a human hepatoma cell line (HepG2) transfected with full-length apoAI promoter attached to the chloramphenicol acetyl transferase (CAT) reporter gene. To control for transfection efficiency, the cells were cotransfected with the plasmid pCMV.SPORT-beta-gal containing the beta-galactosidase gene driven by the cytomegalovirus promoter. Treatment of these cells with varying concentrations of indomethacin (INDO, 0, 50, 100, and 300 micromol/L) resulted in a dose-dependent decrease in apoAI promoter activity (% acetylation corrected for beta-galactosidase activity: were 46.1 +/- 2.6, 29.9 +/- 1.2, 25.2 +/- 2.9, and 17.2 +/- 2.8, respectively, P <.001). INDO treatment did not cause significant changes in beta-galactosidase activity. A similar reduction in apoAI promoter activity was found after treating the cells with 50 micromol/L acetylsalicylic acid (ASA) (31.8 +/- 1.8%, P <.001), suggesting that the effect of INDO is related to COX inhibition rather than a peculiar effect of INDO. Nuclear run-off assays indicated that treatment of cells with 50 micromol/L INDO resulted in 31.4% reduction in apo A1 transcription rate (P <.0002). Northern blot analysis of RNA from HepG2 cells treated with 50 micromol/L of INDO for 72 hours showed that the apoAI mRNA concentration relative to G3PDH mRNA was 4,043.0 +/- 84.6 and 3,064.0 +/- 49.8 in control and INDO-treated cells, respectively (P <.0006). Kinetic studies of apoAI mRNA in HepG2 cells indicated that the half-life of apoAI mRNA was not significantly altered with 50 micromol/L INDO treatment. Apo AI mRNA half-life was 25.3 hours in control cells and 26.9 hours in INDO-treated cells. Western blot analysis of culture media of HepG2 cells treated with 50 micromol/L of INDO for 72 hours showed a significant reduction in apoAI protein (6,760.0 +/- 318.1 v 4,773.0 +/- 112.0 arbitrary units, P <.004). Treatment of cells with either arachidonic acid (COX substrate) or various prostanoids including prostaglandin I(2), thromboxane B(2), (+/-)5-HETE, or (+/-)12-HETE did not significantly alter apoAI promoter activity. However, prostaglandin E(1) and E(2) at the highest concentration tested (50 nmol/L) significantly repressed apoAI promoter activity. COX activity measurements in HepG2 cells verified the efficacy of COX inhibition by INDO. It is concluded that COX inhibition with INDO or ASA downregulates apoAI expression at the transcriptional level. This effect could not be attributed to either arachidonic acid excess or to a deficiency in various prostanoids tested.
Collapse
Affiliation(s)
- Mohamad H Horani
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, St. Louis University School of Medicine, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
33
|
Ding ST, Wang JC, Mersmann H. Effect of unsaturated fatty acids on porcine adipocyte differentiation. Nutr Res 2003. [DOI: 10.1016/s0271-5317(03)00081-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Yan H, Kermouni A, Abdel-Hafez M, Lau DCW. Role of cyclooxygenases COX-1 and COX-2 in modulating adipogenesis in 3T3-L1 cells. J Lipid Res 2003; 44:424-9. [PMID: 12576525 DOI: 10.1194/jlr.m200357-jlr200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclooxygenase (COX) catalyses the rate-limiting step of prostanoid biosynthesis. Two COX isoforms have been identified, COX-1, the constitutive form, and COX-2, the inducible form. While COX-2 has been implicated in body fat regulation, the underlying cellular mechanism remains to be elucidated. The present study was undertaken to examine the potential role of COX in modulating adipogenesis and to dissect the relative contribution of the two isoenzymes in this process. COX-2 was found to be expressed in undifferentiated 3T3-L1 cells and down-regulated during differentiation, whereas the cellular level of COX-1 remained relatively constant. Abrogating the activity of either of these two isoenzymes by selective COX inhibitors accelerated cellular differentiation, suggesting that both COX isoenzymes negatively influenced differentiation. Tumor necrosis factor-alpha (TNFalpha) significantly up-regulated COX-2 expression ( approximately 2-fold) in differentiating 3T3-L1 cells, whereas similar effect was not observed with COX-1 expression. Abrogating the induced COX-2 activity reversed the TNFalpha-induced inhibition of differentiation by approximately 70%, implying a role for COX-2 in mediating TNFalpha signaling. Hence, both COX isoforms were involved in the negative modulation of adipocyte differentiation. COX-2 appeared to be the main isoform mediating at least part of the negative effects of TNFalpha.
Collapse
Affiliation(s)
- Hongyun Yan
- Julia McFarlane Diabetes Research Centre, Department of Medicine, The University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | | | |
Collapse
|
35
|
Duplus E, Glorian M, Tordjman J, Berge R, Forest C. Evidence for selective induction of phosphoenolpyruvate carboxykinase gene expression by unsaturated and nonmetabolized fatty acids in adipocytes. J Cell Biochem 2002; 85:651-61. [PMID: 11968005 DOI: 10.1002/jcb.10175] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) and 3-thia fatty acids are hypolipidemic and decrease insulin resistance in Type II diabetic animals. To exert such an action, these FAs could decrease adipose tissue lipolysis or increase esterification. Glyceroneogenesis is an important metabolic pathway in adipocytes for re-esterification of FAs originating from lipolysis and in hepatocytes for triacylglycerol synthesis during fasting. Cytosolic phosphoenolpyruvate carboxykinase (PEPCK) plays a key role in this pathway. Here we show that the PUFA docosahexaenoic acid (DHA) stimulates PEPCK mRNA in glucose-deprived adipose tissue explants from fed rats and in 3T3-F442A differentiated adipocytes. This effect is maximum at 3 h, stable up to at least 11 h of treatment, and affects the transcription of the gene. PEPCK mRNA half-life is not affected. Among a series of adipocyte transcripts, only the adipocyte lipid binding protein mRNA is also increased by DHA, although later than the PEPCK mRNA and at a much lower extent. DHA has no effect on PEPCK gene expression in the H4IIE hepatoma cells in which this gene is responsive to other inducers like cAMP. This lack of effect is not due to a failure of DHA to act in H4IIE cells since it induces the carnitine palmitoyltransferase 1 (CPT-1) mRNA. Therefore, the DHA effect appears to be cell-selective. Results of experiments using either tetradecylthio acetic acid and alpha-bromopalmitate, two nonmetabolized Fas, or a series of inhibitors of FA metabolism show that the FA effect on PEPCK mRNA is not due to a product of its metabolism. Hence, polyunsaturated and nonmetabolized FAs stimulate adipose PEPCK, therefore potentially enhancing glyceroneogenesis and reducing FA output. This mechanism could participate in the hypolipidemic action of PUFAs.
Collapse
MESH Headings
- Adipocytes/drug effects
- Adipocytes/metabolism
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Cells, Cultured
- Docosahexaenoic Acids/metabolism
- Docosahexaenoic Acids/pharmacology
- Dose-Response Relationship, Drug
- Fatty Acids, Unsaturated/metabolism
- Fatty Acids, Unsaturated/pharmacology
- Gene Expression Regulation/drug effects
- Half-Life
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Male
- Nutritional Status
- Phosphoenolpyruvate Carboxykinase (GTP)/drug effects
- Phosphoenolpyruvate Carboxykinase (GTP)/genetics
- Phosphoenolpyruvate Carboxykinase (GTP)/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Eric Duplus
- INSERM Unit 530, Centre Universitaire des Saints-Pères, 45 rue des Saints-Pères, 75006, Paris, France
| | | | | | | | | |
Collapse
|
36
|
Crespo N, Esteve-Garcia E. Nutrient and fatty acid deposition in broilers fed different dietary fatty acid profiles. Poult Sci 2002; 81:1533-42. [PMID: 12412920 DOI: 10.1093/ps/81.10.1533] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to determine the effect of different dietary fatty acid profiles on efficiency of energy, fat, nitrogen, and fatty acid deposition in broiler chickens. Sixty female broiler chickens were fed a basal diet without additional fat or with 4 other diets with different fats (tallow, olive, sunflower, and linseed oils) at 10% from 28 to 48 d of age. Among broilers fed diets with added fat, those fed linseed oil had less abdominal fat (in grams and percentage) than those fed tallow (P < 0.05). Absorbed fat losses were slightly higher for birds fed linseed oil, and nitrogen efficiency was lower in those fed tallow (P < 0.05). However, there were not significant differences in energy deposition among broilers fed diets with added fat. Fatty acid balance showed the highest values of fatty acid oxidation during the experimental period in broilers fed linseed oil (48.2 g), followed by those fed sunflower oil (23.2 g). Contribution of endogenous fat synthesis to total body fat deposition was minimal in birds fed diets with added fat accounting for 3, 1.2, 8.5, and 7.5 g for broilers fed tallow, olive, sunflower, and linseed oils, respectively. This reflects lipogenesis inhibition by dietary fat addition. Interestingly, between broilers fed diets with added fat, higher values of fatty acids from endogenous synthesis were found in broilers fed diets rich in polyunsaturated fatty acids (PUFA). Results suggest that reduction of abdominal fat in broilers fed linseed oil seems to be a consequence of higher lipid oxidation despite the higher synthesis of endogenous fatty acids.
Collapse
Affiliation(s)
- N Crespo
- Institut de Recerca i Tecnologia Agroalimentàries, Department of Animal Nutrition, Centre de Mas Bove, Reus (Tarragona), Spain
| | | |
Collapse
|
37
|
Grimm H, Mayer K, Mayser P, Eigenbrodt E. Regulatory potential of n-3 fatty acids in immunological and inflammatory processes. Br J Nutr 2002; 87 Suppl 1:S59-67. [PMID: 11895155 DOI: 10.1079/bjn2001457] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the last few years immunonutrition has gained increasing importance. Among other compounds lipids, especially n-3 polyunsaturated fatty acids, were shown to influence the immune response. The anti-inflammatory effects they exert can be induced by free fatty acids, triglyceride fatty acids, after incorporation into the membrane phopspholipid bilayer or following metabolism to eicosanoids. n-3 Fatty acids influence inflammatory cell activation processes from signal transduction to protein expression even involving effects at the genomic level. n-3 Fatty acid-mediated mechanisms decreased cytokine-induced adhesion molecule expression, thereby reducing inflammatory leucocyte-endothelium interactions and modified lipid mediator synthesis, thus influencing the transendothelial migration of leucocytes and leucocyte trafficking in general. Even the metabolic repertoire of specific immunocompetent cells such as cytokine release or proliferation is modified by n-3 fatty acids. Beyond this they regulate lipid homeostasis shifting the metabolic pathways towards energy supply thus optimizing the function of immune cells. Due to the regulatory impact on different processes of inflammatory and immune cell activation n-3 fatty acids provide positive effects on various states of immune deficiencies and diseases with a hyperinflammatory character, among which selected examples are presented.
Collapse
Affiliation(s)
- H Grimm
- Department of General and Thoracic Surgery, University of Giessen, Germany.
| | | | | | | |
Collapse
|
38
|
Diraison F, Dusserre E, Vidal H, Sothier M, Beylot M. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am J Physiol Endocrinol Metab 2002; 282:E46-51. [PMID: 11739082 DOI: 10.1152/ajpendo.2002.282.1.e46] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether increased lipogenesis contributes to human obesity, we measured (postabsorptive state), in lean and obese subjects, lipid synthesis (deuterated water method) and the mRNA concentration (RT-competitive PCR) in subcutaneous adipose tissue of fatty acid synthase (FAS) and sterol regulatory element-binding protein (SREBP)-1c. Before energy restriction, obese subjects had an increased contribution of hepatic lipogenesis to the circulating triglyceride pool (14.5 +/- 1.3 vs. 7.5 +/- 1.9%, P < 0.01) without enhancement of cholesterol synthesis. This increased hepatic lipogenesis represented an excess of 2-5 g/day of triglycerides, which would represent 0.7-1.8 kg on a yearly basis. The lipogenic capacity of adipose tissue appeared, on the contrary, decreased with lower FAS mRNA levels (P < 0.01) and a trend for decreased SREBP-1c mRNA (P = 0.06). Energy restriction in obese patients decreased plasma insulin (P < 0.05) and leptin (P < 0.05) and normalized hepatic lipogenesis. FAS mRNA levels were unchanged, whereas SREBP-1c increased. In conclusion, subjects with established obesity have an increased hepatic lipogenesis that could contribute to their excessive fat mass but no evidence for an increased lipogenic capacity of adipose tissue.
Collapse
Affiliation(s)
- Frédérique Diraison
- Institut National de la Santé et de la Recherche Médicale Unité 499, Faculté RTH Laennec, 69008 Lyon, France
| | | | | | | | | |
Collapse
|
39
|
Abstract
Because of the rapid rate of growth during infancy, and the potentially deleterious effect of differences in the availability of dietary essential nutrients, growth is an important outcome variable in any study assessing a diet designed for infants. Nearly 10 yr after the first demonstration of reduced growth in preterm infants fed a fish oil-enriched formula, there is very little additional information to confirm or refute the finding that long-chain n-3 polyunsaturated fatty acid (LC-PUFA) intake can modulate growth in infants. To evaluate the issue of a possible relationship between PUFA intake and growth of infants, we reviewed a total of 32 randomized studies, 13 in preterm infants and 19 in term infants. From the data published to date, it seems clear that long-chain n-3 fatty acids can reduce growth achievement in preterm and term infants under some experimental conditions. However, the effect of n-3 PUFA supplementation on the growth of preterm and term infants appears to be minimal and of questionable clinical and/or physiologic relevance. Nonetheless, n-3 fatty acids have an effect on gene transcription, at least in some species, and this finding may provide important clues to the mechanism by which n-3 and n-6 fatty acids regulate growth.
Collapse
Affiliation(s)
- A Lapillonne
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | |
Collapse
|
40
|
Okita M, Sasagawa T, Ohta Y, Kaneyuki T, Suzuki K. Effect of arachidonic acid-rich oil on lipids and arachidonate metabolites in ethanol- treated rats. Prostaglandins Leukot Essent Fatty Acids 2001; 64:273-9. [PMID: 11418023 DOI: 10.1054/plef.2001.0271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of dietary arachidonic acid-rich oil (AAoil) on lipids and arachidonate metabolites in the liver and plasma were evaluated in ethanol-treated rats. Rats were fed a purified diet containing 10% weight of lard or AAoil for 14 days. Ethanol was administered by gavage at a single daily dose of 3 g/kg body weight. Comparing with the lard group, a decrease was observed in liver fatty vacuoles in the AAoil group. Plasma 6-keto-prostaglandin (PG) F1 alpha and thromboxane (TX) B(2)levels and the 6-keto-PGF1 alpha/TXB(2)ratio increased significantly in the AAoil group. Liver 6-keto-PGF1 alpha also increased but not leukotriene B(4)in the AAoil group. In the phospholipid fraction of liver tissue, plasma and red blood cells, arachidonic acid (20:4n-6) and docosatetraenoic acid (22:4n-6) increased and oleic acid (18:1n-9) and linoleic acid (18:2n-6) decreased significantly in the AAoil group compared with the lard group. These observations suggest that AAoil supplementation reduces liver injury of ethanol-treated rats, although longer observation will be necessary for confirmation.
Collapse
Affiliation(s)
- M Okita
- Department of Nutritional Science, Okayama Prefectural University, Soja, 719-1197, Japan.
| | | | | | | | | |
Collapse
|
41
|
Sasagawa T, Ishii K, Hasuda K, Kubota M, Ota Y, Okita M. The effect of dietary polyunsaturated fatty acid on insulin sensitivity and lipid metabolism in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Prostaglandins Leukot Essent Fatty Acids 2001; 64:181-7. [PMID: 11334554 DOI: 10.1054/plef.2001.0259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of insulin sensitivity and lipid metabolism of dietary lard, eicosapentaenoic acid-rich oil (EPA oil) or arachidonic acid oil (AA oil) in Otsuka Long-Evans Tokushima Fatty (OLETF) rats were examined. Blood glucose was not different in each group at 30, 60, 120 min on an oral glucose tolerance test. Fasting blood glucose levels were lower in lard and AA oil groups than in controls. Hepatic triglyceride concentration and liver histochemistry revealed that the fat content was higher in the lard group and the AA oil group than in controls. The EPA oil group showed TG levels as high as the control group. Serum total cholesterol in the EPA oil group was lower, while the level in the AA oil group was higher than in the lard and control groups. HDL cholesterol was 1.5-fold higher in the AA oil group than in controls. Dietary EPA oil or AA oil supplementation showed different effects on lipid metabolism in this model.
Collapse
Affiliation(s)
- T Sasagawa
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, Okayama, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Clarke SD. Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br J Nutr 2000; 83 Suppl 1:S59-66. [PMID: 10889793 DOI: 10.1017/s0007114500000969] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This review addresses the hypothesis that polyunsaturated fatty acids (PUFA), particularly those of the n-3 family, play essential roles in the maintenance of energy balance and glucose metabolism. The data discussed indicate that dietary PUFA function as fuel partitioners in that they direct glucose toward glycogen storage, and direct fatty acids away from triglyceride synthesis and assimilation and toward fatty acid oxidation. In addition, the n-3 family of PUFA appear to have the unique ability to enhance thermogenesis and thereby reduce the efficiency of body fat deposition. PUFA exert their effects on lipid metabolism and thermogenesis by upregulating the transcription of the mitochondrial uncoupling protein-3, and inducing genes encoding proteins involved in fatty acid oxidation (e.g. carnitine palmitoyltransferase and acyl-CoA oxidase) while simultaneously down-regulating the transcription of genes encoding proteins involved in lipid synthesis (e.g. fatty acid synthase). The potential transcriptional mechanism and the transcription factors affected by PUFA are discussed. Moreover, the data are interpreted in the context of the role that PUFA may play as dietary factors in the development of obesity and insulin resistance. Collectively the results of these studies suggest that the metabolic functions governed by PUFA should be considered as part of the criteria utilized in defining the dietary needs for n-6 and n-3 PUFA, and in establishing the optimum dietary ratio for n-6:n-3 fatty acids.
Collapse
Affiliation(s)
- S D Clarke
- Graduate Program of Nutritional Sciences, University of Texas at Austin 78712, USA.
| |
Collapse
|
43
|
Gao J, Ye H, Serrero G. Stimulation of adipose differentiation related protein (ADRP) expression in adipocyte precursors by long-chain fatty acids. J Cell Physiol 2000; 182:297-302. [PMID: 10623894 DOI: 10.1002/(sici)1097-4652(200002)182:2<297::aid-jcp19>3.0.co;2-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adipose differentiation related protein (ADRP) is a 50-kDa protein expressed in adipocytes and transcriptionally activated when adipocyte precursors differentiate into mature adipocytes. Recent experiments have demonstrated that ADRP is a fatty acid binding protein that specifically facilitates the uptake of long-chain fatty acids. The present investigation provides evidence that ADRP mRNA and protein expression in preadipocytes is stimulated by fatty acids in a time- and dose-dependent fashion. ADRP mRNA expression was maximally stimulated at fatty acid concentrations of or above 10(-5) M. Stimulation of ADRP expression was observed with the nonmetabolizable fatty acid 2-bromopalmitate and with natural fatty acids. Stimulation of ADRP mRNA expression by fatty acids peaked between 5 and 8 hr and decreased by 24 hr. Stimulation of ADRP expression by fatty acids was completely inhibited by treatment with actinomycin D, suggesting that fatty acid stimulates ADRP gene expression at the transcriptional level. Comparison of the effect of several fatty acids with varying carbon chain lengths indicated that long-chain fatty acids were active in stimulating ADRP, whereas short-chain fatty acids such as caproate and 2-bromooctanoate had no effect. The degree of saturation of fatty acids did not influence their ability to stimulate ADRP expression. These studies provide new information on the regulation of ADRP and identify a new target regulated by fatty acids during adipose differentiation.
Collapse
Affiliation(s)
- J Gao
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy and Program of Oncology, Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD 21201-1180, USA
| | | | | |
Collapse
|
44
|
Gao J, Ye H, Serrero G. Stimulation of adipose differentiation related protein (ADRP) expression in adipocyte precursors by long-chain fatty acids. J Cell Physiol 2000. [DOI: 10.1002/(sici)1097-4652(200002)182:2%3c297::aid-jcp19%3e3.0.co;2-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Mater MK, Thelen AP, Pan DA, Jump DB. Sterol response element-binding protein 1c (SREBP1c) is involved in the polyunsaturated fatty acid suppression of hepatic S14 gene transcription. J Biol Chem 1999; 274:32725-32. [PMID: 10551830 DOI: 10.1074/jbc.274.46.32725] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyunsaturated fatty acids (PUFA) suppress hepatic lipogenic gene transcription through a peroxisome proliferator activated receptor alpha (PPARalpha)- and cyclooxygenase-independent mechanism. Recently, the sterol response element-binding protein 1 (SREBP1) was implicated in the nutrient control of lipogenic gene expression. In this report, we have assessed the role SREBP1 plays in the PUFA control of three hepatic genes, fatty acid synthase, L-pyruvate kinase (LPK), and the S14 protein (S14). PUFA suppressed both the hepatic mRNA(SREBP1) through a PPARalpha-independent mechanism as well as SREBP1c nuclear content (nSREBP1c, 65 kDa). Co-transfection of primary hepatocytes revealed a differential sensitivity of the fatty acid synthase, S14, and LPK promoters to nSREBP1c overexpression. Of the three promoters examined, LPK was the least sensitive to overexpressed nSREBP1c. Promoter deletion and gel shift analyses of the S14 promoter localized a functional SREBP1c cis-regulatory element to an E-box-like sequence ((-139)TCGCCTGAT(-131)) within the S14 PUFA response region. Although overexpression of nSREBP1c significantly reduced PUFA inhibition of S14CAT, overexpression of other factors that induced S14CAT activity, such as steroid receptor co-activator 1 or retinoid X receptor alpha, had no effect on S14CAT PUFA sensitivity. These results suggest that PUFA regulates hepatic nSREBP1c, a factor that functionally interacts with the S14 PUFA response region. PUFA regulation of nSREBP1c may account for the PUFA-mediated suppression of hepatic S14 gene transcription.
Collapse
Affiliation(s)
- M K Mater
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Dietary fat is an important macronutrient for the growth and development of all organisms. In addition to its role as an energy source and its effects on membrane lipid composition, dietary fat has profound effects on gene expression, leading to changes in metabolism, growth, and cell differentiation. The effects of dietary fat on gene expression reflect an adaptive response to changes in the quantity and type of fat ingested. Specific fatty acid-regulated transcription factors have been identified in bacteria, amphibians, and mammals. In mammals, these factors include peroxisome proliferator-activated receptors (PPAR alpha, -beta, and -gamma), HNF4 alpha, NF kappa B, and SREBP1c. These factors are regulated by (a) direct binding of fatty acids, fatty acyl-coenzyme A, or oxidized fatty acids; (b) oxidized fatty acid (eicosanoid) regulation of G-protein-linked cell surface receptors and activation of signaling cascades targeting the nucleus; or (c) oxidized fatty acid regulation of intracellular calcium levels, which affect cell signaling cascades targeting the nucleus. At the cellular level, the physiological response to fatty acids will depend on (a) the quantity, chemistry, and duration of the fat ingested; (b) cell-specific fatty acid metabolism (oxidative pathways, kinetics, and competing reactions); (c) cellular abundance of specific nuclear and membrane receptors; and (d) involvement of specific transcription factors in gene expression. These mechanisms are involved in the control of carbohydrate and lipid metabolism, cell differentiation and growth, and cytokine, adhesion molecule, and eicosanoid production. The effects of fatty acids on the genome provide new insight into how dietary fat might play a role in health and disease.
Collapse
Affiliation(s)
- D B Jump
- Department of Physiology and Biochemistry, Michigan State University, East Lansing 48824, USA.
| | | |
Collapse
|
47
|
Abstract
Triacylglycerols represent the main form of storage for a wide spectrum of fatty acids. Their utilization first involves mobilization from adipose tissue through lipolysis. The release of individual fatty acids from adipose tissue is selective in vitro and in vivo in animal studies and also in human subjects. Generally, fatty acids are more readily mobilized from fat cells when they are short-chain and unsaturated. This selectivity could affect the storage of individual fatty acids in adipose tissue, and their subsequent supply to tissues. The nature of the dietary fats could affect lipid homeostasis and body fat deposition. Dietary fish oil influences adipose tissue development in a site-specific manner as a function of diet and feeding period. A diet high in n-3 polyunsaturated fatty acids (PUFA) results in a preferential partitioning of ingested energy towards oxidation at the expense of storage. Fatty acids are important mediators of gene expression in the liver. Indeed, genes encoding both glycolytic and lipogenic enzymes and key metabolic enzymes involved in fatty acid oxidation are regulated by dietary PUFA. White adipose tissue could also be a target for PUFA control of gene expression. The treatment of pre-adipose cells by fatty acids induces the expression of numerous genes that encode proteins involved in fatty acid metabolism. The mechanisms of PUFA-mediated repression of gene expression in adipocytes seem to be different, at least partly, from those described in liver. Tissue-specific and site-specific factors are possibly involved in the specific effect of PUFA on gene expression, although other mechanisms cannot be excluded.
Collapse
Affiliation(s)
- T Raclot
- Centre d'Ecologie et Physiologie Energétiques, UPR 9010 CNRS, l'Université Louis Pasteur, Strasbourg, France.
| | | |
Collapse
|
48
|
Abstract
Dietary polyunsaturated fatty acids (PUFA) have profound effects on hepatic gene transcription leading to significant changes in lipid metabolism. PUFA rapidly suppress transcription of genes encoding specific lipogenic and glycolytic enzymes and induce genes encoding specific peroxisomal and cytochrome P450 (CYP) enzymes. Using the peroxisome proliferator-activated receptor alpha (PPAR alpha)-null mouse, we showed that dietary PUFA induction of acyl CoA oxidase (AOX) and CYP4A2 require PPAR alpha. However, PPAR alpha is not required for the PUFA-mediated suppression of fatty acid synthase (FAS), S14, or L-pyruvate kinase (L-PK). Studies in primary rat hepatocytes and cultured 3T3-L1 adipocytes showed that metabolites of 20:4n-6, like prostaglandin E2 (PGE2), suppress mRNA encoding FAS, S14, and L-PK through a Gi/Go-coupled signal transduction cascade. In contrast to adipocytes, 20:4n-6-mediated suppression of lipogenic gene expression in hepatic parenchymal cells does not require cyclooxygenase. Transfection analysis of S14CAT fusion genes in primary hepatocytes shows that peroxisome proliferator-activated PPAR alpha acts on the thyroid hormone response elements (-2.8/-2.5 kb). In contrast, both PGE2 and 20:4n-6 regulate factors that act on the proximal promoter (-150/-80 bp) region, respectively. In conclusion, PUFA affects hepatic gene transcription through at least three distinct mechanisms: (i) a PPAR-dependent pathway, (ii) a prostanoid pathway, and (iii) a PPAR and prostanoid-independent pathway. PUFA regulation of hepatic lipid metabolism involves an integration of these multiple pathways.
Collapse
Affiliation(s)
- D B Jump
- Department of Physiology, Michigan State University, East Lansing 48824, USA.
| | | | | |
Collapse
|
49
|
Mater MK, Thelen AP, Jump DB. Arachidonic acid and PGE2 regulation of hepatic lipogenic gene expression. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33508-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
50
|
Jump DB, Thelen A, Ren B, Mater M. Multiple mechanisms for polyunsaturated fatty acid regulation of hepatic gene transcription. Prostaglandins Leukot Essent Fatty Acids 1999; 60:345-9. [PMID: 10471119 DOI: 10.1016/s0952-3278(99)80010-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dietary polyunsaturated fatty acids (PUFA) have profound effects on hepatic gene transcription leading to significant changes in lipid metabolism. Highly unsaturated n-3 PUFA suppress the transcription of genes encoding specific lipogenic enzymes and induce the expression of genes encoding specific enzymes involved in peroxisomal and microsomal fatty acid oxidation. Our studies have shown that fatty acid effects on hepatic gene expression may involve at least three distinct pathways. One pathway involves peroxisome proliferator-activated receptor (PPARalpha), a fatty acid activated nuclear receptor. PPARalpha is required for the PUFA induction of mRNAs encoding enzymes involved in fatty acid oxidation. However, PPARalpha is not required for PUFA suppression of mRNAs encoding proteins involved in lipogenesis. A second pathway involves prostanoids. In cultured 3T3-L1 adipocytes, cyclooxygenase derived 20:4 n-6 metabolites, like PGE2, suppress mRNAs encoding proteins involved in lipogenesis. However, in hepatic parenchymal cells, 20:4 n-6 suppression of lipogenic gene expression does not require a cyclooxygenase. Nevertheless, PGE2 and PGF2alpha suppress hepatic lipogenic gene expression. 20:4 n-6 cyclooxygenase products can arise from non-parenchymal cells and through a paracrine control process act on a G-protein linked receptor signaling cascade to suppress lipogenic gene expression. The fact that n-3 and n-6 PUFA suppression of lipogenic gene expression does not require PPARalpha or cyclooxygenase activity indicates the presence of a third pathway for the control of hepatic gene transcription. These studies indicate that the pleiotropic effects of PUFA on hepatic lipid metabolism cannot be attributed to a single regulatory mechanism.
Collapse
Affiliation(s)
- D B Jump
- Department of Physiology, Michigan State University, East Lansing 48824, USA.
| | | | | | | |
Collapse
|